JP2597730B2 - Method for producing bottomed porous support tube for solid oxide fuel cell - Google Patents

Method for producing bottomed porous support tube for solid oxide fuel cell

Info

Publication number
JP2597730B2
JP2597730B2 JP2075601A JP7560190A JP2597730B2 JP 2597730 B2 JP2597730 B2 JP 2597730B2 JP 2075601 A JP2075601 A JP 2075601A JP 7560190 A JP7560190 A JP 7560190A JP 2597730 B2 JP2597730 B2 JP 2597730B2
Authority
JP
Japan
Prior art keywords
bottomed
porous support
support tube
fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2075601A
Other languages
Japanese (ja)
Other versions
JPH03276568A (en
Inventor
英延 三澤
聡 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2075601A priority Critical patent/JP2597730B2/en
Priority to US07/651,799 priority patent/US5158837A/en
Priority to CA002036258A priority patent/CA2036258C/en
Priority to DE69121735T priority patent/DE69121735T2/en
Priority to EP91301208A priority patent/EP0442740B1/en
Publication of JPH03276568A publication Critical patent/JPH03276568A/en
Application granted granted Critical
Publication of JP2597730B2 publication Critical patent/JP2597730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固体電解質型燃料電池用の有底多孔質支持
管の製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a bottomed porous support tube for a solid oxide fuel cell.

(従来の技術) 最近、燃料電池が発電装置として注目されている。こ
れは、燃料が有する化学エネルギーを直接電気エネルギ
ーに変換できる装置で、カルノーサイクルの制約を受け
ないため、本質的に高いエネルギー変換効率を有し、燃
料の多様が可能で(ナフサ,天然ガス,メタノール、石
炭改質ガス,重油等)、低公害で、しかも発電効率が設
備規模によって影響されず、極めて有望な技術である。
(Prior Art) Recently, fuel cells have attracted attention as power generation devices. This is a device that can directly convert the chemical energy of fuel into electric energy. It is not restricted by the Carnot cycle, so it has an inherently high energy conversion efficiency and is capable of diversifying fuels (naphtha, natural gas, (Methanol, coal reformed gas, heavy oil, etc.), low pollution, and power generation efficiency is not affected by the scale of the equipment.

特に固体電解質型燃料電池(SOFC)は、1000℃の高温
で作動するため電極反応が極めて活発で、高価な白金な
どの貴金属触媒を全く必要とせず、分極が小さく、出力
電圧も比較的高いため、エネルギー変換効率が他の燃料
電池にくらべ著しく高い。更に、構造材は全て固体から
構成されるため、安定且つ長寿命である。
In particular, solid oxide fuel cells (SOFCs) operate at a high temperature of 1000 ° C, so the electrode reaction is extremely active, does not require expensive precious metal catalysts such as platinum, has low polarization, and has a relatively high output voltage. The energy conversion efficiency is significantly higher than other fuel cells. Further, since all the structural materials are composed of solids, they have a stable and long life.

第3図はこうしたSOFCの一例を示す概略断面図であ
る。
FIG. 3 is a schematic sectional view showing an example of such a SOFC.

第3図において、1は空気等の酸化ガスを導入するた
めの酸化ガス供給管、4は有底多孔質支持管、5は空気
電極、6は固体電解質、7は燃料電極、8は酸化ガス供
給管1を保持するとともに酸化ガス室18と排ガス19との
区分を行う上部プレート、10はSOFC素子40を保持すると
ともに電池反応室20と燃料室30とを区分する燃料流入孔
10aを有する底部プレート、9は排ガス室19と電池反応
室20とを区分する、ガス流出孔9aを有するプレートであ
る。
In FIG. 3, 1 is an oxidizing gas supply pipe for introducing an oxidizing gas such as air, 4 is a bottomed porous support pipe, 5 is an air electrode, 6 is a solid electrolyte, 7 is a fuel electrode, and 8 is an oxidizing gas. An upper plate that holds the supply pipe 1 and separates the oxidizing gas chamber 18 from the exhaust gas 19. A fuel inlet 10 that holds the SOFC element 40 and separates the battery reaction chamber 20 and the fuel chamber 30.
The bottom plate 9a has a gas outlet 9a which separates the exhaust gas chamber 19 and the battery reaction chamber 20 from each other.

この状態で、矢印Aのように、空気等の酸化ガスを酸
化ガス室18より酸化ガス供給管1への供給すると、酸化
ガス供給口1aより流出した酸化ガスが有底部4aで反転
し、有底多孔質支持管4の筒内空間29内を流れ、矢印B
のように排ガス室19内に流出する。一方、底部プレート
10の燃料流入孔10aを通してH2やCH4等の燃料ガスをSOFC
素子40の外表面に沿って流すことにより、燃料電極7の
表面で上記燃料ガスと固体電解質内を拡散してきた酸素
イオンとが反応し、その結果、空気電極5と燃料電極7
との間に電流が流れ、電池として使用することができ
る。この燃料電池は1000℃程度の高温下で使用されるた
め、シール部なしで構成できる第3図に示す形態が好ま
しい形態といえる。
In this state, when an oxidizing gas such as air is supplied from the oxidizing gas chamber 18 to the oxidizing gas supply pipe 1 as shown by an arrow A, the oxidizing gas flowing out of the oxidizing gas supply port 1a is inverted at the bottomed portion 4a, and is turned on. It flows in the space 29 inside the cylinder of the bottom porous support tube 4, and an arrow B
Flows out into the exhaust gas chamber 19 as shown in FIG. Meanwhile, the bottom plate
Fuel gas such as H 2 or CH 4 is passed through SOFC
By flowing along the outer surface of the element 40, the fuel gas and oxygen ions diffused in the solid electrolyte react on the surface of the fuel electrode 7, and as a result, the air electrode 5 and the fuel electrode 7
A current flows between them, and the battery can be used as a battery. Since this fuel cell is used at a high temperature of about 1000 ° C., the configuration shown in FIG. 3, which can be configured without a seal portion, can be said to be a preferable configuration.

(発明が解決しようとする課題) SOFCの実用化においてはコストの低減と電力密度の向
上が必要である。このためSOFC素子40を長尺化して一本
当たりの発電出力を上げることが要請されている。
(Problems to be Solved by the Invention) In practical use of SOFC, it is necessary to reduce cost and improve power density. For this reason, it is required to increase the length of the SOFC element 40 and increase the power generation output per one.

しかし、SOFCの発電量は、有底多孔質支持管4を透過
する酸素の量に大きく左右される。
However, the amount of power generated by the SOFC largely depends on the amount of oxygen passing through the bottomed porous support tube 4.

即ち、酸化ガス供給口1aの近辺では、まだ酸素含有量
が多いため、この近辺の燃料電極7に到達する酸素イオ
ンの量が増大し、燃料電極7表面での燃料との反応量が
増大し、温度が上昇する。この温度上昇によって燃料電
極面での酸素イオンと燃料ガスとの電極反応がますます
活発となる。一方、酸素ガス供給口1aより流出したガス
はガス流出孔9aに近づくにつれ、ガス中の酸素濃度が減
少し、この結果ガス流出孔9aに近い燃料電極7面に到達
する酸素イオンの量が低下し、燃料電極7表面での燃料
との反応量が少く、温度上昇は小さい。この結果、この
温度の低さからますます反応が不活発となる。この傾向
は、袋管状のSOFC素子が長くなるにつれて一層大きくな
る。
That is, since the oxygen content is still large near the oxidizing gas supply port 1a, the amount of oxygen ions reaching the fuel electrode 7 in the vicinity increases, and the reaction amount with the fuel on the surface of the fuel electrode 7 increases. , The temperature rises. Due to this temperature increase, the electrode reaction between oxygen ions and fuel gas at the fuel electrode surface becomes more active. On the other hand, as the gas flowing out from the oxygen gas supply port 1a approaches the gas outlet 9a, the oxygen concentration in the gas decreases, and as a result, the amount of oxygen ions reaching the fuel electrode 7 near the gas outlet 9a decreases. However, the reaction amount with the fuel on the surface of the fuel electrode 7 is small, and the temperature rise is small. As a result, the reaction becomes increasingly inactive due to this low temperature. This tendency becomes greater as the tubular SOFC element becomes longer.

しかも、最近の燃料電極の性能向上に伴い、酸素拡散
性に優れた支持管が必要となっている。
In addition, with the recent improvement in the performance of fuel electrodes, support tubes having excellent oxygen diffusivity are required.

また、固体電解質6の内側に燃料電極を設け、筒内空
間29へと燃料ガスを供給して発電を行う型のSOFCにおい
ても同様の問題が発生する。しかも、この場合には、濃
度が減少した燃料ガス中にかなり、CO2および水蒸気等
が含まれており、これらが電極面に付着して反応を阻害
するため、ますます反応が不活発となり、SOFC素子の長
手方向における温度の不均一が著しい。
A similar problem also occurs in a SOFC in which a fuel electrode is provided inside the solid electrolyte 6 and a fuel gas is supplied to the in-cylinder space 29 to generate power. Moreover, in this case, the fuel gas having a reduced concentration contains a considerable amount of CO 2 and water vapor, etc., which adhere to the electrode surface and inhibit the reaction. The temperature unevenness in the longitudinal direction of the SOFC element is remarkable.

本発明の課題は、有底筒状の多孔質支持体上に空気電
極、固体電解質および燃料電極を備えている固体電解質
型燃料電池を製造するのに際して、酸素の透過量を有底
多孔質支持管の各部分で均一化できるようにし、これに
よって有底筒状の固体電解質型燃料電池の長手方向の発
電効率を均一化できるようにすることであり、このよう
な固体電解質型燃料電池を量産できるようにすることで
ある。
An object of the present invention is to provide a solid electrolyte fuel cell having an air electrode, a solid electrolyte, and a fuel electrode on a bottomed cylindrical porous support, in which the amount of permeation of oxygen is controlled by the bottomed porous support. This is to make it possible to equalize each part of the tube, thereby making it possible to equalize the power generation efficiency in the longitudinal direction of the bottomed cylindrical solid electrolyte fuel cell, and to mass-produce such a solid electrolyte fuel cell. Is to be able to do it.

(課題を解決するための手段) 本発明は、有底多孔質支持管と、この有底多孔質支持
管の外周面に順次に形成されている空気電極、固体電解
質および燃料電極を備えており、有底多孔質支持管の筒
内空間へと酸化ガス流を供給して発電を行う固体電解質
型燃料電池用の有底多孔質支持管を製造するのに際し
て、セラミックスの有底筒状成形体の開口端部側を保持
し、有底筒状成形体の有底部が下方向を向くように垂下
し、有底部におもりをつけて有底筒状成形体をつり下げ
た状態で焼成し、有底多孔質支持管の開口端部の開気孔
率を有底部の開気孔率よりも大きくすることを特徴とす
る。
(Means for Solving the Problems) The present invention includes a bottomed porous support tube, and an air electrode, a solid electrolyte, and a fuel electrode which are sequentially formed on the outer peripheral surface of the bottomed porous support tube. When manufacturing a bottomed porous support tube for a solid oxide fuel cell that generates an electric power by supplying an oxidizing gas flow to the space inside the bottomed porous support tube, a bottomed cylindrical molded body of ceramics Holding the opening end side of, the bottomed cylindrical molded body is hung down so that the bottomed part faces downward, and fired in a state where the bottomed cylindrical molded body is suspended with a weight attached to the bottomed part, The open porosity of the open end of the bottomed porous support tube is made larger than the open porosity of the bottomed portion.

(実施例) 第1図は、本発明によって製造されたSOFCの好適例を
示す断面図である。第3図に示すSOFCと同一機能部材に
は、同一符号を付け、その説明は省略する。
(Example) FIG. 1 is a sectional view showing a preferred example of a SOFC manufactured according to the present invention. The same reference numerals are given to the same functional members as those of the SOFC shown in FIG. 3, and the description is omitted.

本実施例において特徴的なことは、有底多孔質支持管
4の長手方向における酸素ガス透過性の分布に特に着目
したことである。
What is characteristic in the present embodiment is that the distribution of oxygen gas permeability in the longitudinal direction of the bottomed porous support tube 4 is particularly focused on.

具体的に述べると、従来は、有底多孔質支持管4の気
孔率については特に注意は払われておらず、全体に亘っ
て気孔率はほぼ均一であった。このため、筒内空間29内
を流れる酸化ガスは、どの地点でもほぼ均一に有底多孔
質支持管4を透過し、空気電極5へと到達していた。一
方、酸素ガス中の酸素濃度は、下流側へと向えば向うほ
ど、即ち有底部4aから離れれば離れるほど減少するの
で、実際に固体電解質6を透過して発電に利用される酸
素は、第5図に示すように、有底部4aに近づくほど多く
なり、開口端へと近づくほど減少した。
Specifically, conventionally, no particular attention has been paid to the porosity of the bottomed porous support tube 4, and the porosity has been substantially uniform throughout. For this reason, the oxidizing gas flowing in the in-cylinder space 29 almost uniformly permeated the bottomed porous support tube 4 at any point and reached the air electrode 5. On the other hand, the oxygen concentration in the oxygen gas decreases as it goes to the downstream side, that is, as it gets farther away from the bottomed portion 4a, the oxygen actually permeating the solid electrolyte 6 and used for power generation is As shown in FIG. 5, the number increased as approaching the bottomed portion 4a, and decreased as approaching the open end.

これと異なり、本実施例のSOFCにおいては、筒内空間
29内を流れる酸化ガスの上流側において有底多孔質支持
管4の開気孔率を小さくし、下流側で有底多孔質支持管
4の開気孔率を大きくした。即ち、有底部4aでの開意向
率を、発電部分の開口端側の端部4bにおける開気孔率よ
りも小さくした。この結果、有底部4aを透過する酸素ガ
スの量は、発電部分の端部4bを透過する酸素ガスの量よ
りも少なくなる。この一方、有底部4aを通過する酸化ガ
ス中の酸素濃度は、端部4bを通過する酸化ガスの酸素濃
度よりも大きいので、SOFC素子40の長手方向における第
1図に示すように、有底多孔質支持管4を通過する酸素
の量は全体として均一化されるので、SOFC素子40の長手
方向における電極反応の不均一を是正できる。更に、こ
の結果として、有底多孔質支持管4の全体で発熱を均一
化して熱歪応力を低減し、クラックを防止してSOFC素子
40の長寿命化を達成し、また発電効率の向上を図ること
ができるのである。
On the contrary, in the SOFC of this embodiment, the in-cylinder space
The open porosity of the bottomed porous support tube 4 was reduced on the upstream side of the oxidizing gas flowing through the inside 29, and the open porosity of the bottomed porous support tube 4 was increased on the downstream side. That is, the openness ratio at the bottomed portion 4a is smaller than the open porosity at the end 4b on the opening end side of the power generation portion. As a result, the amount of oxygen gas passing through the bottomed portion 4a is smaller than the amount of oxygen gas passing through the end 4b of the power generation part. On the other hand, since the oxygen concentration in the oxidizing gas passing through the bottomed portion 4a is higher than the oxygen concentration in the oxidizing gas passing through the end portion 4b, as shown in FIG. Since the amount of oxygen passing through the porous support tube 4 is made uniform as a whole, the non-uniformity of the electrode reaction in the longitudinal direction of the SOFC element 40 can be corrected. Further, as a result, the heat generation is made uniform throughout the bottomed porous support tube 4 to reduce thermal strain stress, prevent cracks, and improve the SOFC element.
It is possible to achieve a longer service life of 40 and to improve the power generation efficiency.

上記したように、本実施例では、有底部4aと発電部分
の端部4bとの間で有底多孔質支持管4の開気孔率に差を
設けたが、この際有底部4aから発電部分の端部4bへと近
づくにつれて開気孔率を徐々に大きくすることが好まし
い。
As described above, in the present embodiment, the difference in the open porosity of the bottomed porous support tube 4 is provided between the bottomed portion 4a and the end 4b of the power generation portion. It is preferable to gradually increase the open porosity as approaching the end 4b.

有底多孔質支持管4の開気孔率は、どの部分でも20〜
50%とすることが好ましい。また、この気孔径は、1〜
10μmとすることが好ましい。
The open porosity of the bottomed porous support tube 4 is 20 to
Preferably it is 50%. The pore diameter is 1 to
It is preferably 10 μm.

有底多孔質支持管4の開気孔率を50%以上にすると、
支持管4の強度が著しく低下し、長期耐用の信頼性に欠
ける。また開気孔率を20%以下にすると、SOFC素子の発
電効率が低下る。また支持管4の気孔径が10μm以上で
は支持管4の強度が低下し、また発電に寄与する燃料極
が局部化する。また1μm以下ではガス透過量が低下す
る。
When the open porosity of the bottomed porous support tube 4 is set to 50% or more,
The strength of the support tube 4 is remarkably reduced, and the reliability for long-term use is lacking. If the open porosity is set to 20% or less, the power generation efficiency of the SOFC element decreases. When the pore diameter of the support tube 4 is 10 μm or more, the strength of the support tube 4 decreases, and the fuel electrode contributing to power generation is localized. If it is 1 μm or less, the amount of gas permeation decreases.

有底部4aにおける開気孔率と、発電部分の端部4bにお
ける開気孔率との差は、有底部4aと発電部分の端部4bと
の距離が1500mmのときは4〜6%とすることが好まし
く、2mのときは8〜12%とすることが好ましい。
The difference between the open porosity at the bottomed portion 4a and the open porosity at the end 4b of the power generation portion may be 4 to 6% when the distance between the bottomed portion 4a and the end 4b of the power generation portion is 1500 mm. Preferably, when it is 2 m, the content is preferably 8 to 12%.

本発明においては、有底多孔質支持管4の有底部4aの
開気孔率を小さくし、開口端部の開気孔率を大きくする
ために、有底多孔質支持管4を焼成によって製造する際
に、セラミックスの有底管状成形体の開口端側を保持
し、有底部を下にして有底管状成形体を垂下し、有底部
におもりをつけて吊り下げる。これにより、有底管状成
形体の開口端に近い側には荷重が掛って若干引き延ばさ
れ、開気孔率が大きくなると共に有底部側には荷重が掛
らないので開気孔率を小さくすることができる。
In the present invention, in order to reduce the open porosity of the bottomed portion 4a of the bottomed porous support tube 4 and increase the open porosity of the open end portion, the bottomed porous support tube 4 is manufactured by firing. Then, holding the open end side of the bottomed tubular molded body of ceramics, the bottomed tubular molded body is hung down with the bottomed part down, and a weight is attached to the bottomed part and suspended. As a result, a load is applied to the side close to the open end of the bottomed tubular molded product, and the tube is slightly stretched. be able to.

有底多孔質支持管4をセラミックス製窯置具で上述の
通り組立て、窯内で焼成する。
The bottomed porous support tube 4 is assembled with a ceramic kiln fixture as described above and fired in the kiln.

昇温速度20〜100℃/h、焼成強度1400〜1600℃、焼成
温度保持時間30分〜4時間、降温速度20〜100℃/hの条
件内で前記支持管4の所定の気孔率に従って適宜設定す
る。
Appropriately according to the predetermined porosity of the support tube 4 within the conditions of a heating rate of 20 to 100 ° C / h, a firing strength of 1400 to 1600 ° C, a firing temperature holding time of 30 minutes to 4 hours, and a cooling rate of 20 to 100 ° C / h. Set.

空気電極5は、ドーピングされたか、又はドーピング
されていないLaMnO3,CaMnO3,LaNiO3,LaCoO3,LaCrO3等で
製造でき、ストロンチウムを添加したLaMnO3が好まし
い。固体電解質6は、一般にはイットリア安定化ジルコ
ニア等で製造できる。燃料電極7は、一般にはニッケル
・ジルコニアサーメット又はコバルト・ジルコニアサー
メットである。
The air electrode 5 can be made of doped or undoped LaMnO 3 , CaMnO 3 , LaNiO 3 , LaCoO 3 , LaCrO 3, etc., and is preferably LaMnO 3 to which strontium is added. The solid electrolyte 6 can generally be manufactured from yttria-stabilized zirconia or the like. The fuel electrode 7 is generally a nickel-zirconia cermet or a cobalt-zirconia cermet.

勿論、本発明はいわゆるマルチセルタイプのSOFCにも
適用可能である。マルチセルタイプのSOFCでは、多孔質
筒状支持体の表面に、所定間隔を置いて空気電極が複数
箇所に設けられ、各空気電極上に固体電解質、燃料電極
が順次設けられ、各燃料電極と隣接する空気電極とがイ
ンターコネクターによって電気的に順次接続されてい
る。
Of course, the present invention is also applicable to a so-called multi-cell type SOFC. In a multi-cell type SOFC, air electrodes are provided at a plurality of locations at predetermined intervals on the surface of a porous cylindrical support, a solid electrolyte and a fuel electrode are sequentially provided on each air electrode, and adjacent to each fuel electrode. Are electrically connected to each other by an interconnector.

上述の例は種々変更できる。 The above example can be variously modified.

第1図ではSOFC素子40を垂直に支持したが、この発電
装置全体を水平にしてもよく、また所定角度傾けてもよ
い。
Although the SOFC element 40 is supported vertically in FIG. 1, the entire power generator may be horizontal or may be inclined at a predetermined angle.

有底多孔質支持管は、有底円筒状の他、四角筒状、六
角筒状等であってよい。
The bottomed porous support tube may be a square cylinder, a hexagonal cylinder, or the like, in addition to the bottomed cylinder.

以下、更に具体的な実施例について述べる。 Hereinafter, more specific examples will be described.

まず、有底多孔質支持管の平均開気孔率と酸化ガス透
過量との関係を示す検量線を第2図に示す。
First, a calibration curve showing the relationship between the average open porosity of the bottomed porous support tube and the oxidizing gas permeation amount is shown in FIG.

ただし、第2図のグラフでは、有底多孔質支持管の平
均開気孔率が35%のときの酸化ガス透過量を100.0と
し、相対比で表現した。第2図から解るように、両者は
ほぼ直線的関係にあった。
However, in the graph of FIG. 2, the oxidizing gas permeation amount when the average open porosity of the bottomed porous support tube was 35% was set to 100.0, and expressed as a relative ratio. As can be seen from FIG. 2, both were in a substantially linear relationship.

次いで、第1図及び第3図に示したような長さ1500mm
の有底多孔質支持管をそれぞれ作成し、この上に空気電
極、固体電解質、燃料電極を形成して第1図及び第3図
に示すようなSOFCを作製した。そして上記本発明による
SOFC素子及び従来のSOFC素子をそれぞれ電池反応室20内
に設置し、電池反応室20内を1000℃に加熱し、次いで酸
化ガス供給管1に空気を、燃料流入孔10aからはメタン
をそれぞれ一定の流速で供給し、夫々のSOFC素子燃料極
表面で酸素イオンとメタンの反応を行わせた。
Then, as shown in FIG. 1 and FIG.
And an air electrode, a solid electrolyte, and a fuel electrode were formed thereon to produce a SOFC as shown in FIGS. 1 and 3. And according to the invention
The SOFC element and the conventional SOFC element are respectively installed in the battery reaction chamber 20, the inside of the battery reaction chamber 20 is heated to 1000 ° C., then air is supplied to the oxidizing gas supply pipe 1 and methane is supplied from the fuel inlet 10a. , And oxygen ions and methane were reacted on the surface of each SOFC element fuel electrode.

そして、第1図、第3図に示す夫々のSOFC素子の直線
部分を4等分した測定位置P1,P2,P3,P4,P5で、上記反応
中の燃料極の表面温度を熱電対で測定し、更に同時にP
1,P2,P3,P4,P5の位置に対応する筒内空間29の各位置で
の酸素濃度をO2メーターで夫々測定した。その後室温ま
で冷却し、燃料極、固体電解質、空気極を除去した後、
P1,P2,P3,P4,P5の開気孔率を測定した。
Then, at the measurement positions P1, P2, P3, P4, and P5 obtained by dividing the linear portion of each SOFC element shown in FIGS. 1 and 3 into four equal parts, the surface temperature of the fuel electrode during the reaction was measured with a thermocouple. And at the same time P
1, P2, P3, P4, the oxygen concentration at each position of the cylinder space 29 corresponding to the position of P5 was respectively measured by O 2 meters. After cooling to room temperature and removing the fuel electrode, solid electrolyte and air electrode,
The open porosity of P1, P2, P3, P4, P5 was measured.

そして、各位置での開気孔率の測定値と第2図の検量
線とから各位置での酸化ガス透過量を算出し、更に、各
位置での酸化ガス透過量と酸素濃度との積として各位置
での酸素透過量を求めた。これらの結果を下記表1,表2
に示す。
Then, the oxidized gas permeation amount at each position is calculated from the measured value of the open porosity at each position and the calibration curve in FIG. 2, and further, as the product of the oxidized gas permeation amount at each position and the oxygen concentration. The oxygen permeation amount at each position was determined. The results are shown in Tables 1 and 2 below.
Shown in

表1では、P5近辺の燃料電極表面に供給される酸素イ
オンの量が多く燃料ガスメタンとの反応量が増大し、そ
のため燃料電極表面温度は、電池反応室20の雰囲気温度
(1000℃)より大幅に高い温度にある。一方P1近辺の燃
料極表面温度は電池反応室20の雰囲気温度に近く、電池
反応が不活発であることを示す。
In Table 1, the amount of oxygen ions supplied to the fuel electrode surface near P5 is large, and the amount of reaction with the fuel gas methane is increased. Therefore, the fuel electrode surface temperature is significantly higher than the ambient temperature (1000 ° C.) of the cell reaction chamber 20. At high temperatures. On the other hand, the fuel electrode surface temperature near P1 is close to the ambient temperature of the cell reaction chamber 20, indicating that the cell reaction is inactive.

一方本発明により作製した支持管4を用いたSOFC素子
は、表2の結果の通り、燃料極表面の温度が電池反応室
20の雰囲気温度より高い温度でほぼ同等であることか
ら、P1,P2,P3,P4,P5の各位置における酸素透過量を本発
明に従ってほぼ同一にすることにより、各位置における
電池反応は均一に行われていることを示している。
On the other hand, as shown in Table 2, the SOFC element using the support tube 4 manufactured according to the present invention has a temperature of the fuel electrode surface of the cell reaction chamber.
Since the oxygen transmission rate at each position of P1, P2, P3, P4, and P5 is almost the same according to the present invention since the temperature is substantially equal at a temperature higher than the ambient temperature of 20, the battery reaction at each position is uniform. It shows what is happening.

上記の結果から明らかなように、本発明に従うことに
より、有底多孔質支持管を透過した発電へと供される酸
素の量を、有底多孔質支持管の各位置で均一化すること
ができ、支持管に優れた酸素透過性を付与することがで
きる。この結果、SOFC素子の長手方向における電池反応
を均一化でき、また長手方向における温度分布も均一化
できるため、クラックの発生が防止できる。
As is clear from the above results, according to the present invention, it is possible to make the amount of oxygen supplied to power generation permeated through the bottomed porous support tube uniform at each position of the bottomed porous support tube. It is possible to impart excellent oxygen permeability to the support tube. As a result, the battery reaction in the longitudinal direction of the SOFC element can be made uniform, and the temperature distribution in the longitudinal direction can be made uniform, so that the occurrence of cracks can be prevented.

(発明の効果) 本発明によれば、有底筒状の多孔質支持体上に空気電
極、固体電解質および燃料電極を備えている固体電解質
型燃料電池を製造するのに際して、酸素の透過量を有底
多孔質支持管の各部分で均一化でき、これによって有底
筒状の固体電解質型燃料電池の長手方向の発電効率を均
一化できるようになり、このような固体電解質型燃料電
池を量産できる。
(Effect of the Invention) According to the present invention, when manufacturing a solid oxide fuel cell having an air electrode, a solid electrolyte and a fuel electrode on a bottomed cylindrical porous support, the amount of permeated oxygen is reduced. The uniformity can be achieved in each part of the bottomed porous support tube, thereby making it possible to equalize the power generation efficiency in the longitudinal direction of the bottomed cylindrical solid electrolyte fuel cell, and to mass-produce such a solid electrolyte fuel cell. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に係るSOFCを示す断面図、 第2図は有底多孔質支持管の平均気孔率と酸化ガス透過
量との関係を示すグラフ、 第3図は従来のSOFCを示す断面図である。 1……酸化ガス供給管、4……有底多孔質支持管 4a……有底部、4b……発電部分の端部 5,15……空気電極、6,16……固体電解質 7,17……燃料電極、11,29……筒内空間 12……インターコネクター 14……円筒状多孔質セラミックス支持体 14a……上流側の端部、14b……下流側の端部 40,50……SOFC素子 A,B,F……酸化ガスの流れ C,E……燃料ガスの流れ
FIG. 1 is a sectional view showing an SOFC according to an embodiment of the present invention, FIG. 2 is a graph showing a relationship between an average porosity of a bottomed porous support tube and an oxidizing gas permeation amount, and FIG. FIG. 1 ... Oxidizing gas supply pipe, 4 ... Bottomed porous support tube 4a ... Bottomed part, 4b ... End of power generation part 5,15 ... Air electrode, 6,16 ... Solid electrolyte 7,17 ... ... Fuel electrode, 11,29 ... Cylinder space 12 ... Interconnector 14 ... Cylindrical porous ceramic support 14a ... Upstream end, 14b ... Downstream end 40,50 ... SOFC Elements A, B, F: Oxidizing gas flow C, E: Fuel gas flow

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有底多孔質支持管と、この有底多孔質支持
管の外周面に順次に形成されている空気電極、固体電解
質および燃料電極を備えており、前記有底多孔質支持管
の筒内空間へと酸化ガス流を供給して発電を行う固体電
解質型燃料電池用の有底多孔質支持管を製造するのに際
して、 セラミックスの有底筒状成形体の開口端部側を保持し、
前記有底筒状成形体の有底部が下方向を向くように垂下
し、前記有底部におもりをつけて前記有底筒状成形体を
つり下げた状態で焼成し、前記有底多孔質支持管の開口
端部の開気孔率を有底部の開気孔率よりも大きくするこ
とを特徴とする、固体電解質型燃料電池用の有底多孔質
支持管の製造方法。
1. A bottomed porous support tube comprising: a bottomed porous support tube; and an air electrode, a solid electrolyte, and a fuel electrode which are sequentially formed on an outer peripheral surface of the bottomed porous support tube. When manufacturing a bottomed porous support tube for a solid oxide fuel cell that supplies power by supplying an oxidizing gas flow to the inside space of the cylinder, it holds the open end side of the bottomed cylindrical molded body of ceramics And
The bottomed cylindrical molded body is hung downward so that the bottomed portion faces downward, the bottomed cylindrical molded body is fired with a weight attached to the bottomed portion, and the bottomed porous support is fired. A method for producing a bottomed porous support tube for a solid oxide fuel cell, wherein the open porosity of the open end of the tube is made larger than the open porosity of the bottomed portion.
JP2075601A 1990-02-15 1990-03-27 Method for producing bottomed porous support tube for solid oxide fuel cell Expired - Lifetime JP2597730B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2075601A JP2597730B2 (en) 1990-03-27 1990-03-27 Method for producing bottomed porous support tube for solid oxide fuel cell
US07/651,799 US5158837A (en) 1990-02-15 1991-02-07 Solid oxide fuel cells
CA002036258A CA2036258C (en) 1990-02-15 1991-02-13 Solid oxide fuel cells
DE69121735T DE69121735T2 (en) 1990-02-15 1991-02-14 Solid oxide fuel cells
EP91301208A EP0442740B1 (en) 1990-02-15 1991-02-14 Solid oxide fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075601A JP2597730B2 (en) 1990-03-27 1990-03-27 Method for producing bottomed porous support tube for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH03276568A JPH03276568A (en) 1991-12-06
JP2597730B2 true JP2597730B2 (en) 1997-04-09

Family

ID=13580889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075601A Expired - Lifetime JP2597730B2 (en) 1990-02-15 1990-03-27 Method for producing bottomed porous support tube for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2597730B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2837625B2 (en) * 1994-03-08 1998-12-16 株式会社日立製作所 Fuel cell
JP2008243572A (en) * 2007-03-27 2008-10-09 Equos Research Co Ltd Current collector and fuel cell
JP5305131B2 (en) * 2008-05-21 2013-10-02 Toto株式会社 Fuel cell and fuel cell
JP6509552B2 (en) * 2014-12-17 2019-05-08 三菱日立パワーシステムズ株式会社 Fuel cell cartridge, method of manufacturing the same, fuel cell module and fuel cell system
JP6433778B2 (en) * 2014-12-17 2018-12-05 三菱日立パワーシステムズ株式会社 Fuel cell and fuel cell electrical connection method
JPWO2018199095A1 (en) * 2017-04-25 2020-01-23 京セラ株式会社 Solid oxide fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374184A (en) * 1981-09-29 1983-02-15 Westinghouse Electric Corp. Fuel cell generator and method of operating same
JPS58166658A (en) * 1982-03-27 1983-10-01 Hitachi Ltd Fuel cell
US4520082A (en) * 1983-07-01 1985-05-28 The United States Of America As Represented By The United States Department Of Energy Fuel cell generator
JPH03129673A (en) * 1989-10-13 1991-06-03 Fuji Electric Co Ltd Unit cell of fuel cell
JPH03276569A (en) * 1990-03-26 1991-12-06 Fuji Electric Co Ltd Fuel cell

Also Published As

Publication number Publication date
JPH03276568A (en) 1991-12-06

Similar Documents

Publication Publication Date Title
EP0505186B1 (en) Solid electrolyte type fuel cell
US6492050B1 (en) Integrated solid oxide fuel cell and reformer
US5336569A (en) Power generating equipment
JPH03241670A (en) Solid electrolyte type fuel cell
JP2003132933A (en) Fuel cell
AU2001281220B2 (en) Sealless radial solid electrolyte fuel cell stack design
JP2018087501A (en) Control device of hybrid power system, hybrid power system, control method of hybrid power system, and control program of hybrid power system
US5158837A (en) Solid oxide fuel cells
US8361671B2 (en) Solid electrolyte fuel-cell device
JP2597730B2 (en) Method for producing bottomed porous support tube for solid oxide fuel cell
US7470480B2 (en) Solid electrolyte fuel-cell device
JP2698482B2 (en) Power generator
JP2018088324A (en) Control device for hybrid power generation system, hybrid power generation system, control method for hybrid power generation system and control program for hybrid power generation system
JPH03280359A (en) Fuel cell with solid electrolyte
JP2698481B2 (en) Power generator
KR101109222B1 (en) Fuel cell stack comprising single body support
JPH03238760A (en) Fuel cell of solid electrolyte type
JPH0758618B2 (en) Solid oxide fuel cell
JPH07145492A (en) Steam electrolytic cell
JP2528986B2 (en) Solid oxide fuel cell
JPH0359956A (en) Fuel battery generator
JP6879732B2 (en) Reduction processing system control device, reduction processing system, reduction processing system control method and reduction processing system control program
JPH10247510A (en) Current collecting method of duel cell and solid electrolyte fuel cell of cylindrical cell type
JP2634963B2 (en) Power generator
Emley et al. Preparation of Freeze Cast T-SOFCs and a Universal Electrochemical Testing Fixture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14