JP5071809B2 - Solid electrolyte type oxygen partial pressure control method - Google Patents

Solid electrolyte type oxygen partial pressure control method Download PDF

Info

Publication number
JP5071809B2
JP5071809B2 JP2008314222A JP2008314222A JP5071809B2 JP 5071809 B2 JP5071809 B2 JP 5071809B2 JP 2008314222 A JP2008314222 A JP 2008314222A JP 2008314222 A JP2008314222 A JP 2008314222A JP 5071809 B2 JP5071809 B2 JP 5071809B2
Authority
JP
Japan
Prior art keywords
oxygen
partial pressure
oxygen partial
solid electrolyte
discharging apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008314222A
Other languages
Japanese (ja)
Other versions
JP2010139305A (en
Inventor
良行 吉田
直樹 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008314222A priority Critical patent/JP5071809B2/en
Publication of JP2010139305A publication Critical patent/JP2010139305A/en
Application granted granted Critical
Publication of JP5071809B2 publication Critical patent/JP5071809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、固体電解質内を通過するガス中の酸素濃度分圧を制御するための固体電解質型酸素分圧制御方法に関する。   The present invention relates to a solid electrolyte type oxygen partial pressure control method for controlling an oxygen concentration partial pressure in a gas passing through a solid electrolyte.

従来、固体電解質にバイアス電圧を印加することで不活性ガス等から酸素を除去する装置において、目標とする酸素分圧へと制御を行うために酸素センサで測定された酸素分圧と目標とする酸素分圧との比較からPID演算によりバイアス電圧値を計算することが行われていた(特許文献1)。   Conventionally, in an apparatus that removes oxygen from an inert gas or the like by applying a bias voltage to a solid electrolyte, the oxygen partial pressure measured by the oxygen sensor and the target are used to control the target oxygen partial pressure. A bias voltage value has been calculated by PID calculation from comparison with oxygen partial pressure (Patent Document 1).

PID演算による制御とは、動作時の値と目標値との差とその時間変化から必要な出力を試行錯誤的に求める方法である。この場合、目標とする酸素分圧が動作中の酸素分圧より高い場合、すなわち酸素を外界から取り入れる必要がある場合に、負のバイアス電圧をかけることになる。これは往々にして固体電解質の破壊を生じる。また、ハンチング(動作中の酸素分圧値が目標値とする酸素分圧値の周りで振動すること)等のPID制御にありがちな現象を引き起こしやすい。一方大きすぎるバイアス電圧は、固体電解質の破壊を招くため、制限を設けるのが普通である。このような制限下で運転すると、酸素分圧が10−2atmから10−5atmでは酸素の排気に極めて長い時間を要して酸素ポンプの効率が悪い。
特開2005−331339号公報
The control by the PID calculation is a method of obtaining a necessary output by trial and error from a difference between a value at the time of operation and a target value and a change with time. In this case, when the target oxygen partial pressure is higher than the oxygen partial pressure during operation, that is, when it is necessary to take in oxygen from the outside, a negative bias voltage is applied. This often results in destruction of the solid electrolyte. In addition, it tends to cause a phenomenon that tends to occur in PID control such as hunting (the oxygen partial pressure value during operation vibrates around the target oxygen partial pressure value). On the other hand, since a bias voltage that is too large causes destruction of the solid electrolyte, a limit is usually provided. When operating under such a restriction, when the oxygen partial pressure is 10 −2 atm to 10 −5 atm, it takes a very long time to exhaust oxygen, and the efficiency of the oxygen pump is poor.
JP 2005-331339 A

本発明は、従来の欠点を鑑みてなされたもので、酸素の排気を極めて短時間に効率良く行うことが出来ると共に精度良く酸素分圧を制御することができる固体電解質型酸素分圧制御方法を提供することにある。   The present invention has been made in view of conventional drawbacks, and provides a solid electrolyte oxygen partial pressure control method capable of efficiently exhausting oxygen in a very short time and accurately controlling the oxygen partial pressure. It is to provide.

請求項1の固体電解質型酸素分子排出装置の酸素分圧制御方法は、固体電解質型酸素分子排出装置とバイアス電源を備える固体電解質型酸素分子排出装置酸素分圧制御方法において、酸素分圧制御を、酸素分子排出装置内を流れる所定の電流が目標とするバイアス電圧(Vtarget)/酸素分子排出装置系の内部抵抗(R)より小さくなった時点で定電流モードから定電圧モードに切り替えて、目標とする酸素分圧で生じる逆バイアス電圧を相殺するようにバイアス電圧をかけて行うことを特徴とする。 The oxygen partial pressure control method of the solid electrolyte type oxygen molecule discharging apparatus according to claim 1 is a solid electrolyte type oxygen molecule discharging apparatus and oxygen partial pressure control method comprising a solid electrolyte type oxygen molecule discharging apparatus and a bias power source. When the predetermined current flowing in the oxygen molecule discharging apparatus becomes smaller than the target bias voltage (Vtarget) / internal resistance (R) of the oxygen molecule discharging apparatus system , the constant current mode is switched to the constant voltage mode. A bias voltage is applied so as to cancel out the reverse bias voltage generated by the oxygen partial pressure.

請求項2の固体電解質型酸素分子排出装置の酸素分圧制御方法は、前記バイアス電源が、酸素分圧に応じて定電流源動作と定電圧源動作に切り替えてなることを特徴とする。   According to a second aspect of the present invention, there is provided an oxygen partial pressure control method for a solid oxide oxygen molecule discharging apparatus, wherein the bias power source is switched between a constant current source operation and a constant voltage source operation in accordance with the oxygen partial pressure.

酸素の排気を極めて短時間に効率良く行うことが出来ると共に精度良く酸素分圧を制御することができる。   Oxygen can be exhausted efficiently in a very short time, and the oxygen partial pressure can be controlled with high accuracy.

以下、本発明の実施の形態について、図面を参照して説明する。
図1は、極低酸素濃度ガス生成装置を構成する酸素分子排出装置を示す要部概略図である。
酸素分子排出装置20は、酸素イオン伝導性を有するジルコニア製固体電解質体21と、固体電解質体21の内外両面に配設され金又は白金よりなるネット状の電極22、23とを備える。ジルコニア製固体電解質体21は、両端部で金属製管体25と固着される。固体電解質体の電極と管体は、内側電極を構成する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a main part schematic diagram showing an oxygen molecule discharging apparatus constituting an extremely low oxygen concentration gas generating apparatus.
The oxygen molecule discharging apparatus 20 includes a zirconia solid electrolyte body 21 having oxygen ion conductivity, and net-like electrodes 22 and 23 made of gold or platinum and disposed on both the inner and outer surfaces of the solid electrolyte body 21. The zirconia solid electrolyte body 21 is fixed to the metal pipe body 25 at both ends. The electrode and tube of the solid electrolyte body constitute an inner electrode.

図2は、酸素分子排出装置20の作用を示す概略図である。酸素分子排出装置20の電極22、23間に直流電源Eに2ボルトの電圧を印加して電流Iを流すと、固体電解質体の中空を流れるガス中の酸素分子が固体電解質内でイオン化し、固体電解質の酸素イオン伝導性により内側から外側に酸素イオンが輸送され、固体電解質体の外に放出される。このように極低酸素分圧ガス生成装置は、固体電解質体内21に導入されたガスを固体電解質体内21中を通過する間にガス中の酸素分子を外気に排出して、極めて低い酸素分圧を有する極低酸素濃度ガスを生成して、固体電解質体から製造装置に向けて供給する。図において、●は、ガス、○○は、酸素分子、○は、酸素イオンである。 FIG. 2 is a schematic view showing the operation of the oxygen molecule discharging apparatus 20. When a voltage I of 2 volts is applied to the DC power source E between the electrodes 22 and 23 of the oxygen molecule discharging apparatus 20 to flow a current I, oxygen molecules in the gas flowing through the hollow space of the solid electrolyte body are ionized in the solid electrolyte, Oxygen ions are transported from the inside to the outside due to the oxygen ion conductivity of the solid electrolyte, and are released out of the solid electrolyte body. As described above, the extremely low oxygen partial pressure gas generating apparatus discharges oxygen molecules in the gas to the outside air while passing the gas introduced into the solid electrolyte body 21 through the solid electrolyte body 21, thereby extremely low oxygen partial pressure. An extremely low oxygen concentration gas having the above is generated and supplied from the solid electrolyte body to the manufacturing apparatus. In FIG. 2 , ● is a gas, OO is an oxygen molecule, and ◯ is an oxygen ion.

前記固体電解質体21を構成する固体電解質 は、例えば、一般式( Z r O 2 ) 1-x-y( I n 2 O 3 ) x( Y2O 3 ) y( 0< x < 0.20、0< y < 020、0.08< x +y < 0.20) で表されるジルコニア系が利用できる。その中でも、0< x < 0.20、y = 0 であることが望ましく、さらに、0.06< x < 0.12、y = 0 であることがより望ましい。   The solid electrolyte constituting the solid electrolyte body 21 is, for example, a general formula (ZrO2) 1-xy (In2O3) x (Y2O3) y (0 <x <0.20, 0 <y <020). A zirconia system represented by 0.08 <x + y <0.20) can be used. Among them, 0 <x <0.20 and y = 0 are preferable, and 0.06 <x <0.12 and y = 0 are more preferable.

固体電解質 は、上記に例示したもの以外に、例えば、Ba およびIn を含む複合B 酸化物であって、この複合酸化物のBa の一部をL a で固溶置換したもの、特に、原子数比{ La /( Ba +La ) } を0.3以上としたものや、さらにIn の一部をGa で置換したものや、一般式{ Ln 1 - x Srx Ga 1 - ( y + z )Mg y Co z O 3 、ただし、Ln = La,Nd の1 種または2 種、x = 0.05〜 0.3、y = 0〜 0.29、z = 0.01〜 0.3、y +z = 0.025〜 0.3} で示されるものや、一般式{ Ln ( 1 - x ) A x Ga ( 1 - y - z ) B1y B2z O 3 -d、ただし、Ln = La,Ce,Pr,Nd,Sm の1 種または2 種以上、A = Sr, Ca, Ba の1 種または2 種以上、B 1= Mg,Al,In の1 種または2 種以上、B 2= Co,Fe,Ni, Cu の1 種または2 種以上} で示されるものや、一般式{ Ln 2-xM xGe 1 - y Ly O5、ただし、Ln = La,Ce,Pr,Sm,Nd,Gd,Yd,Y,Sc、M = Li,Na,K,Rb,Ca,Sr,Ba の1 種もしくは2 種以上、L = Mg,Al,Ga,In,Mn,Cr,Cu,Zn の1 種もしくは2 種以上}や、一般式{ La ( 1 - x ) Sr xGa ( 1 - y - z ) Mg y Al 2 O 3 、ただし、0< x ≦ 0.2、0< y ≦ 0.2、0< z < 0.4} や、一般式{ La ( 1 - x ) A x Ga ( 1 - y - z ) B 1y B 2z O 3 、ただし、Ln = La,Ce,Pr,Sm,Ndの1 種もしくは2種以上、A = Sr,Ca,Ba の1 種もしくは2 種以上、B 1= Mg,Al,In の1 種もしくは2 種以上、B 2= Co,Fe,Ni,Cu の1 種もしくは2 種以上、x = 0.05〜 0.3、y = 0〜 0.29、z = 0.01〜 0.3、y +z =0.025〜 0.3}等が採用できる。   In addition to those exemplified above, the solid electrolyte is, for example, a composite B oxide containing Ba and In, in which a part of Ba of the composite oxide is replaced by solid solution with La, in particular, the number of atoms The ratio {La / (Ba + La)} is set to 0.3 or more, or a part of In is substituted with Ga, or the general formula {Ln1-xSrxGa1- (y + z) MgyCo z O 3, provided that one or two of Ln = La, Nd, x = 0.05 to 0.3, y = 0 to 0.29, z = 0.01 to 0.3, y + z = 0.005 to 0.3}, General formula {Ln (1-x) AxGa (1-y-z) B1yB2zO3-d, where Ln = La, Ce, Pr, Nd, Sm, one or more, A = Sr , Ca, Ba 1 or more, B 1 = Mg, Al, or 1 or more, B 2 = Co, Fe, Ni, C or a general formula {Ln2-xMxGe1-yLyO5, where Ln = La, Ce, Pr, Sm, Nd, Gd, Yd, Y, Sc M = Li, Na, K, Rb, Ca, Sr, Ba or more, L = Mg, Al, Ga, In, Mn, Cr, Cu, Zn or more} , General formula {La (1-x) SrxGa (1-y-z) MgyAl2O3, where 0 <x ≦ 0.2, 0 <y ≦ 0.2, 0 <z <0.4} {La (1-x) AxGa (1-y-z) B1yB2zO3, where Ln = La, Ce, Pr, Sm, Nd, one or more, A = Sr, Ca , Ba 1 or more, B 1 = Mg, Al, In 1 or more, B 2 = Co, Fe, Ni, Cu 1 or Seed above, x = 0.05~ 0.3, y = 0~ 0.29, z = 0.01~ 0.3, y + z = 0.025~ 0.3} and the like can be employed.

図3は、酸素分子排出装置とバイアス電源の等価回路を示す。等価回路は、直流電流源と酸素分子排出装置とからなり、酸素分子排出装置は、内部抵抗R(固体電解質の抵抗+電極の接触抵抗)と、内部起電力(逆バイアス)を備える。酸素分子排出装置において、酸素分子排出装置に流れる電流Iは、固体電解質中を酸素イオンが移動することにのみ生じるものとする。その場合、電流Iは、酸素排気速度に比例する。また、酸素分子排出装置は、バイアス回路がオープンになっていれば管内外の酸素濃度の比の対数に比例した電圧が、電極間に生じることになる。これを内部起電力(逆バイアス)として等価回路内に記載している。酸素分子排出装置内の酸素分圧が、外の酸素分圧より低い時に、回路図内の電池の記号の上側が下側より高い電位になる。   FIG. 3 shows an equivalent circuit of the oxygen molecule discharging apparatus and the bias power source. The equivalent circuit includes a direct current source and an oxygen molecule discharging device, and the oxygen molecule discharging device includes an internal resistance R (solid electrolyte resistance + electrode contact resistance) and an internal electromotive force (reverse bias). In the oxygen molecule discharging apparatus, the current I flowing through the oxygen molecule discharging apparatus is generated only when oxygen ions move in the solid electrolyte. In that case, the current I is proportional to the oxygen exhaust rate. In the oxygen molecule discharging apparatus, if the bias circuit is open, a voltage proportional to the logarithm of the ratio of the oxygen concentration inside and outside the tube is generated between the electrodes. This is described in the equivalent circuit as internal electromotive force (reverse bias). When the oxygen partial pressure in the oxygen molecule discharging apparatus is lower than the external oxygen partial pressure, the upper side of the symbol of the battery in the circuit diagram becomes a higher potential than the lower side.

回路動作を以下に説明する。酸素分子排出装置内に大気と同じ酸素分圧(0.2atm)のガスが入っており、ガスは、酸素分子排出装置を含む閉ループ内に閉じ込められている場合、固体電解質管の内外に酸素分圧の差がないため逆バイアスは、生じない。バイアス電源から印加された電圧は、全てR(抵抗)I(電流)で消費される。電流Iに比例した速度で酸素は、排気される。系内のガスの酸素分圧が下がってくると逆バイアスが生じ、同じバイアス電圧を印加していても電流Iは、減少してくる。さらに、逆バイアス電圧が増加し、印加電圧Vと等しくなると、I=0となり酸素分圧は変化しなくなる。そして、目標とする酸素分圧への制御は、ネルンストの計算式から求められる逆バイアスと等しいバイアス電圧を印加することで得られる。   The circuit operation will be described below. When a gas having the same oxygen partial pressure (0.2 atm) as that of the atmosphere is contained in the oxygen molecule discharge device, and the gas is confined in a closed loop including the oxygen molecule discharge device, the oxygen content inside and outside the solid electrolyte tube Since there is no pressure difference, no reverse bias occurs. All voltages applied from the bias power supply are consumed by R (resistance) I (current). Oxygen is exhausted at a rate proportional to the current I. A reverse bias occurs when the oxygen partial pressure of the gas in the system decreases, and the current I decreases even when the same bias voltage is applied. Further, when the reverse bias voltage increases and becomes equal to the applied voltage V, I = 0 and the oxygen partial pressure does not change. Control to the target oxygen partial pressure can be obtained by applying a bias voltage equal to the reverse bias obtained from the Nernst equation.

そこで、より高い酸素分圧から酸素分子排出装置で効率的に酸素を除去するためには電流Iをたくさんに流す必要がある。電圧を増やさずに電流を増やすには、抵抗を減らせばよいが、その範囲に制約がある。従って、排気すべき酸素分子の流量に応じて電流を増やす必要もある。ここで、排気すべき酸素分子の流量は、酸素分子排出装置に入る前のガスの酸素濃度を酸素センサで測定し、ガスの流量をマスフローメータで測っておけば酸素ガス流量と相対酸素濃度との掛け算により算出できる。所定の電流[A]は、排気すべき酸素分子流量[mol/s]×4F(ファラデー定数)で定義される。   Therefore, in order to efficiently remove oxygen from the higher oxygen partial pressure with the oxygen molecule discharging apparatus, it is necessary to flow a large amount of current I. In order to increase the current without increasing the voltage, the resistance may be decreased, but the range is limited. Therefore, it is necessary to increase the current according to the flow rate of oxygen molecules to be exhausted. Here, the flow rate of oxygen molecules to be exhausted can be determined by measuring the oxygen concentration of the gas before entering the oxygen molecule discharging apparatus with an oxygen sensor and measuring the gas flow rate with a mass flow meter. It can be calculated by multiplication. The predetermined current [A] is defined by the oxygen molecular flow rate [mol / s] × 4F (Faraday constant) to be exhausted.

酸素分圧が高いうちは、バイアス電源は必要な量の電流を回路に流すように定電流電源モードで動作させる。そして、酸素の排気が進んで酸素分子排出装置に入ってくるガスの酸素分圧が下がってくれば、必要な酸素分子排出装置の電流もそれに比例して下がり、目標とするバイアス電圧(Vtarget)/酸素分子排出装置系の内部抵抗(R)を下回るようになる。その後は、バイアス電源を定電圧電源モードに移し、目標とする酸素分圧で生じる逆バイアス電圧を相殺するようにバイアス電圧をかければよい。バイアス電源は、酸素分圧に応じて定電流源動作と定電圧源動作に切り替える。   While the oxygen partial pressure is high, the bias power supply is operated in the constant current power supply mode so that a necessary amount of current flows through the circuit. If the oxygen partial pressure of the gas entering the oxygen molecule discharging apparatus decreases as the oxygen exhaust proceeds, the required current of the oxygen molecule discharging apparatus also decreases in proportion to the target bias voltage (Vtarget). / Becomes less than the internal resistance (R) of the oxygen molecule ejector system. After that, the bias power supply is moved to the constant voltage power supply mode, and the bias voltage may be applied so as to cancel the reverse bias voltage generated by the target oxygen partial pressure. The bias power source is switched between a constant current source operation and a constant voltage source operation according to the oxygen partial pressure.

本実施例では、固体電解質体21として長さが235mmの6%モルのイットリアをドープしたジルコニア管を用いた。ジルコニア管の周囲には加熱ヒーターが配設される。ガス導入口よりアルゴンガスを導入し、マスフローコントローラで200cc/min.となるように設定した。600℃に加熱された酸素分子排出装置20には、当初、電極間に電圧として2V印加した。なお、固体電解質体の外側にはパージガスとして空気を流した状態とした。続いて、酸素分子排出装置内のジルコニア管を通過した酸素分圧を低減させたガスを酸素センサに導き、酸素分圧を測定した。なお、酸素分圧の測定には固体電解質体の内外の酸素分圧差に伴う濃淡電池反応による起電力を用いた。   In this example, a zirconia tube doped with 6% mol of yttria having a length of 235 mm was used as the solid electrolyte body 21. A heater is disposed around the zirconia tube. Argon gas was introduced from the gas inlet, and the mass flow controller was set to 200 cc / min. The oxygen molecule discharging apparatus 20 heated to 600 ° C. was initially applied with 2 V as a voltage between the electrodes. Note that air was allowed to flow as a purge gas outside the solid electrolyte body. Subsequently, the gas with reduced oxygen partial pressure that passed through the zirconia tube in the oxygen molecule discharging apparatus was guided to the oxygen sensor, and the oxygen partial pressure was measured. The oxygen partial pressure was measured by using an electromotive force generated by a concentration cell reaction associated with a difference in oxygen partial pressure inside and outside the solid electrolyte body.

以下、図4を用いて酸素分子排出装置の酸素分圧制御のフローチャートを説明する。
酸素センサの値とガス流量から必要な酸素排気速度(ポンプ電流I)と目標酸素分圧から目標とするバイアス電圧(Vtarget)を計算する(工程1)。計算の結果、電流Iが、Vtarget/Rより小さい場合、定電圧モードで、目標の酸素分圧で生じる逆バイアスを相殺するようにバイアス電圧を印加する(工程2)。酸素分圧が目標値と等しくなった時点で終了する(工程3)。前記計算の結果、電流Iが、Vtarget/Rより小さくならない場合、定電流モードでバイアス電流を流す(工程4)。そして、再度、工程1に戻り、酸素センサの値とガス流量から必要な酸素排気速度(ポンプ電流I)と目標酸素分圧から目標とする電圧(Vtarget)を計算する(工程1)。
ここで、Vtarget=(kBT/4e)ln[p(O2)ref/p(O2)target]、kBはボルツマン定数、eは電子の電荷、p(O2)ref, p(O2)targetはそれぞれ酸素ポンプ外側雰囲気中の酸素分圧, 目標酸素分圧である。
Vtarget/Rを判定基準にすれば電流Iが、突然に変化することが妨げられる。
Hereinafter, the flowchart of the oxygen partial pressure control of the oxygen molecule discharging apparatus will be described with reference to FIG.
The target bias voltage (Vtarget) is calculated from the required oxygen pumping speed (pump current I) and the target oxygen partial pressure from the value of the oxygen sensor and the gas flow rate (step 1). As a result of the calculation, when the current I is smaller than Vtarget / R, a bias voltage is applied in the constant voltage mode so as to cancel the reverse bias caused by the target oxygen partial pressure (step 2). The process is terminated when the oxygen partial pressure becomes equal to the target value (step 3). As a result of the calculation, when the current I is not smaller than Vtarget / R, a bias current is passed in the constant current mode (step 4). Then, returning to step 1, the target voltage (Vtarget) is calculated from the required oxygen pumping speed (pump current I) and the target oxygen partial pressure from the value of the oxygen sensor and the gas flow rate (step 1).
Where Vtarget = (k B T / 4e) ln [p (O 2 ) ref / p (O 2 ) target ], k B is the Boltzmann constant, e is the charge of the electron, p (O 2 ) ref , p ( O 2 ) target is the oxygen partial pressure and the target oxygen partial pressure in the atmosphere outside the oxygen pump, respectively.
If Vtarget / R is used as a criterion, the current I is prevented from changing suddenly.

図5は、定電圧制御による酸素分圧の時間変化を示す。まず、酸素分圧制御を開始する前に、電極間に電圧として2Vのバイアス電圧を印加したところ酸素分圧は2.7×10マイナス30乗気圧に低下した。その後、電極間に印加するバイアス電圧を目標となる酸素分圧1.0×10マイナス24乗気圧、及び1.0×10マイナス18乗気圧となる起電力(1.5V及び、0.75V)にそれぞれ設定する。これにより図に示すように非常に早く、かつ精度良く制御することが可能であることが分かった。なお、図5において、曲線aはP(O2)実測、曲線bは目標値、曲線cは実際に印加しているバイアス電圧である。   FIG. 5 shows the time change of the oxygen partial pressure by constant voltage control. First, before starting the oxygen partial pressure control, when a bias voltage of 2 V was applied between the electrodes, the oxygen partial pressure dropped to 2.7 × 10 minus 30th atmospheric pressure. Thereafter, the bias voltage applied between the electrodes is set to an electromotive force (1.5 V and 0.75 V) that is a target oxygen partial pressure of 1.0 × 10 minus 24 squared atmospheric pressure and 1.0 × 10 minus 18 squared atmospheric pressure, respectively. As a result, it was found that the control can be performed very quickly and accurately as shown in the figure. In FIG. 5, a curve a is P (O2) measurement, a curve b is a target value, and a curve c is an actually applied bias voltage.

本発明方法は、低酸素分圧ガスを使用して製品を製造する分野、半導体製造装置、液晶製造装置、電気・電子部品製造装置や食品製造装置等に応用することができる。   The method of the present invention can be applied to the field of manufacturing products using a low oxygen partial pressure gas, semiconductor manufacturing equipment, liquid crystal manufacturing equipment, electrical / electronic component manufacturing equipment, food manufacturing equipment, and the like.

本発明に係る酸素分子排出装置の要部を示す平面図である。It is a top view which shows the principal part of the oxygen molecule discharging apparatus which concerns on this invention. 本発明に係る酸素分子排出装置の原理を説明する概略構成断面図である。It is a schematic structure sectional view explaining the principle of the oxygen molecule discharge device concerning the present invention. 酸素分子排出装置とバイアス電源の等価回路を示す図である。It is a figure which shows the equivalent circuit of an oxygen molecule discharge device and a bias power supply. 酸素分子排出装置の酸素分圧制御のフローチャートを示す図である。It is a figure which shows the flowchart of oxygen partial pressure control of an oxygen molecule discharge device. 定電圧制御による酸素分圧の時間変化を示す図である。It is a figure which shows the time change of the oxygen partial pressure by constant voltage control.

符号の説明Explanation of symbols

20:酸素分子排出装置
21:固体電解質体
22、23:電極
25:管体
20: Oxygen molecule discharging device 21: Solid electrolyte body 22, 23: Electrode 25: Tube

Claims (2)

固体電解質型酸素分子排出装置とバイアス電源を備える固体電解質型酸素分子排出装置酸素分圧制御方法において、酸素分圧制御を、酸素分子排出装置内を流れる所定の電流が目標とするバイアス電圧(Vtarget)/酸素分子排出装置系の内部抵抗(R)より小さくなった時点で定電流モードから定電圧モードに切り替えて、目標とする酸素分圧で生じる逆バイアス電圧を相殺するようにバイアス電圧をかけて行うことを特徴とする固体電解質型酸素分子排出装置の酸素分圧制御方法。 In a solid electrolyte type oxygen molecule discharging apparatus and oxygen partial pressure control method including a solid oxide type oxygen molecule discharging apparatus and a bias power source, the oxygen partial pressure control is performed by using a bias voltage (Vtarget) targeted by a predetermined current flowing in the oxygen molecule discharging apparatus. ) / Switching from constant current mode to constant voltage mode when it becomes smaller than the internal resistance (R) of the oxygen molecule discharging system, and applying a bias voltage to cancel the reverse bias voltage generated by the target oxygen partial pressure A method for controlling the partial pressure of oxygen in a solid oxide oxygen molecule discharging apparatus, characterized in that: 前記バイアス電源は、酸素分圧に応じて定電流源動作と定電圧源動作に切り替えてなることを特徴とする請求項1記載の固体電解質型酸素分子排出装置の酸素分圧制御方法。   2. The oxygen partial pressure control method for a solid oxide oxygen molecule discharging apparatus according to claim 1, wherein the bias power source is switched between a constant current source operation and a constant voltage source operation in accordance with an oxygen partial pressure.
JP2008314222A 2008-12-10 2008-12-10 Solid electrolyte type oxygen partial pressure control method Active JP5071809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314222A JP5071809B2 (en) 2008-12-10 2008-12-10 Solid electrolyte type oxygen partial pressure control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314222A JP5071809B2 (en) 2008-12-10 2008-12-10 Solid electrolyte type oxygen partial pressure control method

Publications (2)

Publication Number Publication Date
JP2010139305A JP2010139305A (en) 2010-06-24
JP5071809B2 true JP5071809B2 (en) 2012-11-14

Family

ID=42349570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314222A Active JP5071809B2 (en) 2008-12-10 2008-12-10 Solid electrolyte type oxygen partial pressure control method

Country Status (1)

Country Link
JP (1) JP5071809B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634831B2 (en) * 2010-11-15 2014-12-03 キヤノンマシナリー株式会社 Oxygen partial pressure control method and control apparatus
JP6144532B2 (en) 2013-05-01 2017-06-07 株式会社デンソー Brazing sheet brazing method and heat exchanger manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682417A (en) * 1992-09-03 1994-03-22 Unisia Jecs Corp Air-fuel ratio sensor
JP3749918B2 (en) * 2001-04-27 2006-03-01 キヤノンマシナリー株式会社 Sample preparation equipment with oxygen partial pressure control
JP3921520B2 (en) * 2003-02-20 2007-05-30 独立行政法人産業技術総合研究所 Sample preparation method and sample preparation apparatus by oxygen partial pressure control
JP2005331339A (en) * 2004-05-19 2005-12-02 National Institute Of Advanced Industrial & Technology Oxygen partial pressure control device and recovery method of solid electrolyte for oxygen partial pressure control
JP4970013B2 (en) * 2006-12-05 2012-07-04 キヤノンマシナリー株式会社 Oxygen partial pressure controller

Also Published As

Publication number Publication date
JP2010139305A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP4617675B2 (en) Fuel cell system
US7125617B2 (en) Method of operating phosphoric acid fuel cell
US8097138B2 (en) Oxygen partial pressure control apparatuses and methods of using solid electrolytes for oxygen partial pressure control
JP2006324058A (en) Fuel cell system and purge control method of fuel cell system
GB2582049A (en) Method for operating an electrolysis system and electrolysis system
JP5071809B2 (en) Solid electrolyte type oxygen partial pressure control method
US20150377826A1 (en) Aging device for constant-potential electrolytic gas sensor and aging method for constant-potential electrolytic gas sensor
JP5370484B2 (en) Hydrogen concentration measuring device and fuel cell system
JP2010216017A (en) Oxygen partial pressure controller, and method for recovering solid electrolyte for oxygen partial pressure controlling
TWI388371B (en) Ultralow oxygen content gas production equipment, process system, thim fhim deposition method and idle gas
JPH0417387B2 (en)
JP5424286B2 (en) Oxygen partial pressure control device and oxygen partial pressure measuring instrument
CN104051761B (en) Prevent the fuel cell system of damage caused by water
JP2010243180A (en) Gas composition analyzer, gas composition analysis method, and fuel cell system
JP2009252544A (en) Fuel cell system, program used for fuel cell system, and information recording medium
JP2008146877A (en) Fuel cell system, and impurities accumulation amount estimation method of fuel cell system
JP5483043B2 (en) Extremely low moisture gas generating device, inert gas, processing device, and method for measuring moisture content in gas
Matsumoto et al. Automatic regulation of hydrogen partial pressure using a proton conducting ceramic based on SrCeO3
US10428433B2 (en) Method to regenerate oxygen traps
JP2005267910A (en) Fuel cell system, and control method of the same
JP2002122566A (en) Ultratrace oxygen analyzer in inert gas
JP2007294189A (en) Fuel cell system and its control method
JP5550530B2 (en) Oxygen partial pressure control method
JP2011178627A (en) Apparatus for controlling partial pressure of oxygen
JP2009280862A (en) Fluorine generating apparatus, method of recycling fluorine raw material and fluorine utilization system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5071809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250