JP3545958B2 - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell Download PDF

Info

Publication number
JP3545958B2
JP3545958B2 JP36540098A JP36540098A JP3545958B2 JP 3545958 B2 JP3545958 B2 JP 3545958B2 JP 36540098 A JP36540098 A JP 36540098A JP 36540098 A JP36540098 A JP 36540098A JP 3545958 B2 JP3545958 B2 JP 3545958B2
Authority
JP
Japan
Prior art keywords
fuel cell
air
cell
combustion chamber
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36540098A
Other languages
Japanese (ja)
Other versions
JP2000188124A (en
Inventor
和正 丸谷
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP36540098A priority Critical patent/JP3545958B2/en
Publication of JP2000188124A publication Critical patent/JP2000188124A/en
Application granted granted Critical
Publication of JP3545958B2 publication Critical patent/JP3545958B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/525Solid Oxide Fuel Cells [SOFC]

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、固体電解質型燃料電池に関し、特に、燃焼室仕切板を用いて燃焼室および反応室を形成した固体電解質型燃料電池に関する。 The present invention relates to a solid oxide fuel cell, in particular, it relates to a solid oxide fuel cell to a combustion chamber and reaction chamber with a combustion chamber partition plate.
【0002】 [0002]
【従来技術】 [Prior art]
従来の固体電解質型燃料電池は、図6に示すように、反応容器51内に、空気室仕切板53、燃焼室仕切板55、燃料ガス室仕切板57を用いて空気室A、燃焼室B、反応室C、燃料ガス室Dが形成されている。 Conventional solid electrolyte fuel cell, as shown in FIG. 6, the reaction vessel 51, the air chamber partition plate 53, the combustion chamber partition plate 55, with a fuel gas chamber partition plate 57 the air chamber A, the combustion chamber B , the reaction chamber C, the fuel gas chamber D is formed.
【0003】 [0003]
反応容器51内に収容された複数の有底筒状の固体電解質型燃料電池セル59は燃焼室仕切板55に形成された複数のセル挿入孔60にそれぞれ挿入固定され、その開口部61は燃焼室仕切板55から燃焼室B内に突出しており、その内部には空気室仕切板53に固定された空気導入管63の一端が挿入されている。 A plurality of bottomed tubular solid oxide fuel cell 59 housed in the reaction vessel 51 and each fixedly inserted into a plurality of cell insertion holes 60 formed in the combustion chamber partition plate 55, the opening 61 is burned protrudes from the chamber partition plate 55 into the combustion chamber B, one end of the air inlet tube 63 which is fixed to the air chamber partition plate 53 is inserted therein.
【0004】 [0004]
燃焼室仕切板55には、余剰の燃料ガスを燃焼室Bに導入するための余剰燃料ガス噴出孔64が形成されており、燃料ガス室仕切板57には、燃料ガスを反応室C内に供給するための供給孔が形成されている。 The combustion chamber partition plate 55, which is excess fuel gas injection holes 64 for introducing the excess fuel gas in the combustion chamber B is formed, the fuel gas chamber partition plate 57, the fuel gas into the reaction chamber C supply hole for supplying is formed.
【0005】 [0005]
また、反応容器51には、例えば水素からなる燃料ガスを導入する燃料ガス導入口65、空気を導入する空気導入口67、燃焼室B内で燃焼したガスを排出するための排気口69が形成されている。 Further, the reaction vessel 51, for example, a fuel gas inlet 65 for introducing a fuel gas consisting of hydrogen, air inlet openings 67, an exhaust port 69 for discharging combustion gas in the combustion chamber B for introducing the air forming It is.
【0006】 [0006]
固体電解質型燃料電池セル59は、円筒状のポーラスな空気極の表面に固体電解質層が形成され、この固体電解質層の表面に燃料極層が形成され、さらに、集電体層が空気極層と固体電解質層に接合されて構成されている。 Solid oxide fuel cell 59, the solid electrolyte layer is formed on the surface of the cylindrical porous air electrode, the fuel electrode layer is formed on the surface of the solid electrolyte layer, further, the current collector layer is the air electrode layer and it is configured be bonded to the solid electrolyte layer and.
【0007】 [0007]
このような固体電解質型燃料電池は、空気室Aからの空気を、空気導入管63を介して固体電解質型燃料電池セル59内にそれぞれ供給し、かつ、燃料ガス室Dからの燃料ガスを複数の固体電解質型燃料電池セル59間に供給し、反応室Cにて反応させ、余剰の空気と余剰の燃料ガスを燃焼室Bにて燃焼させ、燃焼したガスが排気口69から外部に排出される。 Such solid electrolyte fuel cell, the air from the air chamber A, through the air introducing pipe 63 and supplied to the solid oxide fuel cell 59, and a plurality of fuel gas from the fuel gas chamber D fed between the solid oxide fuel cell units 59, allowed to react in the reaction chamber C, and excess air and excess fuel gas is burned in the combustion chamber B, the combusted gas is discharged to the outside from the exhaust port 69 that.
【0008】 [0008]
反応室C内の反応は、固体電解質型燃料電池セル59内に供給された空気がポーラスな空気極層を固体電解質層に向けて拡散し、また燃料ガスが固体電解質型燃料電池セル59の外側から固体電解質層に向けて拡散し、この固体電解質にて生じる。 The reaction in the reaction chamber C the supplied air is porous air electrode in a solid oxide fuel cell in 59 diffuses toward the solid electrolyte layer, also outside of the fuel gas is the solid oxide fuel cell 59 It diffuses toward the solid electrolyte layer from occurring in the solid electrolyte.
【0009】 [0009]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
しかしながら、従来の固体電解質型燃料電池は、固体電解質型燃料電池セル59内に挿入される空気導入管63の外径が、前記セル59の内径の50%〜60%と小さかったため、空気が空気極層内を充分に拡散せず、空気極層と固体電解質層の界面に空気を効率よく供給できず、空気の多くが空気導入管63とセル59の間の空間を、発電反応に寄与することなく素通りしていた。 However, conventional solid electrolyte fuel cell, since the outer diameter of the air inlet tube 63 which is inserted into the solid oxide fuel cell in 59, was as small as 50% to 60% of the inner diameter of the cell 59, air air not sufficiently diffuse within the electrode layer can not interface to a supply air efficiently in the air electrode layer and the solid electrolyte layer, more air is the space between the air inlet tube 63 and the cell 59 contributes to power generation reaction it was pass through without.
【0010】 [0010]
このため、発電反応に必要とされる空気中の酸素の供給が、空気極層と固体電解質層の間の発電反応界面で不足し、これにより分極抵抗が増大し、発電性能を著しく劣化する虞があった。 Fear Therefore, the supply of oxygen in the air required for the power generation reaction, insufficient power generation reaction interface between the air electrode layer and the solid electrolyte layer, thereby the polarization resistance increases, significantly degrade the power generation performance was there.
【0011】 [0011]
本発明は、空気極層と固体電解質層の界面に空気を効率よく供給できる固体電解質型燃料電池を提供することを目的とする。 The present invention aims to provide a solid oxide fuel cell capable of supplying good air efficiency at the interface of the air electrode layer and the solid electrolyte layer.
【0012】 [0012]
【課題を解決するための手段】 In order to solve the problems]
本発明者は、上記の課題に検討を加えた結果、固体電解質型燃料電池セル内に空気を供給する空気導入管とセルの間の、空気の流れ抵抗の小さい、即ち空気が反応に寄与せずに素通りする空間を小さくすることにより、空気が空気極層内に効率よく拡散され、空気極層と固体電解質層の間の反応界面に酸素を充分に供給できることを見い出し、本発明に至ったのである。 The present inventor has added examined the above problems, between the air inlet tube and a cell for supplying air to the solid oxide fuel cell in a cell, a small air flow resistance, i.e. the air is not contribute to the reaction by reducing the space pass through without, the air is efficiently diffused to the air electrode layer, found to be able to sufficiently supply oxygen to the reaction interface between the air electrode layer and the solid electrolyte layer, leading to the present invention than is.
【0013】 [0013]
即ち、本発明の固体電解質型燃料電池は、反応容器内に燃焼室仕切板を用いて燃焼室と反応室を形成し、複数の有底筒状の固体電解質型燃料電池セルを、前記燃焼室仕切板に形成された複数のセル挿入孔に、開口部が前記燃焼室仕切板から前記燃焼室側に突出するようにそれぞれ挿入し固定するとともに、前記固体電解質型燃料電池セル内に空気導入管をそれぞれ挿入してなり、空気を前記空気導入管により前記固体電解質型燃料電池セル内にそれぞれ供給し、かつ、燃料ガスを前記反応室内の前記固体電解質型燃料電池セル間に供給して反応させる固体電解質型燃料電池であって、前記空気導入管の外径が、前記固体電解質型燃料電池セルの内径の80%以上のものである。 That is, the solid electrolyte fuel cell of the present invention, by using the combustion chamber partition plate into the reaction vessel to form a reaction chamber and the combustion chamber, a plurality of bottomed tubular solid oxide fuel cell units, the combustion chamber a plurality of cell insertion hole formed in the partition plate, an opening portion is respectively inserted and fixed so as to protrude into the combustion chamber side from the combustion chamber partition plate, an air-introducing tube into the solid oxide fuel cell in the cell the result was inserted respectively, air was supplied to the air inlet pipe by the solid oxide fuel cell in the cell, and, reacting the fuel gas is supplied between the solid electrolyte fuel cell of the reaction chamber a solid oxide fuel cell, the outer diameter of said air inlet tube is not less than 80% of the inner diameter of the solid oxide fuel cell.
【0014】 [0014]
ここで、空気導入管の肉厚は1mm以下であることが望ましい。 Here, it is desirable that the thickness of the air inlet tube is 1mm or less.
【0015】 [0015]
【作用】 [Action]
本発明の固体電解質型燃料電池では、空気導入管の外径が、固体電解質型燃料電池セルの内径の80%以上としたので、空気を供給する空気導入管と固体電解質型燃料電池セルの間の、空気の流れ抵抗を大きくでき、即ち空気が反応に寄与せずに素通りする空間を小さくでき、比較的抵抗の大きい多孔質な空気極層内にも効率よく空気が拡散し、固体電解質層と空気極層の間の発電反応界面に充分な酸素を供給でき、酸素の供給律速に起因する濃度過電圧、即ち分極抵抗が低減され、効率的な発電ができ、発電性能を向上することができる。 The solid oxide fuel cell of the present invention, the outer diameter of the air inlet tube, since 80% or more of the inner diameter of the solid oxide fuel cell units, between the air inlet tube and a solid electrolyte type fuel cell for supplying air of, possible to increase the air flow resistance, i.e. air can be reduced space pass through without contributing to the reaction, also effectively air is diffused in a relatively resistance of large porous air electrode layer, the solid electrolyte layer and can supply sufficient oxygen to the power generation reaction interface between the air electrode layer, the concentration overpotential caused by the oxygen supply rate-limiting, i.e. the polarization resistance is reduced, it is efficient power generation, it is possible to improve the power generation performance .
【0016】 [0016]
また、空気導入管の肉厚を1mm以下とすることにより、効率的な熱伝達ができるとともに、空気導入管の内径が大きくなるため管内の流速が小さくなり、管内を流れる空気の予熱が充分にできるようになる。 Further, by setting the thickness of the air inlet tube and 1mm or less, it is efficient heat transfer, flow rate in the tube for the inner diameter of the air inlet tube is increased is reduced, sufficient preheating of the air flowing through the tube become able to. このため、更に発電性能を向上することができる。 Therefore, it is possible to further improve the power generation performance.
【0017】 [0017]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
本発明の固体電解質型燃料電池は、図1に示すように、反応容器1内に、空気室仕切板3、燃焼室仕切板5、燃料ガス室仕切板7を用いて空気室A、燃焼室B、反応室C、燃料ガス室Dが形成されている。 Solid oxide fuel cell of the present invention, as shown in FIG. 1, the reaction vessel 1, the air chamber partition plate 3, a combustion chamber partition plate 5, with a fuel gas chamber partition plate 7 air chamber A, the combustion chamber B, the reaction chamber C, the fuel gas chamber D is formed.
【0018】 [0018]
反応容器1内に収容された複数の有底筒状の固体電解質型燃料電池セル9は、燃焼室仕切板5に形成された複数のセル挿入孔6にそれぞれ挿入固定され、その開口部10は燃焼室仕切板5から燃焼室B内に突出しており、その内部には、空気室仕切板3に挿入固定された空気導入管11の一端が挿入されている。 Reaction vessel 1 in a plurality of bottomed tubular solid oxide fuel cell 9 accommodated in each fixedly inserted into a plurality of cell insertion hole 6 formed in the combustion chamber partition plate 5, the opening 10 is It protrudes into the combustion chamber B from the combustion chamber partition plate 5, the inside, one end of the air inlet tube 11 which is inserted and fixed into the air chamber partition plate 3 is inserted.
【0019】 [0019]
燃焼室仕切板5には、図2に示すように、余剰の燃料ガスを燃焼室Bに導入するための多数の余剰燃料ガス噴出孔12が形成されており、図1に示したように、燃料ガス室仕切板7には、燃料ガスを反応室C内に供給するための多数の供給孔14が形成されている。 The combustion chamber partition plate 5, as shown in FIG. 2, a number of excess fuel gas injection holes 12 for introducing the excess fuel gas in the combustion chamber B is formed, as shown in FIG. 1, a fuel gas chamber partition plate 7 a number of supply holes 14 for supplying the fuel gas into the reaction chamber C is formed.
【0020】 [0020]
また、反応容器1には、例えば水素からなる燃料ガスを導入する燃料ガス導入口13、空気を導入する空気導入口17、燃焼室B内で燃焼したガスを排出するための排気口19が形成されている。 Further, the reaction vessel 1, for example, a fuel gas inlet 13 for introducing a fuel gas consisting of hydrogen, air inlet openings 17 for introducing the air, an exhaust port 19 for discharging combustion gas in the combustion chamber B is formed It is.
【0021】 [0021]
セル9は、図3に示すように、例えば、支持管としてのLaMnO 系空気極層25と、この空気極層25の表面に形成されたY 安定化ZrO からなる固体電解質層26と、固体電解質層26の表面に形成されたNi−ジルコニア系の燃料極層27と、空気極層25と電気的に接続されるLaCrO 系よりなるインターコネクタ28とから構成されている。 Cell 9, as shown in FIG. 3, for example, a LaMnO 3 based air electrode layer 25 as a support tube, a solid electrolyte layer made of Y 2 O 3 stabilized ZrO 2 formed on the surface of the air electrode layer 25 26, a fuel electrode layer 27 of Ni- zirconia formed on the surface of the solid electrolyte layer 26, and an interconnector 28. consisting LaCrO 3 system connected air electrode layer to 25 electrically.
【0022】 [0022]
そして、図4に示すように、一方のセル9のインターコネクタ28を、他方のセル9の燃料極層27にNi金属繊維等の接続部材31を介して、他方のセル9の燃料極層27に接続して、複数のセル9が電気的に接続され、スタック33が構成されており、このようなスタック33が、図1に示したように、反応容器1内に収容されて固体電解質型燃料電池が構成されている。 Then, as shown in FIG. 4, the interconnector 28 of one cell 9 via the connecting member 31 such as Ni metal fibers to the fuel electrode layer 27 of the other cell 9, the fuel electrode layer 27 of the other cell 9 connected to a plurality of cells 9 are electrically connected, the stack 33 is configured, such a stack 33, as shown in FIG. 1, it is housed in the reaction vessel 1 by the solid electrolyte type fuel cell is constituted. 反応容器1内には、一つのセル9のインターコネクタ28に接続された電極35と、他方のセル9の燃料極層27に接続された電極37が配置されており、これらの電極35、37を介して電力が取り出される。 The reaction vessel 1, an electrode 35 connected to the interconnector 28 of one cell 9, and the electrode 37 connected to the fuel electrode layer 27 of the other cells 9 are arranged, the electrodes 35 and 37 power via a retrieved.
【0023】 [0023]
このような固体電解質型燃料電池は、空気を空気導入口17から空気導入管11を介してセル9内に導入するとともに、燃料ガス導入口13から水素を導入し、燃料ガス室仕切板7の分散孔で分散してセル9の外部に導入することにより行われ、余剰の空気と燃料ガスは燃焼室B内で燃焼させられ、排気口19から外部に排出される。 Such solid electrolyte fuel cell, together with the air introduced into the cell 9 via the air introducing pipe 11 from the air inlet 17, hydrogen is introduced from the fuel gas inlet 13, the fuel gas chamber partition plate 7 performed by introducing the outside of the cell 9 dispersed in a distributed pores, excess air and fuel gas is burned in the combustion chamber B, and is discharged from the exhaust port 19 to the outside.
【0024】 [0024]
図5に固体電解質型燃料電池セル一本のガスの流れを示す。 It shows the flow of the solid oxide fuel cell single gas in FIG. 水素ガス(燃料ガス)はセル下方から導入され、発電により酸化されながら上方へと進む。 Hydrogen gas (fuel gas) is introduced from the cell below, it proceeds upward while being oxidized by the generator. 一方空気(酸化ガス)は空気導入管11を介してセル上方よりセル内部下方へ導入される。 On the other hand the air (oxidizing gas) is introduced into the cell interior lower than the cell upwardly through the air inlet tube 11. そしてセル内部下方より上部へと流れる。 The flow from the inner cell lower to the upper. セル上部より排出された空気は発電で消費されなかった水素ガスと反応し、燃焼室B内で燃焼する。 The air discharged from the cell top reacts with hydrogen gas not consumed in power generation, it is burned in the combustion chamber B.
【0025】 [0025]
そして、本発明の固体電解質型燃料電池では、図2(c)に示すように、空気導入管11の外径R がセル9の内径R の80%以上とされている。 Then, in the solid oxide fuel cell of the present invention, as shown in FIG. 2 (c), the outer diameter R 1 of the air inlet tube 11 is a more than 80% of the inner diameter R 2 of the cell 9. ここで、空気導入管11の肉厚tは1mm以下であることが、空気導入管11内を流れる空気の予熱を充分にするという点から望ましい。 Here, it thickness t of the air inlet tube 11 is 1mm or less is desirable from the viewpoint of sufficiently preheating the air flowing in the air introducing pipe 11.
【0026】 [0026]
以上のように構成された固体電解質型燃料電池では、空気導入管11の外径R を、セル9の内径R の80%以上としたので、空気を供給する空気導入管11とセル9の間の空気の流れ抵抗を大きくでき、即ち空気が反応に寄与せずに素通りする空間を小さくでき、比較的抵抗の大きい多孔質な空気極層25内にも効率よく空気が拡散し、固体電解質層26と空気極層25の間の発電反応界面に充分な酸素を供給でき、酸素の供給律速に起因する濃度過電圧、即ち分極抵抗が低減され、効率的な発電ができ、発電性能を向上することができる。 The solid oxide fuel cell configured as described above, the outer diameter R 1 of the air inlet tube 11, since 80% or more of the inner diameter R 2 of the cell 9, the air inlet tube 11 for supplying air and the cell 9 can increase the air flow resistance of between, i.e. air can be reduced space pass through without contributing to the reaction, also effectively air is diffused in a relatively resistance of large porous air electrode layer 25, the solid can supply sufficient oxygen to the power generation reaction interface between the electrolyte layer 26 and the air electrode layer 25, the concentration over-voltage caused by the oxygen supply rate-limiting, i.e. the polarization resistance is reduced, it is efficient power generation, improve the power generation performance can do.
【0027】 [0027]
また、空気導入管11の肉厚tを1mm以下とすることにより、効率的な熱伝達ができるとともに、空気導入管11の内径が大きくなるため、管内の流速が小さくなり、管内を流れる空気の予熱を充分にでき、このような予熱された空気をセル9内に導入でき、このため、さらに発電性能を向上することができる。 Further, by making the thickness t of the air inlet tube 11 and 1mm or less, it is efficient heat transfer, since the inner diameter of the air inlet tube 11 is increased, the flow velocity in the tube is reduced, the air flowing through the tube it can preheating sufficiently, can introduce such preheated air in the cell 9, and thus, it is possible to further improve the power generation performance.
【0028】 [0028]
【実施例】 【Example】
空気極材料として純度99.9%で平均粒径が5μmのLa 0.9 Sr 0.1 MnO を、固体電解質材料として純度が99.9%の平均粒径が0.7μmの10モル%Y を含有したZrO を、インターコネクタ材料として純度99.9%、平均粒径が1μmのLa 0.8 Ca 0.22 CrO 粉末を、燃料極材料として80重量%NiまたはRuを含有するZrO をそれぞれ準備した。 The La 0.9 Sr 0.1 MnO 3 average particle diameter of 5μm with a purity of 99.9% as an air electrode material, the purity as a solid electrolyte material is 99.9% of the average particle size of 0.7μm to 10 mol% Y a 2 O 3 ZrO 2 containing a purity of 99.9% as interconnector material, an average particle size of 1μm La 0.8 Ca 0.22 CrO 3 powder, 80 wt% Ni or Ru as anode material the ZrO 2 containing the prepared.
【0029】 [0029]
La 0.9 Sr 0.1 MnO 粉末を押し出し成形にて、焼結後、外径が18mm、厚みが2.3mm、長さが300mmになるような中空円筒状の空気極成形体を作製した。 La at 0.9 Sr 0.1 MnO 3 powder extrusion molding, after sintering, an outer diameter of 18 mm, a thickness of 2.3 mm, a hollow cylindrical cathode molded body such as the length is 300mm manufacturing did. この後、10モル%Y を含有したZrO 粉末と、La 0.8 Ca 0.22 CrO 粉末を用いてドクターブレード法にて厚み150μmの固体電解質シートおよびインターコネクタシートを作製した後、それぞれのシートを上記の空気極成形体に巻き付け、1500℃で3時間焼成した。 Thereafter, to prepare a ZrO 2 powder containing 10 mol% Y 2 O 3, a solid electrolyte sheet and the interconnector sheet having a thickness of 150μm by a doctor blade method using the La 0.8 Ca 0.22 CrO 3 powder after the respective sheet wrapped around the air electrode molded product described above was calcined for 3 hours at 1500 ° C..
【0030】 [0030]
さらに、固体電解質層の表面に80重量%NiOまたはRuを含有するZrO 粉末からなるスラリーを塗布し、1400℃で2時間焼き付けを行い、図3に示したような固体電解質型燃料電池セルを作製した。 Furthermore, a slurry comprising ZrO 2 powder containing 80 wt% NiO or Ru on the surface of the solid electrolyte layer is applied, for 2 hours and baked at 1400 ° C., the solid oxide fuel cell shown in FIG. 3 It was produced. 固体電解質層の厚みは100μmであった。 The thickness of the solid electrolyte layer was 100 [mu] m.
【0031】 [0031]
16本の円筒状固体電解質型燃料電池セルを4直4並列に接続してスタックを形成し、このスタックを図1に示すような反応容器内に配置した。 Forming a stack by connecting sixteen cylindrical solid oxide fuel cell inline four parallel 4 and place the stack in the reaction vessel as shown in Figure 1. 尚、燃焼室仕切板からのセルの突出高さは15mmであった。 Note that the protruding height of the cell from the combustion chamber partition plate was 15 mm. そして、空気導入管の外径をセルの内径の80%、90%とした本発明の固体電解質型燃料電池と、60%とした従来の固体電解質型燃料電池を作製した。 Then, 80% of the inner diameter of the cell an outside diameter of the air inlet tube, were produced and a solid electrolyte type fuel cell of the present invention was 90%, the conventional solid electrolyte fuel cell was 60%. ここで、空気導入管の肉厚は全て1mmとした。 Here, it was all the thickness of the air inlet tube is 1mm.
【0032】 [0032]
そして、空気極内部に40SLMの空気を、燃料極側に6.3SLMの水素ガスを流して、発電炉の温度設定を1000℃として発電した。 Then, the air in 40SLM inside the air electrode, the fuel electrode side by flowing a hydrogen gas 6.3 slm, and generating a temperature setting of the power reactor as 1000 ° C.. この発電試験において、出力密度を測定したところ、従来の固体電解質型燃料電池では、0.1W/cm であり、本発明の固体電解質型燃料電池では、空気導入管の外径とセルの内径比が80%のもので0.13W/cm 、前記比が90%のもので0.14W/cm であった。 In this power generation test was measured power density, in the conventional solid electrolyte type fuel cell, a 0.1 W / cm 2, in the solid oxide fuel cell of the present invention, the inner diameter of the outer diameter and the cell of the air inlet tube ratio 0.13 W / cm 2 at those 80%, the ratio was 0.14 W / cm 2 at of 90%. このことから、分極抵抗が効果的に低減できたことが判る。 Therefore, it can be seen that the polarization resistance could be effectively reduced.
【0033】 [0033]
【発明の効果】 【Effect of the invention】
本発明の固体電解質型燃料電池では、空気を供給する空気導入管と固体電解質型燃料電池セルの間の、空気の流れ抵抗を大きくでき、即ち空気が反応に寄与せずに素通りする空間を小さくでき、比較的抵抗の大きい多孔質な空気極層内にも効率よく空気が拡散し、固体電解質層と空気極層の間の発電反応界面に充分な酸素を供給でき、酸素の供給律速に起因する濃度過電圧、即ち分極抵抗が低減され、効率的な発電ができ、発電性能を向上することができる。 The solid oxide fuel cell of the present invention, between the air inlet tube and a solid electrolyte type fuel cell for supplying air, can increase the air flow resistance, i.e. a space through which air pass through without contributing to the reaction decreased can relatively be efficiently air is diffused to the resistance of the large porous cathode layer, it can supply sufficient oxygen to the power generation reaction interface between the solid electrolyte layer and the air electrode layer, caused by the oxygen supply rate-limiting concentration overpotential, i.e. the polarization resistance is reduced to, it is efficient power generation, it is possible to improve the power generation performance.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明の固体電解質型燃料電池の模式図である。 1 is a schematic view of a solid electrolyte fuel cell of the present invention.
【図2】燃焼室仕切板およびその近傍を示すもので、(a)は側面図、(b)は平面図、(c)はセルと空気導入管との関係を示す平面図である。 [Figure 2] shows the combustion chamber partition plate and the vicinity thereof is a plan view showing (a) shows a side view, (b) is a plan view, (c) the relationship between the cell and the air inlet tube.
【図3】固体電解質型燃料電池セルの断面図である。 3 is a cross-sectional view of a solid oxide fuel cell.
【図4】スタックを示す平面図である。 4 is a plan view showing a stack.
【図5】固体電解質型燃料電池セルのガスの流れを説明するための説明図である。 5 is an explanatory diagram for explaining the flow of the gas of the solid oxide fuel cell.
【図6】従来の固体電解質型燃料電池の模式図である。 6 is a schematic view of a conventional solid oxide fuel cell.
【符号の説明】 DESCRIPTION OF SYMBOLS
1・・・反応容器5・・・燃焼室仕切板6・・・セル挿入孔9・・・固体電解質型燃料電池セル10・・・開口部11・・・空気導入管B・・・燃焼室C・・・反応室 1 ... reaction vessel 5 ... combustion chamber partition plate 6 ... cell insertion hole 9 ... solid oxide fuel cell 10 ... opening 11 ... air introducing pipe B ... combustion chamber C ··· reaction chamber

Claims (1)

  1. 反応容器内に燃焼室仕切板を用いて燃焼室と反応室を形成し、複数の有底筒状の固体電解質型燃料電池セルを、前記燃焼室仕切板に形成された複数のセル挿入孔に、開口部が前記燃焼室仕切板から前記燃焼室側に突出するようにそれぞれ挿入し固定するとともに、前記固体電解質型燃料電池セル内に空気導入管をそれぞれ挿入してなり、空気を前記空気導入管により前記固体電解質型燃料電池セル内にそれぞれ供給し、かつ、燃料ガスを前記反応室内の前記固体電解質型燃料電池セル間に供給して反応させる固体電解質型燃料電池であって、前記空気導入管の外径が、前記固体電解質型燃料電池セルの内径の80%以上であることを特徴とする固体電解質型燃料電池。 With a combustion chamber partition plate into the reaction vessel to form a reaction chamber and the combustion chamber, a plurality of bottomed tubular solid oxide fuel cell, a plurality of cell insertion hole formed in the combustion chamber partition plate , together with the opening to insert each fixed so as to protrude into the combustion chamber side from the combustion chamber partition plate made by inserting each air inlet tube to said solid electrolyte type fuel cell in the cell, the air air inlet respectively supplied to the solid oxide fuel cell in the cell by a pipe, and a solid oxide fuel cell to react with supplied between the fuel gas the reaction chamber of the solid oxide fuel cell, the air inlet the outer diameter of the pipe, the solid electrolyte type fuel cell, wherein the at least 80% of the inner diameter of the solid oxide fuel cell.
JP36540098A 1998-12-22 1998-12-22 Solid electrolyte type fuel cell Expired - Fee Related JP3545958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36540098A JP3545958B2 (en) 1998-12-22 1998-12-22 Solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36540098A JP3545958B2 (en) 1998-12-22 1998-12-22 Solid electrolyte type fuel cell

Publications (2)

Publication Number Publication Date
JP2000188124A JP2000188124A (en) 2000-07-04
JP3545958B2 true JP3545958B2 (en) 2004-07-21

Family

ID=18484168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36540098A Expired - Fee Related JP3545958B2 (en) 1998-12-22 1998-12-22 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JP3545958B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813836B2 (en) 2003-12-09 2010-10-12 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
JP5285253B2 (en) * 2007-09-14 2013-09-11 三菱重工業株式会社 The fuel cell module
JP5188236B2 (en) * 2008-03-28 2013-04-24 東邦瓦斯株式会社 Gas supply and exhaust manifolds and a solid oxide fuel cell bundles
US9193065B2 (en) 2008-07-10 2015-11-24 Intouch Technologies, Inc. Docking system for a tele-presence robot
US9842192B2 (en) 2008-07-11 2017-12-12 Intouch Technologies, Inc. Tele-presence robot system with multi-cast features
US8996165B2 (en) 2008-10-21 2015-03-31 Intouch Technologies, Inc. Telepresence robot with a camera boom
US8849680B2 (en) 2009-01-29 2014-09-30 Intouch Technologies, Inc. Documentation through a remote presence robot
US10343283B2 (en) 2010-05-24 2019-07-09 Intouch Technologies, Inc. Telepresence robot system that can be accessed by a cellular phone
CN102600788B (en) * 2012-03-14 2014-07-09 江苏揽山环境科技有限公司 Multi-stage spray reaction tower

Also Published As

Publication number Publication date
JP2000188124A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
EP0809313B2 (en) Electrochemical cells and their production, and electrochemical devices using such electrochemical cells
EP1236236B1 (en) Fuel cell assembly
US6878480B2 (en) Electrochemical apparatus with reactant micro-channels
AU730602B2 (en) Integrated solid oxide fuel cell and reformer
EP0286360B1 (en) Self-supporting electrode with integral gas feed conduit
CN1332463C (en) Anode supported flat tubular solid oxide fuel battery and its mfg. method
AU2002219941B2 (en) Multipurpose reversible electrochemical system
EP0505186B1 (en) Solid electrolyte type fuel cell
CA2486370C (en) Solid oxide fuel cell system
KR100717985B1 (en) Fuel cell array apparatus
JP2528989B2 (en) Solid electrolyte type fuel cell
EP1465278B1 (en) Elctrochemical cell comprising an electrode with honeycomb structure
EP0264688A1 (en) Fuel cell generator containing self-supporting high gas flow solid oxide electrolyte fuel cells
US5185219A (en) Solid oxide fuel cells
JP4794178B2 (en) Solid electrolyte fuel cell
US5786105A (en) Solid oxide fuel cell
EP0194374A1 (en) High temperature electrochemical cells
JP2656943B2 (en) Improved solid electrolyte fuel cell and assembly
US6440596B1 (en) Solid-oxide fuel cell hot assembly
US6551735B2 (en) Honeycomb electrode fuel cells
US5288562A (en) Solid electrolyte fuel cell
EP1309027B1 (en) Fuel cell
JP4879460B2 (en) Solid oxide fuel cell
JP4980906B2 (en) Variable resistance electrode structure
US20030148160A1 (en) Anode-supported tubular solid oxide fuel cell stack and method of fabricating the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees