JP2012101336A - Surface-coated drill excellent in wear resistance and chip discharging property - Google Patents

Surface-coated drill excellent in wear resistance and chip discharging property Download PDF

Info

Publication number
JP2012101336A
JP2012101336A JP2010253616A JP2010253616A JP2012101336A JP 2012101336 A JP2012101336 A JP 2012101336A JP 2010253616 A JP2010253616 A JP 2010253616A JP 2010253616 A JP2010253616 A JP 2010253616A JP 2012101336 A JP2012101336 A JP 2012101336A
Authority
JP
Japan
Prior art keywords
drill
tip
hkl
diameter
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010253616A
Other languages
Japanese (ja)
Other versions
JP5672444B2 (en
Inventor
Koichi Tanaka
耕一 田中
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010253616A priority Critical patent/JP5672444B2/en
Priority to CN2011103569148A priority patent/CN102528130A/en
Publication of JP2012101336A publication Critical patent/JP2012101336A/en
Application granted granted Critical
Publication of JP5672444B2 publication Critical patent/JP5672444B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated drill, in which a hard coating layer demonstrates excellent wear resistance and chip discharging property even in machining conditions of high-feed and dry deep-hole drilling.SOLUTION: In the surface-coated drill, a layer as an orientation control layer consisting of a composition of TiAlN{a=0-0.5} exists on the top surface of a drill base body directly or via an intermediate layer. In the area up to a length five times of the drill diameter D from the tip of the drill along the longitudinal direction of the drill body in a flute groove of the drill, when an orientation coefficient is set as TC(x), the value of TC(x) is gradually decreased in a range of 3>TC(x)>0.5 at the distance of x times of the drill diameter D from the tip of the drill. Furthermore, TCis 1.5 times or more of TCat the lowest place of the TC.

Description

本発明は、ドリル本体の先端部外周にフルート溝が形成されるとともに、このフルート溝のドリル回転方向を向く内周面の先端に切刃が設けられ、主として金属材よりなる加工物に穴明け加工をするのに用いられるドリルに関するものである。   According to the present invention, a flute groove is formed on the outer periphery of the tip of the drill body, and a cutting edge is provided at the tip of the inner peripheral surface of the flute groove facing the drill rotation direction, so that a hole made mainly of a metal material is drilled. The present invention relates to a drill used for processing.

このようなドリルとしては、軸線を中心として該軸線回りにドリル回転方向に回転される概略円柱状のドリル本体の先端側が切刃部とされ、この切刃部の外周に一対のフルート溝が、軸線に関して互いに対称となるように、該切刃部の先端面、すなわちドリル本体の先端逃げ面から後端側に向かうに従い軸線回りにドリル回転方向の後方側に捩れる螺旋状に形成され、これらのフルート溝の内周面のうちドリル回転方向を向く部分の先端側の前記先端逃げ面との交差稜線部に切刃が形成された、いわゆる2枚刃のソリッドドリルが知られている。従って、このようなソリッドドリルでは、前記フルート溝内周面のドリル回転方向を向く部分の先端側がこの切刃のすくい面となり、切刃によって生成された切屑は、このすくい面からフルート溝の内周面を摺接しつつ、該フルート溝の捩れによって後端側に送り出されて排出されることとなる。そして、さらにこのようなドリルでは、ドリル本体の耐摩耗性の向上のために種々の方法が採用されている。   As such a drill, the tip side of a substantially cylindrical drill body rotated about the axis in the direction of drill rotation about the axis is a cutting edge part, and a pair of flute grooves on the outer periphery of the cutting edge part, It is formed in a spiral shape that twists toward the rear side in the drill rotation direction around the axis line so as to be symmetrical to each other with respect to the axis, as it goes from the front end surface of the cutting edge, that is, the front end flank of the drill body toward the rear end side. A so-called two-blade solid drill is known in which a cutting edge is formed at a crossing ridge line portion with the tip flank on the tip side of the inner circumferential surface of the flute groove facing the drill rotation direction. Therefore, in such a solid drill, the tip side of the flute groove inner circumferential surface facing the direction of drill rotation is the rake face of the cutting edge, and chips generated by the cutting edge are transferred from the rake face into the flute groove. While being in sliding contact with the peripheral surface, the flute groove is twisted to be sent to the rear end side and discharged. Further, in such a drill, various methods are employed for improving the wear resistance of the drill body.

例えば、特許文献1においては、ロックウェル硬度50(Cスケール)を越える高硬度スチールの切削加工において、皮膜の密着性、並びに耐摩耗性を改善したエンドミル、ドリルを提供する目的で、TiとAlの複合窒化物、炭窒化物、炭化物を被覆したエンドミル、ドリルにおいて、被覆層のX線回折における(111)面の回折強度をI(111)、(200)面の回折強度をI(200)とした時にI(200)/I(111)の値が2.0以下とすることにより構成するエンドミル、ドリルが開示されている。   For example, in Patent Document 1, Ti and Al are provided for the purpose of providing an end mill and a drill with improved coating adhesion and wear resistance in cutting of high hardness steel exceeding Rockwell hardness 50 (C scale). In a composite nitride, carbonitride, carbide-coated end mill or drill, the diffraction intensity of the (111) plane in the X-ray diffraction of the coating layer is I (111), and the diffraction intensity of the (200) plane is I (200) An end mill and a drill are disclosed that have a value of I (200) / I (111) of 2.0 or less.

また、特許文献2においては、切刃部の長いドリルにおいても、切屑詰まりの発生を防いで折損等の生じることのないドリルを提供する目的で、ドリル本体の先端部外周にフルート溝が形成され、このフルート溝の内周面に形成されたすくい面とドリル本体の先端逃げ面との交差稜線部に切刃が形成されるとともに、ドリル本体の先端部の表面には硬質被膜が被覆されたドリルであって、この硬質被膜を、切刃の外周端から後端側に向けて切刃の外径Dに対して3D以内の長さMの範囲までに被覆したドリルが開示されている。   Moreover, in patent document 2, a flute groove is formed in the outer periphery of the front-end | tip part of a drill main body in order to provide the drill which prevents generation | occurrence | production of chip clogging and a breakage etc. also in a drill with a long cutting edge part. The cutting edge is formed at the intersecting ridge line portion between the rake face formed on the inner peripheral surface of the flute groove and the tip flank surface of the drill body, and the surface of the tip part of the drill body is coated with a hard coating. A drill is disclosed which is coated with a hard coating in a range of a length M within 3D with respect to the outer diameter D of the cutting edge from the outer peripheral end to the rear end side of the cutting edge.

また、特許文献3においては、切刃部の長いドリルにおいても、切屑詰まりの発生を防いで折損等の生じることのないドリルを提供する目的で、ドリル本体の先端部外周にフルート溝を形成し、このフルート溝の内周面に形成されたすくい面とドリル本体の先端逃げ面との交差稜線部に切刃を形成するとともに、ドリル本体の先端部の表面には硬質被膜を被覆し、さらにフルート溝の内周面には、この硬質被膜を被覆した後にポリッシュ加工を施したドリルが開示されている。   In Patent Document 3, a flute groove is formed on the outer periphery of the tip of the drill body for the purpose of providing a drill that prevents chip clogging and does not break even in a drill with a long cutting edge. The cutting edge is formed at the intersecting ridge line portion between the rake face formed on the inner peripheral surface of the flute groove and the tip flank surface of the drill body, and the surface of the tip part of the drill body is coated with a hard coating, On the inner peripheral surface of the flute groove, a drill is disclosed which is coated with this hard film and then polished.

また、特許文献4においては、密着性や皮膜特性が良好で、優れた耐摩耗性を発揮すると共に、切屑排出性も良好であって切屑詰まりが起こらず、しかも工業的に効率良く製造することのできる様な硬質膜被覆ツイストドリル、およびその様なツイストドリルを製造する為の有用な方法を提供する目的で、切刃部における少なくともドリルマージン部に硬質膜を被覆した硬質膜被覆ツイストドリルを製造するに当たり、高速度工具鋼からなる丸棒形状の母材表面のドリル切削作用相当部に、アーク放電式イオンプレーティング法によって、2種以上の金属元素を含む炭化物、窒化物または炭窒化物からなる硬質膜を被覆した後、少なくともドリル溝相当部を切削加工または研削加工してドリル母材地肌面が露出したドリル溝を形成したドリルが開示されている。   Moreover, in patent document 4, while being excellent in adhesiveness and a membrane | film | coat characteristic, while exhibiting the outstanding abrasion resistance, chip discharge | emission property is also favorable, chip clogging does not occur, and it manufactures efficiently industrially. In order to provide a hard film-coated twist drill that can be used, and a useful method for manufacturing such a twist drill, a hard film-coated twist drill in which a hard film is coated at least on the drill margin in the cutting edge portion is provided. In manufacturing, carbide, nitride or carbonitride containing two or more kinds of metal elements is formed by arc discharge ion plating method on the part corresponding to the drill cutting action on the surface of the round bar-shaped base material made of high-speed tool steel. After drilling a hard film made of It has been disclosed.

特開平9−291353号公報Japanese Patent Laid-Open No. 9-291353 特開2003−275909号公報JP 2003-275909 A 特開2003−275910号公報JP 2003-275910 A 特開平8−174341号公報JP-A-8-174341

近年のドリル加工装置のFA化はめざましく、加えてドリル加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高送り、高切り込みなどより高効率の深穴用ドリル加工が要求される傾向にあるが、前記従来表面被覆ドリルにおいては、各種の鋼や鋳鉄を通常条件下でドリル加工した場合に特段の問題は生じないが、耐摩耗性が必要とされるとともに切屑がドリルのフルート溝につまり易い、高送り・乾式の深穴用ドリル加工に用いた場合には、フルート溝に切屑がつまり易く、これが原因で、比較的短時間で使用寿命に至るのが現状である。   In recent years, there has been a dramatic increase in the use of FA for drilling equipment, and in addition, there is a strong demand for labor saving, energy saving, cost reduction, and efficiency for drilling, and accordingly, for high-efficiency deep holes such as high feed and high cutting. Although there is a tendency to require drilling, the conventional surface-coated drill does not cause any particular problems when various steels and cast irons are drilled under normal conditions, but wear resistance is required. At the same time, when chips are easily clogged into the flute groove of a drill and used for high-feed / dry drilling for deep holes, chips are easily clogged into the flute groove. Is the current situation.

そこで、本発明者らは、前述のような観点から、高送り・乾式の深穴用ドリル加工に用いられた場合にも優れた耐摩耗性と切屑排出性を示し表面被覆ドリルの長寿命化を図るべく、ドリル基体の上に直接または中間層を介して、最表面に配向制御層としてTi1−aAlN{a=0〜0.5}の組成からなる層を構成すると共に、該配向制御層の配向性に着目し鋭意研究を行った結果、次のような知見を得た。 In view of the above, the present inventors, from the above viewpoint, show excellent wear resistance and chip evacuation even when used in high-feed, dry-type deep hole drilling, extending the life of surface-coated drills. In order to achieve this, a layer made of a composition of Ti 1-a Al a N {a = 0 to 0.5} is formed on the outermost surface as an orientation control layer directly or via an intermediate layer on the drill base, As a result of diligent research focusing on the orientation of the orientation control layer, the following findings were obtained.

