JP2009250686A - Oxygen pump and restoration method of oxygen pump - Google Patents

Oxygen pump and restoration method of oxygen pump Download PDF

Info

Publication number
JP2009250686A
JP2009250686A JP2008096435A JP2008096435A JP2009250686A JP 2009250686 A JP2009250686 A JP 2009250686A JP 2008096435 A JP2008096435 A JP 2008096435A JP 2008096435 A JP2008096435 A JP 2008096435A JP 2009250686 A JP2009250686 A JP 2009250686A
Authority
JP
Japan
Prior art keywords
solid electrolyte
cylindrical body
electrolyte cylindrical
oxygen
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008096435A
Other languages
Japanese (ja)
Other versions
JP5000572B2 (en
Inventor
Ryusuke Iwasaki
隆祐 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2008096435A priority Critical patent/JP5000572B2/en
Publication of JP2009250686A publication Critical patent/JP2009250686A/en
Application granted granted Critical
Publication of JP5000572B2 publication Critical patent/JP5000572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacity restoring method of an oxygen pump capable of efficiently restoring a solid electrolyte cylindrical body by utilizing existing equipment to extend the life of the oxygen pump. <P>SOLUTION: The capacity restoring method is adapted to the oxygen pump which is equipped with a solid electrolyte cylindrical body bundle 29 constituted of a plurality of the solid electrolyte cylindrical bodies 30, the electrodes 34 and 35 arranged to the inner and outer surfaces of the solid electrolyte cylindrical body 30 and a heating means 31 for heating the solid electrolyte cylindrical body 30 and constituted so as to discharge an oxygen molecule by applying a positive pole to the electrode 35 and applying a negative pole to the electrode 34 to allow a current to flow. In at least one solid electrolyte cylindrical body 30, the oxygen molecule is discharged, while the oxygen molecule is taken in the solid electrolyte cylindrical body 30 by applying the positive pole to the electrode 34 provided to the inner surface of at least the other one solid electrolyte cylindrical body 30 for a predetermined time and applying the negative pole to the electrode 35 provided to the outer surface of the solid electrolyte cylindrical body 30 to perform the restoration measure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸素ポンプ及び酸素ポンプの回復方法に関するものである。   The present invention relates to an oxygen pump and a method for recovering the oxygen pump.

従来から、固体電解質を含む電気化学的な酸素ポンプを有する酸素分圧制御装置により、酸素分圧を制御した雰囲気ガスを用いて、単結晶試料等を作成する方法が知られている(特許文献1)。   Conventionally, a method for producing a single crystal sample or the like using an atmospheric gas whose oxygen partial pressure is controlled by an oxygen partial pressure control device having an electrochemical oxygen pump containing a solid electrolyte is known (Patent Document). 1).

図5に示す酸素分圧制御装置は、バルブ2を通った不活性ガスの流量を設定値に制御するマスフローコントローラ(MFC)3と、このマスフローコントローラ3を通った不活性ガスを目的の酸素分圧に制御可能な電気化学的な酸素ポンプ4と、酸素ポンプ4で制御された不活性ガスの酸素分圧をモニタして試料育成装置などの次工程(装置)に供給する供給ガス用の酸素センサ5を有する。   The oxygen partial pressure control device shown in FIG. 5 includes a mass flow controller (MFC) 3 that controls the flow rate of the inert gas that has passed through the valve 2 to a set value, and the inert gas that has passed through the mass flow controller 3 as a target oxygen component. The oxygen oxygen for supply gas supplied to the next process (apparatus) such as a sample growing apparatus by monitoring the oxygen partial pressure of the inert gas controlled by the oxygen pump 4 and the inert gas controlled by the oxygen pump 4 It has a sensor 5.

さらにこの装置は、所望の酸素分圧値を設定する酸素分圧設定部6と、酸素センサ5によるモニタ値を酸素分圧設定部6による設定値と比較して酸素ポンプ4から送り出される不活性ガスの酸素分圧を所定値に制御する酸素分圧制御部7と、酸素センサ5によるモニタ値を表示する酸素分圧表示部8を備える。なお、通常、不活性ガス中の酸素分圧は10-4atm程度である。 Further, this apparatus compares the monitored value by the oxygen sensor 5 with the set value by the oxygen partial pressure setting unit 6 and the inertness sent out from the oxygen pump 4 to set a desired oxygen partial pressure value. An oxygen partial pressure control unit 7 that controls the oxygen partial pressure of the gas to a predetermined value and an oxygen partial pressure display unit 8 that displays a monitor value by the oxygen sensor 5 are provided. Normally, the oxygen partial pressure in the inert gas is about 10 −4 atm.

電気化学的な酸素ポンプ4は、図6に示すように、酸素イオン伝導性を有する固体電解質筒状体4aの内外両面に白金よりなる電極4b、4cを形成している。固体電解質筒状体4aは、例えばジルコニア系の固体電解質で、図示しないヒータで600℃程度に加熱される。酸素ポンプ4は、複数本(例えば5本)の固体電解質筒状体4aを同一面上に並列に配置して構成されるのが一般的である。   As shown in FIG. 6, the electrochemical oxygen pump 4 has electrodes 4b and 4c made of platinum formed on both the inner and outer surfaces of a solid electrolyte cylindrical body 4a having oxygen ion conductivity. The solid electrolyte cylindrical body 4a is, for example, a zirconia solid electrolyte, and is heated to about 600 ° C. by a heater (not shown). The oxygen pump 4 is generally configured by arranging a plurality (for example, five) of solid electrolyte cylindrical bodies 4a in parallel on the same surface.

図6に示すように、固体電解質筒状体4aの一方の開口から他方の開口に向けて軸方向に不活性ガスを供給する。不活性ガスは、例えばAr+O(10−4atm)である。その際、内外両面の電極4b、4c間に直流電源Eの直流電圧を印加する。外面の電極4cに+極を印加し、内面の電極4bに−極を印加して電流Iを流すと、固体電解質筒状体4a内を流れる不活性ガス中の酸素分子(O)が電気的に還元されてイオン(O2−)化され、固体電解質を通して再び酸素分子(O)として固体電解質筒状体4aの外部に放出される。固体電解質筒状体4aの外部に放出された酸素分子は、大気へ排気される。固体電解質筒状体4aに供給されたAr+O(10−4atm)の不活性ガスは、酸素分子が低減されて目的の酸素分圧に制御された処理済みガス(精製ガス)となり、次工程(装置)に給送される。このような酸素ポンプにより酸素分圧を制御したガスを供給すれば、結晶育成、合金化、熱処理、半導体製造工程などが酸素分圧を制御した不活性ガスなどの雰囲気下で行うことができる。 As shown in FIG. 6, an inert gas is supplied in the axial direction from one opening of the solid electrolyte cylindrical body 4a toward the other opening. The inert gas is, for example, Ar + O 2 (10 −4 atm). At that time, the DC voltage of the DC power source E is applied between the electrodes 4b and 4c on both the inner and outer surfaces. When a positive electrode is applied to the outer electrode 4c and a negative electrode is applied to the inner electrode 4b to flow a current I, oxygen molecules (O 2 ) in the inert gas flowing through the solid electrolyte cylindrical body 4a are electrically charged. It is reduced to ions (O 2− ) and released again as oxygen molecules (O 2 ) through the solid electrolyte to the outside of the solid electrolyte cylindrical body 4a. The oxygen molecules released to the outside of the solid electrolyte cylindrical body 4a are exhausted to the atmosphere. The inert gas of Ar + O 2 (10 −4 atm) supplied to the solid electrolyte cylindrical body 4a becomes a processed gas (purified gas) that is controlled to a target oxygen partial pressure by reducing oxygen molecules, and is the next step. (Device). If a gas whose oxygen partial pressure is controlled by such an oxygen pump is supplied, crystal growth, alloying, heat treatment, semiconductor manufacturing process, etc. can be performed in an atmosphere such as an inert gas whose oxygen partial pressure is controlled.

前記のような酸素ポンプ4では、固体電解質筒状体内の酸素分圧が、通常2×10−1〜1×10−30atm、温度が600℃〜700℃となる。このような過酷な環境下で使用を続けると、固体電解質筒状体は過剰に還元されて欠陥(酸素空孔の過剰な増大)が生じる。すなわち、金属酸化物である固体電解質筒状体(例えばジルコニア)が過剰に還元されて、金属(例えばジルコニウム)が生成される。金属酸化物と金属とでは熱膨張率が異なるため、熱膨張率の差により応力が発生すると固体電解質筒状体が破損する。 In the oxygen pump 4 as described above, the oxygen partial pressure in the solid electrolyte cylindrical body is usually 2 × 10 −1 to 1 × 10 −30 atm, and the temperature is 600 ° C. to 700 ° C. If the use is continued in such a harsh environment, the solid electrolyte cylindrical body is excessively reduced to cause defects (excessive increase in oxygen vacancies). That is, a solid electrolyte cylindrical body (for example, zirconia) that is a metal oxide is excessively reduced to generate a metal (for example, zirconium). Since the metal oxide and the metal have different coefficients of thermal expansion, the solid electrolyte cylindrical body is damaged when stress is generated due to the difference in coefficient of thermal expansion.

そこで、固体電解質筒状体の回復措置を行って破損を防止する方法が提案されている(特許文献2)。特許文献2のものは、酸素ポンプを稼動した後、降温を始める前に酸素ポンプ等の固体電解質管内に1atmの純酸素又は空気を流入させて、固体電解質筒状体を回復させるものである。すなわち、ガス経路に分岐配管、バルブ、フィルター、チェックバルブ等を設けて、分岐配管を介して純酸素又は空気を固体電解質筒状体内に流入させている。これにより、極低酸素分圧下で部分還元された金属(ジルコニウム)を再酸化して金属酸化物(ジルコニア)とすることができて、固体電解質筒状体が回復する。
特開2002−326887号公報 特開2005−331339号公報
Then, the method of taking a recovery | restoration measure of a solid electrolyte cylindrical body and preventing damage is proposed (patent document 2). In Patent Document 2, after operating an oxygen pump, before starting to cool down, 1 atm of pure oxygen or air is allowed to flow into a solid electrolyte tube such as an oxygen pump to recover the solid electrolyte cylindrical body. That is, a branch pipe, a valve, a filter, a check valve, and the like are provided in the gas path, and pure oxygen or air is allowed to flow into the solid electrolyte cylindrical body through the branch pipe. Thereby, the metal (zirconium) partially reduced under extremely low oxygen partial pressure can be reoxidized to form a metal oxide (zirconia), and the solid electrolyte cylindrical body is recovered.
JP 2002-326887 A JP 2005-331339 A

しかしながら、特許文献2に記載されたもののように分岐経路を設けると、固体電解質筒状体の回復措置のために配管、バルブ、フィルター、及びチェックバルブ等を別途付加しなければならない。このため、設置スペースが大となり、また、コスト高となっていた。さらに、酸素ポンプの稼動中には回復を行うことができないため、回復を行うためには一旦酸素ポンプの稼動を停止する必要がある。このため、酸素ポンプの稼動効率が悪いものとなっていた。   However, when a branch path is provided as described in Patent Document 2, piping, valves, filters, check valves, and the like must be separately added for recovery measures for the solid electrolyte cylindrical body. For this reason, the installation space becomes large and the cost is high. Further, since recovery cannot be performed while the oxygen pump is in operation, it is necessary to stop the operation of the oxygen pump once in order to perform recovery. For this reason, the operating efficiency of the oxygen pump has been poor.

本発明は、上記課題に鑑みて、既存の装置を利用して効率良く固体電解質筒状体の回復を行うことができ、長寿命化を図ることができる酸素ポンプにおける能力回復方法及び酸素ポンプを提供する。   In view of the above problems, the present invention provides a capacity recovery method and an oxygen pump in an oxygen pump that can efficiently recover a solid electrolyte cylindrical body using an existing apparatus and can achieve a long life. provide.

本発明の酸素ポンプにおける能力回復方法は、酸素イオン伝導性を有する複数の固体電解質筒状体にて構成された固体電解質筒状体束と、前記固体電解質筒状体の内面及び外面に配置される電極と、固体電解質筒状体を加熱する加熱手段を備え、加熱手段を稼動させて、固体電解質筒状体の外面の電極に+極を印加し、この固体電解質筒状体の内面の電極に−極を印加して電流を流して酸素分子を固体電解質筒状体の外部に放出する酸素ポンプにおける能力回復方法であって、少なくとも1つの固体電解質筒状体において、酸素分子を放出させる一方で、少なくとも他の1つの固体電解質筒状体の内面の電極に所定時間+極を印加し、この固体電解質筒状体の外面の電極に−極を印加して酸素分子を固体電解質筒状体の内部に取り込んで回復措置を行うものである。   The capacity recovery method in the oxygen pump according to the present invention includes a solid electrolyte cylindrical bundle composed of a plurality of solid electrolyte cylindrical bodies having oxygen ion conductivity, and an inner surface and an outer surface of the solid electrolyte cylindrical body. And a heating means for heating the solid electrolyte cylindrical body, the heating means is operated to apply a positive electrode to the electrode on the outer surface of the solid electrolyte cylindrical body, and the electrode on the inner surface of the solid electrolyte cylindrical body A method for recovering the capacity of an oxygen pump that discharges oxygen molecules to the outside of the solid electrolyte cylinder by applying a current to the negative electrode to discharge oxygen molecules in at least one solid electrolyte cylinder Then, a positive electrode is applied to an electrode on the inner surface of at least one other solid electrolyte cylindrical body for a predetermined time, and a negative electrode is applied to an electrode on the outer surface of the solid electrolyte cylindrical body to thereby convert oxygen molecules into the solid electrolyte cylindrical body. Recovered by taking inside And performs location.

本発明の酸素ポンプにおける能力回復方法によれば、少なくとも1つの固体電解質筒状体で酸素分子を放出している間に、他の少なくとも1つの固体電解質筒状体が回復を行っている。すなわち、少なくとも1つの固体電解質筒状体を酸素ポンプとして稼動させることができるため、酸素分子の放出と固体電解質筒状体の回復とを同時に行うことができる。回復を行う固体電解質筒状体では、本来金属酸化物であった固体電解質筒状体が還元されて生成された金属を、再酸化して再度金属酸化物に戻すことができる。換言すると、酸素分子を放出することによって固体電解質筒状体に形成された欠陥(酸素空孔)に、酸素分子を充填することができるため、固体電解質筒状体を回復させることができる。ここで、回復とは、固体電解質筒状体の酸素分子の放出能力を再生させることをいう。   According to the capacity recovery method in the oxygen pump of the present invention, at least one other solid electrolyte cylinder is recovering while oxygen molecules are released from at least one solid electrolyte cylinder. That is, since at least one solid electrolyte cylindrical body can be operated as an oxygen pump, release of oxygen molecules and recovery of the solid electrolyte cylindrical body can be performed simultaneously. In the solid electrolyte cylindrical body to be recovered, the metal produced by reducing the solid electrolyte cylindrical body that was originally a metal oxide can be reoxidized and returned to the metal oxide again. In other words, oxygen molecules can be filled into the defects (oxygen vacancies) formed in the solid electrolyte cylindrical body by releasing the oxygen molecules, so that the solid electrolyte cylindrical body can be recovered. Here, recovery means regenerating the oxygen molecule releasing ability of the solid electrolyte cylindrical body.

複数の固体電解質筒状体において、一定時間の回復措置を行う固体電解質筒状体を、所定期間毎に順次変更することができる。すなわち、所定期間毎に固体電解質筒状体を交替で回復させているので、順次固体電解質筒状体を回復していき、この回復した固体電解質筒状体にて再び酸素を放出することができる。この場合、回復を必要とする固体電解質筒状体であっても、回復を必要としない固体電解質筒状体であっても一律に回復措置を行う。   In a plurality of solid electrolyte cylindrical bodies, the solid electrolyte cylindrical bodies that perform recovery measures for a predetermined time can be sequentially changed every predetermined period. That is, since the solid electrolyte cylindrical body is alternately recovered every predetermined period, the solid electrolyte cylindrical body can be recovered sequentially, and oxygen can be released again by the recovered solid electrolyte cylindrical body. . In this case, even if it is a solid electrolyte cylinder that requires recovery or a solid electrolyte cylinder that does not require recovery, recovery measures are uniformly performed.

本発明の酸素ポンプは、酸素イオン伝導性を有する複数の固体電解質筒状体にて構成された固体電解質筒状体束と、この複数の固体電解質筒状体の内面及び外面に配置される電極と、固体電解質筒状体を加熱する加熱手段を備えた酸素ポンプにおいて、少なくとも1つの固体電解質筒状体の外面の電極に+極を印加し、この固体電解質筒状体の内面の電極に−極を印加して酸素分子を固体電解質筒状体から外部に放出する酸素分子放出状態と、回復が必要な少なくとも1つの固体電解質筒状体の内面の電極に所定時間+極を印加し、この固体電解質筒状体の外面の電極に−極を印加して酸素分子を固体電解質筒状体の内部へ取り込む酸素分子取込状態との切換が可能な制御手段を設けたものである。   The oxygen pump of the present invention includes a solid electrolyte cylindrical bundle composed of a plurality of solid electrolyte cylindrical bodies having oxygen ion conductivity, and electrodes disposed on the inner surface and the outer surface of the plurality of solid electrolyte cylindrical bodies. And an oxygen pump provided with a heating means for heating the solid electrolyte cylindrical body, a positive electrode is applied to the electrode on the outer surface of at least one solid electrolyte cylindrical body, and the electrode on the inner surface of the solid electrolyte cylindrical body is − Applying a pole to the oxygen molecule releasing state in which oxygen molecules are released to the outside from the solid electrolyte cylindrical body, and applying a positive electrode to the electrode on the inner surface of at least one solid electrolyte cylindrical body that requires recovery for a predetermined time, A control means is provided that can switch between an oxygen molecule intake state in which a negative electrode is applied to the electrode on the outer surface of the solid electrolyte cylindrical body and oxygen molecules are taken into the solid electrolyte cylindrical body.

固体電解質筒状体を、最低限必要とする酸素分子の放出能力となる固体電解質筒状体の数よりも余分に設けることができる。これにより、回復を行っている固体電解質筒状体があっても、他の固体電解質筒状体が酸素分子を放出して、常時必要な酸素分子放出能力を備えることができる。   The number of solid electrolyte cylinders can be provided in excess of the number of solid electrolyte cylinders that provide the minimum required oxygen molecule release capability. As a result, even if there is a solid electrolyte cylindrical body that is recovering, other solid electrolyte cylindrical bodies can release oxygen molecules, and can always have the necessary oxygen molecule releasing ability.

各固体電解質筒状体を一定時間毎に回復措置を行うことができる。   Recovery measures can be taken for each solid electrolyte cylindrical body at regular intervals.

本発明の酸素ポンプの回復方法及び酸素ポンプでは、酸素ポンプの稼動停止後に回復させる場合、電圧の印加方向を変えるのみでよいので、回復のための配管等を別途付加する必要がなく、既存の設備を利用して容易に固体電解質筒状体の回復を行う。そのため、従来のような分岐配管を設ける必要もなくなって、設置スペースを小とすることができ、コストの低減を図ることができる。さらには、固体電解質筒状体を回復させている間に、他の固体電解質筒状体が酸素ポンプとして稼動することができるため、回復のために酸素ポンプの稼動を停止することなく連続稼動が可能となり、効率良く回復を行うことができる。   In the oxygen pump recovery method and the oxygen pump according to the present invention, when recovering after the operation of the oxygen pump is stopped, it is only necessary to change the direction of voltage application. The solid electrolyte cylindrical body is easily recovered using the equipment. Therefore, there is no need to provide a branch pipe as in the prior art, the installation space can be reduced, and the cost can be reduced. Furthermore, while the solid electrolyte cylindrical body is being recovered, other solid electrolyte cylindrical bodies can operate as an oxygen pump, so that the continuous operation can be performed without stopping the operation of the oxygen pump for recovery. This makes it possible to recover efficiently.

固体電解質筒状体を、最低限必要とする酸素分子の放出となる固体電解質筒状体の数よりも余分に設けると、常時必要な酸素分子放出能力を備えることができるため、酸素分子の放出能力を損なわないようにすることができる。このため、この酸素ポンプを用いた酸素分圧制御装置等の装置を高性能に機能させることができる。   If the solid electrolyte cylindrical body is provided in excess of the number of solid electrolyte cylindrical bodies that release the minimum required oxygen molecules, the oxygen molecule release capability can be provided at all times, so that the release of oxygen molecules is possible. It is possible not to impair the ability. Therefore, a device such as an oxygen partial pressure control device using this oxygen pump can be made to function with high performance.

順次固体電解質筒状体の回復措置を行って酸素空孔を埋めることができることができるため、回復を必要とする固体電解質筒状体では破損を防止することができ、回復を必要としない固体電解質筒状体では破損原因発生の予防を行うことができる。このため、回復及び破損原因発生の予防の効果も期待でき、装置全体として一層長寿命とすることができる。   The solid electrolyte cylindrical body can be filled with oxygen vacancies by sequentially recovering the solid electrolyte cylindrical body. Therefore, the solid electrolyte cylindrical body requiring recovery can be prevented from being damaged, and the solid electrolyte does not require recovery. The tubular body can prevent the cause of damage. For this reason, the effect of recovery and prevention of the cause of breakage can be expected, and the life of the entire apparatus can be further extended.

以下本発明の実施の形態を図1〜図4に基づいて説明する。本発明に係る酸素ポンプ4は、図1に示すように、酸素イオン伝導性を有する複数の固体電解質筒状体30にて構成された固体電解質筒状体束29と、各固体電解質筒状体30を加熱する加熱手段31を備える。この場合、各固体電解質筒状体30の内面及び外面に白金めっき等を施して、図2に示すように電極34、35を構成する。本実施形態では、酸素分子の放出能力として最低限必要とする固体電解質筒状体30の数は5本であり、固体電解質筒状体束29は、6本の固体電解質筒状体30a〜30fを同一面上で並列に配設することにより構成されたものである。すなわち、固体電解質筒状体束29は、最低限必要とする酸素分子の放出能力となる固体電解質筒状体30の数よりも1本余分に設けられたものである。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. As shown in FIG. 1, the oxygen pump 4 according to the present invention includes a solid electrolyte cylindrical bundle 29 composed of a plurality of solid electrolyte cylindrical bodies 30 having oxygen ion conductivity, and each solid electrolyte cylindrical body. Heating means 31 for heating 30 is provided. In this case, platinum plating etc. are given to the inner surface and the outer surface of each solid electrolyte cylindrical body 30, and the electrodes 34 and 35 are comprised as shown in FIG. In the present embodiment, the minimum number of solid electrolyte cylindrical bodies 30 required as the oxygen molecule release capability is five, and the solid electrolyte cylindrical bundle 29 has six solid electrolyte cylindrical bodies 30a to 30f. Are arranged in parallel on the same plane. That is, the solid electrolyte cylindrical body bundle 29 is provided in an amount one extra than the number of the solid electrolyte cylindrical bodies 30 that provide the minimum required oxygen molecule release capability.

固体電解質筒状体束29は、図示簡略の平面状の加熱手段31にてサンドイッチ状に挟まれている。加熱手段31は、導体上に絶縁層を被覆した電熱線を蛇行させたものであって、図1の仮想線で示すように平面的に配線した蛇行型のヒータにて構成される。加熱手段31としては、蛇行型のヒータに替えて、固体電解質筒状体束29の外周側にコイル状に巻設した電熱線にて構成することもできる。なお、各固体電解質筒状体30において、上部にはガス供給路27が設けられ、下部にはガス排出路28が設けられている。   The solid electrolyte cylindrical bundle 29 is sandwiched between flat heating means 31 (shown simply). The heating means 31 is a meandering heater having a conductor coated with an insulating layer, and is constituted by a meandering heater wired in a plane as shown by an imaginary line in FIG. The heating means 31 may be constituted by a heating wire wound in a coil shape on the outer peripheral side of the solid electrolyte cylindrical bundle 29 instead of the meandering heater. In each solid electrolyte cylindrical body 30, a gas supply path 27 is provided in the upper part, and a gas discharge path 28 is provided in the lower part.

前記のような酸素ポンプ4を稼動するには、内外両面の電極34、35間に直流電源Eの直流電圧を印加する。すなわち、外面の電極35に+極を印加し、内面の電極34に−極を印加して電流Iを流す。その際、ガス供給路27から不活性ガスを供給する。これにより、固体電解質筒状体内を流れる不活性ガス中の酸素分子(O)が電気的に還元されてイオン(O2−)化され、固体電解質を通して再び酸素分子(O)として固体電解質筒状体30の外部に放出する酸素分子放出状態となる。一方、これとは逆に、図2に示すように、内面の電極34に+極を印加し、外面の電極35に−極を印加して逆向きの電流Iを流す。これにより、固体電解質筒状体30の外面に沿って流れる空気などのガス中の酸素分子(O)が電気的に還元されてイオン(O2−)化され、固体電解質筒状体30を通して酸素分子(O)として固体電解質筒状体30の内部に取り込む酸素分子取込状態となる。 In order to operate the oxygen pump 4 as described above, a DC voltage of a DC power source E is applied between the electrodes 34 and 35 on both the inner and outer surfaces. That is, the positive electrode is applied to the outer electrode 35 and the negative electrode is applied to the inner electrode 34 to pass the current I. At that time, an inert gas is supplied from the gas supply path 27. As a result, oxygen molecules (O 2 ) in the inert gas flowing through the solid electrolyte cylindrical body are electrically reduced to ions (O 2− ), and are again converted into oxygen molecules (O 2 ) through the solid electrolyte. The oxygen molecule is released to the outside of the cylindrical body 30. On the other hand, as shown in FIG. 2, a positive electrode is applied to the inner electrode 34 and a negative electrode is applied to the outer electrode 35 to pass a reverse current I. As a result, oxygen molecules (O 2 ) in a gas such as air flowing along the outer surface of the solid electrolyte cylindrical body 30 are electrically reduced to ions (O 2− ) and pass through the solid electrolyte cylindrical body 30. the oxygen molecules capture state to take the inside of the solid electrolyte cylindrical body 30 as oxygen molecules (O 2).

図3は、本発明の酸素ポンプ4を使用した酸素分圧制御装置である。この酸素分圧制御装置は、バルブ2を通った不活性ガスの流量を設定値に制御するマスフローコントローラ(MFC)3と、このマスフローコントローラ3を通った不活性ガスを目的の酸素分圧に制御可能な電気化学的な酸素ポンプ4と、酸素ポンプ4で制御された不活性ガスの酸素分圧をモニタして試料育成装置などの次工程(装置)に供給する供給ガス用の酸素センサ5を有する。さらにこの装置は、所望の酸素分圧値を設定する酸素分圧設定部6と、酸素センサ5によるモニタ値を酸素分圧設定部6による設定値と比較して酸素ポンプ4から送り出される不活性ガスの酸素分圧を所定値に制御する酸素分圧制御部7と、酸素センサ5によるモニタ値を表示する酸素分圧表示部8を備える。   FIG. 3 shows an oxygen partial pressure control apparatus using the oxygen pump 4 of the present invention. This oxygen partial pressure control device controls a mass flow controller (MFC) 3 that controls the flow rate of the inert gas that has passed through the valve 2 to a set value, and controls the inert gas that has passed through the mass flow controller 3 to a target oxygen partial pressure. A possible electrochemical oxygen pump 4 and a supply gas oxygen sensor 5 for monitoring the oxygen partial pressure of the inert gas controlled by the oxygen pump 4 and supplying it to the next process (device) such as a sample growing device Have. Further, this apparatus compares the monitored value by the oxygen sensor 5 with the set value by the oxygen partial pressure setting unit 6 and the inertness sent out from the oxygen pump 4 to set a desired oxygen partial pressure value. An oxygen partial pressure control unit 7 that controls the oxygen partial pressure of the gas to a predetermined value and an oxygen partial pressure display unit 8 that displays a monitor value by the oxygen sensor 5 are provided.

酸素ポンプ4には、図3に示すように電圧印加手段50が設けられている。電圧印加手段50は、固体電解質筒状体30の内外面の電極34、35に電圧を印加するものである。   The oxygen pump 4 is provided with voltage application means 50 as shown in FIG. The voltage applying means 50 applies a voltage to the electrodes 34 and 35 on the inner and outer surfaces of the solid electrolyte cylindrical body 30.

また、酸素ポンプ4には、図3に示すように制御手段51が設けられている。制御手段51は、一定時間(本実施形態では30分)毎に、固体電解質筒状体30に印加する電圧を切り換えて、固体電解質筒状体30を酸素分子放出状態としたり、酸素分子取込状態としたりするものである。制御手段51は、例えばマイクロコンピュータにて構成することができる。すなわち、この実施形態では自動制御を行うようにしている。なお、制御手段51としては、レバーやスイッチ等により手動で制御(切換)できるものであってもよい。   Further, the oxygen pump 4 is provided with a control means 51 as shown in FIG. The control means 51 switches the voltage applied to the solid electrolyte cylindrical body 30 at certain time intervals (30 minutes in the present embodiment) to bring the solid electrolyte cylindrical body 30 into an oxygen molecule releasing state or to take in oxygen molecules. State. The control means 51 can be constituted by a microcomputer, for example. That is, in this embodiment, automatic control is performed. The control means 51 may be one that can be manually controlled (switched) by a lever, a switch, or the like.

次に、本発明の酸素ポンプにおける能力回復方法について説明する。まず、全ての固体電解質筒状体30a〜30fについて、外面の電極35に+極を印加し、内面の電極34に−極を印加して電流Iを流すと、固体電解質筒状体30内を流れる不活性ガス中の酸素分子(O)が電気的に還元されてイオン(O2−)化され、固体電解質を通して再び酸素分子(O)として固体電解質筒状体30の外部に放出する酸素分子放出状態とする。 Next, the capacity recovery method in the oxygen pump of the present invention will be described. First, with respect to all the solid electrolyte cylindrical bodies 30a to 30f, when a positive electrode is applied to the outer electrode 35 and a negative electrode is applied to the inner electrode 34 to flow a current I, the interior of the solid electrolyte cylindrical body 30 is obtained. Oxygen molecules (O 2 ) in the flowing inert gas are electrically reduced to become ions (O 2− ), and are released again as oxygen molecules (O 2 ) through the solid electrolyte to the outside of the solid electrolyte cylindrical body 30. The oxygen molecule is released.

酸素分子放出状態としてから所定時間(例えば50時間)経過後、図4(a)に示すように、固体電解質筒状体30aを酸素分子取込状態として回復を行う。すなわち、制御手段51の指令にて、電圧印加手段50が固体電解質筒状体30aの内面の電極4bに+極を印加し、外面の電極4cに−極を印加して逆向きの電流Iが流れるように固体電解質筒状体30aの電圧を切り換える。そして、この逆向きの電流Iを30分流す。これにより、固体電解質筒状体30aは、酸素分子を取り込むことによって固体電解質筒状体30aに形成された欠陥(酸素空孔)に、酸素分子を充填することができる。つまり、本来金属酸化物であった固体電解質筒状体が還元されて生成された金属を、再酸化して再度金属酸化物に戻すことができ、固体電解質筒状体30aを回復することができる。なお、図4のハッチングは、酸素分子放出状態と逆極性の直流電圧を印加して酸素分子取込状態である固体電解質筒状体を示している。   After a predetermined time (for example, 50 hours) has elapsed since the oxygen molecule was released, the solid electrolyte cylindrical body 30a is recovered in the oxygen molecule uptake state as shown in FIG. That is, in response to a command from the control means 51, the voltage applying means 50 applies a positive pole to the inner electrode 4b of the solid electrolyte cylindrical body 30a and a negative pole to the outer electrode 4c so that a reverse current I is generated. The voltage of the solid electrolyte cylindrical body 30a is switched so as to flow. Then, this reverse current I flows for 30 minutes. Thereby, the solid electrolyte cylindrical body 30a can be filled with oxygen molecules in the defects (oxygen vacancies) formed in the solid electrolyte cylindrical body 30a by taking in oxygen molecules. That is, the metal produced by reducing the solid electrolyte cylindrical body, which was originally a metal oxide, can be reoxidized and returned to the metal oxide again, and the solid electrolyte cylindrical body 30a can be recovered. . In addition, the hatching of FIG. 4 has shown the solid electrolyte cylindrical body which is in the oxygen molecule taking-in state by applying the DC voltage of the reverse polarity to the oxygen molecule releasing state.

その後、回復を行う固体電解質筒状体30を、所定期間毎に順次変更する。具体的には、固体電解質筒状体30aの回復を30分行った後、回復を行う対象を固体電解質筒状体30bとする。すなわち、図4(b)に示すように、制御手段51の指令にて、電圧印加手段50が固体電解質筒状体30bの内面の電極34に+極を印加し、外面の電極35に−極を印加して逆向きの電流Iが流れるように、固体電解質筒状体30bの電圧を切り換える。これにより、固体電解質筒状体30bは、酸素分子を取り込むことによって再酸化されて回復することができる。また、固体電解質筒状体30aの外面の電極35に+極を印加し、内面の電極34に−極を印加して電流Iが流れるように、電圧印加手段50が固体電解質筒状体30aの電圧を切り換える。これにより、回復を終えた固体電解質筒状体30aにて再び酸素を放出することができる。   Thereafter, the solid electrolyte cylindrical body 30 to be recovered is sequentially changed every predetermined period. Specifically, after the solid electrolyte cylindrical body 30a is recovered for 30 minutes, the target to be recovered is defined as the solid electrolyte cylindrical body 30b. That is, as shown in FIG. 4 (b), the voltage applying means 50 applies a positive pole to the inner electrode 34 of the solid electrolyte cylindrical body 30b and a negative pole to the outer electrode 35 in accordance with a command from the control means 51. Is applied to switch the voltage of the solid electrolyte cylindrical body 30b so that a reverse current I flows. Thereby, the solid electrolyte cylindrical body 30b can be reoxidized and recovered by taking in oxygen molecules. Further, the voltage applying means 50 is applied to the solid electrolyte cylindrical body 30a so that a current I flows by applying a positive electrode to the electrode 35 on the outer surface of the solid electrolyte cylindrical body 30a and a negative electrode to the electrode 34 on the inner surface. Switch the voltage. Thereby, oxygen can be released again by the solid electrolyte cylindrical body 30a after the recovery.

その後、同様の方法で固体電解質筒状体30cを回復するとともに、固体電解質筒状体30bに元の極性の直流電圧を印加する。以下、同様の方法にて固体電解質筒状体30d、30e、30fの全ての回復を行って、30分の回復措置を行う固体電解質筒状体30を所定期間毎に順次変更する。これにより、所定期間が経過すると全ての固体電解質筒状体30a〜30fに回復措置を行うことになる。   Thereafter, the solid electrolyte cylindrical body 30c is recovered by the same method, and a DC voltage having the original polarity is applied to the solid electrolyte cylindrical body 30b. Thereafter, the solid electrolyte cylindrical bodies 30d, 30e, and 30f are all recovered by the same method, and the solid electrolyte cylindrical body 30 that performs a 30-minute recovery measure is sequentially changed every predetermined period. Thereby, when a predetermined period passes, all the solid electrolyte cylindrical bodies 30a-30f will be recovered.

このように、本発明では酸素ポンプ4の稼動停止後に回復させる場合、電圧の印加方向を変えるのみでよいので、回復のための配管等を別途付加する必要がなく、既存の設備を利用して容易に固体電解質筒状体30の回復を行う。そのため、従来のような分岐配管を設ける必要もなくなって、設置スペースを小とすることができ、コストの低減を図ることができる。さらには、固体電解質筒状体30aを回復させている間に、他の固体電解質筒状体30b〜30fが酸素ポンプとして稼動することができるため、回復のために酸素ポンプの稼動を停止することなく連続稼動が可能となり、効率良く回復を行うことができる。   As described above, in the present invention, when recovering after the operation of the oxygen pump 4 is stopped, it is only necessary to change the direction in which the voltage is applied. The solid electrolyte cylindrical body 30 is easily recovered. Therefore, there is no need to provide a branch pipe as in the prior art, the installation space can be reduced, and the cost can be reduced. Further, while the solid electrolyte cylindrical body 30a is being recovered, the other solid electrolyte cylindrical bodies 30b to 30f can operate as oxygen pumps, so that the operation of the oxygen pump is stopped for recovery. Continuous operation is possible and recovery can be performed efficiently.

複数の固体電解質筒状体30において、一定時間の回復措置を行う固体電解質筒状体30を、所定期間毎に順次変更することができる。すなわち、所定期間毎に固体電解質筒状体30を交替で回復させている。この場合、回復を必要とする固体電解質筒状体30であっても、回復を必要としない固体電解質筒状体30であっても一律に回復措置を行う。順次固体電解質筒状体30の回復措置を行って酸素空孔を埋めることができることができるため、回復を必要とする固体電解質筒状体30では破損を防止することができ、回復を必要としない固体電解質筒状体30では破損原因発生の予防を行うことができる。このため、回復及び破損原因発生の予防の効果も期待でき、酸素ポンプ4として一層長寿命とすることができる。   In the plurality of solid electrolyte cylindrical bodies 30, the solid electrolyte cylindrical bodies 30 that perform the recovery measures for a predetermined time can be sequentially changed every predetermined period. That is, the solid electrolyte cylindrical body 30 is alternately restored every predetermined period. In this case, even if it is the solid electrolyte cylindrical body 30 that requires recovery or the solid electrolyte cylindrical body 30 that does not require recovery, the recovery measures are uniformly performed. Since it is possible to sequentially fill the oxygen vacancies by performing recovery measures for the solid electrolyte cylindrical body 30, the solid electrolyte cylindrical body 30 that requires recovery can be prevented from being damaged and does not require recovery. The solid electrolyte cylindrical body 30 can prevent the occurrence of damage. For this reason, the effect of recovery and prevention of the cause of breakage can be expected, and the life of the oxygen pump 4 can be further prolonged.

固体電解質筒状体30を、最低限必要とする酸素分子の放出能力となる固体電解質筒状体30の数よりも余分に設けると、常時必要な酸素分子放出能力を備えることができるため、酸素分子の放出能力を損なわないようにすることができる。このため、この酸素ポンプ4を用いた酸素分圧制御装置等の装置を高性能に機能させることができる。   If the solid electrolyte cylindrical body 30 is provided in excess of the number of the solid electrolyte cylindrical bodies 30 that provide the minimum required oxygen molecule release capability, the oxygen molecule release capability required at all times can be provided. It is possible not to impair the ability to release molecules. Therefore, a device such as an oxygen partial pressure control device using this oxygen pump 4 can be made to function with high performance.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、固体電解質筒状体30の数の増減は任意であり、2本以上備えればよい。実施形態では、固体電解質筒状体束29は、最低限必要とする酸素分子の放出能力となる固体電解質筒状体30の数よりも1本余分に設けるものであったが、2本以上余分に設けてもよい。また、固体電解質筒状体30は、鉛直方向に配設したり、水平方向に配設したりすることができる。回復を行う順としては、図4において予めプログラムされて隣接する固体電解質筒状体30を順次回復したが、ランダムでもよい。回復を開始する固体電解質筒状体は任意に設定することができる。また、固体電解質筒状体30を周方向に沿って所定ピッチで円形に配設することもできる。円形に配設する場合、定ピッチでなく、不等ピッチでもよい。また、回復を行う順番としては、順次時計回りで行っても反時計周りであってもよく、ランダムでもよい。この場合も回復を開始する固体電解質筒状体は任意に設定することができる。   As described above, the embodiments of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, the number of solid electrolyte cylindrical bodies 30 can be increased or decreased. What is necessary is just to provide two or more. In the embodiment, the solid electrolyte tubular body bundle 29 is provided to be one extra than the number of solid electrolyte tubular bodies 30 that provides the minimum required oxygen molecule release capability. May be provided. Further, the solid electrolyte cylindrical body 30 can be arranged in the vertical direction or in the horizontal direction. As the order of recovery, the adjacent solid electrolyte cylindrical bodies 30 programmed in advance in FIG. 4 are recovered sequentially, but may be random. The solid electrolyte cylindrical body that starts recovery can be arbitrarily set. Moreover, the solid electrolyte cylindrical body 30 can also be arrange | positioned circularly with a predetermined pitch along the circumferential direction. When it arrange | positions in circular shape, not a fixed pitch but an unequal pitch may be sufficient. Further, the recovery order may be sequentially clockwise, counterclockwise, or random. Also in this case, the solid electrolyte cylindrical body that starts recovery can be arbitrarily set.

実施形態では酸素ポンプ4を稼動してから所定時間が経過した後、回復を行うようにした。このため、回復を行う際には、その能力があまり低下せず回復を必要としない固体電解質筒状体にも回復を行うことになっていた。このように実施形態では回復が必要な固体電解質筒状体であっても回復が不要な固体電解質筒状体であっても一律に回復を行った。そこで、酸素分子の放出量等を検知し、この放出量に基づいて早期に回復が必要な固体電解質筒状体30を順次選択する選択手段を制御手段51に設けてもよい。これにより、全体としての酸素分子放出の効率を向上させることができる。   In the embodiment, the recovery is performed after a predetermined time has elapsed since the oxygen pump 4 was operated. For this reason, when performing recovery, the solid electrolyte cylindrical body that does not require a recovery and does not require recovery has also been recovered. As described above, in the embodiment, even when the solid electrolyte cylindrical body requires recovery, the solid electrolyte cylindrical body does not need recovery evenly. Therefore, the control means 51 may be provided with a selection means for detecting the release amount of oxygen molecules and the like and sequentially selecting the solid electrolyte cylindrical body 30 that needs to be recovered early based on the release amount. Thereby, the efficiency of oxygen molecule release as a whole can be improved.

1本の固体電解質筒状体30の回復時間は30分に限られず、長時間とすることや短時間とすることができる。また、実施形態では、全ての固体電解質筒状体30a〜30fの回復時間を30分としたが、回復時間を各固体電解質筒状体30a〜30fで相違させてもよい。さらには、同時に2本以上の固体電解質筒状体の回復を行ってもよい。   The recovery time of one solid electrolyte cylindrical body 30 is not limited to 30 minutes, and can be a long time or a short time. Further, in the embodiment, the recovery time of all the solid electrolyte cylindrical bodies 30a to 30f is 30 minutes, but the recovery time may be different for each solid electrolyte cylindrical body 30a to 30f. Furthermore, two or more solid electrolyte cylindrical bodies may be recovered at the same time.

本発明の酸素ポンプの断面側面図である。It is a cross-sectional side view of the oxygen pump of the present invention. 本発明の酸素ポンプを使用した酸素分圧制御装置の簡略図である。It is a simplified diagram of an oxygen partial pressure control device using the oxygen pump of the present invention. 発明の実施形態を示す酸素ポンプの内部の要部正面図である。It is a principal part front view inside the oxygen pump which shows embodiment of invention. 本発明の実施形態を示す酸素ポンプのレイアウトを示す側面図である。It is a side view which shows the layout of the oxygen pump which shows embodiment of this invention. 従来の酸素分圧制御装置の簡略図である。It is a simplified diagram of a conventional oxygen partial pressure control device. 酸素ポンプの原理の説明図である。It is explanatory drawing of the principle of an oxygen pump.

符号の説明Explanation of symbols

29 固体電解質筒状体束
30 固体電解質筒状体
31 加熱手段
34、35 電極
29 Solid electrolyte cylindrical body bundle 30 Solid electrolyte cylindrical body 31 Heating means 34, 35 Electrode

Claims (5)

酸素イオン伝導性を有する複数の固体電解質筒状体にて構成された固体電解質筒状体束と、前記固体電解質筒状体の内面及び外面に配置される電極と、固体電解質筒状体を加熱する加熱手段を備え、加熱手段を稼動させて、固体電解質筒状体の外面の電極に+極を印加し、この固体電解質筒状体の内面の電極に−極を印加して電流を流して酸素分子を固体電解質筒状体の外部に放出する酸素ポンプにおける能力回復方法であって、
少なくとも1つの固体電解質筒状体において、酸素分子を放出させる一方で、少なくとも他の1つの固体電解質筒状体の内面の電極に所定時間+極を印加し、この固体電解質筒状体の外面の電極に−極を印加して酸素分子を固体電解質筒状体の内部に取り込んで回復措置を行うことを特徴とする酸素ポンプにおける能力回復方法。
A solid electrolyte cylindrical bundle composed of a plurality of solid electrolyte cylindrical bodies having oxygen ion conductivity, electrodes disposed on the inner and outer surfaces of the solid electrolyte cylindrical body, and heating the solid electrolyte cylindrical body The heating means is operated, the heating means is operated, a positive electrode is applied to the electrode on the outer surface of the solid electrolyte cylindrical body, and a negative electrode is applied to the electrode on the inner surface of the solid electrolyte cylindrical body to pass a current. A capacity recovery method in an oxygen pump that releases oxygen molecules to the outside of a solid electrolyte cylinder,
In at least one solid electrolyte cylindrical body, oxygen molecules are released, while a positive electrode is applied to an electrode on the inner surface of at least one other solid electrolyte cylindrical body for a predetermined time, and the outer surface of the solid electrolyte cylindrical body is A method for recovering capacity in an oxygen pump, wherein a negative electrode is applied to an electrode to take oxygen molecules into the solid electrolyte cylindrical body and perform recovery measures.
複数の固体電解質筒状体において、一定時間の回復措置を行う固体電解質筒状体を、所定期間毎に順次変更することを特徴とする請求項1の酸素ポンプにおける能力回復方法。   2. The capacity recovery method for an oxygen pump according to claim 1, wherein, in the plurality of solid electrolyte cylindrical bodies, the solid electrolyte cylindrical body that performs the recovery measures for a predetermined time is sequentially changed every predetermined period. 酸素イオン伝導性を有する複数の固体電解質筒状体にて構成された固体電解質筒状体束と、この複数の固体電解質筒状体の内面及び外面に配置される電極と、固体電解質筒状体を加熱する加熱手段を備えた酸素ポンプにおいて、
少なくとも1つの固体電解質筒状体の外面の電極に+極を印加し、この固体電解質筒状体の内面の電極に−極を印加して酸素分子を固体電解質筒状体から外部に放出する酸素分子放出状態と、回復が必要な少なくとも1つの固体電解質筒状体の内面の電極に所定時間+極を印加し、この固体電解質筒状体の外面の電極に−極を印加して酸素分子を固体電解質筒状体の内部へ取り込む酸素分子取込状態との切換が可能な制御手段を設けたことを特徴とする酸素ポンプ。
Solid electrolyte cylindrical bundle composed of a plurality of solid electrolyte cylindrical bodies having oxygen ion conductivity, electrodes disposed on the inner and outer surfaces of the plurality of solid electrolyte cylindrical bodies, and a solid electrolyte cylindrical body In an oxygen pump provided with a heating means for heating
Oxygen is applied to the electrode on the outer surface of at least one solid electrolyte cylindrical body, and the negative electrode is applied to the electrode on the inner surface of the solid electrolyte cylindrical body to release oxygen molecules from the solid electrolyte cylindrical body to the outside. Apply a positive electrode for a predetermined time to the electrode on the inner surface of at least one solid electrolyte cylindrical body that needs to be recovered and the molecular electrolyte, and apply a negative electrode to the electrode on the outer surface of the solid electrolyte cylindrical body to An oxygen pump comprising a control means capable of switching between a state in which oxygen molecules are taken into a solid electrolyte cylindrical body.
固体電解質筒状体を、最低限必要とする酸素分子の放出能力となる固体電解質筒状体の数よりも余分に設けたことを特徴とする請求項3の酸素ポンプ。   4. The oxygen pump according to claim 3, wherein the solid electrolyte cylindrical body is provided in excess of the number of solid electrolyte cylindrical bodies that provide a minimum required oxygen molecule release capability. 各固体電解質筒状体を一定時間毎に回復措置を行うことを特徴とする請求項3又は請求項4の酸素ポンプ。   The oxygen pump according to claim 3 or 4, wherein a recovery measure is taken for each solid electrolyte cylindrical body at regular intervals.
JP2008096435A 2008-04-02 2008-04-02 Oxygen pump and oxygen pump recovery method Expired - Fee Related JP5000572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096435A JP5000572B2 (en) 2008-04-02 2008-04-02 Oxygen pump and oxygen pump recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096435A JP5000572B2 (en) 2008-04-02 2008-04-02 Oxygen pump and oxygen pump recovery method

Publications (2)

Publication Number Publication Date
JP2009250686A true JP2009250686A (en) 2009-10-29
JP5000572B2 JP5000572B2 (en) 2012-08-15

Family

ID=41311570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096435A Expired - Fee Related JP5000572B2 (en) 2008-04-02 2008-04-02 Oxygen pump and oxygen pump recovery method

Country Status (1)

Country Link
JP (1) JP5000572B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106872A (en) * 2010-11-15 2012-06-07 Canon Machinery Inc Oxygen partial pressure controlling method
US9364913B2 (en) 2013-05-01 2016-06-14 Denso Corporation Method for brazing sheet material and heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138745A (en) * 1985-12-13 1987-06-22 Toray Ind Inc Method for regenerating oxygen pump electrode of oxygen analyzing instrument
JPH09101285A (en) * 1995-10-04 1997-04-15 Ngk Spark Plug Co Ltd Method and device for suppressing deterioration of oxygen sensor
JP2002326887A (en) * 2001-04-27 2002-11-12 Nec Machinery Corp Sample preparation method by controlling oxigen partial pressure and sample preparation device
JP2003510588A (en) * 1999-09-30 2003-03-18 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for monitoring and / or regenerating the function of a gas sonde
JP2005331339A (en) * 2004-05-19 2005-12-02 National Institute Of Advanced Industrial & Technology Oxygen partial pressure control device and recovery method of solid electrolyte for oxygen partial pressure control
JP2006200930A (en) * 2005-01-18 2006-08-03 Toyota Motor Corp Control unit of exhaust gas sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138745A (en) * 1985-12-13 1987-06-22 Toray Ind Inc Method for regenerating oxygen pump electrode of oxygen analyzing instrument
JPH09101285A (en) * 1995-10-04 1997-04-15 Ngk Spark Plug Co Ltd Method and device for suppressing deterioration of oxygen sensor
JP2003510588A (en) * 1999-09-30 2003-03-18 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for monitoring and / or regenerating the function of a gas sonde
JP2002326887A (en) * 2001-04-27 2002-11-12 Nec Machinery Corp Sample preparation method by controlling oxigen partial pressure and sample preparation device
JP2005331339A (en) * 2004-05-19 2005-12-02 National Institute Of Advanced Industrial & Technology Oxygen partial pressure control device and recovery method of solid electrolyte for oxygen partial pressure control
JP2006200930A (en) * 2005-01-18 2006-08-03 Toyota Motor Corp Control unit of exhaust gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106872A (en) * 2010-11-15 2012-06-07 Canon Machinery Inc Oxygen partial pressure controlling method
US9364913B2 (en) 2013-05-01 2016-06-14 Denso Corporation Method for brazing sheet material and heat exchanger

Also Published As

Publication number Publication date
JP5000572B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
CN106169594B (en) Method and apparatus for recovering performance of fuel cell stack
JP6247379B2 (en) Fuel cell device
KR101755936B1 (en) Fuel cell system and Controlling method thereof
JP5000572B2 (en) Oxygen pump and oxygen pump recovery method
JP4751594B2 (en) Hydrogen / oxygen gas generator and operation method thereof
KR20130142572A (en) Fuel cell system operating method
JP5229508B2 (en) Oxygen partial pressure control apparatus and solid electrolyte recovery method for oxygen partial pressure control
JP2013171737A5 (en)
JP5634832B2 (en) Oxygen partial pressure control method
JP5207230B2 (en) System for carrying out performance recovery method of polymer electrolyte fuel cell
JP2009170409A (en) Method of using fuel cell comprising step of regeneration by lowering temperature
JP6067190B2 (en) Ozone generation system and operation method thereof
JP2005331339A (en) Oxygen partial pressure control device and recovery method of solid electrolyte for oxygen partial pressure control
JP5718328B2 (en) Method and apparatus for extending the service life of a proton exchange membrane fuel cell
US8876959B2 (en) Self-heated dense ceramic tubes for separating gases
JP2008016323A (en) Fuel cell system and operation method of fuel cell
JP7282968B1 (en) Hydrogen generation system and method of controlling hydrogen generation system
JP5614727B2 (en) Gas decomposition apparatus and gas decomposition system
JP6148072B2 (en) Fuel cell device
JP5550530B2 (en) Oxygen partial pressure control method
JP5138211B2 (en) Oxygen pump
ES2534816T3 (en) Method and apparatus for controlling the electrical energy applied to an electrically operated oxygen separation device having one or more composite membrane elements for separating oxygen from an oxygen-containing supply current
JP2007043107A5 (en)
WO2007110657A1 (en) Solid-state gas purifier
JP2022068970A (en) Hydrogen-containing water generator and hydrogen-containing water generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R150 Certificate of patent or registration of utility model

Ref document number: 5000572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees