JP2007022912A - Gas pump - Google Patents

Gas pump Download PDF

Info

Publication number
JP2007022912A
JP2007022912A JP2006249846A JP2006249846A JP2007022912A JP 2007022912 A JP2007022912 A JP 2007022912A JP 2006249846 A JP2006249846 A JP 2006249846A JP 2006249846 A JP2006249846 A JP 2006249846A JP 2007022912 A JP2007022912 A JP 2007022912A
Authority
JP
Japan
Prior art keywords
solid electrolyte
gas
electrolyte cylindrical
cylindrical body
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006249846A
Other languages
Japanese (ja)
Other versions
JP4412560B2 (en
Inventor
Ryusuke Iwasaki
隆祐 岩▲崎▼
Haruhiko Matsushita
晴彦 松下
Hiroshi Nishimura
博 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2006249846A priority Critical patent/JP4412560B2/en
Publication of JP2007022912A publication Critical patent/JP2007022912A/en
Application granted granted Critical
Publication of JP4412560B2 publication Critical patent/JP4412560B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas pump that increases the quantity of a gas flow that can be processed substantially effectively by a solid electrolyte cylindrical body with a suitable diameter. <P>SOLUTION: Multiple units of a solid electrolyte cylindrical body unit 10' comprising a plurality of circular solid electrolyte cylindrical bodies 10a and 10b with different large and small diameters that are concentrically attached to be unitized are arranged on a concentric circle at even intervals making each of the central axes perpendicular. A dummy pipe 15 of a heat storage member is installed in the space surrounded by the plurality of solid electrolyte cylindrical body units 10'. A heater 40 of a ring shape heating means is concentrically arranged to the surrounding of the plurality of solid electrolyte cylindrical body units 10'. A gas G1 to be processed is flowed to an axial direction in each of units 10'. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、イオン導電性の固体電解質筒状体を使用した酸素ポンプ、水素ポンプなどの固体電解質型ガスポンプに関する。   The present invention relates to a solid electrolyte gas pump such as an oxygen pump or a hydrogen pump using an ion conductive solid electrolyte cylindrical body.

イオン導電性固体電解質は、高温でイオンを透過させることができる。この現象を利用し、燃料電池、ガス分析の測定、ガス混合物の分離などに実用化されている。酸素ポンプとして使用する場合は、酸素イオンが酸素などの還元により発生し与えられた電位勾配の元で、陰極側から酸素が生成する陽極へ酸素イオン伝導性電解質を通って移動することを利用している。   The ion conductive solid electrolyte can transmit ions at a high temperature. Utilizing this phenomenon, it has been put to practical use in fuel cells, measurement of gas analysis, separation of gas mixtures and the like. When used as an oxygen pump, it is utilized that oxygen ions move through the oxygen ion conductive electrolyte from the cathode side to the anode where oxygen is generated under the potential gradient generated by reduction of oxygen and the like. ing.

上記酸素ポンプを使用した試料育成装置等の設備の概要を図5に、上記酸素ポンプの概要を図6に示す。   An outline of equipment such as a sample growing apparatus using the oxygen pump is shown in FIG. 5, and an outline of the oxygen pump is shown in FIG.

図5において、1は酸素分圧制御装置で、バルブ2を通してガスボンベ(図示せず)から不活性ガスが供給される。通常、不活性ガス中の酸素分圧は10-4atm程度である。酸素分圧制御装置1は、バルブ2を通った不活性ガスの流量を設定値に制御するマスフローコントローラ(MFC)3と、このマスフローコントローラ3を通った不活性ガスを目的の酸素分圧に制御可能な電気化学的な酸素ポンプ4と、酸素ポンプ4で制御された不活性ガスの酸素分圧をモニタして試料育成装置などの次工程(装置)に供給する供給ガス用の酸素センサ5を有する。 In FIG. 5, reference numeral 1 denotes an oxygen partial pressure control device, and an inert gas is supplied from a gas cylinder (not shown) through a valve 2. Usually, the oxygen partial pressure in the inert gas is about 10 −4 atm. The oxygen partial pressure control device 1 controls a mass flow controller (MFC) 3 that controls the flow rate of the inert gas that has passed through the valve 2 to a set value, and controls the inert gas that has passed through the mass flow controller 3 to a target oxygen partial pressure. A possible electrochemical oxygen pump 4 and a supply gas oxygen sensor 5 for monitoring the oxygen partial pressure of the inert gas controlled by the oxygen pump 4 and supplying it to the next process (device) such as a sample growing device Have.

酸素分圧制御装置1は、所望の酸素分圧値を設定する酸素分圧設定部6と、酸素センサ5によるモニタ値を酸素分圧設定部6による設定値と比較して酸素ポンプ4から送り出される不活性ガスの酸素分圧を所定値に制御する酸素分圧制御部7と、酸素センサ5によるモニタ値を表示する酸素分圧表示部8を備える。   The oxygen partial pressure control device 1 compares an oxygen partial pressure setting unit 6 for setting a desired oxygen partial pressure value and a monitor value by the oxygen sensor 5 with a set value by the oxygen partial pressure setting unit 6 and sends it out from the oxygen pump 4. An oxygen partial pressure control unit 7 that controls the oxygen partial pressure of the inert gas to be a predetermined value and an oxygen partial pressure display unit 8 that displays a monitor value by the oxygen sensor 5 are provided.

図6の電気化学的な酸素ポンプ4は、酸化物イオン伝導性を有する固体電解質筒状体4aの内外両面に白金よりなる電極4b、4cを形成している。固体電解質筒状体4aは、例えばジルコニア系の固体電解質で、図示しないヒーターで700℃程度に加熱される。固体電解質筒状体4aの一方の開口から他方の開口に向けて軸方向に不活性ガスを供給する。不活性ガスは、例えばAr+O2(10-4atm)である。内外両面の電極4b、4c間に直流電源Eの直流電圧を印加する。外面の電極4cに+極を印加し、内面の電極4bに−極を印加して電流Iを流すと、固体電解質筒状体4a内を流れる不活性ガス中の酸素分子(O2)が固体電解質によって電気的に還元されてイオン(O2-)化され、固体電解質を通して再び酸素分子(O2)として固体電解質筒状体4aの外部に放出される。固体電解質筒状体4aの外部に放出された酸素分子は、空気等の補助ガスと共に排気される。固体電解質筒状体4aに供給されたAr+O2(10-4atm)の不活性ガスは、酸素分子が低減されて目的の酸素分圧に制御された処理済みガスとなり、次工程(装置)に給送される。 The electrochemical oxygen pump 4 of FIG. 6 has electrodes 4b and 4c made of platinum formed on both the inner and outer surfaces of a solid electrolyte cylindrical body 4a having oxide ion conductivity. The solid electrolyte cylindrical body 4a is, for example, a zirconia solid electrolyte, and is heated to about 700 ° C. by a heater (not shown). An inert gas is supplied in the axial direction from one opening of the solid electrolyte cylindrical body 4a toward the other opening. The inert gas is, for example, Ar + O 2 (10 −4 atm). A DC voltage of a DC power source E is applied between the inner and outer electrodes 4b and 4c. When a positive electrode is applied to the outer electrode 4c and a negative electrode is applied to the inner electrode 4b to flow a current I, oxygen molecules (O 2 ) in the inert gas flowing through the solid electrolyte cylindrical body 4a are solid. It is electrically reduced by the electrolyte to be ionized (O 2− ), and is released again as oxygen molecules (O 2 ) through the solid electrolyte to the outside of the solid electrolyte cylindrical body 4a. Oxygen molecules released to the outside of the solid electrolyte cylindrical body 4a are exhausted together with an auxiliary gas such as air. The inert gas of Ar + O 2 (10 −4 atm) supplied to the solid electrolyte cylindrical body 4a becomes a treated gas in which oxygen molecules are reduced and controlled to the target oxygen partial pressure, and is used in the next step (apparatus). Be fed.

図6の酸素ポンプ4は、固体電解質筒状体4aの内外両面の電極4b、4c間に上記と逆極性の直流電圧を印加してポンプ動作を行わせることも可能である。すなわち、外面の電極4cに−極を印加し、内面の電極4bに+極を印加すると、固体電解質筒状体4aの外面に沿って流れる空気などのガス中の酸素分子(O2)が固体電解質によって電気的に還元されてイオン(O2-)化され、固体電解質を通して再び酸素分子(O2)として固体電解質筒状体4aの内部に放出される。この場合、固体電解質筒状体4aの内部を流れる不活性ガスの酸素分圧が上昇して、外部に給送される。 The oxygen pump 4 shown in FIG. 6 can also perform a pump operation by applying a DC voltage having the opposite polarity between the electrodes 4b and 4c on the inner and outer surfaces of the solid electrolyte cylindrical body 4a. That is, when a negative electrode is applied to the outer electrode 4c and a positive electrode is applied to the inner electrode 4b, oxygen molecules (O 2 ) in a gas such as air flowing along the outer surface of the solid electrolyte cylindrical body 4a are solid. It is electrically reduced by the electrolyte to be ionized (O 2− ), and is released again as oxygen molecules (O 2 ) through the solid electrolyte into the solid electrolyte cylindrical body 4a. In this case, the oxygen partial pressure of the inert gas flowing inside the solid electrolyte cylindrical body 4a is increased and fed to the outside.

このような酸素ポンプにより酸素分圧を制御したガスを供給すれば、結晶育成、合金化、熱処理、半導体製造工程などが酸素分圧を制御した不活性ガスなどの雰囲気下で行うことができる。   If a gas whose oxygen partial pressure is controlled by such an oxygen pump is supplied, crystal growth, alloying, heat treatment, semiconductor manufacturing process, etc. can be performed in an atmosphere such as an inert gas whose oxygen partial pressure is controlled.

イオン導電体の固体電解質筒状体の内部を軸方向に不活性ガスなどのポンプ作用を受ける被処理ガスを流すガスポンプは、図6の酸素ポンプのように、1本の円形パイプ状の固体電解質筒状体を使用する。この1本の固体電解質筒状体の内部空間に軸方向に被処理ガスを流し、固体電解質筒状体内を流れる間に固体電解質隔壁内外でイオン導電のポンプ作用を行う。このようなガスポンプが処理できるガス流量は、被処理ガスと固体電解質筒状体内外面との接触面積に比例する。従って、ガス流量を増大させるためには、被処理ガスと固体電解質筒状体外面との接触面積を増大させる必要がある。   A gas pump for flowing a gas to be processed that receives a pumping action such as an inert gas in the axial direction through the inside of a solid electrolyte cylindrical body of an ionic conductor is a single circular pipe-shaped solid electrolyte like the oxygen pump of FIG. Use a cylindrical body. A gas to be treated is caused to flow in the axial direction in the internal space of the single solid electrolyte cylindrical body, and an ion conductive pumping action is performed inside and outside the solid electrolyte partition wall while flowing through the solid electrolyte cylindrical body. The gas flow rate that can be processed by such a gas pump is proportional to the contact area between the gas to be processed and the outer surface of the solid electrolyte cylindrical body. Therefore, in order to increase the gas flow rate, it is necessary to increase the contact area between the gas to be processed and the outer surface of the solid electrolyte cylindrical body.

そのためには、固体電解質筒状体を長くすることや、パイプ径を大きくすることが考えられる。酸素イオン導電性固体電解質を有効に利用するためには、酸素ポンプの抵抗値をできる限り低くして、酸素ポンプの酸素透過能力を高くすることが必要である。酸素ポンプの抵抗値には、固体電解質の形状(表面積と厚さ)、電極膜、リード端子などが影響する。この中で固体電解質の形状は表面積が大きく、薄いほど抵抗値は小さくなる。すなわち、筒状体を考えると、その直径と長さが大きく、厚みの薄い形状がよい。しかし、固体電解質筒状体を製造する容易さや、加熱・高温保持状態で使用される固体電解質筒状体の強度を考慮すると、直径と長さと厚みには限界がある。また、パイプ径を大きくするほど、固体電解質筒状体の中心部を流れる被処理ガスのイオン伝導反応が急減して、結果的に中心部を流れる被処理ガスが反応なしで素通りすることになり、酸素分圧などの制御精度が低下する。このようなことから、固体電解質筒状体のパイプ径を単純に大きくするには自ずと限界がある。従って、上記の方法で被処理ガスと固体電解質筒状体との接触面積を増大するには限界がある。そのため、ガスポンプが実質的有効に処理できるガス流量が制限され、酸素分圧を制御したガスを供給する用途が制限されていた。   To that end, it is conceivable to lengthen the solid electrolyte cylindrical body or increase the pipe diameter. In order to effectively use the oxygen ion conductive solid electrolyte, it is necessary to reduce the resistance value of the oxygen pump as much as possible and increase the oxygen permeation ability of the oxygen pump. The resistance value of the oxygen pump is affected by the shape (surface area and thickness) of the solid electrolyte, the electrode film, the lead terminal, and the like. Among these, the shape of the solid electrolyte has a large surface area, and the resistance value decreases as the thickness decreases. That is, when considering a cylindrical body, a shape having a large diameter and length and a small thickness is preferable. However, in view of the ease of manufacturing the solid electrolyte cylindrical body and the strength of the solid electrolyte cylindrical body used in a heated and high temperature holding state, there are limits to the diameter, length, and thickness. In addition, as the pipe diameter increases, the ion conduction reaction of the gas to be processed flowing through the center of the solid electrolyte cylindrical body decreases rapidly, and as a result, the gas to be processed flowing through the center passes through without reaction. In addition, control accuracy such as oxygen partial pressure decreases. For this reason, there is a limit to simply increasing the pipe diameter of the solid electrolyte cylindrical body. Therefore, there is a limit in increasing the contact area between the gas to be treated and the solid electrolyte cylindrical body by the above method. For this reason, the gas flow rate that can be processed substantially effectively by the gas pump is limited, and the application of supplying gas with controlled oxygen partial pressure is limited.

本発明の目的とするところは、適切な口径の固体電解質筒状体にて実質的有効に処理できるガス流量を増大させたガスポンプを提供することにある。   An object of the present invention is to provide a gas pump having an increased gas flow rate that can be processed substantially effectively with a solid electrolyte cylindrical body having an appropriate diameter.

本発明は、上記目的を達成するため、それぞれが内外両面に電極を有する、径の異なる複数の固体電解質筒状体を同心に組み合わせてユニット化した円形固体電解質筒状体ユニットを、各々の中心線が略鉛直となる縦置き仕様で同心円上に等間隔で複数配設し、この複数の固体電解質筒状体ユニットを囲むリング状の加熱装置で各固体電解質筒状体ユニットを加熱することを特徴とする。また、複数の固体電解質筒状体ユニットで囲まれる空間に加熱装置で加熱されて蓄熱する蓄熱部材を配置することができる。   In order to achieve the above-mentioned object, the present invention provides a circular solid electrolyte cylindrical body unit that is formed by unitizing a plurality of solid electrolyte cylindrical bodies having different diameters, each having electrodes on both the inner and outer surfaces, in the center. A plurality of concentric circles are arranged at equal intervals in a vertically placed specification in which the lines are substantially vertical, and each solid electrolyte cylindrical body unit is heated by a ring-shaped heating device surrounding the plurality of solid electrolyte cylindrical body units. Features. In addition, a heat storage member that stores heat by being heated by a heating device can be disposed in a space surrounded by a plurality of solid electrolyte cylindrical units.

ここで、固体電解質筒状体は、酸化物イオン導電体であるYSZ(イットリウム安定化ジルコニア)のジルコニア系や、プロトン導電体の固体電解質が適用できる。前者ジルコニア系固体電解質筒状体を使用したガスポンプは、所謂酸素ポンプである。後者プロトン導電体の固体電解質筒状体を使用したガスポンプは、所謂水素ポンプであり、燃料電池製造装置などに適用できる。また、複数の固体電解質筒状体は内径が大小異なる円形パイプが強度的、品質的に望ましいが、用途によっては楕円パイプや多角形パイプも適用可能である。径が大小異なる複数の固体電解質筒状体の各々の内外両面に、白金などのネット状の電極を形成する。1つの固体電解質筒状体の外面側電極と内面側電極に極性の異なる直流電圧を印加して、イオン導電のポンプ作用を行わせる。また、複数の各固体電解質筒状体を同心にして多重に配設し、同心状に隣接する内側と外側の固体電解質筒状体の間に筒状空間を形成し、この筒状空間に所望のガスを固体電解質筒状体軸方向に流す。ここでのガスは、酸素分圧制御などされるポンプ動作対象の被処理ガスと、被処理ガスの処理に基づく二次ガス(被処理ガスを処理することで生成された酸素分子などを含む排ガス、または、被処理ガスの処理のために被処理ガスに供与される高酸素分圧の大気ガスなど)である。これらのガスが同心かつ多重に配置された複数の固体電解質筒状体の間の空間や、最大径の固体電解質筒状体の外周と加熱装置の間に形成した流路に流れる。   Here, as the solid electrolyte cylindrical body, a YSZ (yttrium-stabilized zirconia) zirconia-based oxide ion conductor or a proton conductor solid electrolyte can be applied. The former gas pump using a zirconia solid electrolyte cylindrical body is a so-called oxygen pump. The gas pump using the solid electrolyte cylindrical body of the latter proton conductor is a so-called hydrogen pump and can be applied to a fuel cell manufacturing apparatus or the like. In addition, although a plurality of solid electrolyte cylindrical bodies are desirably circular pipes having different inner diameters in terms of strength and quality, elliptical pipes and polygonal pipes can also be applied depending on applications. A net-like electrode such as platinum is formed on both the inner and outer surfaces of each of the plurality of solid electrolyte cylindrical bodies having different diameters. A DC voltage having a different polarity is applied to the outer surface side electrode and the inner surface side electrode of one solid electrolyte cylindrical body to perform an ion conductive pumping action. Also, a plurality of solid electrolyte cylindrical bodies are concentrically arranged in a multiple manner, and a cylindrical space is formed between the inner and outer solid electrolyte cylindrical bodies adjacent to each other in a concentric manner. The gas is flowed in the axial direction of the solid electrolyte cylindrical body. The gas used here is a gas to be processed for pump operation that is subjected to oxygen partial pressure control, etc., and a secondary gas based on the processing of the gas to be processed (exhaust gas including oxygen molecules generated by processing the gas to be processed) Or high oxygen partial pressure atmospheric gas provided to the gas to be processed for the processing of the gas to be processed). These gases flow in a space formed between a plurality of solid electrolyte cylindrical bodies arranged concentrically and multiply, or a flow path formed between the outer periphery of the solid electrolyte cylindrical body having the maximum diameter and the heating device.

このように同心円上に配置された複数の固体電解質筒状体ユニットのそれぞれの内部に被処理ガスを流すことで、被処理ガスと固体電解質筒状体との接触面積が増大し、ポンプ処理するガス量が増大する。また、複数の固体電解質筒状体ユニットに対して等距離にあるリング状加熱装置が各個体電解質筒状体ユニットを均一的に加熱して、ユニット間での温度差が少なくなり、この温度差によって生じる固体電解質筒状体ユニットの酸素透過能力差が解消される。さらに、中心線が略鉛直に配置された各個体電解質筒状体ユニットを外側からは加熱装置で加熱し、内側からは蓄熱部材で加熱することで、各ユニットの固体電解質筒状体を周方向に温度差少なくして均一的に加熱することができ、各ユニット内部を流れる被処理ガスの制御精度を高めることができる。これにより、複数の固体電解質筒状体ユニットで個体差なく同質な被処理ガスの処理が行われて、酸素分圧などの制御精度の向上が図れる。   By flowing the gas to be processed into each of the plurality of solid electrolyte cylindrical units arranged concentrically in this way, the contact area between the gas to be processed and the solid electrolyte cylindrical body is increased, and the pump processing is performed. The amount of gas increases. In addition, a ring-shaped heating device equidistant to a plurality of solid electrolyte cylindrical units uniformly heats each solid electrolyte cylindrical unit, and the temperature difference between the units is reduced. This eliminates the difference in oxygen permeation ability of the solid electrolyte cylindrical unit. Furthermore, each solid electrolyte tubular body unit whose center line is arranged substantially vertically is heated from the outside by a heating device, and from the inside by a heat storage member, so that the solid electrolyte tubular body of each unit is circumferentially Thus, the temperature difference can be reduced and the heating can be performed uniformly, and the control accuracy of the gas to be processed flowing inside each unit can be increased. Thereby, the processing of the same gas to be processed is performed in a plurality of solid electrolyte cylindrical units without individual differences, and control accuracy such as oxygen partial pressure can be improved.

本発明においては、内外両面に電極を有する同一径で同一長さの複数の円形固体電解質筒状体を、各々の中心軸を鉛直にして同心円上に設置し、この複数の円形固体電解質筒状体を囲むリング状の加熱装置で各固体電解質筒状体を加熱することを特徴とする。また、複数の固体電解質筒状体で囲まれる空間に加熱装置で加熱されて蓄熱する蓄熱部材を配置することができる。   In the present invention, a plurality of circular solid electrolyte cylinders having the same diameter and the same length having electrodes on both the inner and outer surfaces are placed on concentric circles with each central axis vertical, and the plurality of circular solid electrolyte cylinders Each solid electrolyte cylindrical body is heated by a ring-shaped heating device surrounding the body. In addition, a heat storage member that stores heat by being heated by a heating device can be disposed in a space surrounded by a plurality of solid electrolyte cylindrical bodies.

また、本発明においては、複数の各固体電解質筒状体を酸化物イオン導電体で構成することができる。この酸化物イオン導電体の固体電解質筒状体は、所定温度で加熱された条件下で被処理ガス中の酸素分子を二次ガスに移動させるポンプ動作、あるいは、二次ガス中の酸素分子を被処理ガスに移動させる逆のポンプ動作をして、安定した動作をする酸素ポンプを構成する。   In the present invention, each of the plurality of solid electrolyte cylindrical bodies can be composed of an oxide ion conductor. This oxide ion conductor solid electrolyte cylinder is operated by a pump that moves oxygen molecules in the gas to be treated to the secondary gas under the condition of being heated at a predetermined temperature, or oxygen molecules in the secondary gas. An oxygen pump that performs a stable operation by performing a reverse pump operation to move to the gas to be processed is configured.

本発明のガスポンプによれば、同心円上に配置された複数の固体電解質筒状体ユニットや固体電解質筒状体のそれぞれの内部を被処理ガスが通過することによって、被処理ガスと固体電解質筒状体との接触面積を増大させることができ、ポンプ処理するガス量の増大が図れるという優れた効果を奏し得る。また、ガスポンプが処理できるガス量の増大で、極低酸素分圧ガスを使用する材料生成装置や高酸素分圧ガスを使用する熱処理装置などの製造設備に処理量の大きな高能力大型設備を適用できる有利さがある。   According to the gas pump of the present invention, the gas to be processed and the solid electrolyte cylinder are formed by passing the gas to be processed through each of the plurality of solid electrolyte cylinder units and the solid electrolyte cylinders arranged concentrically. The contact area with the body can be increased, and an excellent effect that the amount of gas to be pumped can be increased can be obtained. In addition, by increasing the amount of gas that can be processed by the gas pump, large-capacity, high-capacity equipment with large throughput is applied to manufacturing equipment such as material generation equipment that uses extremely low oxygen partial pressure gas and heat treatment equipment that uses high oxygen partial pressure gas. There are advantages that can be made.

以下、実施の形態の概要を図1〜図4を参照して説明する。   The outline of the embodiment will be described below with reference to FIGS.

図1及び図2に示す酸素ポンプは、直径が大小異なる2本の円形固体電解質筒状体10a、10bを同心に組み合わせてユニット化した円形固体電解質筒状体ユニット10’を複数ユニット使用する。同一サイズの複数の個体電解質筒状体10’を、各々の中心軸を鉛直にして等間隔で同心円上に設置する。鉛直に縦配置された複数の円形固体電解質筒状体ユニット10’の下端部が中空の下部キャップ12に連結され、各固体電解質筒状体ユニット10’の上端部が中空の上部キャップ13に連結される。同心円上の複数の固体電解質筒状体ユニット10’で囲まれる空間に蓄熱部材例えばダミーパイプ15が設置される。ダミーパイプ15の上下端部が各キャップ12、13に固定される。   The oxygen pump shown in FIGS. 1 and 2 uses a plurality of circular solid electrolyte cylindrical units 10 ′ that are unitized by concentrically combining two circular solid electrolyte cylindrical bodies 10 a and 10 b having different diameters. A plurality of solid electrolyte cylinders 10 ′ having the same size are placed on concentric circles at equal intervals with each central axis being vertical. The lower ends of a plurality of circular solid electrolyte cylindrical units 10 ′ vertically arranged are connected to a hollow lower cap 12, and the upper ends of each solid electrolyte cylindrical unit 10 ′ are connected to a hollow upper cap 13. Is done. A heat storage member such as a dummy pipe 15 is installed in a space surrounded by a plurality of solid electrolyte cylindrical units 10 ′ on concentric circles. The upper and lower ends of the dummy pipe 15 are fixed to the caps 12 and 13.

同心円上の複数の固体電解質筒状体ユニット10’の回りに加熱装置であるリング状ヒーター40を同心に配設する。内外2本の固体電解質筒状体10a、10bは、それぞれに内外両面に白金よりなるネット状の電極(図示せず)を有する。この内外両面の電極には、直流電源から異なる極性の直流電圧が印加される。   A ring heater 40 as a heating device is concentrically disposed around a plurality of concentric solid electrolyte cylindrical unit 10 '. The inner and outer two solid electrolyte cylindrical bodies 10a and 10b each have net-like electrodes (not shown) made of platinum on both the inner and outer surfaces. A DC voltage having a different polarity is applied to the inner and outer electrodes from a DC power source.

図1及び図2の酸素ポンプの場合、複数の各固体電解質筒状体ユニット10’の内側固体電解質筒状体10aと外側固体電解質筒状体10bの間の筒状空間が被処理ガスG1を流す一次流路Mpであり、内側固体電解質筒状体10aの内部空間と各固体電解質筒状体ユニット10’の間の空間が二次流路Npである。下部キャップ12を下にして各固体電解質筒状体ユニット10’を縦置きした状態にして、周囲からヒーター40で加熱する。各固体電解質筒状体ユニット10’はヒーター40から等距離にあるので加熱斑少なくして均一的に加熱される。また、各固体電解質筒状体ユニット10’で囲まれる内部空間にあるダミーパイプ15もヒーター40で加熱される。このダミーパイプ15の蓄熱で、ダミーパイプ15の回りの各固体電解質筒状体ユニット10’が加熱される。つまり、複数の各固体電解質筒状体ユニット107は、内外双方から加熱されるので、周方向に温度差少なくして均一的に加熱され、かつ、加熱効率が良くなり、ヒーター40の消費電力量を抑えることができる。   In the case of the oxygen pump shown in FIGS. 1 and 2, the cylindrical space between the inner solid electrolyte cylindrical body 10a and the outer solid electrolyte cylindrical body 10b of each of the plurality of solid electrolyte cylindrical unit 10 'is used as the gas G1 to be treated. The primary flow path Mp to flow, and the space between the internal space of the inner solid electrolyte cylindrical body 10a and each solid electrolyte cylindrical body unit 10 'is the secondary flow path Np. Each solid electrolyte cylindrical body unit 10 ′ is placed vertically with the lower cap 12 facing down, and heated by the heater 40 from the surroundings. Since each solid electrolyte cylindrical unit 10 'is equidistant from the heater 40, it is heated uniformly with less heating spots. Further, the dummy pipe 15 in the internal space surrounded by each solid electrolyte cylindrical unit 10 ′ is also heated by the heater 40. The solid electrolyte cylindrical unit 10 ′ around the dummy pipe 15 is heated by the heat storage of the dummy pipe 15. That is, since each of the plurality of solid electrolyte tubular units 107 is heated from both inside and outside, it is heated uniformly with a small temperature difference in the circumferential direction, and the heating efficiency is improved. Can be suppressed.

図1の酸素ポンプの動作を説明する。ヒーター40に通電して各固体電解質筒状体ユニット10’を700℃程度に加熱した状態で、下部キャップ12の流路穴14に被処理ガスG1を給送する。各固体電解質筒状体10a、10bの内外両面の電極に直流電圧を印加する。下部キャップ12に外部から給送された被処理ガスG1は、各固体電解質筒状体ユニット10’の一次通路Mpにほぼ同時にほぼ同量で流入し、上昇する。被処理ガスG1が一次流路Mpを流れる間に内側固体電解質筒状体10aの外面と外側固体電解質筒状体10bの内面に沿って流れるガス中の酸素分子(O2)の一部が固体電解質によって電気的に還元されてイオン(O2-)化され、固体電解質筒状体10a、10bをイオン伝導して二次流路Npに放出される。被処理ガスG1が一次流路Mpを通過する間に酸素分圧が目的値まで下がり、処理済みガスとして一次流路Mpからキャップ13を介して排気される。また、各固体電解質筒状体ユニット10’の外部空間である二次流路Npに放出された酸素分子が周囲のキャリアガス(空気)と共に排気される。下部キャップ12に給送された被処理ガスG1が複数本の固体電解質筒状体ユニット10’内を通過するため、ガスと固体電解質の接触面積が増大して、処理されるガス量が増大する。 The operation of the oxygen pump in FIG. 1 will be described. In a state where the heater 40 is energized and each solid electrolyte cylindrical unit 10 ′ is heated to about 700 ° C., the gas G1 to be treated is fed into the flow path hole 14 of the lower cap 12. A DC voltage is applied to the electrodes on the inner and outer surfaces of each solid electrolyte cylindrical body 10a, 10b. The to-be-treated gas G1 fed from the outside to the lower cap 12 flows into the primary passage Mp of each solid electrolyte cylindrical unit 10 ′ almost at the same amount and rises. While the gas to be treated G1 flows through the primary flow path Mp, some of the oxygen molecules (O 2 ) in the gas flowing along the outer surface of the inner solid electrolyte cylindrical body 10a and the inner surface of the outer solid electrolyte cylindrical body 10b are solid. It is electrically reduced by the electrolyte to be ionized (O 2− ), and is ionically conducted through the solid electrolyte cylindrical bodies 10a and 10b to be discharged into the secondary flow path Np. While the gas to be treated G1 passes through the primary flow path Mp, the oxygen partial pressure decreases to the target value and is exhausted from the primary flow path Mp through the cap 13 as a processed gas. In addition, oxygen molecules released into the secondary flow path Np, which is the external space of each solid electrolyte cylindrical unit 10 ', are exhausted together with the surrounding carrier gas (air). Since the gas to be processed G1 fed to the lower cap 12 passes through the plurality of solid electrolyte cylindrical units 10 ′, the contact area between the gas and the solid electrolyte increases, and the amount of gas to be processed increases. .

図1に示す酸素ポンプの固体電解質筒状体ユニット10’は、二重筒構造体としたが、二重以上の多重筒構造体にしてもよく、また、単一の固体電解質筒状体のみでユニット化しない構造体も可能である。その具体例を図3及び図4に示す。   Although the solid electrolyte cylindrical unit 10 ′ of the oxygen pump shown in FIG. 1 is a double cylindrical structure, it may be a double or more multiple cylindrical structure, or only a single solid electrolyte cylindrical body. Structures that are not unitized are also possible. Specific examples thereof are shown in FIGS.

図3及び図4に示す酸素ポンプは、図1の酸素ポンプを応用したもので、同一径で同一長さの複数の円形固体電解質筒状体11を、各々の中心軸を鉛直にして同心円上に設置している。鉛直に縦配置された複数の円形固体電解質筒状体11の下端部が中空の下部キャップ12に連結され、上端部が中空の上部キャップ13に連結される。同心円上の複数の固体電解質筒状体11で囲まれる空間に蓄熱部材のダミーパイプ15が設置される。ダミーパイプ15の上下端部が各キャップ12、13に固定される。同心円上の複数の固体電解質筒状体11の回りにリング状ヒーター(加熱装置)40が設置される。   The oxygen pump shown in FIG. 3 and FIG. 4 is an application of the oxygen pump of FIG. 1, and a plurality of circular solid electrolyte cylinders 11 having the same diameter and the same length are arranged concentrically with their central axes vertical. It is installed in. The lower ends of the plurality of circular solid electrolyte cylinders 11 vertically arranged vertically are connected to the hollow lower cap 12, and the upper ends are connected to the hollow upper cap 13. A dummy pipe 15 as a heat storage member is installed in a space surrounded by a plurality of solid electrolyte cylindrical bodies 11 on concentric circles. The upper and lower ends of the dummy pipe 15 are fixed to the caps 12 and 13. A ring heater (heating device) 40 is installed around the plurality of concentric solid electrolyte cylinders 11.

図3及び図4の酸素ポンプの場合、複数の各固体電解質筒状体11の内部空間が被処理ガスG1を流す一次流路Mpであり、各固体電解質筒状体11の間の空間が二次流路Npである。下部キャップ12を下にして各固体電解質筒状体11を縦置きした状態にして、周囲からヒーター40で加熱する。各固体電解質筒状体11はヒーター40から等距離にあるので加熱斑少なくして均一的に加熱され、ダミーパイプ15もヒーター40で加熱される。ダミーパイプ15の蓄熱で、ダミーパイプ15の回りの各固体電解質筒状体11が加熱される。この場合も、複数の各固体電解質筒状体11は、内外双方から加熱されるので、加熱効率が良くなり、ヒーター40の消費電力量を抑えることができる。   In the case of the oxygen pump of FIGS. 3 and 4, the internal space of each of the plurality of solid electrolyte cylindrical bodies 11 is a primary flow path Mp through which the gas to be processed G1 flows, and the space between each solid electrolyte cylindrical body 11 is two. This is the next flow path Np. Each solid electrolyte cylindrical body 11 is placed vertically with the lower cap 12 facing down, and heated by the heater 40 from the surroundings. Since each solid electrolyte cylindrical body 11 is equidistant from the heater 40, it is heated uniformly with less heating spots, and the dummy pipe 15 is also heated by the heater 40. Each solid electrolyte cylindrical body 11 around the dummy pipe 15 is heated by the heat storage of the dummy pipe 15. Also in this case, since each of the plurality of solid electrolyte cylindrical bodies 11 is heated from both inside and outside, the heating efficiency is improved and the power consumption of the heater 40 can be suppressed.

各固体電解質筒状体11を700℃程度に加熱した状態で、下部キャップ12の流路穴14に被処理ガスG1を給送する。流路穴14と各固体電解質筒状体11の一次流路Mpが連通させてあり、下部キャップ12に外部から給送された被処理ガスG1は、各固体電解質筒状体11の一次通路Mpにほぼ同時にほぼ同量で流入し、上昇する。被処理ガスG1が鉛直な一次流路Mpを上昇する間に、酸素分子のイオン化反応が行われて、処理済みガスが中空の上部キャップ13に入り、最終的に排気される。また、各固体電解質筒状体11の外部空間である二次流路Npに放出された酸素分子が周囲のキャリアガスと共に排気される。下部キャップ12に給送された被処理ガスG1が複数本の固体電解質筒状体11内を通過するため、ガスと固体電解質の接触面積が増大して、処理されるガス量が増大する。また、複数本の固体電解質筒状体11が均一的に加熱されて固体間の酸素透過能力差が解消されるため、酸素分圧の制御精度を向上させることができる。   In a state where each solid electrolyte cylindrical body 11 is heated to about 700 ° C., the gas G1 to be treated is fed to the flow path hole 14 of the lower cap 12. The flow path hole 14 and the primary flow path Mp of each solid electrolyte cylindrical body 11 communicate with each other, and the gas G1 to be treated fed from the outside to the lower cap 12 flows into the primary passage Mp of each solid electrolyte cylindrical body 11. At the same time, it flows in almost the same amount and rises. While the gas to be processed G1 moves up the vertical primary flow path Mp, an ionization reaction of oxygen molecules is performed, and the processed gas enters the hollow upper cap 13 and is finally exhausted. Further, oxygen molecules released into the secondary flow path Np, which is the external space of each solid electrolyte cylindrical body 11, are exhausted together with the surrounding carrier gas. Since the gas to be processed G1 fed to the lower cap 12 passes through the plurality of solid electrolyte cylindrical bodies 11, the contact area between the gas and the solid electrolyte increases, and the amount of gas to be processed increases. In addition, since the plurality of solid electrolyte cylindrical bodies 11 are uniformly heated and the difference in oxygen permeability between solids is eliminated, the control accuracy of the oxygen partial pressure can be improved.

なお、本発明のガスポンプは、上記した実施の形態に限定されるものではなく、特許請求の範囲に記載の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The gas pump of the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the claims.

本発明に係るガスポンプの概要を示す部分断面を含む側面図である。It is a side view including the partial cross section which shows the outline | summary of the gas pump which concerns on this invention. 図1のT5−T5線に沿う断面図である。It is sectional drawing which follows the T5-T5 line | wire of FIG. 他の実施の形態を示すガスポンプの概要を示す部分断面を含む側面図である。It is a side view including the partial cross section which shows the outline | summary of the gas pump which shows other embodiment. 図3のT6−T6線に沿う断面図である。It is sectional drawing which follows the T6-T6 line | wire of FIG. 酸素ポンプを使用した設備のブロック図である。It is a block diagram of the installation using an oxygen pump. 酸素ポンプの概要を示す断面図である。It is sectional drawing which shows the outline | summary of an oxygen pump.

符号の説明Explanation of symbols

10a、10b 固体電解質筒状体
10’ 固体電解質筒状体ユニット
11 固体電解質筒状体
12 下部キャップ
13 上部キャップ
15 蓄熱部材、ダミーパイプ
10a, 10b Solid electrolyte cylindrical body 10 'Solid electrolyte cylindrical body unit 11 Solid electrolyte cylindrical body 12 Lower cap 13 Upper cap 15 Thermal storage member, dummy pipe

Claims (5)

それぞれが内外両面に電極を有する、径の異なる複数の固体電解質筒状体を同心に組み合わせてユニット化した円形固体電解質筒状体ユニットを、各々の中心線が略鉛直となる縦置き仕様で同心円上に等間隔で複数配設し、この複数の固体電解質筒状体ユニットを囲むリング状の加熱装置で各固体電解質筒状体ユニットを加熱することを特徴とするガスポンプ。   A circular solid electrolyte cylindrical unit, which is a unit formed by concentrically combining a plurality of solid electrolyte cylindrical bodies with different diameters, each having electrodes on both the inner and outer sides, is concentric with vertical specifications where each center line is substantially vertical A gas pump characterized in that a plurality of solid electrolyte tubular body units are arranged on the top at equal intervals and each solid electrolyte tubular body unit is heated by a ring-shaped heating device surrounding the plurality of solid electrolyte tubular body units. 前記複数の固体電解質筒状体ユニットで囲まれる空間に前記加熱装置で加熱されて蓄熱する蓄熱部材を配置したことを特徴とする請求項1に記載のガスポンプ。   The gas pump according to claim 1, wherein a heat storage member that stores heat by being heated by the heating device is disposed in a space surrounded by the plurality of solid electrolyte cylindrical units. 内外両面に電極を有する同一径で同一長さの複数の円形固体電解質筒状体を、各々の中心軸を鉛直にして同心円上に設置し、この複数の円形固体電解質筒状体を囲むリング状の加熱装置で各固体電解質筒状体を加熱することを特徴とするガスポンプ。   A plurality of circular solid electrolyte cylindrical bodies having the same diameter and the same length having electrodes on both the inner and outer surfaces are placed on concentric circles with each central axis vertical, and a ring shape surrounding the plurality of circular solid electrolyte cylindrical bodies A gas pump, wherein each solid electrolyte cylindrical body is heated by a heating device. 前記複数の固体電解質筒状体で囲まれる空間に前記加熱装置で加熱されて蓄熱する蓄熱部材を配置したことを特徴とする請求項3に記載のガスポンプ。   The gas pump according to claim 3, wherein a heat storage member that stores heat by being heated by the heating device is disposed in a space surrounded by the plurality of solid electrolyte cylindrical bodies. 前記固体電解質筒状体が酸化物イオン導電体であることを特徴とする請求項1〜4のいずれかに記載のガスポンプ。   The gas pump according to any one of claims 1 to 4, wherein the solid electrolyte cylindrical body is an oxide ion conductor.
JP2006249846A 2006-09-14 2006-09-14 Gas pump Expired - Fee Related JP4412560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006249846A JP4412560B2 (en) 2006-09-14 2006-09-14 Gas pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006249846A JP4412560B2 (en) 2006-09-14 2006-09-14 Gas pump

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005190435A Division JP3890070B2 (en) 2005-06-29 2005-06-29 Gas pump

Publications (2)

Publication Number Publication Date
JP2007022912A true JP2007022912A (en) 2007-02-01
JP4412560B2 JP4412560B2 (en) 2010-02-10

Family

ID=37784160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006249846A Expired - Fee Related JP4412560B2 (en) 2006-09-14 2006-09-14 Gas pump

Country Status (1)

Country Link
JP (1) JP4412560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9364913B2 (en) 2013-05-01 2016-06-14 Denso Corporation Method for brazing sheet material and heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9364913B2 (en) 2013-05-01 2016-06-14 Denso Corporation Method for brazing sheet material and heat exchanger

Also Published As

Publication number Publication date
JP4412560B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP3890070B2 (en) Gas pump
AU2018202311A1 (en) Methods of producing and providing purified gas using an electrochemical cell
JP2001039702A (en) Electrochemical oxygen generating system
JP4412560B2 (en) Gas pump
US6264807B1 (en) Ceramic oxygen generation system
JP5229508B2 (en) Oxygen partial pressure control apparatus and solid electrolyte recovery method for oxygen partial pressure control
JP2003109634A (en) Fuel cell system and operation method of fuel cell
JP2012106872A (en) Oxygen partial pressure controlling method
KR102375635B1 (en) Fuel cell stack assembly
US7171111B2 (en) Method of heating water with rod shaped electrodes in a two-dimensional matrix
JP2005331339A (en) Oxygen partial pressure control device and recovery method of solid electrolyte for oxygen partial pressure control
JP4557686B2 (en) Electric desalination apparatus and desalting method
US9203099B2 (en) Fuel cell assembly and method for operating a fuel cell assembly
JP5138211B2 (en) Oxygen pump
US20240282992A1 (en) Method for regenerating a fuel cell
US11444290B2 (en) Separator, and fuel cell stack comprising the same
JP2008137875A (en) Oxygen partial pressure control device
JP5348447B2 (en) Cell characterization device
JP5611030B2 (en) Starting method of solid oxide fuel cell
JP5329037B2 (en) Oxygen pump
JP6667844B2 (en) Probe for temperature measurement
JP3483624B2 (en) Device for removing moisture from gas
JP2008186782A (en) Operation method of fuel cell
JP6113602B2 (en) SOFC tube type cell evaluation holder
JP5329036B2 (en) Oxygen pump

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees