JPH03238760A - Fuel cell of solid electrolyte type - Google Patents

Fuel cell of solid electrolyte type

Info

Publication number
JPH03238760A
JPH03238760A JP2032380A JP3238090A JPH03238760A JP H03238760 A JPH03238760 A JP H03238760A JP 2032380 A JP2032380 A JP 2032380A JP 3238090 A JP3238090 A JP 3238090A JP H03238760 A JPH03238760 A JP H03238760A
Authority
JP
Japan
Prior art keywords
flow
gas flow
oxidizing gas
space
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2032380A
Other languages
Japanese (ja)
Inventor
Hidenobu Misawa
三澤 英延
Satoshi Yamada
聡 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2032380A priority Critical patent/JPH03238760A/en
Priority to JP2037151A priority patent/JP2528989B2/en
Priority to US07/653,283 priority patent/US5209989A/en
Priority to EP91301210A priority patent/EP0442742B1/en
Priority to CA002036366A priority patent/CA2036366C/en
Priority to DE69109336T priority patent/DE69109336T2/en
Publication of JPH03238760A publication Critical patent/JPH03238760A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve power generating efficiency by providing a turbulent flow generation means in the space of a cylinder for changing an oxide gas flow or a fuel gas flow to a turbulent flow. CONSTITUTION:In the solid electrolyte type fuel cell wherein a gas flow E passes the cylinder space 7 of a cylindrical solid electrolyte type fuel cell element, and fuel gas or oxide gas comes in contact with the external surface of the aforesaid element, a turbulent flow generation means 9 for changing a gas flow E to a turbulent flow is provided within the cylinder space 7. Namely, a solid circular cylinder body 9, for example, is so made as to pass through the center of the space 7 and fixed to the inner side of a cylindrical porous support body 1 with three plate-shaped ribs 10, thereby forming three oxide gas flow passages 12. Consequently, the sectional area of the flow passage 12 becomes smaller than that of the conventional passage and the mean flow velocity of the oxide gas becomes larger, thereby changing an oxide gas flow to a turbulent flow as shown by an arrow E. According to the aforesaid construction, an oxide gas or fuel gas flowing in the cylinder space 7 can be effectively used for power generation and the efficiency thereof can be increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体電解質型燃料電池に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to solid oxide fuel cells.

(従来の技術) 最近、燃料電池が発電装置として注目されている。これ
は、燃料が有する化学エネルギーを直接電気エネルギー
に変換できる装置で、カルノーサイクルの制約を受けな
いため、本質的に高いエネルギー変換効率を有し、燃料
の多様化が可能で(ナフサ、天然ガス、メタノール、石
炭改質ガス。
(Prior Art) Recently, fuel cells have been attracting attention as power generation devices. This is a device that can directly convert the chemical energy of fuel into electrical energy, and because it is not subject to the restrictions of the Carnot cycle, it has inherently high energy conversion efficiency and can be used for a variety of fuels (naphtha, natural gas, etc.). , methanol, coal reformed gas.

重油等)、低公害で、しかも発電効率が設備規模によっ
て影響されず、極めて有望な技術である。
It is an extremely promising technology as it uses heavy oil (such as heavy oil), is low-pollution, and its power generation efficiency is not affected by the size of the facility.

特に、固体電解質型燃料電池(SOFC)は、1000
°Cの高温で作動するため電橋反応が極めて活発で、高
価な白金などの貴金属触媒を全く必要とせず、分極が小
さく、出力電圧も比較的高いため、エネルギー変換効率
が他の燃料電池にくらべ著しく高い。更に、構造材は全
て固体から構成されるため、安定且つ長寿命である。
In particular, solid oxide fuel cells (SOFC)
Because it operates at a high temperature of °C, the bridge reaction is extremely active, no expensive precious metal catalyst such as platinum is required, the polarization is small, and the output voltage is relatively high, so the energy conversion efficiency is higher than that of other fuel cells. significantly higher than that. Furthermore, since all the structural materials are made of solid materials, they are stable and have a long life.

第8図はこうした円筒状5OFC素子の一例を示す破断
斜視図、第9図は第8図のハーバ線断面図である。
FIG. 8 is a broken perspective view showing an example of such a cylindrical 5OFC element, and FIG. 9 is a cross-sectional view taken along a line in FIG. 8.

