JP5329037B2 - Oxygen pump - Google Patents

Oxygen pump Download PDF

Info

Publication number
JP5329037B2
JP5329037B2 JP2006341757A JP2006341757A JP5329037B2 JP 5329037 B2 JP5329037 B2 JP 5329037B2 JP 2006341757 A JP2006341757 A JP 2006341757A JP 2006341757 A JP2006341757 A JP 2006341757A JP 5329037 B2 JP5329037 B2 JP 5329037B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
gas
cylindrical body
electrolyte cylindrical
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006341757A
Other languages
Japanese (ja)
Other versions
JP2008150260A (en
Inventor
博 西村
亨 長澤
晴彦 松下
隆祐 岩崎
良行 吉田
直樹 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Canon Machinery Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Canon Machinery Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006341757A priority Critical patent/JP5329037B2/en
Publication of JP2008150260A publication Critical patent/JP2008150260A/en
Application granted granted Critical
Publication of JP5329037B2 publication Critical patent/JP5329037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、酸素ポンプに関するものである。 The present invention relates to an oxygen pump.

従来から、固体電解質を含む電気化学的な酸素ポンプを有する酸素分圧制御装置により、酸素分圧を制御した雰囲気ガスを用いて、単結晶試料等を作成する方法が知られている(特許文献1)。   Conventionally, a method for producing a single crystal sample or the like using an atmospheric gas whose oxygen partial pressure is controlled by an oxygen partial pressure control device having an electrochemical oxygen pump containing a solid electrolyte is known (Patent Document). 1).

図3に示す酸素分圧制御装置は、バルブ2を通った不活性ガスの流量を設定値に制御するマスフローコントローラ(MFC)3と、このマスフローコントローラ3を通った不活性ガスを目的の酸素分圧に制御可能な電気化学的な酸素ポンプ4と、酸素ポンプ4で制御された不活性ガスの酸素分圧をモニタして試料育成装置などの次工程(装置)に供給する供給ガス用の酸素センサ5を有する。   The oxygen partial pressure control apparatus shown in FIG. 3 includes a mass flow controller (MFC) 3 that controls the flow rate of the inert gas that has passed through the valve 2 to a set value, and the inert gas that has passed through the mass flow controller 3 as a target oxygen component. The oxygen oxygen for supply gas supplied to the next process (apparatus) such as a sample growing apparatus by monitoring the oxygen partial pressure of the inert gas controlled by the oxygen pump 4 and the inert gas controlled by the oxygen pump 4 It has a sensor 5.

さらにこの装置は、所望の酸素分圧値を設定する酸素分圧設定部6と、酸素センサ5によるモニタ値を酸素分圧設定部6による設定値と比較して酸素ポンプ4から送り出される不活性ガスの酸素分圧を所定値に制御する酸素分圧制御部7と、酸素センサ5によるモニタ値を表示する酸素分圧表示部8を備える。なお、通常、不活性ガス中の酸素分圧は10-4atm程度である。 Further, this apparatus compares the monitored value by the oxygen sensor 5 with the set value by the oxygen partial pressure setting unit 6 and the inertness sent out from the oxygen pump 4 to set a desired oxygen partial pressure value. An oxygen partial pressure control unit 7 that controls the oxygen partial pressure of the gas to a predetermined value and an oxygen partial pressure display unit 8 that displays a monitor value by the oxygen sensor 5 are provided. Normally, the oxygen partial pressure in the inert gas is about 10 −4 atm.

電気化学的な酸素ポンプ4は、図4に示すように、酸素イオン伝導性を有する固体電解質筒状体4aの内外両面に白金よりなる電極4b、4cを形成している。固体電解質筒状体4aは、例えばジルコニア系の固体電解質で、図示しないヒーターで600℃程度に加熱される。固体電解質筒状体4aの一方の開口から他方の開口に向けて軸方向に不活性ガスを供給する。不活性ガスは、例えばAr+O(10−4atm)である。内外両面の電極4b、4c間に直流電源Eの直流電圧を印加する。外面の電極4cに+極を印加し、内面の電極4bに−極を印加して電流Iを流すと、固体電解質筒状体4a内を流れる不活性ガス中の酸素分子(O)が電気的に還元されてイオン(O2−)化され、固体電解質を通して再び酸素分子(O)として固体電解質筒状体4aの外部に放出される。固体電解質筒状体4aの外部に放出された酸素分子は、空気等の補助ガスと共に排気される。固体電解質筒状体4aに供給されたAr+O(10−4atm)の不活性ガスは、酸素分子が低減されて目的の酸素分圧に制御された処理済みガス(精製ガス)となり、次工程(装置)に給送される。 As shown in FIG. 4, the electrochemical oxygen pump 4 has electrodes 4b and 4c made of platinum formed on both inner and outer surfaces of a solid electrolyte cylindrical body 4a having oxygen ion conductivity. The solid electrolyte cylindrical body 4a is, for example, a zirconia solid electrolyte, and is heated to about 600 ° C. by a heater (not shown). An inert gas is supplied in the axial direction from one opening of the solid electrolyte cylindrical body 4a toward the other opening. The inert gas is, for example, Ar + O 2 (10 −4 atm). A DC voltage of a DC power source E is applied between the inner and outer electrodes 4b and 4c. When a positive electrode is applied to the outer electrode 4c and a negative electrode is applied to the inner electrode 4b to flow a current I, oxygen molecules (O 2 ) in the inert gas flowing through the solid electrolyte cylindrical body 4a are electrically charged. It is reduced to ions (O 2− ) and released again as oxygen molecules (O 2 ) through the solid electrolyte to the outside of the solid electrolyte cylindrical body 4a. Oxygen molecules released to the outside of the solid electrolyte cylindrical body 4a are exhausted together with an auxiliary gas such as air. The inert gas of Ar + O 2 (10 −4 atm) supplied to the solid electrolyte cylindrical body 4a becomes a processed gas (purified gas) that is controlled to a target oxygen partial pressure by reducing oxygen molecules, and is the next step. (Device).

なお、図4の酸素ポンプ4は、固体電解質筒状体4aの内外両面の電極4b、4c間に上記と逆極性の直流電圧を印加してポンプ動作を行わせることも可能である。すなわち、外面の電極4cに−極を印加し、内面の電極4bに+極を印加すると、固体電解質筒状体4aの外面に沿って流れる空気などのガス中の酸素分子(O)が電気的に還元されてイオン(O2−)化され、固体電解質を通して再び酸素分子(O)として固体電解質筒状体4aの内部に放出される。この場合、固体電解質筒状体4aの内部を流れる不活性ガスの酸素分圧が上昇して、外部に給送される。 In addition, the oxygen pump 4 of FIG. 4 can also perform a pump operation by applying a DC voltage having the opposite polarity between the electrodes 4b and 4c on the inner and outer surfaces of the solid electrolyte cylindrical body 4a. That is, when a negative electrode is applied to the outer electrode 4c and a positive electrode is applied to the inner electrode 4b, oxygen molecules (O 2 ) in a gas such as air flowing along the outer surface of the solid electrolyte cylindrical body 4a are electrically It is reduced to ions (O 2− ) and released again as oxygen molecules (O 2 ) through the solid electrolyte into the solid electrolyte cylindrical body 4a. In this case, the oxygen partial pressure of the inert gas flowing inside the solid electrolyte cylindrical body 4a is increased and fed to the outside.

このような酸素ポンプにより酸素分圧を制御したガスを供給すれば、結晶育成、合金化、熱処理、半導体製造工程などが酸素分圧を制御した不活性ガスなどの雰囲気下で行うことができる。
特開2002−326887号公報
If a gas whose oxygen partial pressure is controlled by such an oxygen pump is supplied, crystal growth, alloying, heat treatment, semiconductor manufacturing process, etc. can be performed in an atmosphere such as an inert gas whose oxygen partial pressure is controlled.
JP 2002-326887 A

図4に示す酸素ポンプでは、1本の円形パイプ状の固体電解質筒状体を使用している。すなわち、この1本の固体電解質筒状体の内部空間に軸方向に被処理ガスを流し、固体電解質筒状体内を流れる間に固体電解質隔壁内外でイオン導電のポンプ作用を行う。   In the oxygen pump shown in FIG. 4, one circular pipe-shaped solid electrolyte cylindrical body is used. That is, the gas to be treated is caused to flow in the axial direction in the internal space of the single solid electrolyte cylindrical body, and the ionic conductivity is pumped inside and outside the solid electrolyte partition wall while flowing through the solid electrolyte cylindrical body.

しかし、固体電解質筒状体を使用するものでは、ガスポンプが処理できるガス流量は、被処理ガスと固体電解質筒状体内外面との接触面積に比例する。従って、ガス流量を増大させるため(処理能力を増大させるため)には、被処理ガスと固体電解質筒状体外面との接触面積を増大させる必要がある。   However, in the case of using a solid electrolyte cylindrical body, the gas flow rate that can be processed by the gas pump is proportional to the contact area between the gas to be processed and the outer surface of the solid electrolyte cylindrical body. Therefore, in order to increase the gas flow rate (in order to increase the processing capacity), it is necessary to increase the contact area between the gas to be processed and the outer surface of the solid electrolyte cylindrical body.

接触面積を増大させるためには、固体電解質筒状体を長くすることや、パイプ径を大きくすることが考えられる。酸素イオン伝導性固体電解質を有効に利用するためには、酸素ポンプの抵抗値をできる限り低くして、酸素ポンプの酸素透過能力を高くすることが必要である。酸素ポンプの抵抗値には、固体電解質の形状(表面積と厚さ)、電極膜、リード端子などが影響する。この中で固体電解質の形状は表面積が大きく、薄いほど抵抗値は小さくなる。すなわち、筒状体を考えると、その直径と長さが大きく、厚みの薄い形状がよい。しかし、固体電解質筒状体を製造する容易さや、加熱・高温保持状態で使用される固体電解質筒状体の強度を考慮すると、直径と長さと厚みには限界がある。また、パイプ径を大きくするほど、固体電解質筒状体の中心部を流れる被処理ガスのイオン伝導反応が急減して、結果的に中心部を流れる被処理ガスが反応なしで素通りすることになり、酸素分圧などの制御精度が低下する。このようなことから、固体電解質筒状体のパイプ径を単純に大きくするには自ずと限界がある。従って、上記の方法で被処理ガスと固体電解質筒状体との接触面積を増大するには限界がある。そのため、ガスポンプが実質的有効に処理できるガス流量が制限され、酸素分圧を制御したガスを供給する用途が制限されていた。   In order to increase the contact area, it is conceivable to lengthen the solid electrolyte cylindrical body or increase the pipe diameter. In order to effectively use the oxygen ion conductive solid electrolyte, it is necessary to reduce the resistance value of the oxygen pump as low as possible and increase the oxygen permeation capability of the oxygen pump. The resistance value of the oxygen pump is affected by the shape (surface area and thickness) of the solid electrolyte, the electrode film, the lead terminal, and the like. Among these, the shape of the solid electrolyte has a large surface area, and the resistance value decreases as the thickness decreases. That is, when considering a cylindrical body, a shape having a large diameter and length and a small thickness is preferable. However, in view of the ease of manufacturing the solid electrolyte cylindrical body and the strength of the solid electrolyte cylindrical body used in a heated and high temperature holding state, there are limits to the diameter, length, and thickness. In addition, as the pipe diameter increases, the ion conduction reaction of the gas to be processed flowing through the center of the solid electrolyte cylindrical body decreases rapidly, and as a result, the gas to be processed flowing through the center passes through without reaction. In addition, control accuracy such as oxygen partial pressure decreases. For this reason, there is a limit to simply increasing the pipe diameter of the solid electrolyte cylindrical body. Therefore, there is a limit in increasing the contact area between the gas to be treated and the solid electrolyte cylindrical body by the above method. For this reason, the gas flow rate that can be processed substantially effectively by the gas pump is limited, and the application of supplying gas with controlled oxygen partial pressure is limited.

本発明は、上記課題に鑑みて、安定した精製力を発揮し、しかも精製処理能力の増大を図ることができる酸素ポンプを提供する。   In view of the above problems, the present invention provides an oxygen pump that exhibits stable purification power and can increase the purification treatment capacity.

本発明の酸素ポンプは、酸素イオン伝導性を有する固体電解質筒状体と、この固体電解質筒状体の内面及び外面に配置される電極と、固体電解質筒状体を加熱する加熱手段を備えた酸素ポンプにおいて、上下方向に沿って鉛直状に配設される複数の固体電解質筒状体を、そのガス流量を同一とする流量制御機構を介して、一鉛直面上に所定ピッチで平行に配設するとともに、前記加熱手段を平面状の一対のヒータにて構成して、この平面状の一対のヒータで、一鉛直面上に配設された複数の固体電解質筒状体をサンドイッチ状に挟み、かつ、流量制御機構は、ガス流入用管が接続されるガス分岐管と、ガス分岐管から各固体電解質筒状体にガスをそれぞれ独立して供給する複数の分岐路と、ガス流出用管が接続されるガス合流管と、各固体電解質筒状体からガス合流管にガスそれぞれ独立して供給する複数の合流路とを備え、ガス流入用管から固体電解質筒状体までの上流側流路と、固体電解質筒状体からガス流出用管までの下流側流路とにおいて、流路長さを相違させるとともに、固体電解質筒状体毎の上流側流路と下流側流路との合計長さを一定にして、各固体電解質筒状体には下方からガスを流入させるものである。 The oxygen pump of the present invention includes a solid electrolyte cylindrical body having oxygen ion conductivity, electrodes disposed on the inner surface and the outer surface of the solid electrolyte cylindrical body, and heating means for heating the solid electrolyte cylindrical body. In an oxygen pump, a plurality of solid electrolyte cylinders arranged vertically in the vertical direction are arranged in parallel at a predetermined pitch on one vertical plane through a flow rate control mechanism that makes the gas flow rate the same. The heating means is composed of a pair of planar heaters, and a plurality of solid electrolyte cylindrical bodies disposed on one vertical plane are sandwiched between the pair of planar heaters. And the flow control mechanism includes a gas branch pipe to which a gas inflow pipe is connected, a plurality of branch paths for independently supplying gas from the gas branch pipe to each solid electrolyte cylindrical body, and a gas outflow pipe Gas merging pipes connected to the A plurality of combined flow paths for supplying gas from the gas cylinder to the gas merging pipe independently, and an upstream flow path from the gas inflow pipe to the solid electrolyte cylindrical body, and gas outflow from the solid electrolyte cylindrical body Each solid electrolyte cylinder with a different total length of the upstream flow path and the downstream flow path for each solid electrolyte cylindrical body in the downstream flow path to the service pipe Gas is allowed to flow into the shape from below .

本発明の酸素ポンプによれば、複数本の固体電解質筒状体を所定ピッチで並設したので、ガス処理能力の向上を図ることができる。しかも、流量制御機構にて各固体電解質筒状体のガス流量が同一であるので、各固体電解質筒状体におけるガス処理能力が同一となる。   According to the oxygen pump of the present invention, since a plurality of solid electrolyte cylindrical bodies are arranged in parallel at a predetermined pitch, it is possible to improve the gas processing capacity. In addition, since the gas flow rate of each solid electrolyte cylindrical body is the same in the flow rate control mechanism, the gas processing capacity of each solid electrolyte cylindrical body is the same.

ガス流入用管から固体電解質筒状体までの上流側流路と、固体電解質筒状体からガス流出用管までの下流側流路とにおいて、流路長さを相違させるとともに、固体電解質筒状体毎の上流側流路と下流側流路との合計長さを一定としたことによって、各固体電解質筒状体のガス流量の同一化の精度を向上することができる。   The upstream side flow path from the gas inflow tube to the solid electrolyte cylindrical body and the downstream side flow path from the solid electrolyte cylindrical body to the gas outflow pipe have different channel lengths, and the solid electrolyte cylindrical shape By making the total length of the upstream channel and the downstream channel for each body constant, it is possible to improve the accuracy of identifying the gas flow rate of each solid electrolyte cylindrical body.

ところで、固体電解質筒状体の軸方向への伸縮が許容されれば、熱膨張等で、固体電解質の一部や電極の一部がはがれるおそれがある。そこで、固体電解質筒状体に下方からガスが流入するようにすれば、上方から処理済みガスが流出することになるので、固体電解質等の剥がれたものは下方に留まって、処理済みのガス供給側へ流出させない。   By the way, if the solid electrolyte cylindrical body is allowed to expand and contract in the axial direction, a part of the solid electrolyte or a part of the electrode may be peeled off due to thermal expansion or the like. Therefore, if the gas flows into the solid electrolyte cylindrical body from below, the treated gas will flow out from above, so that the peeled off solid electrolyte etc. stays below and the treated gas supply Do not let out.

本発明では、ガス処理能力の向上を図ることができ、しかも、各固体電解質筒状体におけるガス処理能力が同一となる。このため、目標の酸素分圧に制御された高品質の精製ガスを一度に大量に精製することができる。また、流量制御機構を設けることによって、各固体電解質筒状体のガス流量の同一化の精度を向上することができる。   In the present invention, the gas processing capacity can be improved, and the gas processing capacity of each solid electrolyte cylindrical body is the same. For this reason, a large amount of high-quality purified gas controlled to the target oxygen partial pressure can be purified at a time. Further, by providing the flow rate control mechanism, it is possible to improve the accuracy of making the gas flow rate of each solid electrolyte cylindrical body the same.

平面状のヒータにて、固体電解質筒状体をサンドイッチ状に挟むことができ、コンパクトな酸素ポンプを構成することができる。特に、サンドイッチ状に挟む場合、複数の固体電解質筒状体を一鉛直面上に所定ピッチで配設するようにすれば、コンパクト化を一層図ることができ、この酸素ポンプを使用する酸素分圧制御装置への組み込み性が向上する。しかも、複数の固体電解質筒状体を備えるので、精製能力の向上を図ることができる。   The solid electrolyte cylindrical body can be sandwiched by a flat heater, and a compact oxygen pump can be configured. In particular, when sandwiched between sandwiches, if a plurality of solid electrolyte cylinders are arranged at a predetermined pitch on one vertical plane, the size can be further reduced, and the oxygen partial pressure using this oxygen pump can be increased. Incorporation into the control device is improved. In addition, since a plurality of solid electrolyte cylindrical bodies are provided, the purification capacity can be improved.

固体電解質筒状体に下方からガスを供給することによって、剥がれたものはこの下方に留まって、処理済みのガス供給側へ流出させない。このため、純粋な精製ガスを供給することができ、ガス供給側の試料作成室等での作業が安定する。   By supplying gas to the solid electrolyte cylindrical body from below, the peeled material stays below and does not flow out to the treated gas supply side. For this reason, pure purified gas can be supplied, and operations in the sample preparation chamber or the like on the gas supply side are stabilized.

以下本発明の実施の形態を図1と図2に基づいて説明する。本発明に係る酸素ポンプは、酸素イオン伝導性を有する固体電解質筒状体30と、この固体電解質筒状体30の内面及び外面に配置される電極(図示省略)と、固体電解質筒状体30を加熱する加熱手段31を備える。この場合、固体電解質筒状体30の内面及び外面に白金めっき等を施して、電極を構成する。この酸素ポンプは、複数本(図例では5本)の固体電解質筒状体30を有し、各固体電解質筒状体30は断熱構造体35に包囲されている。なお、各固体電解質筒状体30と断熱構造体35とは図示省略のケーシング内に収容されている。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. The oxygen pump according to the present invention includes a solid electrolyte cylindrical body 30 having oxygen ion conductivity, electrodes (not shown) disposed on the inner and outer surfaces of the solid electrolyte cylindrical body 30, and the solid electrolyte cylindrical body 30. The heating means 31 which heats is provided. In this case, platinum plating etc. are given to the inner surface and outer surface of the solid electrolyte cylindrical body 30, and an electrode is comprised. This oxygen pump has a plurality (five in the illustrated example) of solid electrolyte cylinders 30, and each solid electrolyte cylinder 30 is surrounded by a heat insulating structure 35. Each solid electrolyte cylindrical body 30 and the heat insulating structure 35 are accommodated in a casing (not shown).

断熱構造体35は、断熱材からなる半割体37、37を備え、半割体37、37の合わせ面37a、37a間に所定寸の隙間40が形成される。すなわち、この隙間40を、固体電解質筒状体30の外径寸法よりも僅かに大きく設定し、隙間40に固体電解質筒状体30を半割体37に接触しないように配置する。   The heat insulating structure 35 includes halves 37 and 37 made of a heat insulating material, and a gap 40 having a predetermined size is formed between the mating surfaces 37 a and 37 a of the halves 37 and 37. That is, the gap 40 is set to be slightly larger than the outer diameter dimension of the solid electrolyte cylindrical body 30, and the solid electrolyte cylindrical body 30 is disposed in the gap 40 so as not to contact the halved body 37.

ここで、断熱材とは、熱エネルギーの移動を遮断する材料であり、無機質のものと有機質のものがある。一般に温度の高い場合には無機質材料が,温度の低い場合には有機質材料が使用される。無機質断熱材としては,セラミック繊維・ガラス繊維・アスベストなどを用いる繊維質断熱材,ケイ酸カルシウム・炭酸マグネシウムなどを用いる粉末質断熱材,パーライト・泡ガラスなどによる多孔質断熱材がある。このため、固体電解質筒状体30は600℃程度に加熱手段31にて加熱されるので、この温度に対応できるものから選択できる。   Here, the heat insulating material is a material that blocks the transfer of thermal energy, and includes an inorganic material and an organic material. In general, an inorganic material is used when the temperature is high, and an organic material is used when the temperature is low. Examples of inorganic heat insulating materials include fiber heat insulating materials using ceramic fibers, glass fibers, asbestos, etc., powder heat insulating materials using calcium silicate, magnesium carbonate, etc., and porous heat insulating materials such as perlite / foam glass. For this reason, since the solid electrolyte cylindrical body 30 is heated by the heating means 31 to about 600 degreeC, it can select from what can respond to this temperature.

また、各合わせ面37a、37aに、矩形状の凹所41,41が設けられ、凹所41,41にて形成される空間42に、加熱手段31を構成する一対のヒータ43、43が配置されている。なお、凹所41、41にはカバー材39が装着される。このように、この酸素ポンプは、複数の固体電解質筒状体30を一鉛直面上に所定ピッチで配設するとともに、加熱手段31を構成する平面状のヒータ43,43にて、複数の固体電解質筒状体30にて構成された筒状体群29をサンドイッチ状に挟むことになる。   Moreover, rectangular recesses 41 and 41 are provided in the mating surfaces 37a and 37a, and a pair of heaters 43 and 43 constituting the heating means 31 are arranged in a space 42 formed by the recesses 41 and 41. Has been. A cover material 39 is attached to the recesses 41 and 41. As described above, this oxygen pump has a plurality of solid electrolyte cylindrical bodies 30 arranged at a predetermined pitch on one vertical plane, and a plurality of solid electrolytes by the planar heaters 43 and 43 constituting the heating means 31. A cylindrical body group 29 composed of the electrolyte cylindrical body 30 is sandwiched.

各々のヒータ43は、図示省略の温度検出器(例えば熱電温度計)が付設され、ヒータ43の温度が監視される。ここで、熱電温度計とは熱電対を使った温度計である。すなわち、測温接点をヒータ側(ヒータ自体又はヒータを支持している図示省略の支持体)に接続し、この測温接点と基準接点との間の起電力を測ることになる。   Each heater 43 is provided with a temperature detector (not shown) (for example, a thermoelectric thermometer), and the temperature of the heater 43 is monitored. Here, the thermoelectric thermometer is a thermometer using a thermocouple. That is, the temperature measuring contact is connected to the heater side (the heater itself or a support body (not shown) supporting the heater), and the electromotive force between the temperature measuring contact and the reference contact is measured.

各固体電解質筒状体30は、その上端側及び下端側が合流路55及び分岐部56を介して前記図示省略のケーシングに取付けられている。すなわち、ケーシングには、その上部と下部に空間部が設けられ、この空間部に突出した固体電解質筒状体30の上下端にはそれぞれ連結用管継手59、60が付設されている。また、上方の空間部にはガス合流管61が配置され、下方の空間部にはガス分岐管62が配置される。そして、このガス合流管61に、合流路55を介して連結用管継手59が連結され、ガス分岐管62に、分岐部56を介して連結用管継手60が連結される。   Each solid electrolyte cylindrical body 30 has an upper end side and a lower end side attached to a casing (not shown) via a joint channel 55 and a branching portion 56. That is, the casing is provided with space portions at the upper and lower portions thereof, and connecting pipe joints 59 and 60 are respectively attached to the upper and lower ends of the solid electrolyte cylindrical body 30 protruding into the space portion. A gas junction pipe 61 is arranged in the upper space part, and a gas branch pipe 62 is arranged in the lower space part. Then, a connecting pipe joint 59 is connected to the gas junction pipe 61 via the joining flow path 55, and a connecting pipe joint 60 is connected to the gas branch pipe 62 via the branch portion 56.

合流路55及び分岐路56はフレキシブル管であって、蛇腹管からなる本体55a、56aと、連結用管継手59、60に接続される接続部55b、56bと、ガス合流管61又はガス分岐管62に接続される接続部55c、56cとからなる。また、図2に示すように、本体55a、56aはループ状に形成される。   The combined flow path 55 and the branch path 56 are flexible pipes, and include main bodies 55a and 56a made of bellows pipes, connecting portions 55b and 56b connected to the coupling pipe joints 59 and 60, and a gas junction pipe 61 or a gas branch pipe. And connecting portions 55 c and 56 c connected to 62. As shown in FIG. 2, the main bodies 55a and 56a are formed in a loop shape.

ガス合流管61及びガス分岐管62は、それぞれ、その長手方向に延びる軸心孔66と、この軸心孔66に連通される複数(この場合、固体電解質筒状体30に対応して5個)の連結部67とが形成されている。なお、連結部67は軸心孔66に沿って所定ピッチ(一定ピッチ)に配置される。そして、ガス合流管61の各連結部67に合流路55が接続され、ガス分岐管62の各連結部67に分岐路56が接続される。   Each of the gas junction pipe 61 and the gas branch pipe 62 has an axial hole 66 extending in the longitudinal direction and a plurality of (in this case, five corresponding to the solid electrolyte cylindrical body 30) communicating with the axial hole 66. ) Connecting portion 67. The connecting portions 67 are arranged at a predetermined pitch (constant pitch) along the axial hole 66. Then, the junction channel 55 is connected to each connecting portion 67 of the gas junction pipe 61, and the branch path 56 is connected to each connecting portion 67 of the gas branch pipe 62.

ガス合流管61はケーシングの上壁に固着されるとともに、その軸心孔66に連通されるガス流出用管68が接続される。この場合、合流管61の軸心孔66はケーシングの一方の側壁側(図1における右側)に開口し、この開口部がケーシングの一方の側壁に固定される前記ガス流出用管68に連結される。   The gas junction pipe 61 is fixed to the upper wall of the casing, and a gas outflow pipe 68 communicated with the axial hole 66 is connected. In this case, the axial hole 66 of the junction pipe 61 opens on one side wall side (right side in FIG. 1) of the casing, and this opening is connected to the gas outflow pipe 68 fixed to one side wall of the casing. The

ガス分岐管62はケーシング34の下壁に固着されるとともに、その軸心孔66に連通されるガス流入用管69が接続される。この場合、分岐管62の軸心孔66はケーシングの他方の側壁側(図1における左側)に開口し、この開口部がケーシングの一方の側壁に固定される前記ガス流入用管69に連結される。このため、ガス流入用管69は、分岐管62から他方の側壁側へ突出した後、一方の側壁側へUターンすることになる。   The gas branch pipe 62 is fixed to the lower wall of the casing 34 and is connected to a gas inflow pipe 69 communicated with the axial hole 66. In this case, the axial hole 66 of the branch pipe 62 opens on the other side wall side (left side in FIG. 1) of the casing, and this opening is connected to the gas inflow pipe 69 fixed to one side wall of the casing. The For this reason, the gas inflow pipe 69 protrudes from the branch pipe 62 toward the other side wall, and then makes a U-turn toward the one side wall.

この場合、下方の連結管69から分岐管62及び分岐路56を介して、下方から固体電解質筒状体30にガスが流入し、酸素分子が低減されて目的の酸素分圧に制御された処理済みガス(精製ガス)となり、この処理済みガスがこの固体電解質筒状体30の上方から、合流路55及び合流管61を介して上方の連結管68へ流出する。   In this case, gas flows into the solid electrolyte cylindrical body 30 from below through the branch pipe 62 and the branch path 56 from the lower connecting pipe 69, and oxygen molecules are reduced to control the target oxygen partial pressure. As a result, the treated gas flows out from above the solid electrolyte cylindrical body 30 to the upper connecting pipe 68 through the joining channel 55 and the joining pipe 61.

ところで、本発明の酸素ポンプは、一方の側壁側の固体電解質筒状体30Aへ流入するガスは、他方の側壁側の開口部から分岐管62に入って、この分岐管62の軸心孔66を一方の側壁側へ流れた後、流入することになる。そして、この固体電解質筒状体30Aを流れた精製されたガスは、合流路55を介して合流管61の軸心孔66の開口側へ流入して、ガス流出用管68を介して酸素センサ側に流出する。また、他方の側壁側の固体電解質筒状体30Eへ流入するガスは、他方の側壁側の開口部から分岐管62に入って、他方の側壁側の転結部67から分岐路56を介して流入し、この固体電解質筒状体30Eで精製されたガスが合流管61の軸心孔66の他方の側壁側の連結部67に流入して、この軸心孔66を開口側へ流れ、ガス流出用管69を介して酸素センサ側に流出する。   By the way, in the oxygen pump of the present invention, the gas flowing into the solid electrolyte cylindrical body 30A on one side wall side enters the branch pipe 62 from the opening on the other side wall side, and the axial hole 66 of this branch pipe 62 Will flow into one side wall and then flow in. Then, the purified gas that has flowed through the solid electrolyte cylindrical body 30A flows into the opening side of the axial center hole 66 of the merging pipe 61 through the merging channel 55, and passes through the gas outlet pipe 68 to the oxygen sensor. To the side. The gas flowing into the solid electrolyte cylindrical body 30E on the other side wall side enters the branch pipe 62 from the opening on the other side wall side, and passes through the branch path 56 from the rolling portion 67 on the other side wall side. The gas that has flowed in and purified by the solid electrolyte cylindrical body 30E flows into the connecting portion 67 on the other side wall side of the axial hole 66 of the merging pipe 61, and flows through the axial hole 66 to the opening side. It flows out to the oxygen sensor side through the outflow pipe 69.

すなわち、この酸素ポンプでは、ガス分岐管62から各固体電解質筒状体30にガスを供給する分岐路56と、ガス流入用管69が接続されるガス分岐管62と、ガス流出用管68が接続されるガス合流管61と、各固体電解質筒状体30からガス合流管61に供給する合流路55と、ガス流入用管69と、ガス流出用管68とを備えた流量制御機構Mが構成される。この流量制御機構Mによって、ガス流入用管69から固体電解質筒状体30までの上流側流路76と、固体電解質筒状体30からガス流出用管68までの下流側流路77とにおいて、流路長さを相違させるとともに、固体電解質筒状体毎の上流側流路と下流側流路との合計長さを一定にした。   That is, in this oxygen pump, a branch path 56 for supplying gas from the gas branch pipe 62 to each solid electrolyte cylindrical body 30, a gas branch pipe 62 to which a gas inflow pipe 69 is connected, and a gas outflow pipe 68 are provided. A flow rate control mechanism M including a connected gas merging pipe 61, a merging channel 55 that supplies the gas merging pipe 61 from each solid electrolyte cylindrical body 30, a gas inflow pipe 69, and a gas outflow pipe 68 Composed. By this flow rate control mechanism M, in the upstream flow path 76 from the gas inflow tube 69 to the solid electrolyte cylindrical body 30 and the downstream flow path 77 from the solid electrolyte cylindrical body 30 to the gas outflow pipe 68, While making the channel length different, the total length of the upstream channel and the downstream channel for each solid electrolyte cylindrical body was made constant.

したがって、流量制御機構Mによって、酸素ポンプでは、並設される固体電解質筒状体30毎に、上流側と下流側とで流路の長さを相違させ、この酸素ポンプ内を流れ込んで、分岐した後、合流するガスの流路の長さを一致させている。このため、各固体電解質筒状体30を流れるガスの流量が同一となって、各固体電解質筒状体30の処理能力が同一となっている。   Therefore, in the oxygen pump, the flow rate control mechanism M causes the flow path length to be different between the upstream side and the downstream side for each of the solid electrolyte cylindrical bodies 30 arranged side by side. After that, the lengths of the flow paths of the gas to be merged are matched. For this reason, the flow rate of the gas flowing through each solid electrolyte cylindrical body 30 is the same, and the processing capability of each solid electrolyte cylindrical body 30 is the same.

別の流量制御機構Mとして、ガス分岐管62、分岐路56、ガス合流管61、合流路55の流路形状、寸法を調製したことにより、ガス流入用管69から各固体電解質筒状体30を経由してガス流出用管68に至る経路の配管抵抗が各固体電解質筒状体30の間で等しくなるようにするものであってもよい。この場合、各固体電解質筒状体30を流れるガスの流量が同一となって、各固体電解質筒状体30の処理能力が同一となっている。   As another flow rate control mechanism M, the gas branch pipe 62, the branch path 56, the gas junction pipe 61, and the flow path shapes and dimensions of the junction path 55 are adjusted. The pipe resistance of the path leading to the gas outflow pipe 68 via the pipe may be made equal among the solid electrolyte cylindrical bodies 30. In this case, the flow rate of the gas flowing through each solid electrolyte cylindrical body 30 is the same, and the processing capability of each solid electrolyte cylindrical body 30 is the same.

本発明によれば、上下方向に沿って配設される複数本の固体電解質筒状体30を鉛直面上に所定ピッチで並設したので、ガス処理能力の向上を図ることができる。しかも、流量制御機構Mにて各固体電解質筒状体30のガス流量を同一としたので、各固体電解質筒状体30におけるガス処理能力が同一となる。このため、目標の酸素分圧に制御された高品質の精製ガスを一度に大量に精製することができる。   According to the present invention, since the plurality of solid electrolyte cylindrical bodies 30 arranged along the vertical direction are arranged side by side at a predetermined pitch on the vertical plane, the gas processing capacity can be improved. Moreover, since the gas flow rate of each solid electrolyte cylindrical body 30 is made the same by the flow rate control mechanism M, the gas processing capacity in each solid electrolyte cylindrical body 30 becomes the same. For this reason, a large amount of high-quality purified gas controlled to the target oxygen partial pressure can be purified at a time.

ガス流入用管69から固体電解質筒状体30までの上流側流路76と、固体電解質筒状体30からガス流出用管68までの下流側流路77とにおいて、流路長さを相違させるとともに、固体電解質筒状体30毎の上流側流路76と下流側流路77との合計長さを一定としたことによって、もしくは、ガス分岐管62、分岐路56、ガス合流管61、合流路55の流路形状、寸法を調製したことにより、ガス流入用管69から各固体電解質筒状体30を経由してガス流出用管68に至る経路の配管抵抗が各固体電解質筒状体30の間で等しくなるようにしたことによって、各固体電解質筒状体30のガス流量の同一化の精度を向上することができる。   The upstream channel 76 from the gas inflow tube 69 to the solid electrolyte cylindrical body 30 and the downstream channel 77 from the solid electrolyte cylindrical body 30 to the gas outlet tube 68 have different channel lengths. In addition, by making the total length of the upstream flow path 76 and the downstream flow path 77 for each solid electrolyte cylindrical body 30 constant, or the gas branch pipe 62, the branch path 56, the gas junction pipe 61, the junction By adjusting the flow path shape and dimensions of the path 55, the pipe resistance of the path from the gas inflow pipe 69 to the gas outflow pipe 68 via each solid electrolyte cylindrical body 30 is reduced to each solid electrolyte cylindrical body 30. Therefore, it is possible to improve the accuracy of making the gas flow rate of each solid electrolyte cylindrical body 30 the same.

ところで、熱膨張等で、固体電解質の一部や電極の一部がはがれるおそれがある。しかしながら、このような場合でも、本発明では、固体電解質筒状体30に下方からガスが流入するので、上方から処理済みガスが流出することになって、固体電解質等の剥がれたものはこの下方に留まって、処理済みのガス供給側へ流出させない。このため、純粋な精製ガスを供給することができ、ガス供給側の試料作成室等での作業が安定する。   By the way, a part of solid electrolyte and a part of electrode may peel off by thermal expansion or the like. However, even in such a case, in the present invention, the gas flows into the solid electrolyte cylindrical body 30 from below, so that the treated gas flows out from above, and the solid electrolyte or the like peeled off is below this Stay on the gas supply side after treatment. For this reason, pure purified gas can be supplied, and operations in the sample preparation chamber or the like on the gas supply side are stabilized.

参考例ではあるが、加熱手段31として、平面状のヒータ43を使用せずに、固体電解質筒状体30を包囲状とする電熱線(ヒータ)にて構成できる。この場合、複数のリング状の電熱線を軸方向に沿って所定ピッチで配置したものであっても、1本の電熱線を固体電解質筒状体30の周り螺旋状(コイル状)に巻設したものであってもよい。このように、包囲状とする電熱線を用いれば、固体電解質筒状体30を全周方向から加熱することができ、効率のよい加熱が可能となる。 Although it is a reference example, the heating means 31 can be configured by a heating wire (heater ) that surrounds the solid electrolyte cylindrical body 30 without using the planar heater 43 . In this case, even if a plurality of ring-shaped heating wires are arranged at a predetermined pitch along the axial direction, one heating wire is wound around the solid electrolyte cylindrical body 30 in a spiral shape (coil shape). It may be what you did. Thus, if the heating wire made into the surrounding shape is used, the solid electrolyte cylindrical body 30 can be heated from the whole circumference direction, and efficient heating becomes possible.

また、他の参考例として、各固体電解質筒状体30を一鉛直面上に配設しているが、他
の実施形態として、複数の固体電解質筒状体30にて柱状の固体電解質筒状体束を構成し
てもよい。この場合、複数の固体電解質筒状体30を円周方向に沿って配設したり、複数
本を束ねるように配設したりすることができる。また、円周方向に沿って配設する場合、
複数の同心円上に配設したものであってもよい。
Further, as another reference example, each solid electrolyte cylindrical body 30 is arranged on one vertical plane. However, as another embodiment, a plurality of solid electrolyte cylindrical bodies 30 are columnar solid electrolyte cylindrical bodies. You may comprise a body bundle. In this case, a plurality of solid electrolyte cylindrical bodies 30 can be disposed along the circumferential direction, or a plurality of solid electrolyte cylindrical bodies 30 can be disposed so as to be bundled. Also, when arranging along the circumferential direction,
It may be arranged on a plurality of concentric circles.

複数の固体電解質筒状体30にて柱状の固体電解質筒状体束を構成すれば、加熱手段31としてこの固体電解質筒状体束の外周側に配置されて外周を包囲状とする電熱線(ヒータ)、内周側に配置されて内周を包囲状とする電熱線(ヒータ)、又は外周側と内周側の両者を包囲状とする電熱線(ヒータ)を使用することができる。このため、固体電解質筒状体束の各固体電解質筒状体30をより効率よく加熱することができ、しかも、複数の固体電解質筒状体を備えるので、精製能力の向上を図ることができる。   If a plurality of solid electrolyte cylindrical bodies 30 constitutes a columnar solid electrolyte cylindrical bundle, a heating wire 31 is disposed on the outer peripheral side of the solid electrolyte cylindrical bundle as a heating means 31 and surrounds the outer periphery ( Heater), a heating wire (heater) disposed on the inner peripheral side and surrounding the inner periphery, or a heating wire (heater) surrounding both the outer peripheral side and the inner peripheral side can be used. For this reason, each solid electrolyte cylindrical body 30 of the solid electrolyte cylindrical body bundle can be heated more efficiently, and moreover, since a plurality of solid electrolyte cylindrical bodies are provided, the purification ability can be improved.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、固体電解質筒状体30の数の増減は任意であるが、多すぎると、装置全体が大型化し、少なすぎると処理能力の向上を図ることができない。このため、固体電解質筒状体30の径寸法や長さ寸法等によって相違するが、図例のように5本程度が好ましい。また、各固体電解質筒状体30を一鉛直面上に配設することなく、円周方向に沿って配設したり、束ねるように配設したりしてもよく、鉛直面上に配設する場合でも、定ピッチでなく、不等ピッチでもよい。さらには、上下方向に沿って配設することなく、水平方向等に沿って配設してもよい。実施形態では、下方の分岐管62に接続されるガス流入用管69側を長くしているが、上方の合流管61に接続されるガス流出用管69側を長くしてもよい。さらに実施形態では、ガスが下方のガス流入用管69から流入して各固体電解質筒状体30にて処理された後、上方のガス流出用管69から流出するものであるが、逆に、ガスが上方の連結管から流入して各固体電解質筒状体30にて処理された後、下方のガス流入用管69から流出するものであってもよい。   As described above, the embodiments of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, the number of solid electrolyte cylindrical bodies 30 can be increased or decreased arbitrarily. If the amount is too large, the entire apparatus becomes large, and if the amount is too small, the processing capacity cannot be improved. For this reason, although it changes with the diameter dimension, length dimension, etc. of the solid electrolyte cylindrical body 30, about five are preferable like the example of a figure. Further, each solid electrolyte cylindrical body 30 may be arranged along the circumferential direction or arranged so as to be bundled without being arranged on one vertical plane, or arranged on the vertical plane. Even in the case of non-uniform pitch, the pitch may be unequal. Furthermore, you may arrange | position along a horizontal direction etc., without arrange | positioning along an up-down direction. In the embodiment, the gas inflow pipe 69 side connected to the lower branch pipe 62 is elongated, but the gas outflow pipe 69 side connected to the upper junction pipe 61 may be elongated. Further, in the embodiment, after the gas flows in from the lower gas inflow pipe 69 and is processed in each solid electrolyte cylindrical body 30, it flows out from the upper gas outflow pipe 69. After the gas flows in from the upper connecting pipe and is processed in each solid electrolyte cylindrical body 30, the gas may flow out from the lower gas inflow pipe 69.

加熱手段31のヒータ43として、前記実施形態では固体電解質筒状体30をサンドイッチ状に挟んだものであったが、前面側と後面側とのいずれか一方に配置するものであってもよい。また、複数の固体電解質筒状体30にて柱状の固体電解質筒状体束を構成したものに対する加熱手段31に、平面状のヒータ43を使用してもよく、この場合であっても、2枚の平面状のヒータ43でサンドイッチ状に挟んでも、一枚の平面状のヒータ43を前面側と後面側とのいずれか一方に配置するものであってもよく、さらには、4枚の平面状のヒータ43で、固体電解質筒状体束を前後左右の4方向を包囲するように配置してもよい。   As the heater 43 of the heating means 31, the solid electrolyte cylindrical body 30 is sandwiched in the embodiment, but may be disposed on either the front side or the rear side. In addition, a planar heater 43 may be used as the heating means 31 for a column-shaped solid electrolyte cylindrical body bundle constituted by a plurality of solid electrolyte cylindrical bodies 30. Even when sandwiched between two flat heaters 43, one flat heater 43 may be disposed on either the front side or the rear side, and further, four flat planes may be provided. The solid electrolyte cylindrical bundle may be arranged so as to surround the four directions of the front, rear, left and right with the heater 43 having a shape.

本発明の実施形態を示す酸素ポンプの内部の要部正面図である。It is a principal part front view inside the oxygen pump which shows embodiment of this invention. 前記酸素ポンプの断面側面図である。It is a cross-sectional side view of the oxygen pump. 従来の酸素分圧制御装置の簡略図である。It is a simplified diagram of a conventional oxygen partial pressure control device. 酸素ポンプの原理の説明図である。It is explanatory drawing of the principle of an oxygen pump.

符号の説明Explanation of symbols

30 固体電解質筒状体
31 加熱手段
55 合流路
56 分岐路
61 ガス合流管
62 ガス分岐管
68 ガス流出用管
69 ガス流入用管
76 上流側流路
77 下流側流路
M 流量制御機構
30 Solid electrolyte cylindrical body 31 Heating means 55 Combined flow path 56 Branch path 61 Gas merge pipe 62 Gas branch pipe 68 Gas outflow pipe 69 Gas inflow pipe 76 Upstream flow path 77 Downstream flow path M Flow rate control mechanism

Claims (1)

酸素イオン伝導性を有する固体電解質筒状体と、この固体電解質筒状体の内面及び外面に配置される電極と、固体電解質筒状体を加熱する加熱手段を備えた酸素ポンプにおいて、
上下方向に沿って鉛直状に配設される複数の固体電解質筒状体を、そのガス流量を同一とする流量制御機構を介して、一鉛直面上に所定ピッチで平行に配設するとともに、前記加熱手段を平面状の一対のヒータにて構成して、この平面状の一対のヒータで、一鉛直面上に配設された複数の固体電解質筒状体をサンドイッチ状に挟み、かつ、流量制御機構は、ガス流入用管が接続されるガス分岐管と、ガス分岐管から各固体電解質筒状体にガスをそれぞれ独立して供給する複数の分岐路と、ガス流出用管が接続されるガス合流管と、各固体電解質筒状体からガス合流管にガスそれぞれ独立して供給する複数の合流路とを備え、ガス流入用管から固体電解質筒状体までの上流側流路と、固体電解質筒状体からガス流出用管までの下流側流路とにおいて、流路長さを相違させるとともに、固体電解質筒状体毎の上流側流路と下流側流路との合計長さを一定にして、各固体電解質筒状体には下方からガスを流入させることを特徴とする酸素ポンプ。
In an oxygen pump comprising a solid electrolyte cylindrical body having oxygen ion conductivity, electrodes disposed on the inner and outer surfaces of the solid electrolyte cylindrical body, and heating means for heating the solid electrolyte cylindrical body,
A plurality of solid electrolyte cylinders arranged vertically along the vertical direction are arranged in parallel at a predetermined pitch on one vertical plane through a flow rate control mechanism that makes the gas flow rate the same, and The heating means is composed of a pair of flat heaters, and a plurality of solid electrolyte cylinders disposed on one vertical plane are sandwiched between the pair of flat heaters, and the flow rate The control mechanism is connected to a gas branch pipe to which a gas inflow pipe is connected, a plurality of branch paths for independently supplying gas from the gas branch pipe to each solid electrolyte cylindrical body, and a gas outflow pipe. A gas merging pipe, and a plurality of merging passages for supplying gas from each solid electrolyte cylindrical body to the gas merging pipe independently, an upstream flow path from the gas inflow pipe to the solid electrolyte cylindrical body, and a solid In the downstream flow path from the electrolyte cylinder to the gas outflow pipe In addition, the flow lengths are made different, and the total length of the upstream flow path and the downstream flow path for each solid electrolyte cylindrical body is made constant, and gas flows into each solid electrolyte cylindrical body from below. oxygen pump, characterized in that cause.
JP2006341757A 2006-12-19 2006-12-19 Oxygen pump Active JP5329037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341757A JP5329037B2 (en) 2006-12-19 2006-12-19 Oxygen pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341757A JP5329037B2 (en) 2006-12-19 2006-12-19 Oxygen pump

Publications (2)

Publication Number Publication Date
JP2008150260A JP2008150260A (en) 2008-07-03
JP5329037B2 true JP5329037B2 (en) 2013-10-30

Family

ID=39652854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341757A Active JP5329037B2 (en) 2006-12-19 2006-12-19 Oxygen pump

Country Status (1)

Country Link
JP (1) JP5329037B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238994B2 (en) * 1972-03-29 1977-10-01
JPS5878494U (en) * 1981-11-20 1983-05-27 大阪瓦斯株式会社 air separation equipment
US5169506A (en) * 1990-12-31 1992-12-08 Invacare Corporation Oxygen concentration system utilizing pressurized air
GB9114474D0 (en) * 1991-07-04 1991-08-21 Normalair Garrett Ltd Oxygen generating systems
JPH10160328A (en) * 1996-11-26 1998-06-19 Matsushita Refrig Co Ltd Refrigerator
JP2000203805A (en) * 1999-01-14 2000-07-25 Mitsubishi Heavy Ind Ltd Apparatus for producing oxygen and production of oxygen
JP2001114589A (en) * 1999-10-20 2001-04-24 Nec Machinery Corp Single crystal growth device
JP2005216642A (en) * 2004-01-29 2005-08-11 Mitsui Eng & Shipbuild Co Ltd Solid electrolyte fuel cell
JP2005331339A (en) * 2004-05-19 2005-12-02 National Institute Of Advanced Industrial & Technology Oxygen partial pressure control device and recovery method of solid electrolyte for oxygen partial pressure control
JP2006137638A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Oxygen pump

Also Published As

Publication number Publication date
JP2008150260A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
US7324746B2 (en) Fluid heater and evaluation equipment incorporating the same
US6352624B1 (en) Electrochemical oxygen generating system
JP4584722B2 (en) Plasma processing apparatus and semiconductor device manufactured by the same
US20060175194A1 (en) Electrochemical oxygen generator module assembly
US3650934A (en) Oxygen control and measuring apparatus
JP2006162089A5 (en)
CN103388904A (en) Fluid heating-cooling cylinder device
JP2009537065A5 (en)
WO2017080005A1 (en) Sensor and method for measuring content of hydrogen in metal melt
JP3890070B2 (en) Gas pump
JP5329037B2 (en) Oxygen pump
JP5329036B2 (en) Oxygen pump
JP5138211B2 (en) Oxygen pump
JP5348447B2 (en) Cell characterization device
JP3171636B2 (en) Liquid heating device
JP2008151709A (en) Oxygen sensor
JP4412560B2 (en) Gas pump
JP4285663B2 (en) Oxygen partial pressure control device and gas supply method
JP2008185341A (en) Oxygen sensor
JP2006085923A (en) Cell characteristics estimation device
JPH06221677A (en) Gas heater
US6685235B1 (en) System and method for attaching tubing
JP2000230670A (en) Integrated fluid control device with heater
CN109673070B (en) Temperature field distribution variable-temperature heating device capable of being programmed
JP4304333B2 (en) Hot air heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250