JP2006100152A - Fuel cell system and its inspection system - Google Patents

Fuel cell system and its inspection system Download PDF

Info

Publication number
JP2006100152A
JP2006100152A JP2004285788A JP2004285788A JP2006100152A JP 2006100152 A JP2006100152 A JP 2006100152A JP 2004285788 A JP2004285788 A JP 2004285788A JP 2004285788 A JP2004285788 A JP 2004285788A JP 2006100152 A JP2006100152 A JP 2006100152A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
back pressure
air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004285788A
Other languages
Japanese (ja)
Inventor
Katsuto Kawai
克人 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004285788A priority Critical patent/JP2006100152A/en
Publication of JP2006100152A publication Critical patent/JP2006100152A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To improve the control precision of an air pressure control valve which can control the back pressure of off-gas from a fuel cell, and to effectively prevent the breakage of the fuel cell. <P>SOLUTION: A fuel sell system is provided with the back pressure control valve 28 which controls the back pressure of the air off-gas discharged from the fuel cell, and a control device 100 which controls the gas pressure of the inlet side of the fuel cell to target gas pressure corresponding to a target air flow by controlling the valve opening of the back pressure control valve 28. The valve opening of the back pressure control valve 28 is decided according to at least one of the temperature and the humidity of the air supplied to the fuel cell. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池システム及び燃料電池の検査システムに係り、特に、極間差圧に起因する燃料電池の破損防止に有効な技術に関する。   The present invention relates to a fuel cell system and a fuel cell inspection system, and more particularly to a technique effective in preventing damage to a fuel cell due to an inter-electrode differential pressure.

いわゆる固体高分子電解質型の燃料電池は、電解質膜の両側にアノード(燃料極)とカソード(空気極)とを備え、アノードに水素ガスに代表される燃料ガスが供給され、カソードに空気に代表される酸化ガスが供給されることで、電気を外部に取り出す。一般に、燃料ガスは、例えば高圧タンクに貯留されており、レギュレータで所定の圧力に調整されてアノードに供給され、酸化ガスはコンプレッサにより大気中の空気が圧送されることでカソードに供給される。   A so-called solid polymer electrolyte type fuel cell has an anode (fuel electrode) and a cathode (air electrode) on both sides of an electrolyte membrane, a fuel gas typified by hydrogen gas is supplied to the anode, and a cathode is represented by air. Electricity is taken out by supplying the oxidized gas. In general, the fuel gas is stored in, for example, a high-pressure tank, adjusted to a predetermined pressure by a regulator, and supplied to the anode, and the oxidizing gas is supplied to the cathode by pressure-feeding atmospheric air by a compressor.

ところで、かかる燃料電池においては、実際に発電を行わせて不具合の有無を検査することがある。この検査は、例えば燃料電池への供給ガスを任意の流量,温度,湿度に調整する等して行われる(特許文献1,2参照)。
特開2002−372262号公報 特開2003−282115号広報
By the way, in such a fuel cell, there is a case where power generation is actually performed to check for defects. This inspection is performed, for example, by adjusting the supply gas to the fuel cell to an arbitrary flow rate, temperature, and humidity (see Patent Documents 1 and 2).
JP 2002-372262 A JP 2003-282115 A

しかしながら、検査時にこれら供給ガスの温度や湿度等の条件を変えると、温度や湿度は圧力(背圧)に影響する要因であるため背圧が変動してしまい、極間差圧によって電解質膜が損傷し、燃料電池の破損に繋がるおそれがある。また、燃料電池システムの運転時においても、周辺環境の変化に伴い供給ガスの温度や湿度等の条件が変わり得るので、同様のおそれがある。さらに、背圧が上昇すると、コンプレッサの消費電力が増大し、燃料電池システムの発電効率が低下してしまうという課題もある。   However, if the conditions such as the temperature and humidity of these supply gases are changed during inspection, the back pressure fluctuates because the temperature and humidity are factors that affect the pressure (back pressure). There is a risk of damage to the fuel cell. Further, even during operation of the fuel cell system, conditions such as the temperature and humidity of the supply gas can change with changes in the surrounding environment, so that there is a similar risk. Furthermore, when the back pressure increases, there is a problem that the power consumption of the compressor increases and the power generation efficiency of the fuel cell system decreases.

そこで、本発明は、燃料電池からの排出ガスの背圧を制御可能なエア圧力制御弁の制御精度を向上させることにより、上記課題を解決することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above problems by improving the control accuracy of an air pressure control valve capable of controlling the back pressure of exhaust gas from a fuel cell.

本発明の燃料電池システムは、燃料電池から排出されるガスの背圧を制御可能なエア圧力制御弁と、該エア圧力制御弁の弁開度を制御することにより燃料電池入口側のガス圧力を目標空気流量に応じた目標ガス圧力に制御するガス圧力制御手段とを備えた燃料電池システムにおいて、前記エア圧力制御弁の弁開度は、燃料電池入口側のガスの温度と湿度のうち少なくとも一方に応じて決定されるものである。   The fuel cell system of the present invention includes an air pressure control valve capable of controlling the back pressure of gas discharged from the fuel cell, and the gas pressure on the fuel cell inlet side by controlling the valve opening degree of the air pressure control valve. In the fuel cell system comprising a gas pressure control means for controlling the target gas pressure in accordance with the target air flow rate, the valve opening degree of the air pressure control valve is at least one of gas temperature and humidity on the fuel cell inlet side It is decided according to.

この構成によれば、周辺環境が変化する等して燃料電池に導入されるガスの条件が変わっても、該ガスの温度や湿度の変化に対応してエア圧力制御弁の弁開度が調整されるので、エア圧力制御弁の高精度な制御が可能となる。   According to this configuration, even if the conditions of the gas introduced into the fuel cell change due to changes in the surrounding environment, etc., the valve opening degree of the air pressure control valve is adjusted in response to changes in the temperature and humidity of the gas. Therefore, the air pressure control valve can be controlled with high accuracy.

本発明の燃料電池システムは、燃料電池入口側のガスの温度と湿度のうち少なくとも一方を用いて前記エア圧力制御弁の弁開度を設定するフィードフォワード制御と、前記背圧の測定値と目標値との差分に応じて前記エア圧力制御弁の弁開度を設定するフィードバック制御とが所定条件下で切替可能な構成でもよい。   The fuel cell system of the present invention includes feedforward control for setting the valve opening of the air pressure control valve using at least one of the temperature and humidity of the gas on the fuel cell inlet side, the measured value of the back pressure, and the target A configuration in which feedback control for setting the valve opening degree of the air pressure control valve according to a difference from the value can be switched under a predetermined condition.

この構成によれば、人の操作等に対して高い応答性が求められているときには、前者のフィードフォワード制御によって、電解質膜破損のおそれを招来することなく可及的速やかにエア圧力制御弁の弁開度を目標値に近づけることができる。また、かかるフィードフォワード制御を実行した後は、後者のフィードバック制御によって、背圧の目標値に現在値を精度良く一致させることができる。   According to this configuration, when high responsiveness to human operation or the like is required, the former feedforward control enables the air pressure control valve to be as quickly as possible without incurring the risk of damage to the electrolyte membrane. The valve opening can be brought close to the target value. In addition, after the feedforward control is executed, the current value can be accurately matched with the target value of the back pressure by the latter feedback control.

本発明の燃料電池の検査システムは、燃料電池から排出されるガスの背圧を制御可能なエア圧力制御弁と、該エア圧力制御弁の弁開度を制御することにより燃料電池入口側のガス圧力を目標空気流量に応じた目標ガス圧力に制御するガス圧力制御手段とを備え、前記エア圧力制御弁の弁開度が燃料電池入口側のガスの温度と湿度のうち少なくとも一方に応じて決定されるものであり、このガスの条件を様々に変更することによって燃料電池を検査するものである。   An inspection system for a fuel cell according to the present invention includes an air pressure control valve capable of controlling a back pressure of gas discharged from a fuel cell, and a gas on the fuel cell inlet side by controlling a valve opening degree of the air pressure control valve. Gas pressure control means for controlling the pressure to a target gas pressure corresponding to the target air flow rate, and the valve opening degree of the air pressure control valve is determined according to at least one of the temperature and humidity of the gas on the fuel cell inlet side The fuel cell is inspected by variously changing the gas conditions.

この構成によれば、検査のために燃料電池に導入するガスの条件を変えても、該ガスの温度や湿度の変化に対応してエア圧力制御弁の弁開度が調整されるので、電解質膜破損のおそれを招来することなく様々なガス条件での検査が可能となる。   According to this configuration, even if the conditions of the gas introduced into the fuel cell for inspection are changed, the valve opening degree of the air pressure control valve is adjusted in response to changes in the temperature and humidity of the gas. Inspection under various gas conditions is possible without causing the possibility of film breakage.

本発明の燃料電池システムによれば、燃料電池に導入されるガスの条件が変わっても、該ガスの温度や湿度の変化に対応してエア圧力制御弁の弁開度が調整されるので、エア圧力制御弁の制御精度、言い換えれば、エア圧力の制御精度が向上し、燃料電池の破損を有効に防止することができる。   According to the fuel cell system of the present invention, even if the condition of the gas introduced into the fuel cell changes, the valve opening degree of the air pressure control valve is adjusted in response to changes in the temperature and humidity of the gas. The control accuracy of the air pressure control valve, in other words, the control accuracy of the air pressure is improved, and the fuel cell can be effectively prevented from being damaged.

また、本発明の燃料電池の検査システムによれば、燃料電池に導入するガスの条件を変えても、該ガスの温度や湿度の変化に対応してエア圧力制御弁の弁開度が調整されるので、電解質膜の破損のおそれを招来することなく様々なガス条件での検査が可能となり、検査精度が向上する。   Further, according to the fuel cell inspection system of the present invention, even if the conditions of the gas introduced into the fuel cell are changed, the valve opening degree of the air pressure control valve is adjusted in response to changes in the temperature and humidity of the gas. Therefore, it is possible to inspect under various gas conditions without incurring the risk of damage to the electrolyte membrane, and the inspection accuracy is improved.

以下、添付図面を参照して、本発明の好適な実施形態に係る燃料電池システムについて説明する。   Hereinafter, a fuel cell system according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

図1に示すように、この燃料電池システム1は、酸化ガスとしてのエア(空気)および燃料ガスとしての水素ガスの供給を受けて電力を発生する燃料電池2と、燃料電池2にエアを供給するエア供給系3と、燃料電池2に水素ガスを供給する水素ガス供給系4と、燃料電池2へのエア及び水素ガスにスチームを供給するスチーム供給系5と、これら供給系3〜5の構成部品などシステム全体を統括制御する制御装置(ガス圧力制御手段)100とを備えている。   As shown in FIG. 1, the fuel cell system 1 includes a fuel cell 2 that generates power upon receiving supply of air (air) as an oxidizing gas and hydrogen gas as a fuel gas, and supplies air to the fuel cell 2. An air supply system 3, a hydrogen gas supply system 4 for supplying hydrogen gas to the fuel cell 2, a steam supply system 5 for supplying steam to the air and hydrogen gas to the fuel cell 2, and these supply systems 3 to 5 And a control device (gas pressure control means) 100 that controls the entire system such as components.

燃料電池2は、基本単位となる単セルを多数積層したスタック構造として構成されている。単セルは、いずれも図示省略したが、イオン交換膜からなる電解質膜と、電解質膜を両面から挟んだ一対の電極(アノードおよびカソード)とで構成されている。   The fuel cell 2 is configured as a stack structure in which a large number of single cells serving as basic units are stacked. The single cell is not shown in the figure, but is composed of an electrolyte membrane made of an ion exchange membrane and a pair of electrodes (anode and cathode) sandwiching the electrolyte membrane from both sides.

エア供給系3は、エアを燃料電池2に供給するための供給流路11と、燃料電池2から排出されたエアオフガスを外部に排出するための排出流路12とを備えている。そして、供給流路11には、その上流側から順に、エア供給源21、流量センサ22、流量調整弁23、ヒーター24、温度センサ25及び湿度センサ26が配設されている。また、排出流路12には、上流側から順に、圧力センサ27及び背圧調整弁(エア圧力制御弁)28が配設されている。   The air supply system 3 includes a supply flow path 11 for supplying air to the fuel cell 2 and a discharge flow path 12 for discharging the air-off gas discharged from the fuel cell 2 to the outside. In the supply flow path 11, an air supply source 21, a flow rate sensor 22, a flow rate adjustment valve 23, a heater 24, a temperature sensor 25, and a humidity sensor 26 are arranged in this order from the upstream side. In addition, a pressure sensor 27 and a back pressure adjustment valve (air pressure control valve) 28 are disposed in the discharge flow path 12 in order from the upstream side.

水素ガス供給系4は、水素ガスを燃料電池2に供給するための供給流路15と、燃料電池2から排出された水素オフガスを外部に排出するための排出流路16とを備えている。そして、供給流路15には、その上流側から順に、水素供給源41、流量センサ42、流量調整弁43、ヒータ44、温度センサ45及び湿度センサ46が配設されている。また、排出流路16には、上流側から順に、圧力センサ47及び背圧調整弁48が配設されている。   The hydrogen gas supply system 4 includes a supply flow path 15 for supplying hydrogen gas to the fuel cell 2 and a discharge flow path 16 for discharging the hydrogen off-gas discharged from the fuel cell 2 to the outside. In the supply flow path 15, a hydrogen supply source 41, a flow rate sensor 42, a flow rate adjustment valve 43, a heater 44, a temperature sensor 45, and a humidity sensor 46 are arranged in this order from the upstream side. In addition, a pressure sensor 47 and a back pressure adjustment valve 48 are disposed in the discharge flow path 16 in order from the upstream side.

スチーム供給系5は、エア供給源21からのエア及び水素供給源41からの水素ガスにスチームを供給することによって、燃料電池2に供給されるエア及び水素ガスを加湿するものであり、スチーム供給源51と、流量調整弁52,53とを備えている。流量調整弁52は当該スチーム供給系5からエア供給系3への接続流路に配設され、流量調整弁53は当該スチーム供給系5から水素ガス供給系4への接続流路に配設されている。   The steam supply system 5 humidifies the air and hydrogen gas supplied to the fuel cell 2 by supplying steam to the air from the air supply source 21 and the hydrogen gas from the hydrogen supply source 41. A source 51 and flow control valves 52 and 53 are provided. The flow rate adjustment valve 52 is disposed in a connection flow path from the steam supply system 5 to the air supply system 3, and the flow rate adjustment valve 53 is disposed in a connection flow path from the steam supply system 5 to the hydrogen gas supply system 4. ing.

エア供給源21からのエアは、流量調整弁23で所定流量に調整され、スチーム供給源(加湿器)51からのスチームの供給を受けて加湿された後、ヒーター24で所定温度に加熱され、燃料電池2のカソード側に供給される。一方、水素供給源41からの水素ガスは、流量調整弁43で所定流量(圧力)に調整され、スチーム供給源51からのスチームの供給を受けて加湿された後、ヒーター44で所定温度に加熱され、燃料電池2のアノード側に供給される。燃料電池2では、エアと水素ガスとの電気化学反応により発電が行われる。なお、スチーム供給源51、ヒーター24,44は省略してもよい。   The air from the air supply source 21 is adjusted to a predetermined flow rate by the flow rate adjustment valve 23, is humidified by receiving the supply of steam from the steam supply source (humidifier) 51, and then heated to a predetermined temperature by the heater 24. It is supplied to the cathode side of the fuel cell 2. On the other hand, the hydrogen gas from the hydrogen supply source 41 is adjusted to a predetermined flow rate (pressure) by the flow rate adjustment valve 43, humidified by receiving the supply of steam from the steam supply source 51, and then heated to a predetermined temperature by the heater 44. And supplied to the anode side of the fuel cell 2. In the fuel cell 2, power generation is performed by an electrochemical reaction between air and hydrogen gas. The steam supply source 51 and the heaters 24 and 44 may be omitted.

エア供給系3における燃料電池2出口側のガス圧力は、排出流路12に配設された背圧調整弁28の弁開度を制御することによって、目標エア流量に応じた目標ガス圧力に制御される。一方、水素供給系4における燃料電池2出口側のガス圧力は、排出流路16に配設された背圧調整弁48の弁開度を制御することによって、一定圧力となるように制御される。これら背圧調整弁28,48は、制御装置100から出力される制御信号によって弁開度が制御される。   The gas pressure on the outlet side of the fuel cell 2 in the air supply system 3 is controlled to the target gas pressure corresponding to the target air flow rate by controlling the valve opening degree of the back pressure adjusting valve 28 disposed in the discharge flow path 12. Is done. On the other hand, the gas pressure on the outlet side of the fuel cell 2 in the hydrogen supply system 4 is controlled to be a constant pressure by controlling the valve opening degree of the back pressure adjusting valve 48 disposed in the discharge flow path 16. . These back pressure regulating valves 28 and 48 are controlled in valve opening by a control signal output from the control device 100.

図2は、背圧調整弁28の制御系に係るブロック図である。
制御装置100は、目標背圧設定部30,背圧差分検出部31,背圧フィードバック部32,背圧調整弁開度演算部33,変化検出部34,背圧制御切替部35,及び背圧調整弁直線補正部38を備えてなり、圧力センサ27,流量センサ22,湿度センサ26,及び温度センサ25からの出力信号が入力されて、背圧調整弁28に対する制御信号を出力する。
FIG. 2 is a block diagram relating to the control system of the back pressure regulating valve 28.
The control device 100 includes a target back pressure setting unit 30, a back pressure difference detection unit 31, a back pressure feedback unit 32, a back pressure adjustment valve opening calculation unit 33, a change detection unit 34, a back pressure control switching unit 35, and a back pressure. An adjustment valve linear correction unit 38 is provided, and output signals from the pressure sensor 27, the flow sensor 22, the humidity sensor 26, and the temperature sensor 25 are input, and a control signal for the back pressure adjustment valve 28 is output.

次に、信号の流れに従い、背圧調整弁28の制御に係る制御装置100の機能を説明する。まず、背圧調整弁28で制御される背圧の目標値が、人の操作や他装置からの信号に基づき目標背圧設定部30で設定され、背圧差分検出部31と背圧フィードバック部32と変化検出部34とに入力される。他方、背圧の現在値(測定値)は、圧力センサ27により検出され、背圧差分検出部31と背圧フィードバック部32とに入力される。   Next, the function of the control device 100 related to the control of the back pressure regulating valve 28 will be described according to the signal flow. First, the target value of the back pressure controlled by the back pressure adjusting valve 28 is set by the target back pressure setting unit 30 based on a human operation or a signal from another device, and the back pressure difference detecting unit 31 and the back pressure feedback unit. 32 and the change detection unit 34. On the other hand, the current value (measured value) of the back pressure is detected by the pressure sensor 27 and input to the back pressure difference detection unit 31 and the back pressure feedback unit 32.

背圧差分検出部31では、圧力センサ27からの現在値と目標背圧設定部30からの目標値とを比較し、演算値制御(フィードフォワード制御)とフィードバック制御との切替信号を背圧制御切替部35へ出力する。フィードバック制御で設定される背圧調整弁28の弁開度は、圧力センサ27からの現在値と目標背圧設定部30からの目標値に基づき、背圧フィードバック部32で演算処理される。   The back pressure difference detection unit 31 compares the current value from the pressure sensor 27 with the target value from the target back pressure setting unit 30, and uses a back pressure control as a switching signal between calculation value control (feed forward control) and feedback control. Output to the switching unit 35. The valve opening degree of the back pressure adjusting valve 28 set by feedback control is calculated by the back pressure feedback unit 32 based on the current value from the pressure sensor 27 and the target value from the target back pressure setting unit 30.

他方、演算値制御で設定される背圧調整弁28の弁開度は、流量センサ22,湿度センサ26,及び温度センサ25からの各信号に基づき、背圧調整弁開度演算部33にて演算処理される。この背圧調整弁開度演算部33での演算は、実験から求めた下記式を用いて行う。
Y = f1(x1)+f2(x1,x2)+f3(x3)+d ・・・(式)
ここで、Y:弁開度,x1:流量,x2:湿度,x3:温度,d:定数であり、f1(x1)はx1を変数とする弁開度設定の関数,f2(x1,x2)はx1及びx2を変数とする弁開度設定の関数,f3(x3)はx3を変数とする弁開度設定の関数である。
On the other hand, the valve opening of the back pressure adjusting valve 28 set by the calculation value control is determined by the back pressure adjusting valve opening calculating unit 33 based on the signals from the flow sensor 22, the humidity sensor 26, and the temperature sensor 25. Arithmetic processing is performed. The calculation in the back pressure adjusting valve opening calculation unit 33 is performed using the following formula obtained from experiments.
Y = f1 (x1) + f2 (x1, x2) + f3 (x3) + d (formula)
Here, Y: valve opening, x1: flow rate, x2: humidity, x3: temperature, d: constant, f1 (x1) is a function of setting the valve opening with x1 as a variable, f2 (x1, x2) Is a valve opening setting function with x1 and x2 as variables, and f3 (x3) is a valve opening setting function with x3 as a variable.

なお、背圧調整弁開度演算部33では、上記式による数値演算に代えて、例えば図3に示すマップを参照して弁開度を設定することも可能である。この図3のマップにおいては、燃料電池2に供給されるエア流量が増大するに従い、背圧調整弁28の弁開度も曲線的(非線形)に増大し、かつ、同一のエア流量でもエアオフガスの湿度が高くなるに従い背圧調整弁28の弁開度が増大するように設定されている。   Note that the back pressure adjusting valve opening calculator 33 can set the valve opening with reference to a map shown in FIG. 3, for example, instead of the numerical calculation by the above formula. In the map of FIG. 3, as the air flow rate supplied to the fuel cell 2 increases, the valve opening degree of the back pressure adjustment valve 28 also increases in a curvilinear (non-linear) manner. It is set so that the valve opening degree of the back pressure regulating valve 28 increases as the humidity increases.

変化検出部34は、目標背圧設定部30で設定された目標背圧を記憶し、新たに設定された目標背圧(以下、今回値)と、その前に設定されていた目標背圧(以下、前回値)との差分、あるいはその差分に基づく切替信号を背圧制御切替部35に出力する。フィードバック制御と演算値制御との切り替えは背圧制御切替部35で行われる。この切り替えは、背圧差分検出部31と変化検出部34からの信号に基づき、所定の条件に従い行われる。   The change detection unit 34 stores the target back pressure set by the target back pressure setting unit 30, the newly set target back pressure (hereinafter, this value), and the target back pressure set before that ( Hereinafter, a difference from the previous value) or a switching signal based on the difference is output to the back pressure control switching unit 35. Switching between feedback control and calculation value control is performed by the back pressure control switching unit 35. This switching is performed according to a predetermined condition based on signals from the back pressure difference detection unit 31 and the change detection unit 34.

例えば、演算値制御からフィードバック制御への切り替えは、図4に示すように、背圧の現在値と目標値との差(以下、差分背圧)が、予め設定しておいたフィードバック差分範囲の二分の一以下になった後、その背圧差分が所定範囲に収束するまでの時間(以下、安定時間)が経過したときに行われる。この安定時間は、予め設定されている。一方、フィードバック制御から演算値制御への切り替えは、例えば、変化検出部34からの目標背圧変化量(目標背圧の前回値と今回値との差分)が所定範囲を超えたときに行われる。   For example, as shown in FIG. 4, switching from the calculation value control to the feedback control is performed when the difference between the current back pressure value and the target value (hereinafter referred to as differential back pressure) is within a preset feedback difference range. This is performed when the time until the back pressure difference converges to a predetermined range (hereinafter referred to as a stable time) has elapsed after becoming half or less. This stabilization time is preset. On the other hand, switching from feedback control to calculation value control is performed, for example, when the target back pressure change amount (difference between the previous value and the current value of the target back pressure) from the change detection unit 34 exceeds a predetermined range. .

ところで、フィードバック制御と演算値制御は、入力及び出力機器の特性が直線であるときに最適となる。本実施の形態では、入力機器である各センサ22,25〜27は直線特性(線形)であるので補正の必要はないが、出力機器である背圧調整弁28は非直線(非線形)がほとんどであるため、直線特性に補正しておくことが好ましい。そこで、この制御装置100からの出力信号は、背圧調整弁直線補正部38にて直線特性に補正された上で、背圧調整弁28に出力されるようになっている。   By the way, the feedback control and the calculation value control are optimal when the characteristics of the input and output devices are linear. In the present embodiment, the sensors 22, 25 to 27 that are input devices have linear characteristics (linear) and need not be corrected. However, the back pressure adjustment valve 28 that is an output device is almost non-linear (non-linear). Therefore, it is preferable to correct the linear characteristic. Therefore, an output signal from the control device 100 is output to the back pressure adjusting valve 28 after being corrected to a linear characteristic by the back pressure adjusting valve linear correcting unit 38.

以上説明したとおり、本実施形態によれば、背圧調整弁28の弁開度を設定する際に、燃料電池2に供給されるエア流量だけでなく、そのエアの湿度と温度の変化も考慮されて背圧調整弁28の弁開度が制御される。このため、エア流量だけで弁開度を制御する場合(図5参照)のように、エア流量が一定である間にエアの湿度が上昇して背圧が過剰に上昇する、ということはない。   As described above, according to the present embodiment, when setting the valve opening degree of the back pressure regulating valve 28, not only the air flow rate supplied to the fuel cell 2 but also changes in the humidity and temperature of the air are taken into consideration. Thus, the valve opening degree of the back pressure adjusting valve 28 is controlled. For this reason, unlike the case where the valve opening degree is controlled only by the air flow rate (see FIG. 5), the air humidity does not increase and the back pressure does not increase excessively while the air flow rate is constant. .

したがって、弁開度の制御精度、言い換えれば、ガス圧力の制御精度が向上し、電解質膜の破損を有効に防止することができ、燃料電池システムの信頼性も向上する。また、エア供給系3にコンプレッサを備える場合には、背圧の余計な上昇を回避することができる結果、コンプレッサの消費電力削減、ひいては燃料電池システムの発電効率の向上を図ることができる。   Therefore, the control accuracy of the valve opening, in other words, the control accuracy of the gas pressure is improved, the electrolyte membrane can be effectively prevented from being damaged, and the reliability of the fuel cell system is also improved. Further, when the air supply system 3 is provided with a compressor, it is possible to avoid an excessive increase in the back pressure, and as a result, it is possible to reduce the power consumption of the compressor and thus improve the power generation efficiency of the fuel cell system.

さらに、各センサ22,25,26からの出力を用いて弁開度を設定する演算値制御と、差分背圧に基づき弁開度を設定するフィードバック制御とを切り替え可能にし、目標背圧の変化量が大きいとき、言い換えれば、人の操作等に対して高い応答性が求められているときには、前者の演算値制御を行うことによって、電解質膜の破損のおそれなく、できるだけ早く背圧調整弁28の弁開度を目標値に近づける一方、かかる演算値制御を実行した後は、後者のフィードバック制御を行うことによって、背圧の目標値に現在値を精度良く一致させるようにしているので、信頼性向上と応答性向上との両立を図ることができる。   Furthermore, it is possible to switch between calculation value control for setting the valve opening using the outputs from the sensors 22, 25, and 26 and feedback control for setting the valve opening based on the differential back pressure, and the change of the target back pressure When the amount is large, in other words, when high responsiveness to human operation or the like is required, the back pressure regulating valve 28 can be obtained as soon as possible by performing the former calculation value control without damaging the electrolyte membrane. The valve opening of the valve is brought close to the target value, and after the calculation value control is executed, the latter value feedback control is performed so that the current value accurately matches the back pressure target value. Compatibility improvement and response improvement can be achieved.

以上は、本発明に係る燃料電池システムの一実施形態を説明したものであるが、同様のシステム構成を燃料電池の検査システムに適用してもよい。
つまり、上記燃料電池システムと同様、燃料電池2入口側のエアの温度と湿度のうち少なく一方に応じて、背圧調整弁28の弁開度が制御されるようにしておき、当該エアの条件を様々に変更することにより、燃料電池2に不具合があるか否かの検査を行う。
かかる構成の検査システムによれば、電解質膜を破損することなく様々なガス条件で検査を行えるので、検査精度の向上を図ることができる。
The above describes one embodiment of the fuel cell system according to the present invention, but the same system configuration may be applied to a fuel cell inspection system.
That is, as in the fuel cell system, the valve opening degree of the back pressure regulating valve 28 is controlled according to at least one of the temperature and humidity of the air at the fuel cell 2 inlet side, and the air condition The fuel cell 2 is inspected to determine whether or not there is a problem by changing variously.
According to the inspection system having such a configuration, the inspection can be performed under various gas conditions without damaging the electrolyte membrane, so that the inspection accuracy can be improved.

また、本発明のエア圧力制御弁は、要するに燃料電池2から排出されるエアオフガスの背圧を制御することが可能なものであれば、その構造や配置は上記背圧調整弁28の形態に限定されるものではない。   In addition, the structure and arrangement of the air pressure control valve of the present invention are limited to the form of the back pressure adjusting valve 28 as long as the back pressure of the air off gas discharged from the fuel cell 2 can be controlled. Is not to be done.

本発明の一実施形態に係る燃料電池システムの構成を示す図である。It is a figure which shows the structure of the fuel cell system which concerns on one Embodiment of this invention. 同実施形態に係る背圧調整弁の制御ブロック図である。It is a control block diagram of the back pressure regulating valve according to the embodiment. 弁開度を設定する際に用いられるマップ図の一例である。It is an example of the map figure used when setting a valve opening degree. 同実施形態によって弁開度を制御したときの背圧波形を示す図である。It is a figure which shows a back pressure waveform when the valve opening degree is controlled by the same embodiment. 流量変化だけで弁開度を制御したときの背圧波形を示す図である。It is a figure which shows a back pressure waveform when a valve opening degree is controlled only by flow volume change.

符号の説明Explanation of symbols

1…燃料電池システム、2…燃料電池、3…エア供給系、4…水素ガス供給系、 28…背圧調整弁(圧力制御弁)、 100…制御装置(ガス圧力制御手段)   DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 2 ... Fuel cell, 3 ... Air supply system, 4 ... Hydrogen gas supply system, 28 ... Back pressure adjustment valve (pressure control valve), 100 ... Control apparatus (gas pressure control means)

Claims (3)

燃料電池から排出されるガスの背圧を制御可能なエア圧力制御弁と、該エア圧力制御弁の弁開度を制御することにより燃料電池入口側のガス圧力を目標空気流量に応じた目標ガス圧力に制御するガス圧力制御手段とを備えた燃料電池システムにおいて、
前記エア圧力制御弁の弁開度は、燃料電池入口側のガスの温度と湿度のうち少なくとも一方に応じて決定される燃料電池システム。
An air pressure control valve capable of controlling the back pressure of gas discharged from the fuel cell, and a gas pressure on the fuel cell inlet side according to the target air flow rate by controlling the valve opening degree of the air pressure control valve In a fuel cell system comprising a gas pressure control means for controlling the pressure,
The valve opening degree of the air pressure control valve is determined according to at least one of gas temperature and humidity on the fuel cell inlet side.
燃料電池入口側のガスの温度と湿度のうち少なくとも一方を用いて前記エア圧力制御弁の弁開度を設定するフィードフォワード制御と、前記背圧の測定値と目標値との差分に応じて前記エア圧力制御弁の弁開度を設定するフィードバック制御とが所定条件下で切替可能な請求項1に記載の燃料電池システム。   Feedforward control that sets the valve opening of the air pressure control valve using at least one of the temperature and humidity of the gas on the fuel cell inlet side, and the difference between the measured value and the target value of the back pressure The fuel cell system according to claim 1, wherein feedback control for setting a valve opening degree of the air pressure control valve can be switched under a predetermined condition. 燃料電池から排出されるガスの背圧を制御可能なエア圧力制御弁と、該エア圧力制御弁の弁開度を制御することにより燃料電池入口側のガス圧力を目標空気流量に応じた目標ガス圧力に制御するガス圧力制御手段とを備え、
前記エア圧力制御弁の弁開度が燃料電池入口側のガスの温度と湿度のうち少なくとも一方に応じて決定されるものであり、このガスの条件を様々に変更することによって燃料電池を検査する燃料電池の検査システム。

An air pressure control valve capable of controlling the back pressure of gas discharged from the fuel cell, and a gas pressure on the fuel cell inlet side according to the target air flow rate by controlling the valve opening degree of the air pressure control valve Gas pressure control means for controlling the pressure,
The valve opening degree of the air pressure control valve is determined according to at least one of the temperature and humidity of the gas on the fuel cell inlet side, and the fuel cell is inspected by changing the gas conditions in various ways. Fuel cell inspection system.

JP2004285788A 2004-09-30 2004-09-30 Fuel cell system and its inspection system Pending JP2006100152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285788A JP2006100152A (en) 2004-09-30 2004-09-30 Fuel cell system and its inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285788A JP2006100152A (en) 2004-09-30 2004-09-30 Fuel cell system and its inspection system

Publications (1)

Publication Number Publication Date
JP2006100152A true JP2006100152A (en) 2006-04-13

Family

ID=36239738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285788A Pending JP2006100152A (en) 2004-09-30 2004-09-30 Fuel cell system and its inspection system

Country Status (1)

Country Link
JP (1) JP2006100152A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157281A (en) * 2016-02-29 2017-09-07 本田技研工業株式会社 Control method for fuel battery system
KR20180028390A (en) * 2016-09-08 2018-03-16 베르머뷰로 크라프트 게엠베하 System for Efficiency Increase of High Temperature Molten Carbonate Fuel Cell Plants
CN113745578A (en) * 2021-07-22 2021-12-03 东风汽车集团股份有限公司 Ice breaking control method and system for fuel cell back pressure valve
CN115210949A (en) * 2020-07-13 2022-10-18 株式会社Lg新能源 Battery valve and battery including the same
WO2024004481A1 (en) * 2022-06-28 2024-01-04 日機装株式会社 Blood purification device and method for controlling liquid feed pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157281A (en) * 2016-02-29 2017-09-07 本田技研工業株式会社 Control method for fuel battery system
KR20180028390A (en) * 2016-09-08 2018-03-16 베르머뷰로 크라프트 게엠베하 System for Efficiency Increase of High Temperature Molten Carbonate Fuel Cell Plants
KR101969089B1 (en) * 2016-09-08 2019-04-16 베르머뷰로 크라프트 게엠베하 System for Efficiency Increase of High Temperature Molten Carbonate Fuel Cell Plants
CN115210949A (en) * 2020-07-13 2022-10-18 株式会社Lg新能源 Battery valve and battery including the same
CN113745578A (en) * 2021-07-22 2021-12-03 东风汽车集团股份有限公司 Ice breaking control method and system for fuel cell back pressure valve
CN113745578B (en) * 2021-07-22 2023-12-19 东风汽车集团股份有限公司 Ice breaking control method and system for fuel cell back pressure valve
WO2024004481A1 (en) * 2022-06-28 2024-01-04 日機装株式会社 Blood purification device and method for controlling liquid feed pump

Similar Documents

Publication Publication Date Title
JP5070685B2 (en) Fuel cell system, gas leak detection device and gas leak detection method
KR101592683B1 (en) Purge control method for fuel cell
CA2907894C (en) Fuel cell with intercooler egress temperature control
US8470486B2 (en) Fuel cell system
JP2000243418A (en) Fuel cell system
CA2876576C (en) A fuel cell system with oxidant flow rate control
JP2001256988A (en) Fuel cell system and fuel cell operating method
JP5114904B2 (en) Fuel cell system
JP2007207442A (en) Fuel cell system
US11043683B2 (en) Fuel cell system and method for controlling the same
JP4603920B2 (en) Humidifier for fuel cell and fuel cell system provided with the same
JP2019207869A (en) Fuel cell system
JP2007073335A (en) Fuel cell system and its operation method
JP2006100152A (en) Fuel cell system and its inspection system
JP3915569B2 (en) Fuel cell failure determination apparatus and method
JP4372523B2 (en) Fuel cell control device
JP2007012548A (en) Fuel cell system
JP2007005064A (en) Fuel cell system
JP2004178990A (en) Oxidant flow rate control method of fuel cell system
JP2005091321A (en) Control device of gas sensor
JP2005243491A (en) Fuel cell system
JP5135665B2 (en) Fuel cell system
KR20230133076A (en) Method and system for correcting offset of hydrogen pressure sensor in fuel cell
JP2008535159A (en) Gas flow control structure for use with fuel cell systems operating with fuels of varying fuel composition
JP2009266561A (en) Gas supply device, fuel cell evaluation testing device, and fuel cell system