JPH03280359A - Fuel cell with solid electrolyte - Google Patents

Fuel cell with solid electrolyte

Info

Publication number
JPH03280359A
JPH03280359A JP2076710A JP7671090A JPH03280359A JP H03280359 A JPH03280359 A JP H03280359A JP 2076710 A JP2076710 A JP 2076710A JP 7671090 A JP7671090 A JP 7671090A JP H03280359 A JPH03280359 A JP H03280359A
Authority
JP
Japan
Prior art keywords
oxidizing gas
gas supply
bottomed
supply pipe
5ofc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2076710A
Other languages
Japanese (ja)
Inventor
Hidenobu Misawa
三澤 英延
Satoshi Yamada
聡 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2076710A priority Critical patent/JPH03280359A/en
Priority to US07/651,799 priority patent/US5158837A/en
Priority to CA002036258A priority patent/CA2036258C/en
Priority to DE69121735T priority patent/DE69121735T2/en
Priority to EP91301208A priority patent/EP0442740B1/en
Publication of JPH03280359A publication Critical patent/JPH03280359A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent crack initiation and prolong the lifetime of a battery by lessening the oxygen and fuel concentration gradient between the upstream and downstream in the intra-cylindrical space of a fuel cell element with solid electrolyte, and making the gas penetration amount in the upstream smaller than downstream. CONSTITUTION:A plurality of circular holes 2 having the same diameter are arranged longitudinally at the side circumferential surface 1b of an oxidation gas supply pipe 1. Two rows of flat plate ribs 3 are arranged between the side circumferential surface 1b and a porous supporting pipe 4. Thereby oxidation gas supplied to the supply pipe 1 spouts out of the circular holes 2 one after another as shown by the arrow C, and after service for power generation, is mixed with the oxidation gas exhausted from an oxidation gas supply hole 1a situated at the foremost, to be exhausted to an exhaust gas chamber 19 as shown by the arrow D. The rate of open voids of this supporting pipe 4 is lessened of the upstream of the oxidation gas flow in the intra-cylindrical space 29, while is enlarged in the downstream to a specified extent. Thereby the amount of oxidation gas penetrating the supporting pipe 4 can be uniformized, so that heat emission from the whole is made uniform to prevent crack initiation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体電解質型燃料電池に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to solid oxide fuel cells.

(従来の技術) 最近、燃料電池か発電装置として注目されている。これ
は、燃料か有する化学エネルギーを直接電気エネルギー
に変換できる装置で、カルノーサイクルの制約を受けな
いため、本質的に高いエネルギー変換効率を有し、燃料
の多様化が可能で(ナフサ、天然ガス、メタノール、石
炭改質ガス。
(Prior Art) Recently, fuel cells or power generation devices have been attracting attention. This is a device that can directly convert the chemical energy contained in fuel into electrical energy, and because it is not subject to the restrictions of the Carnot cycle, it has inherently high energy conversion efficiency and can be used for a variety of fuels (naphtha, natural gas, etc.). , methanol, coal reformed gas.

重油等)、低公害で、しがも発電効率が設備規模によっ
て影響されず、極めて有望な技術である。
It is an extremely promising technology as it uses heavy oil (such as heavy oil), has low pollution, and its power generation efficiency is not affected by the size of the facility.

特に、固体電解質型燃料電池(5OFC)は、1000
°Cの高温て作動するため電極反応が極めて活発で、高
価な白金などの貴金属触媒を全く必要とせず、分極か小
さく、出力電圧も比較的高いため、エネルギー変換効率
か他の燃料電池にくらべ著しく高い。更に、構造材は全
て固体から構成されるため、安定且つ長寿命である。
In particular, solid oxide fuel cells (5OFC)
Because it operates at a high temperature of °C, the electrode reaction is extremely active, there is no need for expensive precious metal catalysts such as platinum, the polarization is small, and the output voltage is relatively high, so the energy conversion efficiency is high compared to other fuel cells. Remarkably high. Furthermore, since all the structural materials are made of solid materials, they are stable and have a long life.

第9図はこうした5OFCの一例を示す概略断面図であ
る。
FIG. 9 is a schematic cross-sectional view showing an example of such a 5OFC.

第9図において、1は空気等の酸化ガスを導入するため
の酸化ガス供給管、4は有底多孔質支持管、5は空気電
極、6は固体電解質、7は燃料電極、8は酸化ガス供給
管lを保持するとともに酸化ガス室18と排ガス室19
との区分を行う上部プレート、lOは5OFC素子40
を保持するとともに電池反応室20と燃料室30とを区
分する燃料流入孔10aを有する底部プレート、9は排
ガス室19と電池反応室20とを区分するガス流出孔9
aを有するプレートである。
In Fig. 9, 1 is an oxidizing gas supply pipe for introducing oxidizing gas such as air, 4 is a bottomed porous support tube, 5 is an air electrode, 6 is a solid electrolyte, 7 is a fuel electrode, and 8 is an oxidizing gas While holding the supply pipe l, the oxidizing gas chamber 18 and the exhaust gas chamber 19
The upper plate that separates the
9 is a bottom plate having a fuel inlet hole 10a that holds the battery reaction chamber 20 and the fuel chamber 30, and a gas outlet hole 9 that separates the exhaust gas chamber 19 and the battery reaction chamber 20.
This is a plate with a.

この状態で、矢印へのように、空気等の酸化ガスを酸化
ガス室18より酸化ガス供給管lへと供給すると、酸化
ガス供給口1aより排出された酸化ガスが有底部で矢印
Bのように反転し、筒内空間29内を流れ、矢印りのよ
うに排ガス室19内に流出する。一方、底部プレートl
Oの燃料流入孔10aを通してH2やCH,等の燃料ガ
スを5OFC素子40の外表面に沿って流すことにより
、固体電解質を通して酸素イオンの流れか生し、燃料極
で燃料と反応し、その結果、空気極と燃料極との間に電
流か流れ、電池として使用することかできる。この燃料
電池は1000 ’C程度の高温下で使用されるため、
シール部なしで構成てきる第9図に示す形態か好ましい
態様といえる。
In this state, when an oxidizing gas such as air is supplied from the oxidizing gas chamber 18 to the oxidizing gas supply pipe 1 as shown by the arrow, the oxidizing gas discharged from the oxidizing gas supply port 1a flows through the bottomed portion as shown by the arrow B. The gas is reversed, flows inside the cylinder space 29, and flows out into the exhaust gas chamber 19 as shown by the arrow. Meanwhile, the bottom plate l
By flowing a fuel gas such as H2 or CH along the outer surface of the 5OFC element 40 through the O fuel inlet hole 10a, a flow of oxygen ions is generated through the solid electrolyte and reacts with the fuel at the fuel electrode, resulting in , an electric current flows between the air electrode and the fuel electrode, and it can be used as a battery. Since this fuel cell is used at high temperatures of around 1000'C,
It can be said that the form shown in FIG. 9, which can be constructed without a seal part, is a preferable form.

(発明か解決しようとする課題) SOFCの実用化においてはコストの低減と電力密度の
向上か必要である。このため5OFC素子40を長尺化
して一本当たりの発電出力を上げることが要請されてい
る。しかし、袋管状の5OFC素子40を長くすると、
5OFC素子40の長手方向にそって電極反応の不均一
にともなう温度勾配か太き(なり、熱歪応力を増大させ
、5OFC素子にクラックを発生させて寿命を短くする
という問題かあった。
(Problem to be solved by the invention) In the practical application of SOFC, it is necessary to reduce costs and improve power density. Therefore, it is required to increase the power generation output per unit by increasing the length of the 5OFC element 40. However, if the bag tube-shaped 5OFC element 40 is lengthened,
There was a problem that the temperature gradient along the longitudinal direction of the 5OFC element 40 due to the non-uniformity of the electrode reaction became thick, increasing thermal strain stress, causing cracks to occur in the 5OFC element, and shortening its life.

即ち、酸化ガス供給口1aの近辺では、まだ酸素含有量
が多いため、電気化学的反応である電極反応が活発であ
るので温度か上昇し、この温度上昇によって燃料電極面
での酸素イオンと燃料ガスとの電極反応がますます活発
となる。一方、他端ては、酸化ガスかかなり濃度減少し
ているため、反応か不活発で温度か低(、この温度の低
さからますます反応か不活発となる。この傾向は、袋管
状の単電池か長くなるにつれて一層太き(なる。
That is, in the vicinity of the oxidizing gas supply port 1a, since the oxygen content is still high, the electrode reaction, which is an electrochemical reaction, is active, so the temperature rises, and this temperature rise causes the oxygen ions and fuel on the fuel electrode surface to increase. The electrode reaction with the gas becomes more active. On the other hand, at the other end, the concentration of oxidizing gas has decreased considerably, so the reaction is inactive and the temperature is low. The longer the battery, the thicker it becomes.

(発明に至る経過) このため5OFC素子40の多孔質支持管4の長手方向
における開気孔率を変化させ、長手方向での酸素透過量
をほぼ均一にすることを本発明者は工夫してきたが、し
かし、5OFC素子40の長さが更に長くなればなる程
、酸化ガス下流側の多孔質支持管4の開気孔率を大きく
しなければならないか、方間気孔率が増大するに伴い前
記支持管4の強度は低下する。従って、前述の多孔質支
持管4の長手方向でとりうる開気孔率の大きさに限界か
ある。
(Progress leading to the invention) For this reason, the inventor has devised a method of changing the open porosity in the longitudinal direction of the porous support tube 4 of the 5OFC element 40 to make the amount of oxygen permeation almost uniform in the longitudinal direction. However, as the length of the 5OFC element 40 becomes longer, the open porosity of the porous support tube 4 on the downstream side of the oxidizing gas must be increased, or as the porosity increases, the support The strength of the tube 4 is reduced. Therefore, there is a limit to the open porosity that can be achieved in the longitudinal direction of the porous support tube 4 described above.

また、第9図の構造で単に酸化ガスの流速を増大させる
方法では、5OFC素子を冷却し、熱効率及び発電効率
を低下させるばかりか、5OFC素子に熱歪によるクラ
ックを発生させ易くなる。
Furthermore, the method of simply increasing the flow rate of oxidizing gas in the structure shown in FIG. 9 not only cools the 5OFC element and reduces thermal efficiency and power generation efficiency, but also tends to cause cracks to occur in the 5OFC element due to thermal strain.

また、固体電解質6の内側に燃料電極を設け、筒内空間
へと燃料ガスを供給して発電を行う型の5OFCにおい
ても同様の問題か発生する。しかも、この場合には、濃
度か減少した燃料ガス中にかなりCO2および水蒸気等
か含まれており、これらか電極面に付着して反応を阻害
するため、ますます反応か不活発となり温度の不均一か
著しい。
A similar problem also occurs in a type 5OFC in which a fuel electrode is provided inside the solid electrolyte 6 and fuel gas is supplied into the cylinder space to generate electricity. Moreover, in this case, the fuel gas whose concentration has decreased contains a considerable amount of CO2 and water vapor, and these adhere to the electrode surface and inhibit the reaction, making the reaction even more inactive and causing a temperature drop. Uniform or marked.

本発明の課題は、有底筒状の固体電解質型燃料電池にお
いて、電池長手方向の反応性、温度の不均一を少なくし
、熱歪応力の低減、電池の長寿命化、発電効率の向上を
達成できるような固体電解質型燃料電池を提供すること
である。
The object of the present invention is to reduce reactivity and temperature non-uniformity in the longitudinal direction of the cell, reduce thermal distortion stress, extend the life of the cell, and improve power generation efficiency in a bottomed cylindrical solid oxide fuel cell. The object of the present invention is to provide a solid oxide fuel cell that can achieve this goal.

(課題を解決するための手段) 本発明は、有底筒状多孔質支持体の外周面に空気電極と
固体電解質と燃料電極とを形成してなる固体電解質型燃
料電池素子と、この固体電解質型燃料電池素子の筒内空
間へと挿入されたガス供給管とを有する固体電解質型燃
料電池であって、前記筒内空間へと酸化ガス又は燃料ガ
スを供給するガス供給部を前記ガス供給管の少なくとも
側周面に設け、かつ前記有底筒状多孔質支持体のうち前
記筒内空間を流れるガス流の上流側へと面する部分のガ
ス透過量を、前記有底筒状多孔質支持体のうち前記ガス
流の下流側へと面する部分のガス透過量よりも小さくし
たことを特徴とする固体電解質型燃料電池に係るもので
ある。
(Means for Solving the Problems) The present invention provides a solid electrolyte fuel cell element in which an air electrode, a solid electrolyte, and a fuel electrode are formed on the outer peripheral surface of a bottomed cylindrical porous support, and A solid oxide fuel cell having a gas supply pipe inserted into a cylinder space of a type fuel cell element, wherein a gas supply section that supplies oxidizing gas or fuel gas to the cylinder space is connected to the gas supply pipe. The amount of gas permeation through a portion of the bottomed cylindrical porous support that is provided on at least a side circumferential surface of the bottomed cylindrical porous support and faces toward the upstream side of the gas flow flowing through the cylinder space is determined by This relates to a solid oxide fuel cell characterized in that the gas permeation amount is smaller than that of a portion of the body facing downstream of the gas flow.

(実施例) 第1図は本発明の実施例に係る5OFCの縦断面図、第
2図は第1図のイーイ線断面図である。本実施例の5O
FCにおいて、第9図の5OFCと同一機能部材には同
一符号を付す。
(Example) FIG. 1 is a longitudinal cross-sectional view of a 5OFC according to an example of the present invention, and FIG. 2 is a cross-sectional view taken along the line E in FIG. 1. 5O in this example
In the FC, the same reference numerals are given to the same functional members as in 5OFC in FIG. 9.

第1図の5OFCでは、酸化ガス供給管1の側周面ib
に、同じ径の円形孔2が複数個、長平方向に向かって配
置され、また、酸化ガス供給管lの側周面1bと多孔質
支持管4との間に平板状リブ3を例えば2列設けている
。従って、酸化ガス供給管l内へと供給された酸化ガス
は、各円形孔2から順次矢印Cのように吹き出し、発電
に利用された後、先端の酸化ガス供給口1aより排出さ
れた酸化ガスと混合され、矢印りのように排ガス室19
へと排出される。
In 5OFC in FIG. 1, the side circumferential surface ib of the oxidizing gas supply pipe 1
A plurality of circular holes 2 having the same diameter are arranged in the longitudinal direction, and flat ribs 3 are arranged in two rows between the side peripheral surface 1b of the oxidizing gas supply pipe 1 and the porous support pipe 4. It is set up. Therefore, the oxidizing gas supplied into the oxidizing gas supply pipe 1 is blown out sequentially from each circular hole 2 as shown by the arrow C, and after being used for power generation, the oxidizing gas is discharged from the oxidizing gas supply port 1a at the tip. is mixed with the exhaust gas chamber 19 as shown by the arrow.
is discharged to.

また、筒内空間29内を流れる酸化ガス流の上流側にお
いて有底多孔質支持管4の開気孔率を小さくし、下流側
て有底多孔質支持管4の開気孔率を所定の範囲まで大き
くした。
Further, the open porosity of the bottomed porous support tube 4 is reduced on the upstream side of the oxidizing gas flow flowing in the cylinder interior space 29, and the open porosity of the bottomed porous support tube 4 is reduced to a predetermined range on the downstream side. Made it bigger.

空気電極5は、ドーピングされたか、又はドーピングさ
れていないLaMn0a、 CaMnO3,LaNi0
a、 LaCo0a。
The air electrode 5 is made of doped or undoped LaMnOa, CaMnO3, LaNiO
a, LaCo0a.

LaCrOs等で製造でき、ストロンチウムを添加した
LaMnOsか好ましい。固体電解質6は、一般にはイ
ツトリア安定化ジルコニア等で製造できる。燃料電極7
は、一般にはニッケルージルコニアサーメット又はコバ
ルト−ジルコニアサーメットである。
It can be manufactured from LaCrOs or the like, and strontium-doped LaMnOs is preferable. The solid electrolyte 6 can generally be manufactured from yttria-stabilized zirconia or the like. Fuel electrode 7
is generally a nickel-zirconia cermet or a cobalt-zirconia cermet.

本実施例の5OFCによれば、以下の効果を奏しうる。According to the 5OFC of this embodiment, the following effects can be achieved.

(1)従来は、前述したように、筒内空間29内におい
て、酸化ガス供給口から離れるにつれて酸化ガス濃度か
減少し、電気化学的反応か低下し、それに伴って温度も
低下していた。即ち、5OFC素子4゜の開口部から放
出されるときには、酸化ガス中の酸素のうち例えば約2
0%程度が消費されており、電極反応の不均一が大きか
った。5OFC素子の長さが長(なるにつれこの傾向は
増大した。
(1) Conventionally, as described above, in the cylinder space 29, as the distance from the oxidizing gas supply port increases, the oxidizing gas concentration decreases, the electrochemical reaction decreases, and the temperature also decreases accordingly. That is, when released from the 4° opening of the 5OFC element, for example, about 2 of the oxygen in the oxidizing gas
Approximately 0% was consumed, and the electrode reaction was highly non-uniform. This tendency increased as the length of the 5OFC element became longer.

これに対し、本実施例では、酸化ガス供給管1の側周面
1bに長手方向に向かって順次円形孔2を複数個設けで
あるので、各円形孔2か酸化ガス供給部として機能し、
各円形孔2からそれぞれ新鮮な酸化ガスが供給される。
On the other hand, in this embodiment, since a plurality of circular holes 2 are sequentially provided in the side circumferential surface 1b of the oxidizing gas supply pipe 1 in the longitudinal direction, each circular hole 2 functions as an oxidizing gas supply section.
Fresh oxidizing gas is supplied from each circular hole 2, respectively.

したかって、筒内空間29の全体に亘って新鮮な酸化ガ
スが供給され、既に濃度の減少した酸化ガスと混合され
るので、また混合ガス流の乱流化も加わって、酸素濃度
勾配を小さくすることかできる。
Therefore, fresh oxidizing gas is supplied throughout the cylinder space 29 and mixed with the oxidizing gas whose concentration has already decreased, which also adds to the turbulence of the mixed gas flow, reducing the oxygen concentration gradient. I can do something.

しかも、有底多孔質支持管4の開気孔率を有底部4aの
側から発電部分の端部4b側へと所定の範囲内で変える
ことも重要である。
Furthermore, it is also important to change the open porosity of the bottomed porous support tube 4 from the bottomed portion 4a side to the end portion 4b side of the power generation portion within a predetermined range.

具体的に述べると、まず有底多孔質支持管の平均開気孔
率と酸化ガス透過量との関係を示す検量線を第10図に
示す。ただし第1O図のグラフでは、有底多孔質支持管
の平均開気孔率が35.0%のときの酸化ガス透過量を
100.0とし、相対比で表現した。第10図から解る
ように、両者はほぼ直線的関係にあった。
Specifically, first, FIG. 10 shows a calibration curve showing the relationship between the average open porosity of the bottomed porous support tube and the amount of oxidizing gas permeation. However, in the graph of FIG. 1O, the amount of oxidizing gas permeation when the average open porosity of the bottomed porous support tube is 35.0% is set as 100.0, and is expressed as a relative ratio. As can be seen from FIG. 10, there was a nearly linear relationship between the two.

次いで第1図及び第9図に示したような長さ3000 
+nmの有底多孔質支持管をそれぞれ作成し、この上に
空気電極、固体電解質、燃料電極を形成して第1図及び
第9図に示すような5OFCを作製した。
Then the length 3000 as shown in Fig. 1 and Fig. 9.
+nm bottomed porous support tubes were each prepared, and an air electrode, a solid electrolyte, and a fuel electrode were formed thereon to fabricate a 5OFC as shown in FIGS. 1 and 9.

そして上記本発明による5OFC素子及び従来の5OF
C素子をそれぞれ電池反応室2o内に設置し、電池反応
室20を1000℃に加熱し、次いで酸化ガス供給管1
に空気を、燃料流入孔10aがらはメタンをそれぞれ一
定の流速で供給し、夫々の5OFC素子燃料極表面で酸
素イオンとメタンとの反応を行わせた。
And the 5OFC element according to the present invention and the conventional 5OFC element
Each C element is installed in the battery reaction chamber 2o, the battery reaction chamber 20 is heated to 1000°C, and then the oxidizing gas supply pipe 1
Air was supplied through the fuel inlet hole 10a, and methane was supplied through the fuel inlet hole 10a at a constant flow rate, thereby causing a reaction between oxygen ions and methane on the surface of each 5OFC element fuel electrode.

そして、第1図、第9図に示すように、夫々5OFC素
子40の直線部分を7等分した測定位置PI。
As shown in FIGS. 1 and 9, the measurement positions PI are obtained by dividing the straight line portion of each of the five OFC elements 40 into seven equal parts.

P2. P3. P4. P5. P6. P7. P
8で上記反応中の燃料極の表面温度を熱電対で測定し、
更に同時に、PI。
P2. P3. P4. P5. P6. P7. P
In step 8, measure the surface temperature of the fuel electrode during the reaction with a thermocouple,
Furthermore, at the same time, P.I.

P2. P3. P4. P5. P6. P7. P
8の位置に対応する筒内空間29の各位置での酸素濃度
を02メーターで夫々測定した。その後室温まで冷却し
、PI、 P2. P3゜P4. P5. P6. P
7. P8での有底多孔質支持管4の開気孔率を測定し
た。
P2. P3. P4. P5. P6. P7. P
The oxygen concentration at each position in the cylinder space 29 corresponding to position 8 was measured with a 0.2 meter. After that, it was cooled to room temperature, and PI, P2. P3゜P4. P5. P6. P
7. The open porosity of the bottomed porous support tube 4 at P8 was measured.

そして、各位置での解気孔率の測定値と第10図の検量
線とから各位置での酸化ガス透過量を算出し、更に、各
位置での酸化ガス透過量と酸素濃度との積として各位置
での酸素透過量を求めた。これらの結果を下記表1、表
2、表3に示す。
Then, the amount of oxidizing gas permeation at each position is calculated from the measured value of the resolved porosity at each position and the calibration curve in Figure 10, and then the product of the amount of oxidizing gas permeating and the oxygen concentration at each position is calculated. The amount of oxygen permeation at each position was determined. These results are shown in Tables 1, 2, and 3 below.

表1では、有底多孔質支持管4の長手方向の開気孔率が
ほぼ一定であって、かつ酸化ガス供給管lの酸化ガス供
給口1aより空気を供給した場合の結果を示す(第9図
)。
Table 1 shows the results when the open porosity in the longitudinal direction of the bottomed porous support pipe 4 is almost constant and air is supplied from the oxidizing gas supply port 1a of the oxidizing gas supply pipe 1 (No. 9 figure).

表2では、有底多孔質支持管4の長手方向の開気孔率を
酸化ガスの流れの下流側へと面する部分で大きくし、か
つ、酸化ガス供給管lの酸化ガス供給口1aより空気を
供給した場合の結果を示す。
In Table 2, the open porosity in the longitudinal direction of the bottomed porous support pipe 4 is increased in the portion facing the downstream side of the flow of oxidizing gas, and the oxidizing gas supply port 1a of the oxidizing gas supply pipe l is The results are shown below.

表3では、有底多孔質支持管4の長手方向の開気孔率を
酸化ガスの流れの下流側へと面する部分で大きくし、か
つ酸化ガス供給管lの酸化ガス供給口1a及び側周面1
bの円形孔2より空気を供給した場合の結果を示す(第
1図)。
In Table 3, the open porosity in the longitudinal direction of the bottomed porous support tube 4 is increased in the portion facing the downstream side of the oxidizing gas flow, and the oxidizing gas supply port 1a and the side circumference of the oxidizing gas supply tube l are Side 1
The results are shown when air is supplied from the circular hole 2 in b (Fig. 1).

表1では、P8近辺で燃料電極表面に供給される酸素イ
オンの量か多く、燃料ガスのメタンとの反応量か多く、
その結果燃料電極表面温度は電池反応室20の雰囲気温
度(1000°C)より大幅に高い温度にある。そして
、P7. P6. P5. P4と下流側に移るにつれ
、夫々の位置における燃料電極表面に供給される酸素イ
オンの量か低下し、それに伴い燃料ガスのメタンとの反
応量が減少し、その結果各位置における燃料電極表面温
度は低下している。
Table 1 shows that near P8, the amount of oxygen ions supplied to the fuel electrode surface is large, the amount of reaction with methane in the fuel gas is large,
As a result, the fuel electrode surface temperature is significantly higher than the ambient temperature (1000° C.) of the cell reaction chamber 20. And P7. P6. P5. As we move from P4 to the downstream side, the amount of oxygen ions supplied to the fuel electrode surface at each position decreases, and the amount of reaction between the fuel gas and methane decreases, and as a result, the fuel electrode surface temperature at each position decreases. is decreasing.

表2においては、PI→P8の間の燃料電極表面温度の
差は大きく改善されており、実用性は非常に太き(なっ
ている。ただ、本実施例では3mもの非常に長い素子を
用いているので、5OFC素子の均一発電を実現するう
えで未だ不充分な所が残っている。
In Table 2, the difference in fuel electrode surface temperature between PI and P8 has been greatly improved, making it extremely practical. However, in this example, a very long element of 3 m was used. Therefore, there are still some insufficiencies in achieving uniform power generation with a 5OFC element.

一方本発明により作製した支持管4を用いた5OFC素
子を使用し、かつガス供給管lのガス供給口1a及び各
円形口2より空気を供給して測定した結果を示す表3で
は、P1〜P8の各位置に於ける燃料電極表面の温度が
電池反応室20の雰囲気温度より高い温度でかつほぼ同
等の温度であることから、5OFC素子内でほぼ均一に
発電されている事かわかる。また、5OFC素子の長手
方向でほぼ均一な温度で電池反応しているので、5OF
C素子におけるクラックの発生が防止でき、長期使用時
の信頼性か向上する。
On the other hand, in Table 3 showing the results of measurement using a 5OFC element using the support tube 4 manufactured according to the present invention and supplying air from the gas supply port 1a and each circular port 2 of the gas supply tube 1, P1 to Since the temperature of the surface of the fuel electrode at each position of P8 is higher than the ambient temperature of the cell reaction chamber 20 and approximately the same temperature, it can be seen that power is generated almost uniformly within the 5OFC element. In addition, since the battery reaction occurs at a nearly uniform temperature in the longitudinal direction of the 5OFC element, the 5OFC
It is possible to prevent the occurrence of cracks in the C element, improving reliability during long-term use.

次に有底多孔質支持管の開気孔率と機械的強度の関係を
表4に示す。ただし表4では、有底多孔質支持管の平均
開気孔率か35%のときの抗折強度を100とし相対比
で表現した。
Next, Table 4 shows the relationship between the open porosity and mechanical strength of the bottomed porous support tube. However, in Table 4, the bending strength when the average open porosity of the bottomed porous support tube is 35% is set as 100, and expressed as a relative ratio.

表4 開気孔率か50%を越えると、多孔質支持管4の強度は
開気孔率35%のとの強度に対し、約7096の強度し
か得られず、5OFC素子として長期使用時の信頼性が
低下する。従って、多孔質支持管4の長手方向の開気孔
率は50%以下にして、酸化ガス供給管1の側周面の円
形孔2から酸化ガスを供給し、酸素濃度を高め、5OF
C素子の長手方向の電池反応を均一にすることか重要で
ある。
Table 4 When the open porosity exceeds 50%, the strength of the porous support tube 4 is only about 7096 compared to the strength when the open porosity is 35%, and the reliability during long-term use as a 5OFC element decreases. Therefore, the open porosity in the longitudinal direction of the porous support tube 4 is set to 50% or less, and the oxidizing gas is supplied from the circular hole 2 on the side circumferential surface of the oxidizing gas supply tube 1 to increase the oxygen concentration.
It is important to make the battery reaction uniform in the longitudinal direction of the C element.

このように、本実施例の5OFCによれば、5OPC素
子の強度を高く保持し、かつ筒内空間29における酸化
ガス中の酸素濃度の均一化と、筒内空間29がらの有底
多孔質支持管4の酸化ガス透過性の制陣とを行い、これ
らを巧みに組み合わせることにより、電極反応の不均一
を是正することができる。
As described above, according to the 5OFC of this embodiment, the strength of the 5OPC element can be maintained high, the oxygen concentration in the oxidizing gas in the cylinder space 29 can be made uniform, and the bottomed porous support inside the cylinder space 29 can be made uniform. By controlling the oxidizing gas permeability of the tube 4 and skillfully combining these, it is possible to correct the non-uniformity of the electrode reaction.

これにより、有底多孔質支持管4の全体で発熱を均一化
して熱歪応力を低減し、クラックを防止して5OFC素
子40の長寿命化を達成し、また発電効率)向上を図る
ことができるのである。
As a result, heat generation is made uniform throughout the bottomed porous support tube 4, thermal strain stress is reduced, cracks are prevented, the life of the 5OFC element 40 is extended, and power generation efficiency is improved. It can be done.

)第9図に示す構造の5OFCでは、酸化ガス供給;l
と5OFC素子40とが別体であるので、筒内空間29
内における酸化ガス供給管1の正確な位置決めか難しか
った。このため、筒内空間29内において酸化ガス供給
管lの位置が変化するため、酸化ガス供給管lの外周面
と多孔質支持体4の内周面との間を上昇する酸化ガスの
流れか変化し、各セル毎の性能のバラツキ等の問題かあ
った。
) In the 5OFC with the structure shown in Fig. 9, the oxidizing gas supply;
Since the and 5OFC element 40 are separate bodies, the cylinder space 29
It was difficult to accurately position the oxidizing gas supply pipe 1 within the interior. Therefore, the position of the oxidizing gas supply pipe l changes in the cylinder interior space 29, so that the flow of the oxidizing gas rising between the outer peripheral surface of the oxidizing gas supply pipe l and the inner peripheral surface of the porous support 4 changes. There were problems such as variations in the performance of each cell.

これに対し、本実施例では、酸化ガス供給管lと5OF
C素子40との間を平板状リブ3によって連結し、一体
構造としであるので、筒内空間29内における酸化ガス
供給管lの位置決めが確実にでき、酸化ガス供給管lと
5OFC素子40との間の相対位置変化に起因する性能
のバラツキが皆無になる。しかも、平板状リブ3か酸化
ガス供給管lから放射状に伸びた形状なので、5OFC
素子40の機械的強度も、構造力学的にみて著しく増大
する。
On the other hand, in this embodiment, the oxidizing gas supply pipe l and the 5OF
Since it is connected to the C element 40 by the flat plate-like rib 3 and has an integral structure, the oxidizing gas supply pipe l can be reliably positioned within the cylinder space 29, and the oxidizing gas supply pipe l and the 5OFC element 40 can be connected with each other. There will be no variation in performance due to relative position changes between the two. Moreover, since it has a shape that extends radially from the flat rib 3 or the oxidizing gas supply pipe l, the 5OFC
The mechanical strength of the element 40 is also significantly increased in terms of structural mechanics.

なお、平板状リブ3を三列以上設け、各リブのなす角度
を180°より小さくすると、5OFC素子の機械的強
度、特に圧環強度を一層増大させるには一層好都合であ
る。
It is to be noted that it is more convenient to provide three or more rows of flat ribs 3 and to make the angle formed by each rib smaller than 180° in order to further increase the mechanical strength, particularly the radial crushing strength, of the 5OFC element.

上記したように、本実施例では、有底部4aと発電部分
の端部4bとの間て有底多孔質支持管4の開気孔率に差
を設けたか、この際有底部4aから発電部分の端部4b
へと近づくにつれて開気孔率を徐々に大きくすることが
好ましい。
As described above, in this embodiment, a difference is made in the open porosity of the bottomed porous support tube 4 between the bottomed part 4a and the end 4b of the power generation part. End portion 4b
It is preferable to gradually increase the open porosity as it approaches .

有底多孔質支持管4の開気孔率は、どの部分でも20〜
40%とすることが好ましい。また、この気孔径は、1
〜lOμmとすることが好ましい。
The open porosity of the bottomed porous support tube 4 is 20 to 20 at any part.
It is preferable to set it to 40%. Moreover, this pore diameter is 1
It is preferable to set it to 10 micrometers.

前記支持管4の開気孔率か50%を越えると支持管4の
機械的強度か著しく低下し、5OFC素子として長期使
用の信頼性が得られない。また20%以下にした場合は
、酸化ガス透過量が著しく低下し、発電効率が低下する
ため好ましくない。
If the open porosity of the support tube 4 exceeds 50%, the mechanical strength of the support tube 4 will drop significantly, making it impossible to obtain reliability for long-term use as a 5OFC element. Moreover, if it is less than 20%, the amount of oxidizing gas permeation will be significantly reduced, and the power generation efficiency will be reduced, which is not preferable.

有底部4aにおける開気孔率と、発電部分の端部4bに
おける開気孔率との差は、有底部4aと発電部分の端部
4bとの距離か3mのときには15%以下とすることか
好ましい。
The difference between the open porosity in the bottomed portion 4a and the open porosity at the end 4b of the power generation portion is preferably 15% or less when the distance between the bottomed portion 4a and the end 4b of the power generation portion is 3 m.

有底多孔質支持管4の有底部4aの開気孔率を小さくし
、開気孔率の大きさに勾配を設けるためには、以下の方
法で有底多孔質支持管4を製造することが好ましい。
In order to reduce the open porosity of the bottomed portion 4a of the bottomed porous support tube 4 and to provide a gradient in the size of the open porosity, it is preferable to manufacture the bottomed porous support tube 4 by the following method. .

(1)  有底多孔質支持管4を焼成によって製造する
際に、セラミックスの有底管状成形体の開口端側を保持
し、有底部を下にして有底管状成形体を垂下し、有底部
におもりをつけて吊り下げる。これにより、有底管状成
形体の開口端に近い側には荷重か掛って若干引き延ばさ
れ、開気孔率か大きくなると共に、有底部側には荷重か
掛らないので開気孔率を小さくすることかできる。
(1) When manufacturing the bottomed porous support tube 4 by firing, hold the open end side of the bottomed tubular molded body of ceramics, hang the bottomed tubular molded body with the bottomed part facing down, and Attach a weight to it and hang it. As a result, a load is applied to the side of the bottomed tubular molded body near the open end, causing it to be slightly elongated, increasing the open porosity, and at the same time, since no load is applied to the bottomed side, the open porosity is reduced. I can do something.

有底多孔質支持管4をセラミック製窯道具で上述の通り
組立て、窯内で焼成する。昇温速度20〜200℃/h
r 、焼成温度1400〜1600°C1焼成温度保持
時間30分間〜10時間、降温速度20〜200°C/
hrの条件内で前記支持管4の所定の気孔率に従って適
宜設定する。
The bottomed porous support tube 4 is assembled using a ceramic kiln tool as described above and fired in the kiln. Heating rate: 20-200℃/h
r, firing temperature 1400 to 1600°C1 firing temperature holding time 30 minutes to 10 hours, cooling rate 20 to 200°C/
The porosity is appropriately set within the conditions of hr according to the predetermined porosity of the support tube 4.

(2)有底多孔質支持管を一旦焼成し、焼成後に有底多
孔質支持管の開気孔中へと充填材を含浸させて開気孔を
充填し、次いで乾燥又は焼成する。この際、有底多孔質
支持管の有底部側の含浸量を開口端側の含浸量よりも多
(することで、有底部側の開気孔率を低下させ、開口端
側の開気孔率をより大きくする。
(2) The bottomed porous support tube is once fired, and after firing, the open pores of the bottomed porous support tube are impregnated with a filler to fill the open pores, and then dried or fired. At this time, the amount of impregnation on the bottomed side of the porous support tube is greater than the amount of impregnation on the open end side (by doing so, the open porosity on the bottomed side is reduced, and the open porosity on the open end side is increased. Make it bigger.

以上、有底多孔質支持管自体4の開気孔率を制御するこ
とにより酸化ガス透過量を制御する例について述べたか
、この酸化ガス透過量を他の方法によって制御すること
かできる。
The above has described an example in which the amount of oxidizing gas permeation is controlled by controlling the open porosity of the bottomed porous support tube itself 4, but the amount of oxidizing gas permeation can be controlled by other methods.

即ち、セラミックス素材からなる有底管状成形体の内周
面及び/又は外周面にスラリーをラセン状に塗布し、焼
結することにより、有底多孔質支持管4の各部位におけ
るガス透過量を変えることができる。
That is, by applying slurry in a spiral shape to the inner circumferential surface and/or outer circumferential surface of a bottomed tubular molded body made of a ceramic material and sintering it, the amount of gas permeation in each part of the bottomed porous support tube 4 is reduced. It can be changed.

具体的には、スラリー細条をラセン状に塗布する際、有
底部側ではスラリー細条の幅を大きくし、開口端へと近
づくにつれてスラリー細条の幅を小さ(したり、また、
有底部側ではスラリー細条の密度を大きくし、開口端へ
と近づくにつれてスラリー細条の密度を小さくすること
により、有底部側での酸化ガス透過量を小さくし、開口
端へと近づくにつれて酸化ガス透過量を大きくすること
かできる。また、有底部側では粒径を小さくし、開口端
へと近づくにつれて粒径を大きくしても同様の効果が得
られる。
Specifically, when applying slurry strips in a spiral shape, the width of the slurry strips is increased on the bottomed side, and the width of the slurry strips is decreased (or decreased) as it approaches the open end.
By increasing the density of the slurry strips on the bottomed side and decreasing the density of the slurry strips as they approach the open end, the amount of oxidizing gas permeation on the bottomed section is reduced, and the oxidation rate decreases as it approaches the open end. It is possible to increase the amount of gas permeation. Further, the same effect can be obtained by reducing the particle size on the bottomed side and increasing the particle size as it approaches the open end.

むろん、焼成後の有底多孔質支持管の内周面及び/又は
外周面に全面に亘ってスラリーを塗布し、上記のように
スラリーの粒径を変化させることのみによって有底多孔
質支持管の酸化ガス透過性を制御してもよい。
Of course, by applying slurry over the entire inner and/or outer circumferential surface of the bottomed porous support tube after firing and changing the particle size of the slurry as described above, the bottomed porous support tube can be formed. The oxidizing gas permeability of the material may be controlled.

第3図の5OFCにおいては、酸化ガス供給管lの側周
面1bに酸化ガス供給部として複数の円形孔を設ける代
わりに、細長い矩形のスリット12を設け、このスリッ
ト12から新鮮な酸化ガスを流出させる。
In the 5OFC shown in FIG. 3, instead of providing a plurality of circular holes as an oxidizing gas supply section on the side circumferential surface 1b of the oxidizing gas supply pipe l, an elongated rectangular slit 12 is provided, and fresh oxidizing gas is supplied from this slit 12. Let it flow.

スリット12は、平板状リブ3によって画成される各区
分毎に設ける。
A slit 12 is provided in each section defined by the flat rib 3.

また、第1図の5OFCと同様に、有底多孔質支持管4
の有底部4aにおける開気孔率を、発電部分の端部4b
における開気孔率よりも小さくし、有底部4aでの酸化
ガス透過性を発電部分の端部4bでの酸化ガス透過性よ
りも小さ(抑えている。この点は、後述する第4図〜第
8図の5OFCにおいても同様である。
In addition, similar to the 5OFC in FIG. 1, the bottomed porous support pipe 4
The open porosity in the bottomed part 4a of the end part 4b of the power generation part is
The oxidizing gas permeability at the bottomed portion 4a is made smaller (suppressed) than the oxidizing gas permeability at the end portion 4b of the power generation portion. The same applies to 5OFC in FIG.

第4図においては、酸化ガス供給管1の側面にやはり複
数の円形孔22を酸化ガス供給部として設けると共に、
5OFC素子40の開口部に近い方から有底部の方へと
向かって円形孔22の径を徐々に太き(している。従っ
て、5OFC素子40の開口部に近い方の円形孔22か
ら酸化ガスが多く流出して有底部に近い方へと充分に酸
化ガスか供給されないという事態が生ずることはなく、
円形孔22の径を調節することによって筒内空間29内
の酸化ガス濃度を調節できる。
In FIG. 4, a plurality of circular holes 22 are also provided on the side surface of the oxidizing gas supply pipe 1 as oxidizing gas supply parts, and
The diameter of the circular hole 22 is gradually increased from the side closer to the opening of the 5OFC element 40 to the bottomed part. This prevents a situation where a large amount of gas flows out and insufficient oxidizing gas is supplied to the area near the bottom.
By adjusting the diameter of the circular hole 22, the oxidizing gas concentration within the cylinder space 29 can be adjusted.

第5図の5OFCにおいては、第3図の5OFCと同様
に酸化ガス供給管1の側面に酸化ガス供給部としてスリ
ット32を設け、5OFC素子40の開口部に近い側で
はスリット32の幅を小さくし、5OPC素子40の有
底部側へと向かうにつれてスリット32の幅を徐々に大
きくしている。こうしたスリット32を採用することに
よっても、第4図の例と同様の効果を奏しうる。
In the 5OFC shown in FIG. 5, a slit 32 is provided as an oxidizing gas supply section on the side surface of the oxidizing gas supply pipe 1, similar to the 5OFC shown in FIG. However, the width of the slit 32 is gradually increased toward the bottomed portion of the 5OPC element 40. By employing such a slit 32, the same effect as the example shown in FIG. 4 can be achieved.

第1図、第4図において、円形孔2,22の向きを酸化
ガス供給管1の壁面の法線と一致させると、円形孔2.
22から酸化ガスが第1図において水平に流出する。ま
た、円形孔2.22の向きを酸化ガス供給管1の壁面の
法線に対して所定角度傾けることかでき、壁面の法線に
対して酸化ガス供給管1の長手方向(第1図において上
下方向)に傾けると酸化ガスが上方又は下方へと向けて
流出し、壁面の法線に対して酸化ガス供給管lの径方向
(第1図において左右方向)に傾けると酸化ガスが左方
又は右方へと片寄って流出する。
1 and 4, when the circular holes 2 and 22 are aligned with the normal to the wall surface of the oxidizing gas supply pipe 1, the circular holes 2 and 22 are aligned with the normal to the wall surface of the oxidizing gas supply pipe 1.
From 22 the oxidizing gas flows out horizontally in FIG. Further, the direction of the circular hole 2.22 can be inclined at a predetermined angle with respect to the normal to the wall surface of the oxidizing gas supply pipe 1, and the direction of the longitudinal direction of the oxidizing gas supply pipe 1 (in FIG. When tilted in the radial direction (horizontal direction in Figure 1) of the oxidizing gas supply pipe l with respect to the normal to the wall surface, the oxidizing gas flows out to the left. Or it flows out to the right.

即ち、例えば第6図に示すように、酸化ガス供給管lの
側面に設けた酸化ガス供給口42を傾斜させ、矢印Cに
示すように酸化ガスを有底部4aの方向へと傾けて流出
させると、この酸化ガス流が、矢印Bのように有底部4
bの方から流れてきた酸化ガス流と衝突し、この酸化ガ
ス流を撹乱して乱流化し易くなるので、この撹拌効果に
よって一層酸素濃度勾配を小さくできる。
That is, as shown in FIG. 6, for example, the oxidizing gas supply port 42 provided on the side surface of the oxidizing gas supply pipe 1 is tilted, and the oxidizing gas is tilted toward the bottomed portion 4a as shown by arrow C, and is caused to flow out. Then, this oxidizing gas flow reaches the bottomed part 4 as shown by arrow B.
It collides with the oxidizing gas flow flowing from direction b, which disturbs the oxidizing gas flow and makes it easy to become a turbulent flow, so this stirring effect can further reduce the oxygen concentration gradient.

第7図はいわゆるマルチセルタイプの5OFCに本発明
を適用した例を示す部分断面図である。
FIG. 7 is a partial sectional view showing an example in which the present invention is applied to a so-called multi-cell type 5OFC.

有底多孔質支持管4の表面に、所定間隔を置いて空気電
極15が複数箇所に設けられ、各空気電極15上に固体
電解質16、燃料電極17か順次膜けられ、各燃料電極
17と隣接する空気電極15とかインターコネクター2
8によって電気的に順次接続されている。
A plurality of air electrodes 15 are provided on the surface of the bottomed porous support tube 4 at predetermined intervals, and a solid electrolyte 16 and a fuel electrode 17 are sequentially coated on each air electrode 15. Adjacent air electrode 15 or interconnector 2
8 are electrically connected sequentially.

第8図の5OFCにおいては、酸化ガス供給管の側周面
に円形孔、スリットを酸化ガス供給部として設ける代り
に、酸化ガス供給管51を多孔質の通気性材料、例えば
多孔質セラミックスで形成し、酸化ガス供給管51の有
底部側先端に閉塞部52を設けて通気を遮断する。そし
て、矢印Aで示すように酸化ガス供給管51内へと酸化
ガスを供給し、加圧状態とすると、酸化ガス供給管51
内の酸化ガスが側周面51bから矢印Eで示すように筒
内空間29内へと向って排出され、発電へと供される。
In the 5OFC shown in FIG. 8, instead of providing a circular hole or a slit on the side surface of the oxidizing gas supply pipe as an oxidizing gas supply part, the oxidizing gas supply pipe 51 is made of a porous breathable material, such as porous ceramics. A closing part 52 is provided at the bottom end of the oxidizing gas supply pipe 51 to block ventilation. Then, as shown by arrow A, oxidizing gas is supplied into the oxidizing gas supply pipe 51 to create a pressurized state, and the oxidizing gas supply pipe 51
The oxidizing gas inside is discharged from the side circumferential surface 51b toward the inside of the cylinder space 29 as shown by arrow E, and is used for power generation.

従って、酸化ガス供給管51の側周面51b全体から酸
化ガスが供給され、混合されるため、第9図に示すよう
に酸化ガス供給管の先端開口から酸化ガスを供給する場
合と異なり、第1図の5OPCと同様に、筒内空間29
内の酸素濃度がやはり均一化される。
Therefore, since the oxidizing gas is supplied from the entire side peripheral surface 51b of the oxidizing gas supply pipe 51 and mixed, unlike the case where the oxidizing gas is supplied from the opening at the tip of the oxidizing gas supply pipe as shown in FIG. Similar to 5OPC in Figure 1, the cylinder space 29
The oxygen concentration within the tank is also made uniform.

また、酸化ガス供給管51の開気孔率を各部ともに一定
とすることもできるか、有底部側の端部51cての開気
孔率と、発電部分の開口端側の端部51dての開気孔率
とを異ならせることができる。この場合、有底部側の端
部51cでの開気孔率を小さくし、開口端側へと向って
徐々に開気孔率を大きくすると、有底部4a側へと供給
される酸化ガスの量を減らし、発電部分の端部4b側へ
と供給される新鮮な酸化ガスの供給量を比較的に多くす
ることかできるので、新鮮な酸化ガスか有底部4a側へ
と集中するのを防止するうえで一層効果的である。
Alternatively, the open porosity of the oxidizing gas supply pipe 51 can be made constant for each part, or the open porosity of the end 51c on the bottomed part side and the open porosity of the end 51d on the open end side of the power generation part. The rate can be different. In this case, by decreasing the open porosity at the end 51c on the bottomed portion side and gradually increasing the open porosity toward the open end side, the amount of oxidizing gas supplied to the bottomed portion 4a side can be reduced. Since it is possible to relatively increase the amount of fresh oxidizing gas supplied to the end portion 4b side of the power generation section, it is possible to prevent fresh oxidizing gas from concentrating on the bottomed portion 4a side. Even more effective.

多孔質の酸化ガス供給管51は、ジルコニア質、アルミ
ナ質等で製造することが好ましい。また、閉塞部52を
気密性とすることができるか、これを通気性の材料で形
成し、酸化ガス供給管5Iの先端側からも酸化ガスを供
給することもできる。
The porous oxidizing gas supply pipe 51 is preferably made of zirconia, alumina, or the like. Further, the closing portion 52 can be made airtight or made of a breathable material, and the oxidizing gas can also be supplied from the tip side of the oxidizing gas supply pipe 5I.

多孔質の酸化ガス供給管51の有底部側の端部51cの
開気孔率を小さくし、開気孔率の大きさに勾配を設ける
ためには、前記した有底多孔質支持管4の場合と同様の
方法を実施することができる。
In order to reduce the open porosity of the end 51c on the bottomed side of the porous oxidizing gas supply pipe 51 and to provide a gradient in the size of the open porosity, it is necessary to Similar methods can be implemented.

更に、第8図において、酸化ガス供給管51の全体を多
孔質材料で形成することもできるか、酸化ガス供給管5
1のうち筒内空間29内へと挿入されている挿入部分だ
けを多孔質材料で形成すると、筒内空間29外での酸化
ガスの漏洩か生じないので有利である。
Furthermore, in FIG. 8, the entire oxidizing gas supply pipe 51 may be made of a porous material, or the oxidizing gas supply pipe 51 may be made of a porous material.
It is advantageous if only the inserted portion of the tube 1 that is inserted into the cylinder interior space 29 is made of a porous material, since no leakage of oxidizing gas occurs outside the cylinder interior space 29.

上述の例は種々変更できる。上記各側では空気電極5の
外側に燃料電極7を設けたか、この電極配置を逆にして
もよい。この場合には、筒内空間29へと燃料ガスを供
給し、外部に酸化ガスを供給する。
The above example can be modified in various ways. On each side, a fuel electrode 7 is provided outside the air electrode 5, or the electrode arrangement may be reversed. In this case, fuel gas is supplied to the cylinder interior space 29, and oxidizing gas is supplied to the outside.

第1図では5OFC素子40を垂直に支持したか、この
発電装置全体を水平にしてもよく、また所定角度傾けて
もよい。
In FIG. 1, the 5OFC element 40 is supported vertically, but the entire power generating device may be horizontal or may be tilted at a predetermined angle.

また、第1図〜第7図の例では、酸化ガス供給管lの側
面の円形孔2,22、スリット12.32を酸化ガス供
給部としたか、他の構成の酸化ガス供給部を採用しても
よい。例えば、多数の小孔を乱雑に設けてもよく、この
場合、有底部に近づ(につれて小孔の密度を増せば第4
図、第5図の例と同様の効果を奏しつる。
In the examples shown in FIGS. 1 to 7, the circular holes 2, 22 and slits 12, 32 on the side surface of the oxidizing gas supply pipe l are used as the oxidizing gas supplying section, or an oxidizing gas supplying section having another configuration is used. You may. For example, a large number of small holes may be provided randomly, and in this case, if the density of small holes increases as they approach the bottomed part,
The same effect as the example shown in FIGS.

(発明の効果) 本発明に係る固体電解質型燃料電池によれば、筒内空間
へと酸化ガス又は燃料ガスを供給するガス供給部かガス
供給管の少なくとも側周面に設けられているので、この
側周面ガス供給部から新鮮な酸化ガス又は燃料ガスが供
給され、既に濃度の減少したガスと混合されるため、筒
内空間における酸素、燃料濃度勾配を小さくできる。そ
して、有底筒状多孔質支持体のうち、筒内空間を流れる
ガス流の上流側へと面する部分のガス透過量を、下流側
へと面する部分のガス透過量よりも小さくしたので、上
流側で有底筒状多孔質支持体を透過するガスの量は、下
流側で有底筒状多孔質支持体を透過するガスの量よりも
少なくなる。
(Effects of the Invention) According to the solid oxide fuel cell according to the present invention, since the gas supply section that supplies oxidizing gas or fuel gas to the cylinder space is provided at least on the side peripheral surface of the gas supply pipe, Fresh oxidizing gas or fuel gas is supplied from this side circumferential gas supply section and mixed with the gas whose concentration has already decreased, so that the oxygen and fuel concentration gradient in the cylinder space can be reduced. In addition, the amount of gas permeation in the portion of the bottomed cylindrical porous support facing the upstream side of the gas flow flowing through the cylinder space is made smaller than the amount of gas permeation in the portion facing the downstream side. The amount of gas that permeates through the bottomed cylindrical porous support on the upstream side is smaller than the amount of gas that permeates through the bottomed cylindrical porous support on the downstream side.

このように、筒内空間における上流側と下流側との間の
酸素、燃料濃度勾配を小さくし、かつ上流側でのガス透
過量を下流側でのガス透過量よりも小さくした結果、こ
れらの相乗効果により、極めて有効に有底筒状多孔質支
持体を透過する酸素又は燃料の量を均一化できるので、
電極反応の不均一か是正される。これにより、有底筒状
多孔質支持体の全体で発熱を均一化して熱歪応力を低減
し、クラックを防止して固体電解質型燃料電池の長寿命
化を達成でき、また発電効率の向上を図ることができる
In this way, as a result of reducing the oxygen and fuel concentration gradient between the upstream and downstream sides of the cylinder space, and making the amount of gas permeation on the upstream side smaller than the amount of gas permeation on the downstream side, these Due to the synergistic effect, the amount of oxygen or fuel that permeates through the bottomed cylindrical porous support can be made uniform very effectively.
Non-uniformity of electrode reaction is corrected. This makes it possible to uniformize heat generation throughout the bottomed cylindrical porous support, reduce thermal distortion stress, prevent cracks, achieve a longer life of solid oxide fuel cells, and improve power generation efficiency. can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る5OFCを示す断面図、 第2図は第1図のイーイ線断面図、 第3図、第4図、第5図、第6図、第7図、第8図はそ
れぞれ他の実施例に係る5OFCを示す断面図、 第9図は従来の5OFCを示す断面図、第10図は有底
多孔質支持管の平均開気孔率と酸素透過量との関係を示
すグラフである。 l・・・酸化ガス供給管  1a・・・酸化ガス供給口
1b・・・側周面      2,22・・・円形孔3
・・・平板状リブ    4・・・有底多孔質支持管4
a・・・有底部      4b・・・発電部分の端部
5.15・・・空気電極    6,16・・・固体電
解質7,17・・・燃料電極    12.32・・・
スリット29・・・筒内空間     40.50・・
・5OFC素子42・・・傾斜した酸化ガス供給口 51・・・多孔質の酸化ガス供給管 51b・・・側周面 51C・・・有底部側の端部 51d・・・ 発電部分の開口端側の端部52・・・閉
塞部 A、 B、 C,D、 E・・・酸化ガスの流れ第1図 第4図 第5図 第6図 第7図 第8図
FIG. 1 is a sectional view showing a 5OFC according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the E-I line in FIG. 1, FIGS. 3, 4, 5, 6, 7, Fig. 8 is a cross-sectional view showing 5OFC according to other examples, Fig. 9 is a cross-sectional view showing a conventional 5OFC, and Fig. 10 is a graph showing the average open porosity and oxygen permeation rate of a bottomed porous support tube. It is a graph showing a relationship. l... Oxidizing gas supply pipe 1a... Oxidizing gas supply port 1b... Side peripheral surface 2, 22... Circular hole 3
... Flat rib 4 ... Bottomed porous support tube 4
a... Bottomed part 4b... End of power generation part 5.15... Air electrode 6, 16... Solid electrolyte 7, 17... Fuel electrode 12.32...
Slit 29...Cylinder space 40.50...
・5OFC element 42... Slanted oxidizing gas supply port 51... Porous oxidizing gas supply pipe 51b... Side peripheral surface 51C... End 51d on the bottomed side... Open end of power generation part Side end 52...Occluded parts A, B, C, D, E...Flow of oxidizing gas Fig. 1 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8

Claims (1)

【特許請求の範囲】 1、有底筒状多孔質支持体の外周面に空気電極と固体電
解質と燃料電極とを形成してなる固体電解質型燃料電池
素子と、この固体電解質型燃料電池素子の筒内空間へと
挿入されたガス供給管とを有する固体電解質型燃料電池
であって、 前記筒内空間へと酸化ガス又は燃料ガスを 供給するガス供給部を前記ガス供給管の少なくとも側周
面に設け、かつ前記有底筒状多孔質支持体のうち前記筒
内空間を流れるガス流の上流側へと面する部分のガス透
過量を、前記有底筒状多孔質支持体のうち前記ガス流の
下流側へと面する部分のガス透過量よりも小さくしたこ
とを特徴とする固体電解質型燃料電池。
[Claims] 1. A solid oxide fuel cell element in which an air electrode, a solid electrolyte, and a fuel electrode are formed on the outer peripheral surface of a bottomed cylindrical porous support, and a solid oxide fuel cell element of this solid oxide fuel cell element. A solid oxide fuel cell having a gas supply pipe inserted into a cylinder space, wherein a gas supply section that supplies oxidizing gas or fuel gas to the cylinder space is connected to at least a side circumferential surface of the gas supply pipe. and the gas permeation amount of the portion of the bottomed cylindrical porous support facing the upstream side of the gas flow flowing through the cylinder space is determined by A solid oxide fuel cell characterized in that the amount of gas permeation is smaller than that of the portion facing the downstream side of the flow.
JP2076710A 1990-02-15 1990-03-28 Fuel cell with solid electrolyte Pending JPH03280359A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2076710A JPH03280359A (en) 1990-03-28 1990-03-28 Fuel cell with solid electrolyte
US07/651,799 US5158837A (en) 1990-02-15 1991-02-07 Solid oxide fuel cells
CA002036258A CA2036258C (en) 1990-02-15 1991-02-13 Solid oxide fuel cells
DE69121735T DE69121735T2 (en) 1990-02-15 1991-02-14 Solid oxide fuel cells
EP91301208A EP0442740B1 (en) 1990-02-15 1991-02-14 Solid oxide fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076710A JPH03280359A (en) 1990-03-28 1990-03-28 Fuel cell with solid electrolyte

Publications (1)

Publication Number Publication Date
JPH03280359A true JPH03280359A (en) 1991-12-11

Family

ID=13613096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076710A Pending JPH03280359A (en) 1990-02-15 1990-03-28 Fuel cell with solid electrolyte

Country Status (1)

Country Link
JP (1) JPH03280359A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032328A (en) * 2004-06-17 2006-02-02 Mitsubishi Materials Corp Fuel cell
JP2007080646A (en) * 2005-09-14 2007-03-29 National Institute Of Advanced Industrial & Technology Series fuel cell
JP2007227125A (en) * 2006-02-23 2007-09-06 Kyocera Corp Fuel cell stack and current collector
JP2008123706A (en) * 2006-11-08 2008-05-29 Hitachi Ltd Fuel cell power generation system
JP2009283239A (en) * 2008-05-21 2009-12-03 Toto Ltd Fuel cell, and fuel cell battery
JP2012043780A (en) * 2010-07-23 2012-03-01 Ngk Insulators Ltd Fuel cell structure
JP2013105721A (en) * 2011-11-16 2013-05-30 National Institute Of Advanced Industrial & Technology Fuel passage resident electrochemical cell and electrochemical cell module and electrochemical reaction system using the same
JP2014155923A (en) * 2014-03-20 2014-08-28 Sumitomo Electric Ind Ltd Gas decomposition apparatus and power generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032328A (en) * 2004-06-17 2006-02-02 Mitsubishi Materials Corp Fuel cell
JP2007080646A (en) * 2005-09-14 2007-03-29 National Institute Of Advanced Industrial & Technology Series fuel cell
JP2007227125A (en) * 2006-02-23 2007-09-06 Kyocera Corp Fuel cell stack and current collector
JP2008123706A (en) * 2006-11-08 2008-05-29 Hitachi Ltd Fuel cell power generation system
JP2009283239A (en) * 2008-05-21 2009-12-03 Toto Ltd Fuel cell, and fuel cell battery
JP2012043780A (en) * 2010-07-23 2012-03-01 Ngk Insulators Ltd Fuel cell structure
JP2013105721A (en) * 2011-11-16 2013-05-30 National Institute Of Advanced Industrial & Technology Fuel passage resident electrochemical cell and electrochemical cell module and electrochemical reaction system using the same
JP2014155923A (en) * 2014-03-20 2014-08-28 Sumitomo Electric Ind Ltd Gas decomposition apparatus and power generator

Similar Documents

Publication Publication Date Title
US5336569A (en) Power generating equipment
KR102119441B1 (en) Fuel cell system, combined power generation system, and control method for fuel cell system
US5158837A (en) Solid oxide fuel cells
JP2018087501A (en) Control device of hybrid power system, hybrid power system, control method of hybrid power system, and control program of hybrid power system
JP5980144B2 (en) Power generation system, power generation system operation method, and control device
JP3545958B2 (en) Solid oxide fuel cell
US8361671B2 (en) Solid electrolyte fuel-cell device
JPH03280359A (en) Fuel cell with solid electrolyte
US20060134485A1 (en) Fuel battery
JP2018088324A (en) Control device for hybrid power generation system, hybrid power generation system, control method for hybrid power generation system and control program for hybrid power generation system
US20160254561A1 (en) Method for Producing a Solid Oxide Fuel Cell
US7470480B2 (en) Solid electrolyte fuel-cell device
KR20220034198A (en) Fuel cell system and its control method
JP6734048B2 (en) FUEL CELL CARTRIDGE, FUEL CELL MODULE, FUEL CELL CARTRIDGE CONTROL DEVICE AND CONTROL METHOD
JP2597730B2 (en) Method for producing bottomed porous support tube for solid oxide fuel cell
JP6239229B2 (en) Fuel cell system and fuel cell operating method
JPH0758618B2 (en) Solid oxide fuel cell
KR102191620B1 (en) Cylindrical solid oxide fuel cell stack using modified propane gas
JP2021128876A (en) Power generation system, control device of the same, control method, and control program
US20080152981A1 (en) Solid oxide fuel cell power generator
JP2007026927A (en) Fuel reformer and fuel cell generator
JP6879732B2 (en) Reduction processing system control device, reduction processing system, reduction processing system control method and reduction processing system control program
JP2003086189A (en) Cylindrical, vertically-striped fuel cell
Emley et al. Preparation of Freeze Cast T-SOFCs and a Universal Electrochemical Testing Fixture
Sidwell et al. Thermodynamic limits of electrical efficiency in hydrocarbon fueled SOFC using internal reforming