円筒状セラミックス支持体lの外周には空気電pi5が
設けられ、空気電極5の外周に沿って固体電解t4、燃
料電極3が配設され、また第8図において上側の領域で
は空気電極5上にインターコネクター2が設けられ、こ
の上に接続端子6を付着させている。そして、円筒状5
OFC素子を直列接続するには、5OFG素子の空気電
極5と隣接5OFC素子の燃料電極3とをインターコネ
クター2、接続端子6を介して接続し、又円筒状5op
c素子を並列接続するには、隣接する5OFC素子の燃
料電極3間をNiフェルト等で接続する。
An air electrode pi5 is provided on the outer periphery of the cylindrical ceramic support l, a solid electrolyte t4 and a fuel electrode 3 are arranged along the outer periphery of the air electrode 5, and in the upper region in FIG. An interconnector 2 is provided on the interconnector 2, and a connecting terminal 6 is attached thereon. And cylindrical 5
To connect the OFC elements in series, connect the air electrode 5 of the 5 OFG element and the fuel electrode 3 of the adjacent 5 OFC element via the interconnector 2 and the connecting terminal 6, and also connect the cylindrical 5 op.
To connect the c elements in parallel, the fuel electrodes 3 of adjacent 5OFC elements are connected with Ni felt or the like.

(発明が解決しようとする課題) この円筒状5OFCの動作時には、第9図に示すように
、燃料電極3の外周に沿って矢印りのように水素、−酸
化炭素等の燃料ガスを流し、湾内空間7からなる酸化ガ
ス流路8へと矢印A、Bのように酸化ガスを流す。
(Problems to be Solved by the Invention) During operation of this cylindrical 5OFC, as shown in FIG. The oxidizing gas is caused to flow into the oxidizing gas passage 8 formed by the bay space 7 as shown by arrows A and B.

しかし、この筒内空間7での酸化ガスの流れは整流され
規則的な流線を持ち、層状をなして流れる。従って、筒
内空間7のうち多孔質支持体lに近い周線部では矢印C
のように順次酸素が消費され、図面において右方向へと
進むに従って酸素濃度が低下し、電極反応が不活発とな
って温度が低下し、かつこの温度低下によって電極反応
が一層不活発となる。このため酸化ガス流路8中を流通
する酸化ガス中の酸素が十分に有効に利用されず、発電
効率が低下し、しかも電極反応の活発な部分と不活発な
部分との間の熱勾配によって5OFC素子に大きな熱歪
応力が生ずる。
However, the flow of the oxidizing gas in the cylinder space 7 is rectified, has regular streamlines, and flows in a layered manner. Therefore, in the peripheral part of the cylinder interior space 7 near the porous support l, the arrow C
Oxygen is consumed sequentially as shown in the figure, and the oxygen concentration decreases as one moves to the right in the drawing, the electrode reaction becomes inactive and the temperature decreases, and this temperature drop makes the electrode reaction even more inactive. For this reason, the oxygen in the oxidizing gas flowing through the oxidizing gas flow path 8 is not used effectively enough, resulting in a decrease in power generation efficiency, and due to the thermal gradient between the active and inactive areas of the electrode reaction. A large thermal strain stress occurs in the 5OFC element.

そのうえ、上記のような層流では、筒内空間7の中央部
を流れる酸化ガスは発電に殆んど寄与せず、更に筒内空
間7の周縁部で酸化ガスの流速が小さく、一方中央部で
酸化ガスの流速が大きいので、発電に利用されずに流れ
去る酸素が一層多くなる。
Moreover, in the laminar flow as described above, the oxidizing gas flowing in the center of the cylinder space 7 hardly contributes to power generation, and furthermore, the flow velocity of the oxidizing gas is low at the periphery of the cylinder space 7, while the oxidizing gas flowing in the center part Since the flow rate of the oxidizing gas is high, more oxygen flows away without being used for power generation.

円筒状5OFC素子の筒内空間に燃料ガスを流し、外周
に酸化ガスを流す構成の5opcにおいても上記と同様
の問題が生じ、燃料ガスの損失が大きい。
A problem similar to the above occurs also in the 5OPC, which has a configuration in which fuel gas flows into the cylinder space of a cylindrical 5OFC element and oxidizing gas flows around the outer periphery, resulting in a large loss of fuel gas.

本発明の課題は、筒状固体電解質型燃料電池において、
筒内空間を流れる酸化ガス又は燃料ガスを発電により有
効に利用して、酸化ガス又は燃料ガスの損失を少なくす
る、発電効率の高い固体電解質型燃料電池を提供するこ
とである。
The problem of the present invention is to provide a cylindrical solid electrolyte fuel cell.
It is an object of the present invention to provide a solid oxide fuel cell with high power generation efficiency, which effectively utilizes oxidizing gas or fuel gas flowing in a cylinder space for power generation to reduce loss of oxidizing gas or fuel gas.

(課題を解決するための手段) 本発明は、筒状の固体電解質型燃料電池素子の筒内空間
を酸化ガス流又は燃料ガス流が流過し、前記固体電解質
型燃料電池素子の外周面に燃料ガス又は酸化ガスが接触
するように構成された固体電解質型燃料電池において、
前記酸化ガス流又は前記燃料ガス流を乱流に変換する乱
流化手段が前記筒内空間に設けられている固体電解質型
燃料電池に係るものである。
(Means for Solving the Problems) In the present invention, an oxidizing gas flow or a fuel gas flow passes through an inner space of a cylindrical solid oxide fuel cell element, and an oxidizing gas flow or a fuel gas flow passes through an outer peripheral surface of the solid oxide fuel cell element. In a solid oxide fuel cell configured to be in contact with fuel gas or oxidizing gas,
The present invention relates to a solid oxide fuel cell in which a turbulent flow means for converting the oxidizing gas flow or the fuel gas flow into a turbulent flow is provided in the cylinder space.

(実施例) 第1図は本発明の一実施例に係る円筒状5OFCを示す
破断斜視図、第2図は第1図のイーイ線断面図である。
(Example) FIG. 1 is a cutaway perspective view showing a cylindrical 5OFC according to an example of the present invention, and FIG. 2 is a sectional view taken along the line E in FIG. 1.

この円筒状5OFCにおいては、筒内空間7の中央部に
中実の円柱状体9を貫通させ、円筒状の多孔質支持体l
の内側に三個の平板状リブ10で固定し、3個の酸化ガ
ス流路12を形成する。多孔質支持体1、円柱状体9、
平板状リブ10は一体に押し出し成形することが、製造
効率の点から好ましい。
In this cylindrical 5OFC, a solid cylindrical body 9 is passed through the center of the cylinder interior space 7, and a cylindrical porous support l
It is fixed inside with three flat ribs 10 to form three oxidizing gas channels 12. porous support 1, cylindrical body 9,
It is preferable to integrally extrude the flat plate-shaped rib 10 from the viewpoint of manufacturing efficiency.

このとき、多孔質支持体1、平板状リブ101円柱状体
9は同一材質とすることが好ましく、またこの材質は後
述する理由から導電性であることが好ましい。こうした
多孔質導電性材料としては、SrをドープしたLaCr
0. LaMn0z等を例示できる。
At this time, it is preferable that the porous support 1, the plate-like ribs 101, and the cylindrical body 9 be made of the same material, and this material is preferably electrically conductive for the reason described later. Such porous conductive materials include Sr-doped LaCr
0. Examples include LaMn0z.

空気電極5は、ドーピングされたか、又はドーピングさ
れていないLaMn0.、 CaMn0+、 LaNi
0:++LaCo0++ LaCrO3等で製造でき、
Srを添加したLaMnO3が好ましい。空気電極5の
外周には、代表的にはイツトリアで安定化したジルコニ
アから成る厚さ約1ミクロン〜100 ミクロンの気密
の固体電解質4が配設される。固体電解質の付着工程で
は、選定した長手方向区画にマスクを施して、この区画
にインターコネクター2を付着させる。インターコネク
ター2は、酸素雰囲気下及び燃料雰囲気下において導電
性でなければならない。インターコネクター2は、好ま
しくは厚さ5〜IOθミクロンである。電池のインター
コネクター2以外の固体電解質の表面領域は、アノード
として作用する燃料電極3によって取囲まれている。−
船釣には燃料電極3の厚さは30〜100 ミクロンで
あり、一般にニッケルージルコニアサーメット又はコバ
ルトジルコニアサーメット等からなる。
The air electrode 5 is made of doped or undoped LaMn0. , CaMn0+, LaNi
0:++LaCo0++ Can be manufactured from LaCrO3 etc.
LaMnO3 doped with Sr is preferred. Disposed around the outer periphery of the air electrode 5 is an airtight solid electrolyte 4 typically made of yttria-stabilized zirconia and having a thickness of about 1 to 100 microns. In the solid electrolyte deposition step, a selected longitudinal section is masked and the interconnector 2 is deposited in this section. Interconnector 2 must be electrically conductive under oxygen and fuel atmospheres. Interconnector 2 preferably has a thickness of 5 to IOθ microns. The surface area of the solid electrolyte other than the cell interconnector 2 is surrounded by a fuel electrode 3, which acts as an anode. −
For boat fishing, the thickness of the fuel electrode 3 is 30 to 100 microns, and is generally made of nickel-zirconia cermet or cobalt-zirconia cermet.

インターコネクター2の上部には、接続端子6を付着さ
せている。接続端子6の材料としては、例えばニッケル
・ジルコニア・サーメットまたはコバルト・ジルコニア
・サーメット、ニッケル等を例示できる。
A connecting terminal 6 is attached to the upper part of the interconnector 2. Examples of the material for the connection terminal 6 include nickel-zirconia cermet, cobalt-zirconia cermet, and nickel.

動作時には、例えば燃料電極3の外周を矢印りのように
燃料ガスが流れ、円柱状体9および平板状リブ10によ
って区分された三個の各酸化ガス流路12を酸化ガスが
矢印Eのように流れる。酸化ガス中の酸素は多孔質支持
体1を通過し、空気電極5と固体電解質4との界面で酸
素イオンを生じ、これらの酸素イオンは固体電解質4を
通って燃料電極3へと移動し、燃料と反応すると共に電
子を燃料電極3へと放出する。
During operation, for example, fuel gas flows around the outer periphery of the fuel electrode 3 as shown by the arrow, and oxidizing gas flows as shown by the arrow E through each of the three oxidizing gas channels 12 divided by the cylindrical body 9 and the plate-like ribs 10. flows to Oxygen in the oxidizing gas passes through the porous support 1 and generates oxygen ions at the interface between the air electrode 5 and the solid electrolyte 4, and these oxygen ions move through the solid electrolyte 4 to the fuel electrode 3, It reacts with the fuel and emits electrons to the fuel electrode 3.

本実施例の円筒状5OFCによれば、以下の効果を奏し
うる。
According to the cylindrical 5OFC of this example, the following effects can be achieved.

(1)筒内空間7の中央部に中実の円柱状体9を設けで
あるので、筒内空間7の中央部に酸化ガスが流れず、従
って発電に寄与しない中央部の酸化ガス流を遮断でき、
酸化ガスが効率的に使用できて無駄にならず、発電効率
が向上する。
(1) Since the solid cylindrical body 9 is provided in the center of the cylinder space 7, oxidizing gas does not flow into the center of the cylinder space 7, and therefore the oxidizing gas flow in the center does not contribute to power generation. Can be blocked,
Oxidizing gas can be used efficiently and not wasted, improving power generation efficiency.

(2)多孔質支持体1の内周面と円柱状体9との間に幅
の狭い酸化ガス流路12が形成されるので、酸化ガス流
路12の断面積は従来より小さく、酸化ガスの平均流速
が大きくなり、酸化ガス流が矢印Eで示すように乱流化
する。一般に、乱流になると運動量の交換が層流の場合
よりも皇かに大規模に行われ、流れが時間的、空間的に
極めて不規則なものになるので、酸化ガス流のうち酸素
の豊富な部分と酸素の消費された部分とが混合されるた
め従来のように酸素濃度の減少した酸化ガスが多孔質支
持体1の内周面に沿って層流となって流れるのを防止で
きる。従って、電極反応の不活発による発電効率の低下
、および熱勾配にもとづく熱歪応力の増大を抑えること
ができる。
(2) Since the narrow oxidizing gas channel 12 is formed between the inner circumferential surface of the porous support 1 and the cylindrical body 9, the cross-sectional area of the oxidizing gas channel 12 is smaller than before, and the oxidizing gas The average flow velocity increases, and the oxidizing gas flow becomes turbulent as shown by arrow E. In general, in turbulent flow, momentum exchange occurs on a much larger scale than in laminar flow, and the flow becomes extremely irregular in time and space. Since the oxygen-depleted portion and the oxygen-consumed portion are mixed, it is possible to prevent the oxidizing gas with a reduced oxygen concentration from flowing in a laminar flow along the inner circumferential surface of the porous support 1 as in the conventional case. Therefore, it is possible to suppress a decrease in power generation efficiency due to inactivity of the electrode reaction and an increase in thermal strain stress due to a thermal gradient.

上記のように適切に乱流を発生させ、ま、゛こ酸化ガス
の無駄を防止するうえで、筒内空間7の径に対する円柱
部9の径の比は0.3以上とすることが更に好ましい。
In order to appropriately generate turbulent flow as described above and to prevent waste of oxidizing gas, it is further preferred that the ratio of the diameter of the cylindrical portion 9 to the diameter of the cylinder interior space 7 be 0.3 or more. preferable.

(3)円筒状5opcの両端を開放し、この一端から他
端へと酸化ガスを流す構成なので、一方の端部を封じる
工程を必要とせず、製作コストを低減できる。
(3) Since both ends of the cylindrical 5opc are open and the oxidizing gas is allowed to flow from one end to the other, there is no need for a step of sealing one end, and manufacturing costs can be reduced.

(4)円柱状体9、平板状リブ10、多孔質支持体1を
一体で押し出し成形すると、製造上手間がかからずかつ
均質で均一な多孔質支持体1が得られ非常に有利である
(4) It is very advantageous to integrally extrude the cylindrical body 9, the plate-shaped ribs 10, and the porous support 1, since it does not require much manufacturing time and a homogeneous porous support 1 can be obtained. .

(5)また、円柱状体9から放射状に平板状リブ10を
突出させ、横手方向の圧力に対して多孔質支持体1を支
持する形状となっているので、構造力学的に見て従来の
多孔質支持体よりも圧環強度が大きい。この平板状リブ
の個数は種々変更できる。
(5) In addition, since the plate-like ribs 10 are made to protrude radially from the cylindrical body 9 and are shaped to support the porous support body 1 against pressure in the transverse direction, from a structural mechanical point of view, it is different from the conventional one. It has a higher radial crushing strength than a porous support. The number of these flat ribs can be varied.

(6)従来は、仮に多孔質支持体1を導電性材料で成形
しても、電流は多孔質支持体1に沿って周方向に流れて
いた。
(6) Conventionally, even if the porous support 1 was molded from a conductive material, current flowed circumferentially along the porous support 1.

これに対し、平板状リブ10、多孔質支持体1、円柱状
体9を多孔質導電性材料で成形すると、矢印Gで示すよ
うに平板状リブ10、円柱状体9を通って電流が流れる
。従って、第1図に示す円筒状5OFC素子を多数集め
て直列接続する際、電流損失を低減でき、全体の発電効
率を一層向上させることができる。
On the other hand, when the flat rib 10, the porous support 1, and the cylindrical body 9 are molded from a porous conductive material, current flows through the flat rib 10 and the cylindrical body 9 as shown by arrow G. . Therefore, when a large number of cylindrical 5OFC elements shown in FIG. 1 are collected and connected in series, current loss can be reduced and the overall power generation efficiency can be further improved.

第1図に示す例において、固体電解質4の外周面に空気
電極を設け、内周面に燃料電極を設けてもよい。この場
合は5OFC素子の内部空間に燃料ガスを供給し、外部
に酸化ガスを供給する。この場合にも上記の(1)〜(
6)と同様の作用効果を奏しうるうえ、燃料ガス中のH
2,Co等の燃焼源が無駄になるのを防止できるので、
より一層有効である。
In the example shown in FIG. 1, an air electrode may be provided on the outer peripheral surface of the solid electrolyte 4, and a fuel electrode may be provided on the inner peripheral surface. In this case, fuel gas is supplied to the internal space of the 5OFC element, and oxidizing gas is supplied to the outside. In this case, the above (1) to (
It can achieve the same effect as 6) and also reduce H in the fuel gas.
2. It can prevent combustion sources such as Co from being wasted.
It is even more effective.

第3図〜第6図にそれぞれ、乱流化手段として中実の円
柱状体以外のものを使用した例を示す。
FIGS. 3 to 6 each show an example in which something other than a solid cylindrical body is used as the turbulence means.

第3図の例においては、中実の円柱状体の代りに、中空
円筒19bの両端を封止部19aで封止してなる中空の
円柱状体19を設けた。中空円筒19bの外周は、第1
図の例と同様に平板状リブ10によって支持され、また
中空円筒19b 、平板状リブ10及び多孔質支持体1
を一体で押し出し成形できる。
In the example shown in FIG. 3, a hollow columnar body 19 formed by sealing both ends of a hollow cylinder 19b with sealing portions 19a is provided instead of a solid columnar body. The outer periphery of the hollow cylinder 19b is the first
The hollow cylinder 19b, the flat rib 10 and the porous support 1
can be extruded in one piece.

第3図においては中空円筒19bの両方の端部をそれぞ
れ封止部19aで封止したが円筒19bの少なくとも上
流側の端部を封止すれば足りる。
In FIG. 3, both ends of the hollow cylinder 19b are sealed with sealing parts 19a, but it is sufficient to seal at least the upstream end of the cylinder 19b.

本実施例では、中実体の代りに中空体をガス流の乱流化
手段として用いているので、中実体よりも構造的に熱応
力を低くでき、熱衝撃に対して強い。従って、高温で長
時間作動する5OFCに一層適している。
In this embodiment, a hollow body is used instead of a solid body as a means for turbulating gas flow, so that thermal stress can be lowered structurally than a solid body, and it is strong against thermal shock. Therefore, it is more suitable for 5OFCs that operate at high temperatures for long periods of time.

第4図の例では、勾配を有する中実の円柱状体15を筒
内空間7内に設け、平板状リブlOで支持している。そ
して中実の円柱状体15の細い側の端部を酸化ガス流の
上流側に配置し、太い側の端部を下流側に配置する。従
って、酸化ガス流路22の断面積は上流側では大きく、
下流へ向うに従って徐々に小さくなる。これにより、酸
化ガス流路22内へと流入した酸化ガスは、当初は緩徐
に層状をなして流れるが、酸素が消費されるのにつれて
急速に流れ、矢印Eのように乱流化する。
In the example shown in FIG. 4, a solid cylindrical body 15 having a slope is provided in the cylinder interior space 7 and supported by a flat plate-like rib 1O. The narrow end of the solid cylindrical body 15 is disposed on the upstream side of the oxidizing gas flow, and the thick end thereof is disposed on the downstream side of the oxidizing gas flow. Therefore, the cross-sectional area of the oxidizing gas flow path 22 is large on the upstream side;
It gradually becomes smaller as it goes downstream. As a result, the oxidizing gas flowing into the oxidizing gas flow path 22 initially flows slowly in a layered manner, but as the oxygen is consumed, the oxidizing gas flows rapidly and becomes turbulent as indicated by arrow E.

第5図に示す実施例においては、勾配を有する筒状体2
5cの上流側開口を封止部25aで封止し、下流側開口
を、より径の大きい封止部25bで封止する。場合によ
っては、下流側の封止部25bを除いてもよい。
In the embodiment shown in FIG.
The upstream opening of 5c is sealed with a sealing part 25a, and the downstream opening is sealed with a sealing part 25b having a larger diameter. Depending on the case, the sealing portion 25b on the downstream side may be removed.

第6図の例においては、筒内空間7内に棒16を固定し
、この棒16の回りに所定間隔を置いて、例えば円形の
板17を固定する。これにより、筒内空間7内へと矢印
Aのように流入した酸化ガス流は、板17に衝突して撹
乱され、板17と多孔質支持体1との間の間隙を通過し
、こうした動きを繰り返して下流側へと流れる。上記の
ように、板17の作用により、酸化ガス流は矢印Eのよ
うに乱流化するので、筒内空間7の中央部を酸化ガスが
層流となって通過してしまうのを防止できると共に、多
孔質支持体1の周面に沿って酸素濃度が減少した酸化ガ
スが流れるのを防止できる。
In the example shown in FIG. 6, a rod 16 is fixed in the cylinder interior space 7, and a circular plate 17, for example, is fixed around the rod 16 at a predetermined interval. As a result, the oxidizing gas flow that has flowed into the cylinder interior space 7 in the direction of arrow A collides with the plate 17 and is disturbed, passes through the gap between the plate 17 and the porous support 1, and this movement It repeats this and flows downstream. As described above, due to the action of the plate 17, the oxidizing gas flow becomes turbulent as shown by arrow E, so it is possible to prevent the oxidizing gas from passing through the center of the cylinder space 7 as a laminar flow. At the same time, it is possible to prevent oxidizing gas with a reduced oxygen concentration from flowing along the circumferential surface of the porous support 1.

第7図はいわゆるマルチセルタイプの5OFCに本発明
を適用した例を示す部分断面図である。
FIG. 7 is a partial sectional view showing an example in which the present invention is applied to a so-called multi-cell type 5OFC.

多孔質支持体lの表面に、所定間隔を置いて空気電極3
5が複数箇所に設けられ、各空気電極35上に固体電解
質34、燃料電極33が順次設けられ、各燃料電極33
と隣接する空気電極35とがインターコネクター36に
よって電気的に順次接続されている。
Air electrodes 3 are placed at predetermined intervals on the surface of the porous support l.
5 are provided at multiple locations, and a solid electrolyte 34 and a fuel electrode 33 are sequentially provided on each air electrode 35.
and adjacent air electrodes 35 are sequentially electrically connected by an interconnector 36.

他の部分は第1図の5OFGと同様であり、筒内空間に
二本のリブlOを介して中実の円柱状体9が固定され、
三個の酸化ガス流路12を形成する。
The other parts are the same as 5OFG in FIG.
Three oxidizing gas channels 12 are formed.

なお、上記の各実施例では、多孔質支持体の表面に空気
電極等を形成したが、円筒状空気電極自体又は円筒状燃
料電極自体を剛性支持体とし、電池要素のみで自立でき
る構造としてもよい。
In each of the above examples, the air electrode etc. were formed on the surface of the porous support, but it is also possible to use the cylindrical air electrode itself or the cylindrical fuel electrode itself as a rigid support and have a structure that can stand on its own with only the battery elements. good.

円筒状の固体電解質型燃料電池素子の代りに、他の形状
、例えば四角筒状、六角筒状等の素子を用いてもよい。
Instead of the cylindrical solid oxide fuel cell element, other shapes, such as square cylinders, hexagonal cylinders, etc., may be used.

(発明の効果) 本発明に係る固体電解質型燃料電池によれば、酸化ガス
流又は燃料ガス流を乱流に変換する乱流化手段が筒内空
間に設けられているので、酸化ガス流又は燃料ガス流の
うち新鮮な部分と濃度の減少した部分とが混合されるた
め、濃度の減少した酸化ガス又は燃料ガスが湾内空間の
内周面に沿って層状に流れ続けるのを防止できる。従っ
て、濃度の減少したガスによる発電効率の低下、電極反
応の不均一による熱歪応力の増大を抑制でき、かつ新鮮
なガスが発電に利用されずに流過するのを防止できるの
で、ガスが無駄にならず、発電効率が非常に向上する。
(Effects of the Invention) According to the solid oxide fuel cell according to the present invention, since the turbulence means for converting the oxidizing gas flow or the fuel gas flow into the turbulent flow is provided in the cylinder space, the oxidizing gas flow or the fuel gas flow is Since the fresh part and the part with reduced concentration of the fuel gas flow are mixed, it is possible to prevent the oxidizing gas or fuel gas with reduced concentration from continuing to flow in a layered manner along the inner peripheral surface of the bay space. Therefore, it is possible to suppress the decrease in power generation efficiency due to the reduced gas concentration and the increase in thermal strain stress due to non-uniform electrode reactions, and it is also possible to prevent fresh gas from flowing through without being used for power generation. There is no waste, and power generation efficiency is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る円筒状5OFCの破断斜
視図、 第2図は第1図のイーイ線断面図、 第3図、第4図、第5図、第6図はそれぞれ他の実施例
に係る円筒状5OFCの断面図(第2図に対応する) 第7図はいわゆるマルチセルタイプの5OFCに本発明
を適用した例を示す一部断面図、 第8図は従来の5OFCを示す破断斜視図、第9図は第
8図のハーバ線断面図である。 l、21・・・多孔質支持体  2・・・インターコネ
クター3.33・・・燃料電極    4.34・・・
固体電解質5.35・・・空気電極    7・・・筒
内空間8、12.22・・・酸化ガス流路 9・・・中実の円柱状体   10・・・平板状リブ1
5・・・勾配を有する中実の円柱状体19・・・中空の
円柱状体 17・・・板 19a、 25a、 25b −封止部25c・・・勾
配を有する筒状体 36・・・インターコネクター A、B、E・・・酸化ガスの流れ C・・・酸素の移動 D・・・燃料ガスの流れ G・・・電流の流れ 351− 第3図 第4図 9!<jJf 第5図 第6図 35S 第7図
FIG. 1 is a cutaway perspective view of a cylindrical 5OFC according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line E in FIG. 1, and FIGS. (corresponding to FIG. 2) FIG. 7 is a partial cross-sectional view showing an example in which the present invention is applied to a so-called multi-cell type 5OFC, and FIG. 8 is a cross-sectional view of a conventional 5OFC. The broken perspective view shown in FIG. 9 is a sectional view taken along a harbor line in FIG. 8. l, 21...Porous support 2...Interconnector 3.33...Fuel electrode 4.34...
Solid electrolyte 5.35... Air electrode 7... Cylinder space 8, 12.22... Oxidizing gas channel 9... Solid cylindrical body 10... Flat rib 1
5...Solid cylindrical body 19 with a slope...Hollow cylindrical body 17...Plates 19a, 25a, 25b - Sealing portion 25c...Cylindrical body 36 with a slope... Interconnectors A, B, E... Oxidizing gas flow C... Oxygen movement D... Fuel gas flow G... Current flow 351- Figure 3 Figure 4 Figure 9! <jJf Figure 5 Figure 6 35S Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1、筒状の固体電解質型燃料電池素子の筒内空間を酸化
ガス流又は燃料ガス流が流過し、前記固体電解質型燃料
電池素子の外周面に燃料ガス又は酸化ガスが接触するよ
うに構成された固体電解質型燃料電池において、前記酸
化ガス流又は前記燃料ガス流を乱流に変換する乱流化手
段が前記筒内空間に設けられていることを特徴とする固
体電解質型燃料電池。
1. A structure in which an oxidizing gas flow or a fuel gas flow passes through the cylinder space of a cylindrical solid oxide fuel cell element, and the fuel gas or oxidizing gas comes into contact with the outer peripheral surface of the solid oxide fuel cell element. A solid oxide fuel cell according to the present invention, wherein a turbulent flow means for converting the oxidizing gas flow or the fuel gas flow into a turbulent flow is provided in the cylinder space.
JP2032380A 1990-02-15 1990-02-15 Fuel cell of solid electrolyte type Pending JPH03238760A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2032380A JPH03238760A (en) 1990-02-15 1990-02-15 Fuel cell of solid electrolyte type
JP2037151A JP2528989B2 (en) 1990-02-15 1990-02-20 Solid oxide fuel cell
US07/653,283 US5209989A (en) 1990-02-15 1991-02-11 Solid oxide fuel cell
EP91301210A EP0442742B1 (en) 1990-02-15 1991-02-14 Solid oxide fuel cell
CA002036366A CA2036366C (en) 1990-02-15 1991-02-14 Solid oxide fuel cell
DE69109336T DE69109336T2 (en) 1990-02-15 1991-02-14 Solid oxide fuel cell.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2032380A JPH03238760A (en) 1990-02-15 1990-02-15 Fuel cell of solid electrolyte type

Publications (1)

Publication Number Publication Date
JPH03238760A true JPH03238760A (en) 1991-10-24

Family

ID=12357347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2032380A Pending JPH03238760A (en) 1990-02-15 1990-02-15 Fuel cell of solid electrolyte type

Country Status (1)

Country Link
JP (1) JPH03238760A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023653A2 (en) * 2000-09-12 2002-03-21 Siemens Aktiengesellschaft Fuel cell unit with improved reaction gas utilisation
JP2004537143A (en) * 2001-07-24 2004-12-09 ロールス・ロイス・ピーエルシー Solid oxide fuel cell stack
JP2007115621A (en) * 2005-10-24 2007-05-10 Mitsubishi Heavy Ind Ltd Substrate tube for fuel cell, cell of fuel cell, and method of manufacturing same
WO2007026955A3 (en) * 2005-08-31 2008-09-18 Toyota Motor Co Ltd Fuel cell
JP2009283238A (en) * 2008-05-21 2009-12-03 Toto Ltd Gas flow passage structure of fuel cell, and fuel cell
EP2436078A1 (en) * 2009-05-28 2012-04-04 Ezelleron GmbH Oxide-ceramic high-temperature fuel cell
JP2013161637A (en) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell and manufacturing method of solid oxide fuel cell
JP2016167387A (en) * 2015-03-10 2016-09-15 Toto株式会社 Sofc cell tube and solid oxide type fuel battery device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274562A (en) * 1986-05-21 1987-11-28 Fujikura Ltd Solid electrolyte fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274562A (en) * 1986-05-21 1987-11-28 Fujikura Ltd Solid electrolyte fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023653A2 (en) * 2000-09-12 2002-03-21 Siemens Aktiengesellschaft Fuel cell unit with improved reaction gas utilisation
WO2002023653A3 (en) * 2000-09-12 2002-09-06 Siemens Ag Fuel cell unit with improved reaction gas utilisation
JP2004537143A (en) * 2001-07-24 2004-12-09 ロールス・ロイス・ピーエルシー Solid oxide fuel cell stack
WO2007026955A3 (en) * 2005-08-31 2008-09-18 Toyota Motor Co Ltd Fuel cell
JP2007115621A (en) * 2005-10-24 2007-05-10 Mitsubishi Heavy Ind Ltd Substrate tube for fuel cell, cell of fuel cell, and method of manufacturing same
JP2009283238A (en) * 2008-05-21 2009-12-03 Toto Ltd Gas flow passage structure of fuel cell, and fuel cell
EP2436078A1 (en) * 2009-05-28 2012-04-04 Ezelleron GmbH Oxide-ceramic high-temperature fuel cell
JP2012528426A (en) * 2009-05-28 2012-11-12 エゼレロン ゲーエムベーハー Oxide-ceramic high temperature fuel cell
US9583772B2 (en) 2009-05-28 2017-02-28 Ezelleron Gmbh Oxide-ceramic high-temperature fuel cell
EP2436078B1 (en) * 2009-05-28 2024-02-21 kraftwerk ASSETS Inc. Oxide-ceramic high-temperature fuel cell
JP2013161637A (en) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell and manufacturing method of solid oxide fuel cell
JP2016167387A (en) * 2015-03-10 2016-09-15 Toto株式会社 Sofc cell tube and solid oxide type fuel battery device

Similar Documents

Publication Publication Date Title
US5209989A (en) Solid oxide fuel cell
US6348280B1 (en) Fuel cell
US5213910A (en) Solid electrolyte type fuel cell having gas from gas supply ducts impinging perpendicularly on electrodes
US5770327A (en) Solid oxide fuel cell stack
JP5215979B2 (en) Structure of solid oxide fuel cell
US5336569A (en) Power generating equipment
US5273839A (en) Fuel cell generator
JP2528988B2 (en) Solid oxide fuel cell
US5229224A (en) Fuel cell generator
US7566509B2 (en) Tubular fuel cell and method of producing the same
JPH03238760A (en) Fuel cell of solid electrolyte type
JP2007066546A (en) Cylindrical fuel cell
JP2698482B2 (en) Power generator
JP4300947B2 (en) Solid oxide fuel cell
KR20120012262A (en) flat-tubular solid oxide cell stack
EP1852929B1 (en) Solid oxide fuel cell
JP4461949B2 (en) Solid oxide fuel cell
JP2698481B2 (en) Power generator
JPH0758618B2 (en) Solid oxide fuel cell
JP2793275B2 (en) Fuel cell generator
JP2528986B2 (en) Solid oxide fuel cell
JPH07145492A (en) Steam electrolytic cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JP2013257973A (en) Solid oxide fuel cell stack
JPH07211334A (en) Solid electrolyte fuel cell