(a)配向制御層として、Ti1−aAlN{a=0〜0.5}の組成からなる層の形成を、例えば、図1の概略説明図に示される物理蒸着装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置にドリル基体の先端を水平より上側、すなわちドリル先端がハースから遠ざかるように装着し、例えば、
工具基体温度:360〜450℃、
蒸発源1:金属Ti、
蒸発源1に対するプラズマガン放電電力:10〜12kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:7〜9kW、
反応ガス流量:窒素(N)ガス 50〜100sccm、
放電ガス:アルゴン(Ar)ガス 45〜60sccm、
ドリル基体に印加する直流バイアス電圧:+3〜+8V、
アシストガンの放電電力:2kW
という特定の条件下で、かつ、ハースの距離に沿って成膜速度が漸次減少するように調整し、かつ、工具基体の側方からアシストプラズマガンによるプラズマ照射を行いながら、反応性蒸着形成した場合、この結果形成された硬質被覆層を備えた表面被覆ドリルは、従来の表面被覆ドリルに比して、高速・乾式の深穴加工において、すぐれた耐摩耗性および切屑排出性を示すことを見出した。
(A) As an orientation control layer, formation of a layer having a composition of Ti 1-a Al a N {a = 0 to 0.5}, for example, one type of physical vapor deposition apparatus shown in the schematic explanatory diagram of FIG. The tip of the drill base is mounted on an ion plating apparatus using a pressure gradient type Ar plasma gun, which is above the horizontal, that is, the drill tip is away from the hearth, for example,
Tool substrate temperature: 360 to 450 ° C.
Evaporation source 1: metal Ti,
Plasma gun discharge power for the evaporation source 1: 10-12 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power for the evaporation source 2: 7 to 9 kW,
Reaction gas flow rate: Nitrogen (N 2 ) gas 50-100 sccm,
Discharge gas: Argon (Ar) gas 45-60 sccm,
DC bias voltage applied to the drill base: +3 to +8 V,
Discharge power of assist gun: 2kW
Reactive deposition was performed while adjusting the film deposition rate to decrease gradually along the Haas distance and performing plasma irradiation with an assist plasma gun from the side of the tool base. In this case, the surface-coated drill with the hard coating layer formed as a result of this method exhibits superior wear resistance and chip evacuation in high-speed, dry-type deep hole drilling compared to conventional surface-coated drills. I found it.

(b)前記硬質被覆層を微小領域X線回折法によって測定したところ、(hkl)ピーク強度から(111)、(200)、(220)の3ピークを用いて計算した配向係数TChkl(x)としたときにTC111(x)の値が、先端からドリルの直径Dのx倍の距離に対して3>TC111(x)>0.5の範囲で漸次減少し、かつ、TC111が最も低い場所でTC200がTC111の1.5倍以上になることを確認した。但し、ここで述べるTChkl(x)とは、数式1で計算される数値であり、ただし、Ihkl(x)は先端からドリルの直径Dのx倍の距離における(hkl)ピークの回折強度、I hkl(x)はICDD38−1420に記載される(hkl)ピークの回折強度比であり、I 111は75、I 200は100、I 220は50である。
(B) When the hard coating layer was measured by a micro region X-ray diffraction method, the orientation coefficient TC hkl (x) calculated from the (hkl) peak intensity using the three peaks (111), (200), and (220). ) the value of TC 111 (x) when a is gradually decreased in the range of 3> TC 111 (x)> 0.5 relative to x times the distance of the diameter D of the drill from the tip, and, TC 111 It was confirmed that TC 200 was 1.5 times or more of TC 111 at the lowest place. However, TC hkl (x) described here is a numerical value calculated by Equation 1, where I hkl (x) is the diffraction intensity of the (hkl) peak at a distance x times the diameter D of the drill from the tip. , I 0 hkl (x) is the diffraction intensity ratio of the (hkl) peak described in ICDD 38-1420, I 0 111 is 75, I 0 200 is 100, and I 0 220 is 50.

(c)そして、表面被覆ドリルの硬質被覆層を、前記配向組織を持つ硬質被覆層(以下、配向制御層)で構成すると以下のような効果を発揮する。すなわち、逃げ面の先端部は高熱・高負荷がかかるため、(111)配向組織の皮膜にて構成し、高い耐摩耗性を実現する。さらに、フルート溝のうち、熱的・力学的負荷が大きい先端部には(111)配向組織を、および荷重圧力が押し込みからせん断への徐々に変化するフルート溝に沿って、(111)配向係数を徐々に低下させ、かつフルート溝に沿って漸次変化することで長期間に亘り各位置での皮膜の強度を高く維持する機構を実現し、高速・乾式の深穴加工においても長い工具寿命を発揮することを見出したのである。 (C) And, if the hard coating layer of the surface-coated drill is composed of a hard coating layer having the oriented structure (hereinafter referred to as an orientation control layer), the following effects are exhibited. That is, since the tip of the flank is subjected to high heat and high load, it is composed of a film having a (111) oriented structure to achieve high wear resistance. Further, among the flute grooves, the (111) orientation coefficient is formed at the tip portion having a large thermal and mechanical load, and along the flute grooves in which the load pressure gradually changes from indentation to shear. By gradually changing along the flute groove, a mechanism that maintains the strength of the coating at each position high over a long period of time is realized, and long tool life is achieved even in high-speed, dry deep hole machining. I found out that it works.

本発明は、前記知見に基づいてなされたものであって、
「(1) 超硬合金焼結体あるいは立方晶窒化硼素焼結体あるいはサーメットあるいは高速度鋼からなるドリル基体の上に直接または中間層を介して、最表面に配向制御層としてTi1−aAlN{a=0〜0.5}の組成からなる層が存在し、かつ、
前記ドリルのフルート溝のうち、先端からドリル基体の長さに沿ってドリルの直径Dの5倍の長さまでの領域において、先端から前記ドリルの直径Dのx倍の距離における位置において微小領域X線回折法によって測定される(hkl)ピーク強度から、(111)、(200)、(220)の3ピークを用いて計算した配向係数TChkl(x)とした時に、TC111(x)の値が、先端から前記ドリルの直径Dのx倍の距離に対して、3>TC111(x)>0.5の範囲で漸次減少し、かつ、TC111(x)が最も低い場所でTC200(x)がTC111(x)の1.5倍以上となることを特徴とする表面被覆ドリル。
ただし、配向係数TChkl(x)は前述の数式(1)で計算する。
(2) 漸次減少する際のTC111(x)の最大値をTCmax、最小値をTCminとしたとき、TCmax/TCmin>1.5であることを特徴とする(1)に記載の表面被覆ドリル。
(3) TC200(x)の値が、先端から前記ドリルの直径Dのx倍の距離に対して漸次増加することを特徴とする(1)または(2)に記載の表面被覆ドリル。
(4) (111)ピークの半値幅FWHM111(x)の値が、先端から前記ドリルの直径Dのx倍の距離に対して漸次増加することを特徴とする(1)に記載の表面被覆ドリル。
(5) 前記配向制御層の層厚が、最もドリル先端に近い位置から、後方にかけて、0.2〜5.0μmの範囲で漸次増加することを満たす(1)に記載の表面被覆ドリル。
(6) 前記中間層が、Tiの窒化物または炭化物、またはTiとAlとからなる複合窒化物、TiとAlとSiとからなる複合窒化物、CrとAlとからなる複合窒化物のうち、いずれかの単層または前記硬質膜群から選ばれる複数の層構造からなる積層構造を有し、層厚5μm以下であることを特徴とする(1)乃至(5)のいずれかに記載の表面被覆ドリル。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) Ti 1-a as an orientation control layer on the outermost surface directly or via an intermediate layer on a drill base made of cemented carbide sintered body, cubic boron nitride sintered body, cermet or high speed steel. A layer having a composition of Al a N {a = 0 to 0.5} exists, and
Of the flute groove of the drill, in the region from the tip to the length of 5 times the diameter D of the drill along the length of the drill base, the minute region X is located at a position at a distance x times the diameter D of the drill from the tip. When the orientation coefficient TC hkl (x) calculated using the three peaks of (111), (200), and (220) from the (hkl) peak intensity measured by the line diffraction method, TC 111 (x) The value gradually decreases in the range of 3> TC 111 (x)> 0.5 with respect to the distance x times the diameter D of the drill from the tip, and TC at the place where TC 111 (x) is the lowest. 200 (x) is 1.5 times or more of TC 111 (x), The surface covering drill characterized by the above-mentioned.
However, the orientation coefficient TC hkl (x) is calculated by the above-described equation (1).
(2) when the maximum value of the TC max of TC 111 at the time of gradually decreasing (x), the minimum value and TC min, according to, characterized in that a TC max / TC min> 1.5 ( 1) Surface coated drill.
(3) The surface-coated drill according to (1) or (2), wherein the value of TC 200 (x) gradually increases from the tip with respect to a distance x times the diameter D of the drill.
(4) The surface coating according to (1), wherein the value of the half-width FWHM 111 (x) of the (111) peak gradually increases with respect to a distance x times the diameter D of the drill from the tip. Drill.
(5) The surface-coated drill according to (1), wherein the layer thickness of the orientation control layer satisfies a gradual increase in the range of 0.2 to 5.0 μm from the position closest to the drill tip to the rear.
(6) Among the nitrides or carbides of Ti, or composite nitrides made of Ti and Al, composite nitrides made of Ti, Al and Si, and composite nitrides made of Cr and Al, The surface according to any one of (1) to (5), wherein the surface has a single layer or a laminated structure composed of a plurality of layer structures selected from the hard film group, and has a layer thickness of 5 μm or less. Covered drill. "
It has the characteristics.

本発明について、以下に説明する。   The present invention will be described below.

本発明の表面被覆ドリルの硬質被覆層を構成する配向制御層において、ドリルのフルート溝のうち、先端からドリル基体の長さに沿って直径の5倍の長さまでの領域において、先端から前記ドリルの直径Dのx倍の距離における位置において微小領域X線回折法によって測定される(hkl)ピーク強度から、(111)、(200)、(220)の3ピークを用いて計算した配向係数TChkl(x)とした時に、TC111(x)の値が、先端からドリルの直径Dのx倍の距離に対して、3>TC111(x)>0.5の範囲で漸次減少し、かつ、TC111(x)が最も低い場所でTC200(x)がTC111(x)の1.5倍以上とする。ここで、TC111(x)の値は、計算上3以上となることはなく、一方、0.5を下回ると最低限の強度を維持できない。そこで、3>TC111(x)>0.5と定めた。
また、「TC111(x)の値が、先端から前記ドリルの直径Dのx倍の距離に対して、3>TC111(x)>0.5の範囲で漸次減少する」とは、特定位置を、X線を照射する中心目標とし測定した場合に、前記内容により定義された数値が、特定位置からドリル後端方向へ少なくとも5mmを超えて離れた位置を、X線を照射する中心目標とし測定した場合に、同様に定義された数値よりも小さいことを指す。すなわち、前記条件を満たすならば、例えば、特定位置からの距離が5mm以下となる領域中をX線を照射する中心目標として測定したTC111(x)の値が漸次減少していなくとも、本発明の範囲を外れるものではない。
In the orientation control layer constituting the hard coating layer of the surface-coated drill of the present invention, in the region of the flute groove of the drill from the tip to the length of 5 times the diameter along the length of the drill base, the drill from the tip The orientation coefficient TC calculated using the three peaks (111), (200), and (220) from the (hkl) peak intensity measured by the micro-region X-ray diffraction method at a position at a distance x times the diameter D of when the hkl (x), the value of TC 111 (x) is, with respect to x times the distance of the diameter D of the drill from the tip, gradually decreases in a range of 3> TC 111 (x)> 0.5, and, TC 200 in TC 111 (x) is the lowest place (x) is not less than 1.5 times the TC 111 (x). Here, the value of TC 111 (x) does not become 3 or more in calculation. On the other hand, when the value is less than 0.5, the minimum strength cannot be maintained. Therefore, 3> TC 111 (x)> 0.5 was determined.
Further, “TC 111 (x) value gradually decreases in the range of 3> TC 111 (x)> 0.5 with respect to a distance x times the diameter D of the drill from the tip” is specified. When the position is measured as a central target for irradiating X-rays, a central target for irradiating X-rays at a position where the numerical value defined by the above content is at least 5 mm away from the specific position in the drill rear end direction. It is smaller than the numerical value defined in the same way. That is, if the above condition is satisfied, for example, even if the value of TC 111 (x) measured as a central target for irradiating X-rays in an area where the distance from a specific position is 5 mm or less is not gradually decreased, It does not depart from the scope of the invention.

そして、本発明者らは、配向制御層を蒸着形成するための数多くの試験を行った結果、圧力勾配型プラズマガンを用いて、Arプラズマを原料が入ったハースに照射して蒸発させ、基板上に皮膜を物理蒸着させる反応性蒸着法を用いて、ドリル基体上での成膜速度がドリル基体の先端からの距離に沿って漸次増加するように調整され、かつ、ドリルに対して平行となる角度から10度の角度に保持されたアシストプラズマガンによる側面からのプラズマ照射を行いながら、反応性蒸着を行うと、ドリルのフルート溝のうち、先端からドリル基体の長さに沿って直径の5倍の長さまでの領域において、被膜断面の結晶配向を観察した際、図2に示す通り、ドリル先端部では、配向制御層が、TC値3によって構成される一方で、例えば、ドリル基体のフルート溝のうち、ドリル先端から直径の5倍の位置においては、配向制御層が、TC値1によって構成されていることを見出した。   As a result of conducting numerous tests for forming the orientation control layer by vapor deposition, the inventors of the present invention used a pressure gradient type plasma gun to irradiate a hearth containing the raw material to evaporate the Ar plasma and to evaporate the substrate. Using a reactive vapor deposition method that physically deposits a film on top, the deposition rate on the drill substrate is adjusted to gradually increase along the distance from the tip of the drill substrate and parallel to the drill. When reactive deposition is performed while performing plasma irradiation from the side surface by an assist plasma gun held at an angle of 10 degrees from the angle, the diameter of the flute groove of the drill extends from the tip along the length of the drill base. When observing the crystal orientation of the cross section of the film in a region up to 5 times the length, as shown in FIG. 2, the orientation control layer is constituted by a TC value of 3 at the tip of the drill. Of flutes groove of the body, in five times the position of the diameter from the drill point, the orientation control layer has been found that it is constituted by a TC value 1.

本発明の表面被覆ドリルは、超硬合金焼結体あるいは立方晶窒化硼素焼結体あるいはサーメットあるいは高速度鋼からなるドリル基体の上に直接またはTiの窒化物または炭化物、またはTiとAlとからなる複合窒化物、TiとAlとSiとからなる複合窒化物、CrとAlとからなる複合窒化物のうち、いずれかの単層または前記硬質膜群から選ばれる複数の層構造からなる積層構造を有する層厚5μm以下の中間層を介して、最表面に配向制御層としてTi1−aAlN{a=0〜0.5}の組成からなる層が存在し、かつ、前記ドリルのフルート溝のうち、先端からドリル基体の長さに沿って直径の5倍の長さまでの領域において、先端からドリルの直径Dのx倍の距離における位置において微小領域X線回折法によって測定される(hkl)ピーク強度から、(111)、(200)、(220)の3ピークを用いて計算した配向係数TChkl(x)とした時に、TC111(x)の値が、先端からドリルの直径Dのx倍の距離に対して、3>TC111(x)>0.5の範囲で漸次減少し、かつ、TC111(x)が最も低い場所でTC200(x)がTC111(x)の1.5倍以上となることから、優れた耐摩耗性と切屑排出性が実現できる。 The surface-coated drill of the present invention comprises a cemented carbide sintered body, a cubic boron nitride sintered body, a cermet, or a drill base made of high-speed steel, directly from Ti nitride or carbide, or Ti and Al. A laminated structure comprising a single layer or a plurality of layer structures selected from the hard film group of: a composite nitride comprising: a composite nitride comprising Ti, Al and Si; and a composite nitride comprising Cr and Al A layer having a composition of Ti 1-a Al a N {a = 0 to 0.5} as an orientation control layer is present on the outermost surface through an intermediate layer having a thickness of 5 μm or less, and Measured by a micro region X-ray diffraction method at a position at a distance of x times the diameter D of the drill from the tip in a region of the flute groove extending from the tip to the length of 5 times the diameter along the length of the drill base. That from (hkl) peak intensity, the value of (111), (200), when the calculated orientation coefficient TC hkl (x) using the 3 peaks of (220), TC 111 (x), the drill from the front end TC 200 (x) becomes TC 111 at a place where TC 111 (x) is the lowest, and gradually decreases in the range of 3> TC 111 (x)> 0.5 with respect to the distance x times the diameter D of Since it becomes 1.5 times or more of (x), the outstanding abrasion resistance and chip discharge | emission property are realizable.

本発明の表面被覆ドリルの硬質被覆層(配向制御層)を蒸着形成するための圧力勾配型Arプラズマガンを利用したイオンプレーティング装置の概略図を示す。The schematic diagram of the ion plating apparatus using the pressure gradient type Ar plasma gun for carrying out vapor deposition formation of the hard coating layer (orientation control layer) of the surface coating drill of the present invention is shown. 本発明の表面被覆ドリルの硬質被覆層(配向制御層)の概略図を示す。The schematic of the hard coating layer (orientation control layer) of the surface coating drill of this invention is shown.

つぎに、本発明の表面被覆ドリルを実施例により具体的に説明する。   Next, the surface-coated drill of the present invention will be specifically described with reference to examples.

原料粉末として、平均粒径0.8μmのWC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、溝形成部の直径×長さが8mm×48mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製のドリル基体D−1〜D−4をそれぞれ製造した。 As raw material powders, WC powder having an average particle size of 0.8 μm, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, and 1.8 μm Co powder were prepared. 1 is added to the compounding composition shown in FIG. 1, and a wax is further added, followed by ball mill mixing in acetone for 24 hours, drying under reduced pressure, and then press-molding into various compacts of a predetermined shape at a pressure of 100 MPa. The body is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, held at this temperature for 1 hour, and then sintered under furnace cooling conditions. Then, a round sintered body for forming a tool base is formed, and further, a diameter x length of the groove forming part is 8 mm x 48 mm and a twist angle is 30 degrees by grinding from the round bar sintered body. WC-based cemented carbide drill with two-blade shape Body D-1 to D-4 were prepared, respectively.

ついで、これらのドリル基体D−1〜D−4の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、図1の概略図に示される物理蒸着装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置に装着し、
工具基体温度:360〜450℃、
蒸発源1:金属Ti、
蒸発源1に対するプラズマガン放電電力:10〜12kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:7〜9kW、
反応ガス流量:窒素(N)ガス 50〜100sccm、
放電ガス:アルゴン(Ar)ガス 45〜60sccm、
ドリル基体に印加する直流バイアス電圧:+3〜+8V、
アシストガンの放電電力:2kW
という特定の条件(表2)下、ドリル基体上での成膜速度がドリル基体の先端からの距離に沿って漸次増加するように調整する目的で、ドリル基体を、例えば、図1に示すように、ドリル基体の先端部を水平から上方に向け、かつ、ハース載置平面の鉛直方向の軸に対して、25度の角度を保ったまま自転させると同時に、該鉛直方向の軸を回転中心軸として公転させながら、ドリルに対して平行となる角度から10度の角度に保持されたアシストプラズマガンによる側面からのプラズマ照射を行いながら、反応性蒸着をして、表3に示される組成および組織を有する配向制御層を形成した本発明表面被覆ドリル1〜13をそれぞれ製造した。
Next, the cutting blades of these drill bases D-1 to D-4 are honed, ultrasonically cleaned in acetone, and dried, with one type of physical vapor deposition apparatus shown in the schematic diagram of FIG. Attached to an ion plating device using a certain pressure gradient type Ar plasma gun,
Tool substrate temperature: 360 to 450 ° C.
Evaporation source 1: metal Ti,
Plasma gun discharge power for the evaporation source 1: 10-12 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power for the evaporation source 2: 7 to 9 kW,
Reaction gas flow rate: Nitrogen (N 2 ) gas 50-100 sccm,
Discharge gas: Argon (Ar) gas 45-60 sccm,
DC bias voltage applied to the drill base: +3 to +8 V,
Discharge power of assist gun: 2kW
For the purpose of adjusting the film formation rate on the drill base to gradually increase along the distance from the tip of the drill base under the specific conditions (Table 2), the drill base is, for example, as shown in FIG. In addition, the tip of the drill base is rotated from the horizontal to the upper side while maintaining the angle of 25 degrees with respect to the vertical axis of the hearth mounting plane, and at the same time, the vertical axis is rotated at the center of rotation. The composition shown in Table 3 was obtained by performing reactive deposition while performing plasma irradiation from the side surface with an assist plasma gun held at an angle of 10 degrees from an angle parallel to the drill while revolving as an axis. The surface-coated drills 1 to 13 of the present invention in which the orientation control layer having a structure was formed were manufactured.

また、比較の目的で、前記ドリル基体D−1〜D−4の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される圧力勾配型Arプラズマガンを利用したイオンプレーティング装置にドリル基体の全域に亘って均一な硬質被覆層が形成する目的で、ドリル基体を、ハース載置平面と平行を保ったまま自転させる(図示せず)と同時に、該鉛直方向の軸を回転中心軸として公転させながら反応性蒸着をして、ドリル基体D−1〜D−4の表面に、表4に示される均一な組成および組織を有する従来層を形成した比較表面被覆ドリル1〜13をそれぞれ製造した。   For the purpose of comparison, the surface of the drill base D-1 to D-4 is subjected to honing, ultrasonically cleaned in acetone and dried, and the pressure gradient type Ar plasma gun shown in FIG. For the purpose of forming a uniform hard coating layer over the entire area of the drill base in the ion plating apparatus utilizing the above, the drill base is rotated while being kept parallel to the hearth mounting plane (not shown), Reactive vapor deposition was performed while revolving around the vertical axis as a rotation axis, and conventional layers having the uniform composition and structure shown in Table 4 were formed on the surfaces of the drill bases D-1 to D-4. Comparative surface-coated drills 1 to 13 were produced.

つぎに、前記本発明表面被覆ドリル1〜13および比較表面被覆ドリル1〜13について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのSCM440の板材、
切削速度: 80m/min.、
送り: 0.20mm/rev.、
穴深さ: 24mm、
の条件での合金鋼の乾式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、60m/min.および0.18mm/rev.)、
を行い、先端切刃面の逃げ面摩耗幅が0.3mmに至るまで、若しくは工具の欠損に至るまでの穴あけ加工数を測定した。この測定結果を表3、4にそれぞれ示した。
Next, for the surface-coated drills 1 to 13 and the comparative surface-coated drills 1 to 13 of the present invention,
Work material-planar dimension: 100 mm × 250 mm, thickness: 50 mm SCM440 plate,
Cutting speed: 80 m / min. ,
Feed: 0.20 mm / rev. ,
Hole depth: 24mm,
A dry high speed drilling test of alloy steel under the conditions of (normal cutting speed and feed are 60 m / min. And 0.18 mm / rev., Respectively),
Then, the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm, or until the tool chipped. The measurement results are shown in Tables 3 and 4, respectively.

この結果得られた本発明表面被覆ドリル1〜13の硬質被覆層を構成する配向制御層、さらに、比較表面被覆ドリル1〜13の硬質被覆層を構成する従来層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result, the composition of the orientation control layer constituting the hard coating layer of the surface-coated drills 1 to 13 of the present invention and the conventional layer constituting the hard coating layer of the comparative surface-coated drills 1 to 13 was measured using a transmission electron microscope As a result of measurement by energy dispersive X-ray analysis using, each showed substantially the same composition as the target composition.

また、前記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of the said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表3、4に示される結果から、本発明表面被覆ドリルは、ドリルのフルート溝のうち、先端からドリル基体の長さに沿って直径の5倍の長さまでの領域において、先端から前記ドリルの直径Dのx倍の距離における位置において微小領域X線回折法によって測定される(hkl)ピーク強度から、(111)、(200)、(220)の3ピークを用いて計算した配向係数TChkl(x)とした時に、TC111(x)の値が、先端からドリルの直径Dのx倍の距離に対して、3>TC111(x)>0.5の範囲で漸次減少し、かつ、TC111(x)が最も低い場所でTC200(x)がTC111(x)の1.5倍以上となることから、優れた耐摩耗性と切屑排出性が実現できる。
これに対して、硬質被覆層を構成する結晶の配向係数TChkl(x)が、ドリル先端から後方に向けて変化しない従来層を有する比較表面被覆ドリルにおいては、切屑排出性が十分でないために、チッピング、欠損、剥離の発生等により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 3 and 4, the surface-coated drill of the present invention has a drill flute groove in the region from the tip to the length of 5 times the diameter along the length of the drill base. Orientation coefficient TC hkl calculated from three peaks (111), (200), and (220) from the (hkl) peak intensity measured by the micro-region X-ray diffraction method at a position at a distance x times the diameter D. when a (x), the value of TC 111 (x) is, with respect to x times the distance of the diameter D of the drill from the front end, 3> TC 111 (x) > gradually decreased in the range of 0.5, and Since TC 200 (x) is 1.5 times or more of TC 111 (x) at the place where TC 111 (x) is the lowest, excellent wear resistance and chip dischargeability can be realized.
On the other hand, in the comparative surface-coated drill having the conventional layer in which the orientation coefficient TC hkl (x) of the crystal constituting the hard coating layer does not change from the drill tip to the rear, the chip discharging property is not sufficient. It is clear that the service life is reached in a relatively short time due to occurrence of chipping, chipping, peeling, and the like.

前述のように、本発明の表面被覆ドリルは、硬質被覆層(配向制御層)を構成する結晶粒の配向係数が、ドリル先端から後方に向けて、3〜0.5の範囲で漸次減少していることから、優れた切屑排出性を備えており、そして、この優れた切屑排出性は、高送り・乾式の深穴用ドリル加工条件においても、長期間にわたり高い耐摩耗性を維持するものである。   As described above, in the surface-coated drill of the present invention, the orientation coefficient of crystal grains constituting the hard coating layer (orientation control layer) gradually decreases in the range of 3 to 0.5 from the drill tip to the rear. Therefore, it has excellent chip evacuation, and this excellent chip evacuation maintains high wear resistance over a long period of time even in high-feed, dry-type deep hole drilling conditions. It is.

(c)そして、表面被覆ドリルの硬質被覆層を、前記配向組織を持つ硬質被覆層(以下、配向制御層)で構成すると以下のような効果を発揮する。すなわち、逃げ面の先端部は高熱・高負荷がかかるため、(111)配向組織の皮膜にて構成し、高い耐摩耗性を実現する。さらに、フルート溝のうち、熱的・力学的負荷が大きい先端部(111)配向組織の皮膜にて構成し、かつ、荷重圧力が押し込みからせん断へ徐々に変化するフルート溝に沿って、(111)配向係数を徐々に低下させ、かつフルート溝に沿って漸次変化することで長期間に亘り各位置での皮膜の強度を高く維持する機構を実現し、高速・乾式の深穴加工においても長い工具寿命を発揮することを見出したのである。 (C) And, if the hard coating layer of the surface-coated drill is composed of a hard coating layer having the oriented structure (hereinafter referred to as an orientation control layer), the following effects are exhibited. That is, since the tip of the flank is subjected to high heat and high load, it is composed of a film having a (111) oriented structure to achieve high wear resistance. Further, of the flute grooves, thermal and mechanical loading is large tip constituted by coating (111) orientational structure, and, along the flutes groove load pressure is changed gradually to shear from pushing, (111) By gradually reducing the orientation coefficient and gradually changing along the flute groove, a mechanism that maintains high film strength at each position over a long period of time is realized. It was found that the tool life is long.

Claims (6)

超硬合金焼結体あるいは立方晶窒化硼素焼結体あるいはサーメットあるいは高速度鋼からなるドリル基体の上に直接または中間層を介して、最表面に配向制御層としてTi1−aAlN{a=0〜0.5}の組成からなる層が存在し、かつ、
前記ドリルのフルート溝のうち、先端からドリル基体の長さに沿ってドリルの直径Dの5倍の長さまでの領域において、先端から前記ドリルの直径Dのx倍の距離における位置において微小領域X線回折法によって測定される(hkl)ピーク強度から、(111)、(200)、(220)の3ピークを用いて計算した配向係数TChkl(x)とした時に、TC111(x)の値が、先端から前記ドリルの直径Dのx倍の距離に対して、3>TC111(x)>0.5の範囲で漸次減少し、かつ、TC111(x)が最も低い場所でTC200(x)がTC111(x)の1.5倍以上となることを特徴とする表面被覆ドリル。
但し、ここで述べるTChkl(x)とは、数式1で計算される数値であり、ただし、Ihkl(x)は先端から前記ドリルの直径Dのx倍の距離における(hkl)ピークの回折強度、I hkl(x)はICDD38−1420に記載される(hkl)ピークの回折強度比であり、I 111は72、I 200は100、I 220は45である。
Ti 1-a Al a N {as an orientation control layer on the outermost surface directly or via an intermediate layer on a cemented carbide sintered body, cubic boron nitride sintered body, cermet or high-speed steel drill base. a layer having a composition of a = 0 to 0.5} exists, and
Of the flute groove of the drill, in the region from the tip to the length of 5 times the diameter D of the drill along the length of the drill base, the minute region X is located at a position at a distance x times the diameter D of the drill from the tip. When the orientation coefficient TC hkl (x) calculated using the three peaks of (111), (200), and (220) from the (hkl) peak intensity measured by the line diffraction method, TC 111 (x) The value gradually decreases in the range of 3> TC 111 (x)> 0.5 with respect to the distance x times the diameter D of the drill from the tip, and TC at the place where TC 111 (x) is the lowest. 200 (x) is 1.5 times or more of TC 111 (x), The surface covering drill characterized by the above-mentioned.
However, TC hkl (x) described here is a numerical value calculated by Equation 1, where I hkl (x) is a diffraction of a (hkl) peak at a distance x times the diameter D of the drill from the tip. The intensity, I 0 hkl (x) is the diffraction intensity ratio of the (hkl) peak described in ICDD 38-1420, I 0 111 is 72, I 0 200 is 100, and I 0 220 is 45.
漸次減少する際のTC111(x)の最大値をTCmax、最小値をTCminとしたとき、TCmax/TCmin>1.5であることを特徴とする請求項1に記載の表面被覆ドリル。 2. The surface coating according to claim 1, wherein TC max / TC min > 1.5, where TC max is a maximum value and TC min is a minimum value of TC 111 (x) when gradually decreasing. Drill. TC200(x)の値が、先端から前記ドリルの直径Dのx倍の距離に対して漸次増加することを特徴とする請求項1または請求項2に記載の表面被覆ドリル。 3. The surface-coated drill according to claim 1, wherein the value of TC 200 (x) gradually increases from a tip with respect to a distance x times the diameter D of the drill. (111)ピークの半値幅FWHM111(x)の値が、先端から前記ドリルの直径Dのx倍の距離に対して漸次増加することを特徴とする請求項1に記載の表面被覆ドリル。 2. The surface-coated drill according to claim 1, wherein the value of the half width FWHM 111 (x) of the (111) peak gradually increases with respect to a distance x times the diameter D of the drill from the tip. 前記配向制御層の層厚が、最もドリル先端に近い位置から、後方にかけて、0.2〜5.0μmの範囲で漸次増加することを満たす請求項1に記載の表面被覆ドリル。   2. The surface-coated drill according to claim 1, wherein the thickness of the orientation control layer satisfies a gradual increase in a range of 0.2 to 5.0 μm from a position closest to the drill tip to the rear. 前記中間層が、Tiの窒化物または炭化物、またはTiとAlとからなる複合窒化物、TiとAlとSiとからなる複合窒化物、CrとAlとからなる複合窒化物のうち、いずれかの単層または前記硬質膜群から選ばれる複数の層構造からなる積層構造を有し、層厚5μm以下であることを特徴とする請求項1乃至請求項5のいずれかに記載の表面被覆ドリル。   The intermediate layer is any one of Ti nitride or carbide, composite nitride composed of Ti and Al, composite nitride composed of Ti, Al and Si, and composite nitride composed of Cr and Al. The surface-coated drill according to any one of claims 1 to 5, wherein the surface-coated drill has a laminated structure composed of a single layer or a plurality of layer structures selected from the hard film group, and has a layer thickness of 5 µm or less.
JP2010253616A 2010-11-12 2010-11-12 Surface coated drill with excellent wear resistance and chip evacuation Expired - Fee Related JP5672444B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010253616A JP5672444B2 (en) 2010-11-12 2010-11-12 Surface coated drill with excellent wear resistance and chip evacuation
CN2011103569148A CN102528130A (en) 2010-11-12 2011-11-11 Surface coated drill with excellent wear resistance and chip discharging property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253616A JP5672444B2 (en) 2010-11-12 2010-11-12 Surface coated drill with excellent wear resistance and chip evacuation

Publications (2)

Publication Number Publication Date
JP2012101336A true JP2012101336A (en) 2012-05-31
JP5672444B2 JP5672444B2 (en) 2015-02-18

Family

ID=46336842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253616A Expired - Fee Related JP5672444B2 (en) 2010-11-12 2010-11-12 Surface coated drill with excellent wear resistance and chip evacuation

Country Status (2)

Country Link
JP (1) JP5672444B2 (en)
CN (1) CN102528130A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393946B2 (en) * 2017-04-07 2023-12-07 サンドビック インテレクチュアル プロパティー アクティエボラーグ coated cutting tools

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000A (en) * 1849-01-02 Abunah s
US9001A (en) * 1852-06-08 Keflector-lamp
JPH03281773A (en) * 1990-03-30 1991-12-12 Hitachi Ltd Surface treatment
JPH09291353A (en) * 1996-04-26 1997-11-11 Hitachi Tool Eng Ltd Surface coated end mill
JPH11124665A (en) * 1997-10-17 1999-05-11 Nippon Pillar Packing Co Ltd Frictional sliding member and its manufacture
JP2005279887A (en) * 2004-03-30 2005-10-13 Mitsubishi Materials Kobe Tools Corp Grooved tool
WO2006011396A1 (en) * 2004-07-29 2006-02-02 Kyocera Corporation Surface coated cutting tool
WO2009096476A1 (en) * 2008-01-29 2009-08-06 Kyocera Corporation Cutting tool
JP2009285760A (en) * 2008-05-28 2009-12-10 Kyocera Corp Cutware

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025114A (en) * 2001-07-16 2003-01-29 Toshiba Tungaloy Co Ltd Aluminium oxide coated cutting tool
CN1280047C (en) * 2001-10-30 2006-10-18 三菱综合材料神户工具株式会社 Surface coated cemeted carbide cutting tool having hard coating layer exhibiting excellent wear resisitance in high speed machining
JP3844285B2 (en) * 2001-10-30 2006-11-08 三菱マテリアル神戸ツールズ株式会社 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP5221951B2 (en) * 2005-03-28 2013-06-26 京セラ株式会社 Cemented carbide and cutting tools
SE529023C2 (en) * 2005-06-17 2007-04-10 Sandvik Intellectual Property Coated carbide cutter
KR100832868B1 (en) * 2006-06-22 2008-05-28 한국야금 주식회사 Coating materials for a cutting tool/an abrasion resistance tool

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000A (en) * 1849-01-02 Abunah s
US9001A (en) * 1852-06-08 Keflector-lamp
JPH03281773A (en) * 1990-03-30 1991-12-12 Hitachi Ltd Surface treatment
JPH09291353A (en) * 1996-04-26 1997-11-11 Hitachi Tool Eng Ltd Surface coated end mill
JPH11124665A (en) * 1997-10-17 1999-05-11 Nippon Pillar Packing Co Ltd Frictional sliding member and its manufacture
JP2005279887A (en) * 2004-03-30 2005-10-13 Mitsubishi Materials Kobe Tools Corp Grooved tool
WO2006011396A1 (en) * 2004-07-29 2006-02-02 Kyocera Corporation Surface coated cutting tool
WO2009096476A1 (en) * 2008-01-29 2009-08-06 Kyocera Corporation Cutting tool
JP2009285760A (en) * 2008-05-28 2009-12-10 Kyocera Corp Cutware

Also Published As

Publication number Publication date
CN102528130A (en) 2012-07-04
JP5672444B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5036338B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5035956B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5344129B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5590331B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2010017785A (en) Surface coated cutting tool having hard coating layer exerting superior chipping resistance
JP2009090395A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP2006001006A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP5672444B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP5682217B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP5240665B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP2007307691A (en) Surface coated cutting tool with hard coated layer exhibiting excellent abrasion resistance in high speed cutting work
JP5590332B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009090396A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP2004338058A (en) Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP2013116551A (en) Surface-coated tool excellent in oxidation resistance and wear resistance
JP2015066644A (en) Surface-coated cutting tool with hard coating layer showing excellent wear resistance and chipping resistance in high-speed cutting work
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2004358610A (en) Surface-coated cermet made cutting tool with hard coating layer having excellent wear resistance in high-speed cutting
JP2004338008A (en) Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2008173750A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP2008260097A (en) Surface-coated cutting tool
JP2004322279A (en) Surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior chipping resistance under high speed double cutting condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5672444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees