JP5138211B2 - Oxygen pump - Google Patents

Oxygen pump Download PDF

Info

Publication number
JP5138211B2
JP5138211B2 JP2006341760A JP2006341760A JP5138211B2 JP 5138211 B2 JP5138211 B2 JP 5138211B2 JP 2006341760 A JP2006341760 A JP 2006341760A JP 2006341760 A JP2006341760 A JP 2006341760A JP 5138211 B2 JP5138211 B2 JP 5138211B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
cylindrical body
electrolyte cylindrical
heating
oxygen pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006341760A
Other languages
Japanese (ja)
Other versions
JP2008150261A (en
Inventor
博 西村
亨 長澤
晴彦 松下
隆祐 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2006341760A priority Critical patent/JP5138211B2/en
Publication of JP2008150261A publication Critical patent/JP2008150261A/en
Application granted granted Critical
Publication of JP5138211B2 publication Critical patent/JP5138211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、酸素ポンプに関するものである。   The present invention relates to an oxygen pump.

従来から、固体電解質を含む電気化学的な酸素ポンプを有する酸素分圧制御装置により、酸素分圧を制御した雰囲気ガスを用いて、単結晶試料等を作成する方法が知られている(特許文献1)。   Conventionally, a method for producing a single crystal sample or the like using an atmospheric gas whose oxygen partial pressure is controlled by an oxygen partial pressure control device having an electrochemical oxygen pump containing a solid electrolyte is known (Patent Document). 1).

図3に示す酸素分圧制御装置は、バルブ2を通った不活性ガスの流量を設定値に制御するマスフローコントローラ(MFC)3と、このマスフローコントローラ3を通った不活性ガスを目的の酸素分圧に制御可能な電気化学的な酸素ポンプ4と、酸素ポンプ4で制御された不活性ガスの酸素分圧をモニタして試料育成装置などの次工程(装置)に供給する供給ガス用の酸素センサ5を有する。   The oxygen partial pressure control apparatus shown in FIG. 3 includes a mass flow controller (MFC) 3 that controls the flow rate of the inert gas that has passed through the valve 2 to a set value, and the inert gas that has passed through the mass flow controller 3 as a target oxygen component. The oxygen oxygen for supply gas supplied to the next process (apparatus) such as a sample growing apparatus by monitoring the oxygen partial pressure of the inert gas controlled by the oxygen pump 4 and the inert gas controlled by the oxygen pump 4 It has a sensor 5.

さらにこの装置は、所望の酸素分圧値を設定する酸素分圧設定部6と、酸素センサ5によるモニタ値を酸素分圧設定部6による設定値と比較して酸素ポンプ4から送り出される不活性ガスの酸素分圧を所定値に制御する酸素分圧制御部7と、酸素センサ5によるモニタ値を表示する酸素分圧表示部8を備える。なお、通常、不活性ガス中の酸素分圧は10-4atm程度である。 Further, this apparatus compares the monitored value by the oxygen sensor 5 with the set value by the oxygen partial pressure setting unit 6 and the inertness sent out from the oxygen pump 4 to set a desired oxygen partial pressure value. An oxygen partial pressure control unit 7 that controls the oxygen partial pressure of the gas to a predetermined value and an oxygen partial pressure display unit 8 that displays a monitor value by the oxygen sensor 5 are provided. Normally, the oxygen partial pressure in the inert gas is about 10 −4 atm.

電気化学的な酸素ポンプ4は、図4に示すように、酸素イオン伝導性を有する固体電解質筒状体4aの内外両面に白金よりなる電極4b、4cを形成している。固体電解質筒状体4aは、例えばジルコニア系の固体電解質で、図示しないヒータで600℃程度に加熱される。固体電解質筒状体4aの一方の開口から他方の開口に向けて軸方向に不活性ガスを供給する。不活性ガスは、例えばAr+O(10−4atm)である。内外両面の電極4b、4c間に直流電源Eの直流電圧を印加する。外面の電極4cに+極を印加し、内面の電極4bに−極を印加して電流Iを流すと、固体電解質筒状体4a内を流れる不活性ガス中の酸素分子(O)が電気的に還元されてイオン(O2−)化され、固体電解質を通して再び酸素分子(O)として固体電解質筒状体4aの外部に放出される。固体電解質筒状体4aの外部に放出された酸素分子は、空気等の補助ガスと共に排気される。固体電解質筒状体4aに供給されたAr+O(10−4atm)の不活性ガスは、酸素分子が低減されて目的の酸素分圧に制御された処理済みガス(精製ガス)となり、次工程(装置)に給送される。 As shown in FIG. 4, the electrochemical oxygen pump 4 has electrodes 4b and 4c made of platinum formed on both inner and outer surfaces of a solid electrolyte cylindrical body 4a having oxygen ion conductivity. The solid electrolyte cylindrical body 4a is, for example, a zirconia solid electrolyte, and is heated to about 600 ° C. by a heater (not shown). An inert gas is supplied in the axial direction from one opening of the solid electrolyte cylindrical body 4a toward the other opening. The inert gas is, for example, Ar + O 2 (10 −4 atm). A DC voltage of a DC power source E is applied between the inner and outer electrodes 4b and 4c. When a positive electrode is applied to the outer electrode 4c and a negative electrode is applied to the inner electrode 4b to flow a current I, oxygen molecules (O 2 ) in the inert gas flowing through the solid electrolyte cylindrical body 4a are electrically charged. It is reduced to ions (O 2− ) and released again as oxygen molecules (O 2 ) through the solid electrolyte to the outside of the solid electrolyte cylindrical body 4a. Oxygen molecules released to the outside of the solid electrolyte cylindrical body 4a are exhausted together with an auxiliary gas such as air. The inert gas of Ar + O 2 (10 −4 atm) supplied to the solid electrolyte cylindrical body 4a becomes a processed gas (purified gas) that is controlled to a target oxygen partial pressure by reducing oxygen molecules, and is the next step. (Device).

なお、図4の酸素ポンプ4は、固体電解質筒状体4aの内外両面の電極4b、4c間に上記と逆極性の直流電圧を印加してポンプ動作を行わせることも可能である。すなわち、外面の電極4cに−極を印加し、内面の電極4bに+極を印加すると、固体電解質筒状体4aの外面に沿って流れる空気などのガス中の酸素分子(O)が電気的に還元されてイオン(O2−)化され、固体電解質を通して再び酸素分子(O)として固体電解質筒状体4aの内部に放出される。この場合、固体電解質筒状体4aの内部を流れる不活性ガスの酸素分圧が上昇して、外部に給送される。 In addition, the oxygen pump 4 of FIG. 4 can also perform a pump operation by applying a DC voltage having the opposite polarity between the electrodes 4b and 4c on the inner and outer surfaces of the solid electrolyte cylindrical body 4a. That is, when a negative electrode is applied to the outer electrode 4c and a positive electrode is applied to the inner electrode 4b, oxygen molecules (O 2 ) in a gas such as air flowing along the outer surface of the solid electrolyte cylindrical body 4a are electrically It is reduced to ions (O 2− ) and released again as oxygen molecules (O 2 ) through the solid electrolyte into the solid electrolyte cylindrical body 4a. In this case, the oxygen partial pressure of the inert gas flowing inside the solid electrolyte cylindrical body 4a is increased and fed to the outside.

このような酸素ポンプにより酸素分圧を制御したガスを供給すれば、結晶育成、合金化、熱処理、半導体製造工程などが酸素分圧を制御した不活性ガスなどの雰囲気下で行うことができる。
特開2002−326887号公報
If a gas whose oxygen partial pressure is controlled by such an oxygen pump is supplied, crystal growth, alloying, heat treatment, semiconductor manufacturing process, etc. can be performed in an atmosphere such as an inert gas whose oxygen partial pressure is controlled.
JP 2002-326887 A

図4に示す酸素ポンプでは、1本の円形パイプ状の固体電解質筒状体を使用している。すなわち、この1本の固体電解質筒状体の内部空間に軸方向に被処理ガスを流し、固体電解質筒状体内を流れる間に固体電解質隔壁内外でイオン導電のポンプ作用を行う。   In the oxygen pump shown in FIG. 4, one circular pipe-shaped solid electrolyte cylindrical body is used. That is, the gas to be treated is caused to flow in the axial direction in the internal space of the single solid electrolyte cylindrical body, and the ionic conductivity is pumped inside and outside the solid electrolyte partition wall while flowing through the solid electrolyte cylindrical body.

しかし、固体電解質筒状体を使用するものでは、ガスポンプが処理できるガス流量は、被処理ガスと固体電解質筒状体内外面との接触面積に比例する。従って、ガス流量を増大させるため(処理能力を増大させるため)には、被処理ガスと固体電解質筒状体外面との接触面積を増大させる必要がある。   However, in the case of using a solid electrolyte cylindrical body, the gas flow rate that can be processed by the gas pump is proportional to the contact area between the gas to be processed and the outer surface of the solid electrolyte cylindrical body. Therefore, in order to increase the gas flow rate (in order to increase the processing capacity), it is necessary to increase the contact area between the gas to be processed and the outer surface of the solid electrolyte cylindrical body.

接触面積を増大させるためには、固体電解質筒状体を長くすることや、パイプ径を大きくすることが考えられる。酸素イオン伝導性固体電解質を有効に利用するためには、酸素ポンプの抵抗値をできる限り低くして、酸素ポンプの酸素透過能力を高くすることが必要である。酸素ポンプの抵抗値には、固体電解質の形状(表面積と厚さ)、電極膜、リード端子などが影響する。この中で固体電解質の形状は表面積が大きく、薄いほど抵抗値は小さくなる。すなわち、筒状体を考えると、その直径と長さが大きく、厚みの薄い形状がよい。しかし、固体電解質筒状体を製造する容易さや、加熱・高温保持状態で使用される固体電解質筒状体の強度を考慮すると、直径と長さと厚みには限界がある。また、パイプ径を大きくするほど、固体電解質筒状体の中心部を流れる被処理ガスのイオン伝導反応が急減して、結果的に中心部を流れる被処理ガスが反応なしで素通りすることになり、酸素分圧などの制御精度が低下する。このようなことから、固体電解質筒状体のパイプ径を単純に大きくするには自ずと限界がある。従って、上記の方法で被処理ガスと固体電解質筒状体との接触面積を増大するには限界がある。そのため、ガスポンプが実質的有効に処理できるガス流量が制限され、酸素分圧を制御したガスを供給する用途が制限されていた。   In order to increase the contact area, it is conceivable to lengthen the solid electrolyte cylindrical body or increase the pipe diameter. In order to effectively use the oxygen ion conductive solid electrolyte, it is necessary to reduce the resistance value of the oxygen pump as low as possible and increase the oxygen permeation capability of the oxygen pump. The resistance value of the oxygen pump is affected by the shape (surface area and thickness) of the solid electrolyte, the electrode film, the lead terminal, and the like. Among these, the shape of the solid electrolyte has a large surface area, and the resistance value decreases as the thickness decreases. That is, when considering a cylindrical body, a shape having a large diameter and length and a small thickness is preferable. However, in view of the ease of manufacturing the solid electrolyte cylindrical body and the strength of the solid electrolyte cylindrical body used in a heated and high temperature holding state, there are limits to the diameter, length, and thickness. In addition, as the pipe diameter increases, the ion conduction reaction of the gas to be processed flowing through the center of the solid electrolyte cylindrical body decreases rapidly, and as a result, the gas to be processed flowing through the center passes through without reaction. In addition, control accuracy such as oxygen partial pressure decreases. For this reason, there is a limit to simply increasing the pipe diameter of the solid electrolyte cylindrical body. Therefore, there is a limit in increasing the contact area between the gas to be treated and the solid electrolyte cylindrical body by the above method. For this reason, the gas flow rate that can be processed substantially effectively by the gas pump is limited, and the application of supplying gas with controlled oxygen partial pressure is limited.

固体電解質筒状体は、酸素ポンプとして効率良く動作するために加熱することが必要である。しかし、必要以上に温度を高くすることは、固体電解質筒状体の寿命を短くする。また固体電解質筒状管に温度分布があると、熱応力によって疲労・破損するおそれがある。   The solid electrolyte cylindrical body needs to be heated in order to operate efficiently as an oxygen pump. However, raising the temperature more than necessary shortens the life of the solid electrolyte cylindrical body. Further, if there is a temperature distribution in the solid electrolyte tubular tube, it may be fatigued or damaged by thermal stress.

本発明は、上記課題に鑑みて、安定した精製力を発揮し、しかも精製処理能力の増大を図ることができる酸素ポンプを提供する。   In view of the above problems, the present invention provides an oxygen pump that exhibits stable purification power and can increase the purification treatment capacity.

本発明の酸素ポンプは、酸素イオン伝導性を有する固体電解質筒状体と、この固体電解質筒状体の内面及び外面に配置される電極と、固体電解質筒状体を加熱する加熱手段を備えた酸素ポンプにおいて、複数本の固体電解質筒状体を一鉛直面上に所定ピッチで並設するとともに、複数の固体電解質筒状体にて構成される筒状体群の前面側と後面側との少なくともいずれか一方に、前記加熱手段を構成する平面状ヒータを相対面させて配置し、前記平面状ヒータによる固体電解質筒状体に対する加熱温度が、その加熱範囲において均一となるように、平面状ヒータは面内で発熱量の分布を持つものである。 The oxygen pump of the present invention includes a solid electrolyte cylindrical body having oxygen ion conductivity, electrodes disposed on the inner surface and the outer surface of the solid electrolyte cylindrical body, and heating means for heating the solid electrolyte cylindrical body. In the oxygen pump, a plurality of solid electrolyte cylindrical bodies are juxtaposed at a predetermined pitch on one vertical plane, and a front side and a rear side of a cylindrical body group constituted by a plurality of solid electrolyte cylindrical bodies are provided. At least one of the planar heaters constituting the heating means is disposed so as to face each other, and the heating temperature for the solid electrolyte cylindrical body by the planar heater is uniform in the heating range. The heater has a distribution of heat generation in the plane .

本発明の酸素ポンプによれば、複数本の固体電解質筒状体を所定ピッチで並設したので、ガス処理能力の向上を図ることができる。しかも、加熱手段を構成する平面状ヒータを相対面させて配置したものであるので、コンパクトな酸素ポンプを構成できる。   According to the oxygen pump of the present invention, since a plurality of solid electrolyte cylindrical bodies are arranged in parallel at a predetermined pitch, it is possible to improve the gas processing capacity. Moreover, since the planar heaters constituting the heating means are arranged facing each other, a compact oxygen pump can be configured.

前記平面状ヒータによる固体電解質筒状体に対する加熱温度が、その加熱範囲において均一となるように、平面状ヒータは面内で発熱量の分布を持つ。このため、各固体電解質筒体を均等に加熱することができる。特に、平面状ヒータを複数の直線部を平行に配設した電熱線にて構成し、この直線部の配設ピッチを外側から中央にかけて漸増させることによって、固体電解質筒状体に対する加熱温度を、その加熱範囲において均一とすることができる。すなわち、外側からの熱影響も考慮されて、このヒータにて加熱される各固体電解質筒体の中間部における温度分布を端部と同様とできる。直線部を備えた平面状ヒータとしては、1本の電熱線を蛇行させて形成しても、複数の電熱線を平行に配置して形成してもよい。   The planar heater has a distribution of heat generation in the plane so that the heating temperature of the solid electrolyte cylindrical body by the planar heater is uniform in the heating range. For this reason, each solid electrolyte cylinder can be heated uniformly. In particular, the planar heater is composed of heating wires in which a plurality of linear portions are arranged in parallel, and the heating temperature for the solid electrolyte cylindrical body is increased by gradually increasing the arrangement pitch of the linear portions from the outside to the center. It can be made uniform in the heating range. That is, considering the thermal influence from the outside, the temperature distribution in the intermediate part of each solid electrolyte cylinder heated by this heater can be made the same as that of the end part. As a planar heater provided with a linear part, it may be formed by meandering one heating wire, or may be formed by arranging a plurality of heating wires in parallel.

加熱手段のヒータへの電力制御にて所定温度に維持することができ、ガス処理能力が安定する。 It can be maintained at a predetermined temperature by controlling the power to the heater of the heating means, and the gas processing capacity is stabilized.

ところで、熱膨張等で、固体電解質の一部や電極の一部がはがれるおそれがある。そこで、固体電解質筒状体に下方からガスが流入するようにすれば、上方から処理済みガスが流出することになるので、剥がれたものはこの下方に留まって、処理済みのガス供給側へ流出させない。   By the way, a part of solid electrolyte and a part of electrode may peel off by thermal expansion or the like. Therefore, if the gas flows into the solid electrolyte cylindrical body from below, the treated gas will flow out from above, so the peeled-off thing stays below this and flows out to the treated gas supply side. I won't let you.

本発明では、ガス処理能力の向上を図ることができ、しかも、各固体電解質筒体の中間部における温度分布を端部と同様とできるので、ガス処理能力が安定する。このため、目標の酸素分圧に制御された高品質の精製ガスを一度に大量に精製することができる。すなわち、本発明の酸素ポンプにおいては、固体電解質筒状管を加熱する長さ300mm、巾300mmの範囲において、温度600±15℃を実現して、酸素ポンプ性能の向上と固体電解質筒状体の長寿命化を両立させることを可能とした。さらに、加熱手段を構成する平面状ヒータを相対面させて配置したものであるので、コンパクトな酸素ポンプを構成でき、この酸素ポンプを使用する酸素分圧制御装置への組み込み性が向上する。   In the present invention, the gas processing capacity can be improved, and the temperature distribution in the intermediate part of each solid electrolyte cylinder can be made the same as that of the end part, so that the gas processing capacity is stabilized. For this reason, a large amount of high-quality purified gas controlled to the target oxygen partial pressure can be purified at a time. That is, in the oxygen pump of the present invention, the temperature of 600 ± 15 ° C. is realized in the range of 300 mm in length and 300 mm in width for heating the solid electrolyte cylindrical tube, thereby improving the oxygen pump performance and improving the solid electrolyte cylindrical body. It was possible to achieve both long life. Further, since the planar heaters constituting the heating means are arranged so as to face each other, a compact oxygen pump can be configured, and the incorporation into an oxygen partial pressure control apparatus using this oxygen pump is improved.

ヒータにて加熱される各固体電解質筒体の加熱範囲において温度の均一化を図ることができ、ガス処理精度が安定する。   The temperature can be made uniform in the heating range of each solid electrolyte cylinder heated by the heater, and the gas processing accuracy is stabilized.

固体電解質筒状体に下方からガスを供給することによって、剥がれたものはこの下方に留まって、処理済みのガス供給側へ流出させない。このため、純粋な精製ガスを供給することができ、ガス供給側の試料作成室等での作業が安定する。   By supplying gas to the solid electrolyte cylindrical body from below, the peeled material stays below and does not flow out to the treated gas supply side. For this reason, pure purified gas can be supplied, and the operation in the sample preparation chamber or the like on the gas supply side is stabilized.

以下本発明の実施の形態を図1と図2に基づいて説明する。本発明に係る酸素ポンプは、図1から図5に示すように、酸素イオン伝導性を有する固体電解質筒状体30と、この固体電解質筒状体30の内面及び外面に配置される電極(図示省略)と、固体電解質筒状体30を加熱する加熱手段31を備える。この場合、固体電解質筒状体30の内面及び外面に白金めっき等を施して、電極を構成する。この酸素ポンプは、複数本(図例では5本)の固体電解質筒状体30を有し、各固体電解質筒状体30は断熱構造体35に包囲されている。なお、各固体電解質筒状体30と断熱構造体35とは図示省略のケーシング内に収容されている。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1 to 5, the oxygen pump according to the present invention includes a solid electrolyte cylindrical body 30 having oxygen ion conductivity, and electrodes (illustrated) disposed on the inner surface and the outer surface of the solid electrolyte cylindrical body 30. And a heating means 31 for heating the solid electrolyte cylindrical body 30. In this case, platinum plating etc. are given to the inner surface and outer surface of the solid electrolyte cylindrical body 30, and an electrode is comprised. This oxygen pump has a plurality (five in the illustrated example) of solid electrolyte cylinders 30, and each solid electrolyte cylinder 30 is surrounded by a heat insulating structure 35. Each solid electrolyte cylindrical body 30 and the heat insulating structure 35 are accommodated in a casing (not shown).

断熱構造体35は、断熱材からなる半割体37、37とを備え、半割体37、37の合わせ面37a、37a間に所定寸の隙間40が形成される。すなわち、この隙間40を、固体電解質筒状体30の外径寸法よりも僅かに大きく設定し、隙間40に固体電解質筒状体30を半割体37に接触しないように配置する。   The heat insulating structure 35 includes halves 37 and 37 made of a heat insulating material, and a gap 40 having a predetermined size is formed between the mating surfaces 37 a and 37 a of the halves 37 and 37. That is, the gap 40 is set to be slightly larger than the outer diameter dimension of the solid electrolyte cylindrical body 30, and the solid electrolyte cylindrical body 30 is disposed in the gap 40 so as not to contact the halved body 37.

ここで、断熱材とは、熱エネルギーの移動を遮断する材料であり、無機質のものと有機質のものがある。一般に温度の高い場合には無機質材料が,温度の低い場合には有機質材料が使用される。無機質断熱材としては,セラミック繊維・ガラス繊維・アスベストなどを用いる繊維質断熱材,ケイ酸カルシウム・炭酸マグネシウムなどを用いる粉末質断熱材,パーライト・泡ガラスなどによる多孔質断熱材がある。このため、固体電解質筒状体30は600℃程度に加熱手段31にて加熱されるので、この温度に対応できるものから選択できる。   Here, the heat insulating material is a material that blocks the transfer of thermal energy, and includes an inorganic material and an organic material. In general, an inorganic material is used when the temperature is high, and an organic material is used when the temperature is low. Examples of inorganic heat insulating materials include fiber heat insulating materials using ceramic fibers, glass fibers, asbestos, etc., powder heat insulating materials using calcium silicate, magnesium carbonate, etc., and porous heat insulating materials such as perlite / foam glass. For this reason, since the solid electrolyte cylindrical body 30 is heated by the heating means 31 to about 600 degreeC, it can select from what can respond to this temperature.

また、各合わせ面37a、37aに、矩形状の凹所41,41が設けられ、凹所41,41にて形成される空間42に、加熱手段31を構成する一対のヒータ43、43が配置されている。なお、凹所41、41にはカバー材39が装着される。このように、この酸素ポンプは、複数の固体電解質筒状体30を一鉛直面上に所定ピッチで配設するとともに、加熱手段31を構成する平面状のヒータ43,43にて、複数の固体電解質筒状体30にて構成された筒状体群29をサンドイッチ状に挟むことになる。   Moreover, rectangular recesses 41 and 41 are provided in the mating surfaces 37a and 37a, and a pair of heaters 43 and 43 constituting the heating means 31 are arranged in a space 42 formed by the recesses 41 and 41. Has been. A cover material 39 is attached to the recesses 41 and 41. As described above, this oxygen pump has a plurality of solid electrolyte cylindrical bodies 30 arranged at a predetermined pitch on one vertical plane, and a plurality of solid electrolytes by the planar heaters 43 and 43 constituting the heating means 31. A cylindrical body group 29 composed of the electrolyte cylindrical body 30 is sandwiched.

各ヒータ43は、図1に示すように、蛇行型のヒータである。すなわち、ヒータ43は導体上に絶縁層を被覆した電熱線であり、蛇行させて平面的に配線したものである。ヒータ43は、複数の直線部(水平方向部)45・・と、この水平方向部45・・を連結する端部連結部(円弧部)46・・とからなり、最上段の水平方向部45aから最下段の水平方向部45cまでジグザグに連続する。そして、ヒータ43にはリード線47が接続され、このリード線47を介して通電することによって、加熱することができる。この場合、図示省略の制御手段にて、例えば、電力制御を行って所定の温度に加熱する。   Each heater 43 is a meandering heater as shown in FIG. In other words, the heater 43 is a heating wire in which an insulating layer is coated on a conductor and is meandered and wired in a plane. The heater 43 includes a plurality of linear portions (horizontal portions) 45... And end connecting portions (arc portions) 46... Connecting the horizontal portions 45. To zigzag from the bottom horizontal portion 45c. Then, a lead wire 47 is connected to the heater 43, and heating can be performed by energizing through the lead wire 47. In this case, for example, power control is performed by a control means (not shown) to heat to a predetermined temperature.

各ヒータ43は上下方向の一対の支持板50、50に付設され、この支持板50、50が半割体37,37に図示省略の固定具(例えば、ボルト部材とナット部材とからなる固定具)を介して固定されている。この場合、支持板50と固体電解質筒状体30とは接触しないように配置され、各ヒータ43を固体電解質筒状体30に接触させない。   Each heater 43 is attached to a pair of support plates 50, 50 in the vertical direction, and the support plates 50, 50 are attached to halves 37, 37 by a fixture (not shown) (for example, a fixture made of a bolt member and a nut member). ) Is fixed through. In this case, the support plate 50 and the solid electrolyte cylindrical body 30 are arranged so as not to contact each other, and the heaters 43 are not brought into contact with the solid electrolyte cylindrical body 30.

各ヒータ43は、水平方向部45の配設ピッチを外側から中央にかけて漸増させている。すなわち、上方側及び下方側の水平方向部45の配設ピッチを小とするとともに、上下方向中間部の水平方向部45の配設ピッチを大きく設定している。例えば、最上段の水平方向部45aから7段目(上から7段目)の水平方向部45bまでの配設ピッチを一定の小ピッチP1で配設され、最下段の水平方向部45cから7段目(下から7段目)の水平方向部45dまでの配設ピッチを一定の小ピッチP1で配設される。   Each heater 43 gradually increases the arrangement pitch of the horizontal portion 45 from the outside to the center. That is, the arrangement pitch of the horizontal direction portions 45 on the upper side and the lower side is made small, and the arrangement pitch of the horizontal direction portions 45 in the middle portion in the vertical direction is set large. For example, the arrangement pitch from the uppermost horizontal portion 45a to the seventh horizontal portion 45b (seventh from the top) is arranged at a constant small pitch P1, and the lowermost horizontal portion 45c to 7th. The arrangement pitch to the horizontal direction part 45d of the stage (7th stage from the bottom) is arranged at a constant small pitch P1.

また、上から7段目の水平方向部45bとこの下の水平方向部45eとの間のピッチをP2とするとともに、下から7段目の水平方向部45dとこの上の水平方向部45fとの間のピッチをP2とし、水平方向部45eと水平方向部45fとの間のピッチをP3とする。そして、P1<P2<P3とする。このため、ヒータ43は上下方向中間線に関して上下対称に配設される。   Further, the pitch between the horizontal portion 45b in the seventh step from the top and the horizontal portion 45e below this is P2, and the horizontal portion 45d in the seventh step from the bottom and the horizontal portion 45f above this The pitch between the horizontal direction portion 45e and the horizontal direction portion 45f is P3. Then, P1 <P2 <P3. For this reason, the heater 43 is arrange | positioned vertically symmetrically about the up-down direction intermediate line.

このように、水平方向部45の配設ピッチを外側から中央にかけて漸増させていることによって、平面状ヒータ43による固体電解質筒状体30に対する加熱温度が、その加熱範囲において均一となるように、平面状ヒータ43は面内で発熱量の分布を持つことになる。特に、平面状ヒータ43を複数の直線部45を平行に配設した電熱線にて構成し、この直線部45の配設ピッチを外側から中央にかけて漸増させることによって、固体電解質筒状体30に対する加熱温度を、その加熱範囲において均一とすることができる。   Thus, by gradually increasing the arrangement pitch of the horizontal portion 45 from the outside to the center, the heating temperature for the solid electrolyte cylindrical body 30 by the planar heater 43 is uniform in the heating range. The planar heater 43 has a distribution of heat generation in the plane. In particular, the planar heater 43 is constituted by a heating wire in which a plurality of linear portions 45 are arranged in parallel, and the arrangement pitch of the linear portions 45 is gradually increased from the outside to the center, whereby the solid electrolyte cylindrical body 30 is fixed. The heating temperature can be made uniform in the heating range.

各々のヒータ43における一方の支持板50には温度検出器52が付設され、ヒータ43の温度が監視される。温度検出器52に熱電温度計を使用している。 ここで、熱電温度計とは、熱電対を使った温度計である。すなわち、測温接点53を一方の支持板50に接続し、この測温接点53と基準接点との間の起電力を測ることになる。   A temperature detector 52 is attached to one support plate 50 in each heater 43, and the temperature of the heater 43 is monitored. A thermoelectric thermometer is used for the temperature detector 52. Here, the thermoelectric thermometer is a thermometer using a thermocouple. That is, the temperature measuring contact 53 is connected to one support plate 50 and the electromotive force between the temperature measuring contact 53 and the reference contact is measured.

各固体電解質筒状体30は、その上端側に合流路が接続されるとともに、下端側に分岐部に接続される。すなわち、分岐部に流入したガスはこの分岐部にて分岐されて各固体電解質筒状体30に流入する。各固体電解質筒状体30に流入すれば、酸素分子が低減されて目的の酸素分圧に制御された処理済みガス(精製ガス)となり、この処理済みガスが各固体電解質筒状体30の上方から合流路に流入し、この合流路にて合流して、図外の酸素センサ等へ流出する。   Each solid electrolyte cylindrical body 30 is connected to the branch path on the lower end side, with the joint channel connected to the upper end side. That is, the gas that has flowed into the branch portion is branched at this branch portion and flows into each solid electrolyte cylindrical body 30. If it flows into each solid electrolyte cylindrical body 30, oxygen molecules are reduced to become a processed gas (purified gas) controlled to a target oxygen partial pressure, and this processed gas is located above each solid electrolyte cylindrical body 30. Flows into the combined flow path, merges in the combined flow path, and flows out to an oxygen sensor or the like outside the figure.

本発明によれば、複数本の固体電解質筒状体30を所定ピッチで並設したので、ガス処理能力の向上を図ることができる。しかも、各固体電解質筒体30の中間部における温度分布を端部と同様とできるので、ガス処理能力が安定する。このため、目標の酸素分圧に制御された高品質の精製ガスを一度に大量に精製することができる。さらに、加熱手段31を構成する平面状ヒータ43を相対面させて配置したものであるので、コンパクトな酸素ポンプを構成でき、この酸素ポンプを使用する酸素分圧制御装置への組み込み性が向上する。   According to the present invention, since the plurality of solid electrolyte cylindrical bodies 30 are arranged in parallel at a predetermined pitch, it is possible to improve the gas processing capacity. In addition, since the temperature distribution in the intermediate portion of each solid electrolyte cylinder 30 can be the same as that of the end portion, the gas processing capacity is stabilized. For this reason, a large amount of high-quality purified gas controlled to the target oxygen partial pressure can be purified at a time. Further, since the planar heater 43 constituting the heating means 31 is disposed so as to face each other, a compact oxygen pump can be constituted, and the incorporation into an oxygen partial pressure control apparatus using this oxygen pump is improved. .

ところで、熱膨張等で、固体電解質の一部や電極の一部がはがれるおそれがある。しかしながら、このような場合でも、本発明では、固体電解質筒状体30に下方からガスが流入するので、上方から処理済みガスが流出することになって、固体電解質等の剥がれたものはこの下方に留まって、処理済みのガス供給側へ流出させない。このため、純粋な精製ガスを供給することができ、ガス供給側の試料作成室等での作業が安定する。   By the way, a part of solid electrolyte and a part of electrode may peel off by thermal expansion or the like. However, even in such a case, in the present invention, the gas flows into the solid electrolyte cylindrical body 30 from below, so that the treated gas flows out from above, and the solid electrolyte or the like peeled off is below this Stay on the gas supply side after treatment. For this reason, pure purified gas can be supplied, and the operation in the sample preparation chamber or the like on the gas supply side is stabilized.

平面状ヒータ43は、複数に水平方向部45と、水平方向部45の端部を連結する端部連結部46とからなる蛇行電熱線からなり、水平方向部の配設ピッチを外側から中央にかけて漸増させた。このため、外側からの熱影響も考慮されて、このヒータ43にて加熱される各固体電解質筒体30の中間部における温度分布を端部と同様とでき、ガス処理精度が安定する。   The planar heater 43 is composed of a plurality of horizontal portions 45 and meandering heating wires composed of end connecting portions 46 that connect the end portions of the horizontal direction portions 45, and the arrangement pitch of the horizontal portions extends from the outside to the center. Increased gradually. For this reason, the thermal influence from the outside is also taken into consideration, the temperature distribution in the intermediate part of each solid electrolyte cylinder 30 heated by the heater 43 can be made the same as that of the end part, and the gas processing accuracy is stabilized.

ヒータへの電力制御にて所定温度に維持することができ、ガス処理能力が安定する。   It can be maintained at a predetermined temperature by controlling the power to the heater, and the gas processing capacity is stabilized.

前記実施形態では、平面状ヒータとしては、1本の電熱線を蛇行させて形成していたが、複数の電熱線を平行に配置して形成してもよい。この場合であっても、加熱範囲の温度分布の均一化を図ることができる。また、平面状ヒータ43による固体電解質筒状体30に対する加熱温度が、その加熱範囲において均一となればよいので、水平方向部45を均一ピッチとなるように配設しても、水平方向部45の発熱量を相違させることによって、加熱範囲における均一化を図ることができる。   In the embodiment, the planar heater is formed by meandering one heating wire, but may be formed by arranging a plurality of heating wires in parallel. Even in this case, the temperature distribution in the heating range can be made uniform. In addition, since the heating temperature for the solid electrolyte cylindrical body 30 by the flat heater 43 only needs to be uniform within the heating range, the horizontal portion 45 even if the horizontal portions 45 are arranged at a uniform pitch. The heating range can be made uniform by making the calorific values different from each other.

参考例ではあるが、加熱手段31として、固体電解質筒状体30を包囲状とする電熱線(ヒータ)にて構成できる。この場合、複数のリング状の電熱線を軸方向に沿って所定ピッチで配置したものであっても、1本の電熱線を固体電解質筒状体30の周り螺旋状(コイル状)に巻設したものであってもよい。この場合であっても、軸方向端から軸方向中央にかけて漸増させることになる。このように、包囲状とする電熱線を用いれば、固体電解質筒状体30を全周方向から加熱することができ、効率のよい加熱が可能となる。 Although it is a reference example, as the heating means 31, it can comprise with the heating wire (heater ) which makes the solid electrolyte cylindrical body 30 surrounding . In this case, even if a plurality of ring-shaped heating wires are arranged at a predetermined pitch along the axial direction, one heating wire is wound around the solid electrolyte cylindrical body 30 in a spiral shape (coil shape). It may be what you did. Even in this case, it is gradually increased from the axial end to the axial center. Thus, if the heating wire made into the surrounding shape is used, the solid electrolyte cylindrical body 30 can be heated from the whole circumference direction, and efficient heating becomes possible.

また、他の参考例として、複数の固体電解質筒状体30にて柱状の固体電解質筒状体束を構成してもよい。この場合、複数の固体電解質筒状体30を円周方向に沿って配設したり、複数本を束ねるように配設したりすることができる。また、円周方向に沿って配設する場合、複数の同心円上に配設したものであってもよい。 As another reference example, a plurality of solid electrolyte cylindrical bodies 30 may constitute a columnar solid electrolyte cylindrical bundle. In this case, a plurality of solid electrolyte cylindrical bodies 30 can be disposed along the circumferential direction, or a plurality of solid electrolyte cylindrical bodies 30 can be disposed so as to be bundled. Moreover, when arrange | positioning along the circumferential direction, you may arrange | position on the some concentric circle.

複数の固体電解質筒状体30にて柱状の固体電解質筒状体束を構成すれば、加熱手段31としてこの固体電解質筒状体束の外周側に配置されて外周を包囲状とする電熱線(ヒータ)、内周側に配置されて内周を包囲状とする電熱線(ヒータ)、又は外周側と内周側の両者を包囲状とする電熱線(ヒータ)を使用することができる。これらの場合も、ヒータによる固体電解質筒状体に対する加熱温度が、その加熱範囲において均一となるように、ヒータは発熱量の分布を持つ。このため、各固体電解質筒体を均等に加熱することができる。特に、ヒータを固体電解質筒状体を包囲状に巻設する電熱線にて構成して、この電熱線の軸方向ピッチを、軸方向端から軸方向中央にかけて漸増させることによって、固体電解質筒状体に対する加熱温度を、その加熱範囲において均一とすることができる。   If a plurality of solid electrolyte cylindrical bodies 30 constitutes a columnar solid electrolyte cylindrical bundle, a heating wire 31 is disposed on the outer peripheral side of the solid electrolyte cylindrical bundle as a heating means 31 and surrounds the outer periphery ( Heater), a heating wire (heater) disposed on the inner peripheral side and surrounding the inner periphery, or a heating wire (heater) surrounding both the outer peripheral side and the inner peripheral side can be used. Also in these cases, the heater has a calorific value distribution so that the heating temperature of the solid electrolyte cylindrical body by the heater is uniform in the heating range. For this reason, each solid electrolyte cylinder can be heated uniformly. In particular, the heater is composed of a heating wire wound around the solid electrolyte cylindrical body, and the axial pitch of the heating wire is gradually increased from the axial end to the axial center, thereby forming a solid electrolyte cylindrical shape. The heating temperature for the body can be made uniform in the heating range.

このため、固体電解質筒状体束の各固体電解質筒状体30をより効率よく加熱することができ、しかも、複数の固体電解質筒状体を備えるので、精製能力の向上を図ることができる。なお、固体電解質筒状体束の外周側や内周側に配設される電熱線としても、その巻設ピッチを均等として、軸方向に沿って発熱量を相違させることによって、加熱範囲における均一化を図ることができる。   For this reason, each solid electrolyte cylindrical body 30 of the solid electrolyte cylindrical body bundle can be heated more efficiently, and moreover, since a plurality of solid electrolyte cylindrical bodies are provided, the purification ability can be improved. In addition, the heating wires arranged on the outer peripheral side and the inner peripheral side of the solid electrolyte cylindrical bundle are also made uniform in the heating range by making the winding pitch uniform and different in the amount of heat generation along the axial direction. Can be achieved.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、固体電解質筒状体30の数の増減は任意であるが、多すぎると、装置全体が大型化し、少なすぎると処理能力の向上を図ることができない。このため、固体電解質筒状体30の径寸法や長さ寸法等によって相違するが、図例のように5本程度が好ましい。   As described above, the embodiments of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, the number of solid electrolyte cylindrical bodies 30 can be increased or decreased arbitrarily. If the amount is too large, the entire apparatus becomes large, and if the amount is too small, the processing capacity cannot be improved. For this reason, although it changes with the diameter dimension, length dimension, etc. of the solid electrolyte cylindrical body 30, about five are preferable like the example of a figure.

加熱手段31のヒータ43として、前記実施形態では固体電解質筒状体30をサンドイッチ状に挟んだものであったが、前面側と後面側とのいずれか一方であってもよい。さらに、ヒータ43の水平方向部45の配設ピッチ及び数の変更は任意である。要は、各固体電解質筒状体30をその軸方向に沿って均等(均一)に所定温度(600℃程度)に加熱できればよい。また、実施形態では、端部連結部46を円弧部にて構成していたが、短直線部にて構成してもよい。   As the heater 43 of the heating means 31, the solid electrolyte cylindrical body 30 is sandwiched in the embodiment, but may be either the front side or the rear side. Further, the arrangement pitch and the number of the horizontal portions 45 of the heater 43 can be changed arbitrarily. In short, each solid electrolyte cylindrical body 30 only needs to be heated uniformly (uniformly) to a predetermined temperature (about 600 ° C.) along its axial direction. Further, in the embodiment, the end connecting portion 46 is configured by an arc portion, but may be configured by a short straight portion.

前記実施形態では、ヒータ43は、その直線部45が水平方向に沿って配設される水平方向部であるが、図2に示すものに対して、周方向に約90度回転させて、直線部45が鉛直方向に沿って配設されるものであってもよい。すなわち、前記実施形態では、固体電解質筒状体30の軸方向に対して直線部45が直交する方向に配置されていたが、固体電解質筒状体30の軸方向に対して直線部45が平行に配設されるものであってもよい。さらには、固体電解質筒状体30の軸方向に対して直線部45が所定角度(例えば、45度)に傾斜して配設されるものであってよい。また、各固体電解質筒状体30を上下方向に沿って配設することなく、水平方向等に沿って配設してもよい。   In the embodiment, the heater 43 is a horizontal portion in which the straight portion 45 is disposed along the horizontal direction. However, the heater 43 is rotated by about 90 degrees in the circumferential direction with respect to that shown in FIG. The part 45 may be disposed along the vertical direction. That is, in the embodiment, the linear portion 45 is disposed in a direction orthogonal to the axial direction of the solid electrolyte cylindrical body 30, but the linear portion 45 is parallel to the axial direction of the solid electrolyte cylindrical body 30. It may be arranged in. Furthermore, the linear portion 45 may be disposed to be inclined at a predetermined angle (for example, 45 degrees) with respect to the axial direction of the solid electrolyte cylindrical body 30. Moreover, you may arrange | position along the horizontal direction etc., without arrange | positioning each solid electrolyte cylindrical body 30 along an up-down direction.

さらに実施形態では、各固体電解質筒状体30にはガスが下方から流入して処理された後、各固体電解質筒状体30の上方からその処理ガスが流出するものであるが、逆に、固体電解質筒状体30の上方から流入して、固体電解質筒状体30の下方から流出するようなものであってもよい。   Furthermore, in the embodiment, after the gas flows into each solid electrolyte cylindrical body 30 from the bottom and processed, the processing gas flows out from above each solid electrolyte cylindrical body 30. It may flow in from above the solid electrolyte cylindrical body 30 and flow out from below the solid electrolyte cylindrical body 30.

本発明の実施形態を示す酸素ポンプの内部の要部正面図である。It is a principal part front view inside the oxygen pump which shows embodiment of this invention. 前記酸素ポンプの断面側面図である。It is a cross-sectional side view of the oxygen pump. 従来の酸素分圧制御装置の簡略図である。It is a simplified diagram of a conventional oxygen partial pressure control device. 酸素ポンプの原理の説明図である。It is explanatory drawing of the principle of an oxygen pump.

符号の説明Explanation of symbols

29 筒状体群
30 固体電解質筒状体
31 加熱手段
43 ヒータ
45 水平方向部
46 端部連結部
29 cylindrical body group 30 solid electrolyte cylindrical body 31 heating means 43 heater 45 horizontal direction part 46 end connection part

Claims (4)

酸素イオン伝導性を有する固体電解質筒状体と、この固体電解質筒状体の内面及び外面に配置される電極と、固体電解質筒状体を加熱する加熱手段を備えた酸素ポンプにおいて、
複数本の固体電解質筒状体を一鉛直面上に所定ピッチで並設するとともに、複数の固体電解質筒状体にて構成される筒状体群の前面側と後面側との少なくともいずれか一方に、前記加熱手段を構成する平面状ヒータを相対面させて配置し、前記平面状ヒータによる固体電解質筒状体に対する加熱温度が、その加熱範囲において均一となるように、平面状ヒータは面内で発熱量の分布を持つことを特徴とする酸素ポンプ。
In an oxygen pump comprising a solid electrolyte cylindrical body having oxygen ion conductivity, electrodes disposed on the inner and outer surfaces of the solid electrolyte cylindrical body, and heating means for heating the solid electrolyte cylindrical body,
A plurality of solid electrolyte cylindrical bodies are juxtaposed at a predetermined pitch on one vertical plane, and at least one of the front side and the rear side of the cylindrical body group constituted by the plurality of solid electrolyte cylindrical bodies The planar heater is disposed in an in-plane manner so that the planar heater constituting the heating means is disposed so as to face each other, and the heating temperature for the solid electrolyte cylindrical body by the planar heater is uniform in the heating range. An oxygen pump characterized by having a calorific value distribution .
平面状ヒータは複数の直線部を平行に配設した電熱線からなり、この直線部の配設ピッチを外側から中央にかけて漸増させることを特徴とする請求項1に記載の酸素ポンプ。 2. The oxygen pump according to claim 1 , wherein the planar heater includes a heating wire in which a plurality of linear portions are arranged in parallel, and the pitch of the linear portions is gradually increased from the outside toward the center . 加熱手段のヒータへの電力制御にて所定温度に維持することを特徴とする請求項1又は請求項2に記載の酸素ポンプ。 The oxygen pump according to claim 1 or 2 , wherein the oxygen pump is maintained at a predetermined temperature by controlling electric power to the heater of the heating means . 固体電解質筒状体を上下方向に沿って配設して、下方からガスが流入することを特徴とする請求項1〜請求項3のいずれか1項に記載の酸素ポンプ。 The oxygen pump according to any one of claims 1 to 3, wherein the solid electrolyte cylindrical body is disposed along the vertical direction, and gas flows in from below .
JP2006341760A 2006-12-19 2006-12-19 Oxygen pump Active JP5138211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341760A JP5138211B2 (en) 2006-12-19 2006-12-19 Oxygen pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341760A JP5138211B2 (en) 2006-12-19 2006-12-19 Oxygen pump

Publications (2)

Publication Number Publication Date
JP2008150261A JP2008150261A (en) 2008-07-03
JP5138211B2 true JP5138211B2 (en) 2013-02-06

Family

ID=39652855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341760A Active JP5138211B2 (en) 2006-12-19 2006-12-19 Oxygen pump

Country Status (1)

Country Link
JP (1) JP5138211B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238994B2 (en) * 1972-03-29 1977-10-01
JPH10160328A (en) * 1996-11-26 1998-06-19 Matsushita Refrig Co Ltd Refrigerator
JP2005089816A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Oxygen pump
JP2006137638A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Oxygen pump

Also Published As

Publication number Publication date
JP2008150261A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
US7324746B2 (en) Fluid heater and evaluation equipment incorporating the same
KR100721785B1 (en) Electrochemical oxygen generating system
JP4584722B2 (en) Plasma processing apparatus and semiconductor device manufactured by the same
JP2006162089A5 (en)
JP3890070B2 (en) Gas pump
JP5138211B2 (en) Oxygen pump
JP5229508B2 (en) Oxygen partial pressure control apparatus and solid electrolyte recovery method for oxygen partial pressure control
JP2003109634A (en) Fuel cell system and operation method of fuel cell
JP4204773B2 (en) Air-fuel ratio detection device
JP5329037B2 (en) Oxygen pump
JP5348447B2 (en) Cell characterization device
JP4412560B2 (en) Gas pump
JP2005331339A (en) Oxygen partial pressure control device and recovery method of solid electrolyte for oxygen partial pressure control
JP5329036B2 (en) Oxygen pump
JP2008151709A (en) Oxygen sensor
JP2597730B2 (en) Method for producing bottomed porous support tube for solid oxide fuel cell
JP5000572B2 (en) Oxygen pump and oxygen pump recovery method
JP4781662B2 (en) Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus
JP4870343B2 (en) Cell characterization device
JP2008185341A (en) Oxygen sensor
JP2001102314A (en) Vertical heating device
JP5022663B2 (en) Hydrogen production apparatus and assembly method thereof
TW201245493A (en) Control method and apparatus
JP2005142052A (en) Substrate heating heater and vacuum treatment device equipped with it
JP2005156465A (en) Solid electrolyte type gas sensor, solid electrolyte type gas sensor structure, and gas concentration measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R150 Certificate of patent or registration of utility model

Ref document number: 5138211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250