JP2012089292A - Method of regenerating lead storage battery - Google Patents

Method of regenerating lead storage battery Download PDF

Info

Publication number
JP2012089292A
JP2012089292A JP2010233551A JP2010233551A JP2012089292A JP 2012089292 A JP2012089292 A JP 2012089292A JP 2010233551 A JP2010233551 A JP 2010233551A JP 2010233551 A JP2010233551 A JP 2010233551A JP 2012089292 A JP2012089292 A JP 2012089292A
Authority
JP
Japan
Prior art keywords
storage battery
lead
electrolyte
lead storage
microbubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010233551A
Other languages
Japanese (ja)
Inventor
Noboru Takahashi
登 高橋
Shigeo Shiono
繁男 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAHASHI KOGYO KK
TOWA ELEX CORP
Original Assignee
TAKAHASHI KOGYO KK
TOWA ELEX CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAHASHI KOGYO KK, TOWA ELEX CORP filed Critical TAKAHASHI KOGYO KK
Priority to JP2010233551A priority Critical patent/JP2012089292A/en
Publication of JP2012089292A publication Critical patent/JP2012089292A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To regenerate a deteriorated lead storage battery by removing the cause of deterioration.SOLUTION: As a means for removing the insulator of PbSOprecipitated mainly on a negative electrode plate from a lead storage battery structure, a regeneration method of causing micro bubbling in an electrolytic solution with a diameter of 50 μm or less, passing the bubbles between electrode plates of each cell, ionizing PbSO(SO) by a physical mechanism of "reduction of bubbles→increase of internal pressure of bubbles→high pressure burst and disappearance" and reducing into the electrolytic solution (HSO+HO) is provided.

Description

本発明は、鉛蓄電池の再生方法に関する。   The present invention relates to a method for regenerating a lead storage battery.

鉛蓄電池の劣化現象とは、充放電による使用を継続し、長期間使用または間欠使用などにより、内部抵抗が高くなって、電解液(希硫酸)の比重が低くなり、再充電しても定格電圧に回復しなくなる状態変化である。一般に定格値の80%に容量低下した時を寿命の目安としており、これらの事象は2次電池の文献などでも明らかにされている。   Lead-acid battery deterioration is a phenomenon that continues to be used through charging / discharging, and the internal resistance increases due to long-term or intermittent use, resulting in a lower specific gravity of the electrolyte (dilute sulfuric acid). It is a state change that does not recover to voltage. In general, the time when the capacity is reduced to 80% of the rated value is used as a standard of life, and these events are also clarified in the literature of secondary batteries.

この劣化現象の原因は、蓄電池内の電極で、特に負極の表面にPbSO(硫酸鉛と称する白色状の結晶性絶縁物)が析出して電極面に大結晶化して成長してゆくに従い内部抵抗が高くなるという理由が明らかにされている。 The cause of this deterioration phenomenon is the electrode in the storage battery, especially as PbSO 4 (white crystalline insulator called lead sulfate) precipitates on the surface of the negative electrode and grows as a large crystal is grown on the electrode surface. The reason for the high resistance has been clarified.

故に、蓄電池の再生法とは、PbSO結晶を微細化して、SO 2-(硫酸イオン)を電解液HSOに還元させて縮少化させればよいことが判明している。特許文献1では、電気的パルス衝撃によりPbSOを微細化して再生処理する方法を提示せている。 Therefore, it has been found that the regeneration method of the storage battery may be reduced by reducing the size of the PbSO 4 crystal and reducing SO 4 2− (sulfate ion) to the electrolyte H 2 SO 4 . Patent Document 1 proposes a method for regenerating by refining PbSO 4 by electric pulse impact.

また、特許文献2では、電解液(HSOとHO)に特殊な添加物(例えば、ポリビニルアルコールなど)を入れて、放電試験と電気的充電作業を行うことで再生処理する方法を提示している。 Further, in Patent Document 2, a method of performing a regeneration treatment by putting a special additive (for example, polyvinyl alcohol) into an electrolytic solution (H 2 SO 4 and H 2 O) and performing a discharge test and an electrical charging operation. Presents.

特許第3723795号公報Japanese Patent No. 3723895 特開2009−016329号公報JP 2009-016329 A

上述した特許文献記載の技術の適用による再生蓄電池が販売されており、通信販売リストにも掲載されて、新品の蓄電池よりも再生蓄電池の価格は約1/2〜1/3としている。しかしながら、再生寿命は約1/2の実績であり、蓄電池の用途により効果が少ない為、顧客満足度が低い。   The regenerative storage battery by application of the technology described in the above-mentioned patent document is sold, and it is also posted on the mail order list, and the price of the regenerative storage battery is about 1/2 to 1/3 than the new storage battery. However, the regeneration life is about a half of the record, and the customer satisfaction is low because the effect is small depending on the use of the storage battery.

ここに、寿命が約1/2の回復率の原因は、再生作業時のPbSO結晶が残っていてSO -2イオンが電解液中に充分に還元されていないことにある。そこで本発明は、電極表面のPbSO結晶を更に減少させて再生寿命を長くする再生処理する方法を提供することを目的とする。 Here, the cause of the recovery rate with a lifetime of about ½ is that PbSO 4 crystals remain at the time of regeneration, and SO 4 -2 ions are not sufficiently reduced in the electrolytic solution. Accordingly, an object of the present invention is to provide a method for performing a regeneration process that further reduces the PbSO 4 crystal on the electrode surface and prolongs the regeneration life.

鉛蓄電池の正極材はPbO、負極材はPb、電解液は2HSOで比重1.28(硫酸濃度37.4%)を標準値とし、正負極板間に隔離板の多孔性のプラスチック材などで重ね合わせして(2V/セル)×(6セル)=12V/セットの出力を得る。詳細はJISD5301(自動車用鉛蓄電池)などに述べられている。 The positive electrode material of the lead storage battery is PbO 2 , the negative electrode material is Pb, the electrolyte is 2H 2 SO 4 , the specific gravity is 1.28 (sulfuric acid concentration 37.4%), and the separator is porous between the positive and negative electrodes Overlaying with a plastic material or the like, an output of (2 V / cell) × (6 cells) = 12 V / set is obtained. Details are described in JIS D5301 (lead battery for automobiles) and the like.

電気化学反応式も明らかにされており、次の通りである。   The electrochemical reaction equation has also been clarified and is as follows.

正極側 :PbO+4H+SO 2―+2e-→PbSO+2HO------(1)
負極側 :Pb+SO 2―→PbSO+2e-------------------------(2)
全体反応:Pb+PbO+2HSO→PbSO+2HO-----------(3)
ガス発生:(+)側 HO→1/2O+2H+2e----------------(4)
:(−)側 2H+2e→H-----------------------------(5)
Positive electrode side: PbO 2 + 4H + + SO 4 2 + 2e → PbSO 4 + 2H 2 O −−−−−− (1)
Negative electrode side: Pb + SO 4 2− → PbSO 4 + 2e ------------------------- (2)
Overall reaction: Pb + PbO 2 + 2H 2 SO 4 → PbSO 4 + 2H 2 O ---------- (3)
Gas generation: (+) side H 2 O → 1 / 2O 2 + 2H + + 2e ---------------- (4)
: (−) Side 2H + + 2e → H 2 ----------------------------- (5)

すなわち、電解液中のHSOとHOとの混合液体は充放電する毎にHガスOガスとが生成し、解放型蓄電池ではHOの補水作業が必要となり、シール型蓄電池では陰極吸収式シールにより過充電とならない限りHガス発生を抑止する構造としている。 That is, the liquid mixture of H 2 SO 4 and H 2 O in the electrolyte H 2 gas O 2 gas is generated for each of charge and discharge, requires rehydration operations H 2 O in the open type storage battery, the seal The type storage battery has a structure that suppresses the generation of H 2 gas unless it is overcharged by a cathode absorption seal.

本発明では、鉛蓄電池構造より、主に負極板上に析出したPbSOの絶縁物を除去する手段として、電解液中に直径50μm以下のマイクロパブリングを生じしめて、各セル毎の電極板間を通過せしめて[気泡の縮少化→気泡内圧の上昇→高圧破裂消滅]の物理的メカニズムによりPbSOをイオン化(SO 2−)して分離させ電解液中(HSO+HO)に還元させる再生方法を提供する。更には、気泡界面にH、OHイオンが帯電したマイクロバブルを用いて行う再生方法を提供する。 In the present invention, as a means for removing the PbSO 4 insulator mainly deposited on the negative electrode plate from the lead-acid battery structure, micro publishing with a diameter of 50 μm or less is generated in the electrolyte solution, and the electrode plate between each cell PbSO 4 is ionized (SO 4 2− ) and separated in the electrolyte (H 2 SO 4 + H 2 O) by the physical mechanism of [reduction of bubbles → increase in bubble internal pressure → high pressure burst extinction]. ) Is provided. Furthermore, the present invention provides a regeneration method that uses microbubbles charged with H + and OH ions at the bubble interface.

本発明によれば次のような効果が得られる。   According to the present invention, the following effects can be obtained.

気泡の縮小化→気泡内圧の上昇→高圧破壊消滅の物理的メカニズムによりPbSOをイオン化して分離させ電解液中に還元させることができる。 PbSO 4 can be ionized and separated and reduced into the electrolytic solution by the physical mechanism of bubble reduction → increase in bubble internal pressure → high pressure fracture extinction.

蓄電池内の電解液中にマイクロバブル発生部を備えて、50μm以下のマイクロバブルを電解液中に放出するので、電解液中に気泡境界面(気液界面)にH、OHイオンが気泡縮少後の高圧破裂時に電極面のPbSOをSO 2−として反応せしめ、電解液(HSO)中に還元できる原理なので、PbSOの結晶を効率良くSO 2−として還元できる。その結果、劣化原因のPbSO結晶が少なくなり鉛蓄電池は充電することで回復する効果が生ずる。 Since the microbubble generator is provided in the electrolyte in the storage battery and microbubbles of 50 μm or less are released into the electrolyte, H + and OH ions are bubbled at the bubble interface (gas-liquid interface) in the electrolyte. Since PbSO 4 on the electrode surface reacts as SO 4 2− at the time of high-pressure rupture after shrinkage and can be reduced into the electrolyte (H 2 SO 4 ), the crystal of PbSO 4 can be efficiently reduced as SO 4 2−. . As a result, the PbSO 4 crystal causing the deterioration is reduced, and the lead storage battery has an effect of being recovered by charging.

被鉛蓄電池を逆さ位置とすることで、電解液の下部側にマイクロバブル発生部がおかれ、マイクロバブルが上昇しながら電極面に沿って上昇して高圧破裂してゆくので、上述した構成のものに比べて更に広い電極面のPbSO結晶を除去するので、再生効率は格段に上昇する効果が出来る。 By setting the lead-acid storage battery upside down, a microbubble generating part is placed on the lower side of the electrolyte, and the microbubble rises along the electrode surface while rising, causing high-pressure rupture. Since the PbSO 4 crystal on the electrode surface wider than that of the PbSO 4 crystal is removed, the regeneration efficiency can be significantly increased.

電解液循環装置側に回収電解液に対しHガス混入調整機能をミキサー部に付加したことにより、マイクロバブル発生部の気泡数を増加減できることで各種サイズの違う蓄電池電極に対し、最適気泡数が決められるので、再生運転効率が向上する。 By contrast recovering electrolyte solution in the electrolyte circulation device side by adding H 2 gas mixed adjustment function to the mixer unit, to the storage battery electrodes of different various sizes can be decreased increase the number of bubbles microbubble generator, optimal cell count Therefore, the regeneration operation efficiency is improved.

本発明実施例の装置構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. マイクロバブル発生部の説明図。Explanatory drawing of a microbubble generation | occurrence | production part. 本発明実施例の装置運転構成説明図。The apparatus operation structure explanatory drawing of this invention Example. 公知の自動車用鉛蓄電池の構造説明図。Structure explanatory drawing of the well-known automotive lead acid battery.

以下、図面より本発明の実施形態を説明する。図1において、再生処理すべき鉛蓄電池1は、自動車用解放型鉛蓄電池である。一般構造は図4(環廃産発第050330009号掲載図平成17年3月30日)のように、ふた1aと電槽1bとで外形を決め、電気出力端子は正負端子1c、内部6セル毎の液口栓1dで不足水分(蒸留水)を追加できる構造、各セル内部は負電極の負極板1gとセパレータ1gと正電極の正極板1gとの重ね合わせ構造で下部のくら1fで電槽1bに対し電極を固定している。電解液(HSO+HO)の電解液の液面線1eが外部から目視できるものとなる。1g4はストラップ、1g5はガラスマットを示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a lead storage battery 1 to be regenerated is an automobile open-type lead storage battery. The general structure is as shown in Fig. 4 (announced from No. 050330009, published on March 30, 2005). The outer shape is determined by the lid 1a and the battery case 1b, the electrical output terminal is a positive / negative terminal 1c, 6 internal cells structure can add missing moisture per liquid spout 1d (distilled water), the lower in superimposed structure of a negative electrode plate 1 g 1 and separator 1 g 2 and the positive electrode the positive electrode plate 1 g 3 of each cell inside the negative electrode saddle The electrode is fixed to the battery case 1b by 1f. The liquid level line 1e of the electrolytic solution of the electrolytic solution (H 2 SO 4 + H 2 O) becomes visible from the outside. 1 g 4 indicates a strap, and 1 g 5 indicates a glass mat.

図1において、被対象の鉛電池1は回転軸9を固定点としたベース部8上に止止め金具7により固定する。なお、回転軸9に対しベース部8は180°の回転角θにより、O1点はO2点回転移動出来る構造である。鉛蓄電池の液口栓1bは電解液の吸引連結パイプ4と吐出連結パイプ5と液位計6(止め金具7に固定)の入り口パイプとが電槽ケース1bの外部に引き出される。図1では図示していないが、図4のようにDC12Vの蓄電池は2V/セル×6セル=12V構成としているので液口栓1bはNo.1〜6個ある。   In FIG. 1, a lead battery 1 to be tested is fixed by a stopper 7 on a base portion 8 having a rotating shaft 9 as a fixing point. Note that the base portion 8 has a structure in which the O1 point can be rotated by the O2 point with a rotation angle θ of 180 ° with respect to the rotation shaft 9. In the lead plug 1b of the lead storage battery, the electrolyte suction connection pipe 4, the discharge connection pipe 5, and the inlet pipe of the liquid level gauge 6 (fixed to the stopper 7) are drawn out of the battery case 1b. Although not shown in FIG. 1, the DC12V storage battery has a configuration of 2V / cell × 6 cells = 12V as shown in FIG. There are 1-6.

また、マイクロバブル発生部3は電解液1eに接触させている。電解液循環装置2の内部構成は、ポンプ2aを中心に吸込み側は吸引連結パイプ4(No.1〜6)よりフイルター2f経由の吸引パイプ2eとより成る。尚、電解液タンク(HSO+HO)2cより調節弁2dにより吸込み側に補充調節できる。 The microbubble generator 3 is in contact with the electrolytic solution 1e. The internal configuration of the electrolytic solution circulation device 2 is composed of a suction pipe 2e via a filter 2f from a suction connection pipe 4 (No. 1 to 6) on the suction side centering on a pump 2a. The replenishment can be adjusted from the electrolyte tank (H 2 SO 4 + H 2 O) 2c to the suction side by the control valve 2d.

循環ポンプ2aの吐出側は逆止弁2b経由ミキサー2g経由吐出パイプ2iに加圧され分岐部によりNo.1〜6本の吐出連結パイプ5よりマイクロバブル発生部3に至る。ミキサー2gではガスボンベ2hにより調整機能を備えた調整弁2dにより液中への気泡用ガス混入量を調節供給する。これによって、マイクロバブル発生部3からのバブリング量が可変とされる。   The discharge side of the circulation pump 2a is pressurized to the discharge pipe 2i via the mixer 2g via the check valve 2b, and the No. The microbubble generator 3 is reached from 1 to 6 discharge connecting pipes 5. In the mixer 2g, the amount of bubble gas mixed in the liquid is adjusted and supplied by the adjusting valve 2d having an adjusting function by the gas cylinder 2h. Thereby, the bubbling amount from the microbubble generator 3 is variable.

ガスボンベ2h内はHガスを基本とし[H +2+SO −2]のバブル反応を生ぜしめる。密閉シール型電池ではOガスが主の為[O+H 2+]のバブル反応を生ぜしめる。 In the gas cylinder 2h, a bubble reaction of [H 2 +2 + SO 4 −2 ] is generated based on H 2 gas. In a hermetically sealed battery, O 2 gas is the main component, which causes a bubble reaction of [O + H 2 2+ ].

図2により、マイクロバブル発生部3の内部構成を説明する。マイクロバブルの定義は50μm以下の気泡であり、水中溶解すると100nm以下の微細な状態で水中安定化する性質が知られている。即ち水中のマイクロバブルの直径が50μm以下となると急速に気泡の縮少により高圧となり破裂消滅して100nm以下のナノバブルとなる時に、このマイクロバブルの気泡界面はH、OHイオンが帯電しており破裂時にPbSOのSO 2−イオンに作用しPbとSOとを分離しやすくできる。 The internal configuration of the microbubble generator 3 will be described with reference to FIG. The definition of microbubble is a bubble of 50 μm or less, and it is known that when dissolved in water, it stabilizes in water in a fine state of 100 nm or less. That is, when the diameter of the microbubbles in water is 50 μm or less, when the pressure rapidly becomes high due to the shrinkage of bubbles and ruptures and disappears into nanobubbles of 100 nm or less, the bubble interface of the microbubbles is charged with H + and OH ions. It acts on the SO 4 2− ions of PbSO 4 at the time of the rupture and can easily separate Pb and SO 4 .

このマイクロバブルを作る原理は吐出口5に入ってくる高圧の電解液1eとガスボンベ2hから混合されたHガスとが流入するがガイドベーン部3aのところで螺旋状の流路で螺旋流に変換し、カレントカッター部3bによりキノコ状の衝突体により微細に砕かれてミクロ粒子群となりマイクロバブル噴流吐出5cで真白い雲のような気泡群が旋回流となって電解液1e中に放出される。その放出されたマイクロバブルは約1mm/secで上昇拡散してゆく。 The principle of making the microbubbles is that the high-pressure electrolyte 1e entering the discharge port 5 and the H 2 gas mixed from the gas cylinder 2h flow in, but are converted into a spiral flow in a spiral flow path at the guide vane portion 3a. Then, the current cutter unit 3b is finely crushed by a mushroom-like collision body to form a microparticle group, and a bubble group such as a pure white cloud is swirled into the electrolytic solution 1e by the microbubble jet discharge 5c. The emitted microbubbles are diffused upward at about 1 mm / sec.

図3のようにベース部8を180度回転させて鉛蓄電池1を逆設置として、下部の電解液1e中より上部へマイクロバブルが上昇拡散することで、電極面上を効率よく沿ってPbSOを分離させる効果がある。この時、公知の電気的再生器10を用いて、開閉器11により鉛蓄電池1に対して電気パルスによる充電とを行いしめて、更にPbSOを衝撃破砕して効率を上げることも可能である。充電レベルはモニター計12により、比重ρ、電圧V、電流Iとを用いて判定する。また、電解液循環装置2により電解液1eが適量かどうかは液位計6により判定する。液、ガス共に調節弁2dにより操作せしめることができる。 As shown in FIG. 3, the base 8 is rotated 180 degrees to reversely install the lead storage battery 1, and the microbubbles rise and diffuse upward from the lower electrolyte 1e, so that the PbSO 4 efficiently travels along the electrode surface. Has the effect of separating. At this time, it is also possible to charge the lead storage battery 1 with an electric pulse by the switch 11 using a known electric regenerator 10 and further crush PbSO 4 to increase the efficiency. The charge level is determined by monitor 12 using specific gravity ρ, voltage V, and current I. Further, the liquid level meter 6 determines whether or not the electrolytic solution 1e is in an appropriate amount by the electrolytic solution circulating device 2. Both liquid and gas can be operated by the control valve 2d.

図4に示す解放型蓄電池の例の変形例には種々のものがあるし、考えられる。シール型蓄電池では図4の液口栓1dがないので、本発明を実施する場合は6セル毎に開口部を加工し図1の液口栓1dを取付作業し、完了後は密閉栓を取付ることで同様に適用できる。   There are various modifications of the example of the open type storage battery shown in FIG. Since the sealed storage battery does not have the liquid spigot 1d shown in FIG. 4, when the present invention is carried out, the opening is processed every 6 cells and the liquid spigot 1d shown in FIG. 1 is attached. It can be applied in the same way.

1…鉛蓄電池、2…電解液循環装置、2a…ポンプ、2b…逆止弁、2c…電解液タンク、2d…調節弁、2e…吸引パイプ、2f…フィルター、2g…ミキサー、2h…ガスボンベ、2i…吐出パイプ、3…マイクロバブル発生部、4…吸引連結パイプ、5…吐出連結パイプ、6…液位計、7…止め金、8…ベース部、9…回転軸、10…電気的再生器、11…開閉器、12…モニター計、θ…回転角。   DESCRIPTION OF SYMBOLS 1 ... Lead storage battery, 2 ... Electrolyte circulation apparatus, 2a ... Pump, 2b ... Check valve, 2c ... Electrolyte tank, 2d ... Control valve, 2e ... Suction pipe, 2f ... Filter, 2g ... Mixer, 2h ... Gas cylinder, 2i ... discharge pipe, 3 ... micro bubble generating part, 4 ... suction connection pipe, 5 ... discharge connection pipe, 6 ... liquid level meter, 7 ... clasp, 8 ... base part, 9 ... rotating shaft, 10 ... electrical regeneration 11 ... switch, 12 ... monitor meter, θ ... rotation angle.

Claims (5)

性能低下した鉛蓄電池を再生する方法において、蓄電池内の電解液中にマイクロバブル発生部を備えた電解液循環装置からのマイクロバブルによって鉛蓄電池の電極面をクリーニングすることを特徴とする鉛蓄電池の再生方法。   In a method for regenerating a lead-acid battery whose performance has deteriorated, an electrode surface of the lead-acid battery is cleaned by microbubbles from an electrolyte circulation device having a microbubble generator in the electrolyte in the battery. Playback method. 請求項1において、マイクロバブルとして気泡界面にH、OHイオンが帯電したマイクロバブルが用いられることを特徴とする鉛電池の再生方法。 The method for regenerating a lead battery according to claim 1, wherein microbubbles in which H + and OH ions are charged at a bubble interface are used as microbubbles. 請求項1または2において、被再生の鉛蓄電池を上下逆転状態として、電解液循環装置により電極面のクリーニングをすることを特徴とする鉛蓄電池の再生方法。   3. The method for regenerating a lead storage battery according to claim 1, wherein the lead storage battery to be regenerated is turned upside down and the electrode surface is cleaned by an electrolyte circulation device. 請求項3において、鉛蓄電池に対して電気的再生器で電気パルスによる充電を行うことで、電極面上のPSOを衝撃破砕することを特徴とする鉛蓄電池の再生方法。 According to claim 3, by performing charging by electrical pulses in electrical regenerator relative lead-acid battery, a lead storage battery reproducing method, wherein a P b SO 4 on the electrode surface to impact fracture. 請求項1から4いずれかにおいて、電解液循環装置の循環ポンプの吐出側にマイクロバブルの源となるガスの混入量の調整機能付きミキサーを設けてバブリング量を可変出来ることを特長とする鉛蓄電池の再生方法。   The lead-acid battery according to any one of claims 1 to 4, wherein a bubbling amount can be varied by providing a mixer with a function of adjusting a mixing amount of a gas serving as a source of microbubbles on a discharge side of a circulation pump of the electrolytic solution circulation device. How to play.
JP2010233551A 2010-10-18 2010-10-18 Method of regenerating lead storage battery Pending JP2012089292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233551A JP2012089292A (en) 2010-10-18 2010-10-18 Method of regenerating lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233551A JP2012089292A (en) 2010-10-18 2010-10-18 Method of regenerating lead storage battery

Publications (1)

Publication Number Publication Date
JP2012089292A true JP2012089292A (en) 2012-05-10

Family

ID=46260728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233551A Pending JP2012089292A (en) 2010-10-18 2010-10-18 Method of regenerating lead storage battery

Country Status (1)

Country Link
JP (1) JP2012089292A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056778A (en) * 2012-09-13 2014-03-27 Mitsuharu Maeda Energization method of secondary battery, energization device, secondary battery
KR101399763B1 (en) * 2012-08-07 2014-05-27 주식회사 주원리테크 Lead battery recycling method
KR20170104205A (en) * 2016-03-07 2017-09-15 주식회사 엘지화학 Degassing Device for Manufacture of Secondary Battery and Degassing Process Using the Same
CN109585953A (en) * 2018-12-18 2019-04-05 云南云铅科技股份有限公司 A kind of economic and environment-friendly lead-acid battery reparation maintenance method
CN115513553A (en) * 2022-11-22 2022-12-23 广州天赐高新材料股份有限公司 Method for recovering lithium salt in electrolyte based on continuous flow reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399763B1 (en) * 2012-08-07 2014-05-27 주식회사 주원리테크 Lead battery recycling method
JP2014056778A (en) * 2012-09-13 2014-03-27 Mitsuharu Maeda Energization method of secondary battery, energization device, secondary battery
KR20170104205A (en) * 2016-03-07 2017-09-15 주식회사 엘지화학 Degassing Device for Manufacture of Secondary Battery and Degassing Process Using the Same
KR102104983B1 (en) * 2016-03-07 2020-04-27 주식회사 엘지화학 Degassing Device for Manufacture of Secondary Battery and Degassing Process Using the Same
CN109585953A (en) * 2018-12-18 2019-04-05 云南云铅科技股份有限公司 A kind of economic and environment-friendly lead-acid battery reparation maintenance method
CN115513553A (en) * 2022-11-22 2022-12-23 广州天赐高新材料股份有限公司 Method for recovering lithium salt in electrolyte based on continuous flow reactor

Similar Documents

Publication Publication Date Title
JP2012089292A (en) Method of regenerating lead storage battery
US20130001168A1 (en) Apparatus and method for adsorbing and desorbing lithium ions using a ccd process
US8039156B2 (en) Fuel cell system and method for removal of impurities from fuel cell electrodes
SE457036B (en) SEATED IN PREPARATION OF A BLYACKUMULATOR WITH A TIXOTROPT GEL AS ELECTROLYTE AND BLYACKUMULATOR MADE AS SET
EP2960978B1 (en) Flooded lead-acid battery
JP2016115396A (en) Lead power storage battery
Moseley et al. Partial state-of-charge duty: A challenge but not a show-stopper for lead-acid batteries!
GB2023918A (en) Galvanic cell
US10205193B2 (en) Lead acid battery
CN219286491U (en) Battery monomer, battery and power consumption device
TW201528587A (en) Composite lead acid battery repairing device
CN208460869U (en) Lead-acid accumulator electrolyte evenly mixing device
JPH08264202A (en) Lead-acid battery
JP5061460B2 (en) Control valve type lead acid battery manufacturing method and control valve type lead acid battery
JP4507483B2 (en) Control valve type lead acid battery
JPWO2019088040A1 (en) Separator for lead-acid battery and lead-acid battery
WO2022004120A1 (en) Liquid-type lead storage battery
JP2008071491A (en) Used lead battery regenerating/new lead battery capacity increasing method
US1190878A (en) Method of operating electric batteries.
JP2011119197A (en) Gel-system lead-acid battery
JP2010020905A (en) Lead-acid battery
RU89766U1 (en) LEAD BATTERY
RU2308124C1 (en) Lead battery
JPH11167910A (en) Sealed lead-acid battery
JPS5920970A (en) Method for manufacturing lead storage battery