JPS5920970A - Method for manufacturing lead storage battery - Google Patents

Method for manufacturing lead storage battery

Info

Publication number
JPS5920970A
JPS5920970A JP57130805A JP13080582A JPS5920970A JP S5920970 A JPS5920970 A JP S5920970A JP 57130805 A JP57130805 A JP 57130805A JP 13080582 A JP13080582 A JP 13080582A JP S5920970 A JPS5920970 A JP S5920970A
Authority
JP
Japan
Prior art keywords
battery case
battery
formation
sulfuric acid
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57130805A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kobayashi
小林 嘉博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57130805A priority Critical patent/JPS5920970A/en
Publication of JPS5920970A publication Critical patent/JPS5920970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/128Processes for forming or storing electrodes in the battery container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent dilute sulfuric acid from splashing out of the battery case during the formation process within the battery case and thereby to easily control environmental pollution, by carrying out the formation for the electrode assembly arranged in a sealed battery case provided with a check valve which is adapted to be open when the pressure within the case exceeds a predetermined pressure value. CONSTITUTION:Paste-type anode plates and cathode plates which are not yet formed are arranged into an electrode assembly in such a way that 2 anode plates and 3 cathode plates are piled alternately via a glass mat separator, which remarkably soaks up liquid, inserted in between. And thus obtained electrode assembly is put in a plastic battery case to form an unit cell. Then, 12ml of sulfuric acid whose specific gravity being 1.20 is poured into each unit cell, and then each unit cell is provided with a rubber check valve which is adapted to be open when the internal pressure becomes higher than the atmosphere by 1/4 atmospheric pressure. Thereafter, the forming within the battery case is carried out with 100mA of electric current applied thereto for 90hr. Since the battery case is sealed from the atmosphere during the forming process, the metallic lead serving as the active material for the cathode, which is brought into a chemically active state during the formation, is prevented from being oxided by the air that would be drawn from the atmosphere into the battery and thus, an effective formation can be carried out.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鉛蓄電池とくに密閉式鉛蓄電池の製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing lead-acid batteries, particularly sealed lead-acid batteries.

従来例の構成とその問題点 従来、鉛蓄電池の製造法には、極板を電槽に組み込む以
前にあらかじめ別の場所で化成し、その後に電槽内に組
込む方法や、未化成の極板を電槽内に組み込んだ後に化
成をする方法が知られている。ここで、未化成の極板を
電槽内に組み込んだ後に化成を行なう、いわゆる電槽化
成は、自動車用の鉛蓄電池のように電解液である希硫酸
の多い場合は容易に実施することができるが、電池の完
成時に自由に流動する希硫酸が実質上存在しない程度に
少なくした場合は、希硫酸量が多い場合と全く同一の方
法を採ることはできない。
Conventional Structures and Problems Traditionally, lead-acid battery manufacturing methods include methods in which the electrode plates are chemically formed in a separate location before being incorporated into the battery case, and then incorporated into the case, and methods in which the electrode plates are formed without chemical conversion A method is known in which chemical conversion is performed after the battery is incorporated into a battery case. Here, so-called battery cell formation, in which chemical formation is carried out after the unformed electrode plates are assembled into a battery case, is not easy to carry out in cases where the electrolyte contains a large amount of dilute sulfuric acid, such as in lead-acid batteries for automobiles. However, if the amount of free-flowing dilute sulfuric acid is so small that it is virtually non-existent when the battery is completed, it is not possible to use exactly the same method as when the amount of dilute sulfuric acid is large.

電池の完成時において希硫酸の量を実質上流動する部分
がない程度に少なくする鉛蓄電池は、密ガス吸収方式は
、基本的には過充電時において、陽極から発生する酸素
ガスを陰極で吸収させて電池外へはガスの逸散がほとん
どないようにすることに特徴がある。このように陰極ガ
ス吸収方式とした場合は、陰極は常に酸素ガスを吸収で
きるので、電池内へ外気が自由に入るようになっている
と、空気中の酸素ガスを連続的に吸収して陰極が放電し
た状態となるので、電槽化成終了時点において、実質上
流動する電解液がほとんど存在しない量まで少なくする
場合は、電池内部と電池外部とが開放状態となった、い
わゆる電槽化成をそのまま実施することはできない。
For lead-acid batteries, the amount of dilute sulfuric acid is reduced to such an extent that there is virtually no flowing part when the battery is completed.The dense gas absorption method basically uses the cathode to absorb oxygen gas generated from the anode during overcharging. The feature is that almost no gas escapes to the outside of the battery. With this cathode gas absorption method, the cathode can always absorb oxygen gas, so if outside air can freely enter the battery, oxygen gas in the air will be continuously absorbed and the cathode will absorb oxygen gas. Therefore, if you want to reduce the amount of flowing electrolyte to the point where there is virtually no flowing electrolyte at the end of battery formation, it is necessary to perform so-called battery formation in which the inside and outside of the battery are open. It cannot be implemented as is.

発明の目的 本発明は、このような密閉式鉛蓄電池における電槽化成
を可能としだ製造法を提供するものであるO 発明の構成 すなわち、本発明は電槽化成終了時に、電解液゛−であ
る希硫酸のほとんどすべてが、陽、陰極板およびセパレ
ータ中に吸収された形で保持され、遊離して自由に流動
できる希硫酸は実質上存在しない形式の鉛蓄電池におい
て、極板群を所定の圧力以上になった時のみ開放状態と
なる逆止弁を備えた密閉形電槽内に組み込み、電槽化成
することを特徴としたものである。
OBJECTS OF THE INVENTION The present invention provides a manufacturing method that enables battery cell formation in such sealed lead-acid batteries. In a type of lead-acid battery in which almost all of the dilute sulfuric acid is retained in absorbed form in the positive and negative plates and separators, with virtually no free-flowing dilute sulfuric acid present, the plates are This device is characterized by being built into a sealed battery case that is equipped with a check valve that opens only when the pressure exceeds the pressure.

実施例の説明 以下に本発明の実施例について詳述する。Description of examples Examples of the present invention will be described in detail below.

未化成のペースト式陽極板、陰極板を用い、陽極板2枚
、陰極板3枚を吸液性の高いガラスマットセパレータを
介して交互に重ね合せて極板群を構成し、得られた極板
群をプラスチック類の電槽に組み込んで単電池とし、単
電池3個が一体となった公称電圧6 v、 公称容i1
.2Ah(20HR容量)の電池を構成する。
Using unformed paste type anode plates and cathode plates, two anode plates and three cathode plates are stacked alternately with a highly liquid-absorbing glass mat separator interposed in between to form an electrode plate group. The board group is assembled into a plastic battery case to form a single cell, and the nominal voltage of 3 single cells is 6 V, and the nominal capacity is i1.
.. A 2Ah (20HR capacity) battery is constructed.

各単電池には比重1.20の希硫酸212meずつ注入
し、次いで各単電池に、電池内の圧力が大気圧に比較し
174気圧以上加圧状態となった時に開放状態となるゴ
ム製の逆止弁を装着する。
Each cell was injected with 212me of dilute sulfuric acid with a specific gravity of 1.20, and a rubber tube was placed in each cell that opened when the pressure inside the cell reached 174 atm or more compared to atmospheric pressure. Install a check valve.

つぎに、電槽化成’(5100mAの電流で9o時実施
例 この実施例と比較するだめに、実施例の電池において、
ゴム製の逆止弁を装着せずに構成した電池を用いて実施
例と同様の電槽化成を行なった。
Next, in order to compare with this example, in the battery of the example,
A battery case was formed in the same manner as in the example using a battery configured without a rubber check valve.

この比較例の電池は化成終了後、ゴム製の逆止弁を装着
して電池を密閉することにより外気が電池内に吸入され
ないようにした。
After completion of chemical formation, the battery of this comparative example was fitted with a rubber check valve to seal the battery to prevent outside air from being drawn into the battery.

以上に述べた実施例および比較例の電池ヲ6QlfiA
の電流で単電池電圧が1,70Vになるまで放電したと
ころ、その放電持続時間は実施例の電池が21時間、比
較例の電池が19時間であった。
The batteries of the Examples and Comparative Examples described above are 6QlfiA.
When the battery was discharged at a current of 1,70 V until the cell voltage reached 1,70 V, the discharge duration was 21 hours for the example battery and 19 hours for the comparative example battery.

この放電結果から明らかなように、実施例は比較例に比
べてすぐれた結果を示しだ。
As is clear from the discharge results, the Example showed superior results compared to the Comparative Example.

これは、本実施例の電池においては、電槽化成中や化成
終了後で電池内に自由に流動する希硫酸が実質上存在し
なくなった時点で外気が電池中に吸入されて、化学的に
活性な状態となっている陰極の活物質である金属状の鉛
を酸化することがないのに比べて、比較例の電池におい
ては、電槽化成中や化成終了後で電池内に自由に流動す
る希硫酸が実質上存在しなくなった時点で外気系電池中
に吸入されて、化学的に活性な状態となっている陰極の
活物質である金属状の鉛を部分的に酸化してしまうため
ではなかろうかと考えられる。
This is because, in the battery of this example, outside air is sucked into the battery at a time when there is virtually no dilute sulfuric acid flowing freely inside the battery during or after battery formation, causing chemical damage. Compared to the case where metallic lead, which is the active material of the cathode in an active state, is not oxidized, in the battery of the comparative example, it flows freely into the battery during and after the formation of the battery. This is because when the dilute sulfuric acid is virtually no longer present, it is inhaled into the outside air battery and partially oxidizes the metallic lead, which is the active material of the cathode, which is in a chemically active state. It seems likely that this is not the case.

なお、本発明の他の特徴は、電槽がコ°ム製の逆止弁で
密閉状態となっているだめに、電槽化成時に電池内で発
生する希硫酸の飛沫が実際上、電池外へはほとんど排出
されないことである。したがって、本発明では電槽化成
終了時において、各単位電池内に保持される希硫酸量は
安定化するとともに、電槽化成中の環境保全も容易とな
る利点〃;生まれる。
Another feature of the present invention is that since the battery case is sealed with a check valve made of com, the droplets of dilute sulfuric acid generated inside the battery during the formation of the battery case are actually exposed to the outside of the battery. Almost no waste is emitted. Therefore, the present invention has the advantage that the amount of dilute sulfuric acid held in each unit cell is stabilized at the end of battery formation, and environmental protection during battery formation is facilitated.

また、本発明のさらに一つの効果は、本発明の方法によ
シミ槽化成を行なうと、化成中に電池内の自由に流動す
る希硫酸がなくなるまでは化成により水分が分解されて
電池外へ円滑に排出、除去されるが、一旦電池中の水分
が減少して自由に流動する希硫酸が実質上存在しなくな
ると、陰極での酸素ガスの吸収反応が能率良く進むため
に陽極から発生した酸素ガスが直ちに陰極に吸収されて
陰極からの水素ガスの発生が抑制されて、それ以上の水
分の分解及び減少が起こりにくくなることである。
Another advantage of the present invention is that when stain tank chemical conversion is performed using the method of the present invention, water is decomposed by the chemical formation and flows out of the battery until the free flowing dilute sulfuric acid inside the battery is exhausted. Although it is smoothly discharged and removed, once the moisture in the battery decreases and free-flowing dilute sulfuric acid is virtually no longer present, the oxygen gas absorption reaction at the cathode proceeds efficiently, causing the oxygen gas generated from the anode to proceed efficiently. Oxygen gas is immediately absorbed by the cathode, suppressing the generation of hydrogen gas from the cathode, and making it difficult for further decomposition and reduction of water to occur.

発明の効果 以上のように本発明は実質的に遊離の電解液が存在しな
い密閉式鉛蓄電池の効率的な電槽化成を可能にしたもの
である。
Effects of the Invention As described above, the present invention enables efficient cell formation of sealed lead-acid batteries in which substantially no free electrolyte exists.

Claims (1)

【特許請求の範囲】[Claims] 未化成の陽極板、陰極板及びセパレータを、所定の圧力
以上となった時に開放する逆止弁を備えた密閉形電槽内
に組み込むとともに希硫酸電解液を注入し、電槽内で極
板化成を行なうことにより、遊離状態の電解液を電槽内
から除去することを特徴とする鉛蓄電池の製造法。
The unformed anode plate, cathode plate, and separator are placed in a sealed battery case equipped with a check valve that opens when the pressure exceeds a predetermined level, and a dilute sulfuric acid electrolyte is injected. A method for producing a lead-acid battery, characterized by removing free electrolyte from the inside of the battery case by performing chemical formation.
JP57130805A 1982-07-27 1982-07-27 Method for manufacturing lead storage battery Pending JPS5920970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57130805A JPS5920970A (en) 1982-07-27 1982-07-27 Method for manufacturing lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57130805A JPS5920970A (en) 1982-07-27 1982-07-27 Method for manufacturing lead storage battery

Publications (1)

Publication Number Publication Date
JPS5920970A true JPS5920970A (en) 1984-02-02

Family

ID=15043118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57130805A Pending JPS5920970A (en) 1982-07-27 1982-07-27 Method for manufacturing lead storage battery

Country Status (1)

Country Link
JP (1) JPS5920970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218085A (en) * 1986-03-20 1987-09-25 株式会社日立製作所 Robot device
JPH01149374A (en) * 1987-12-04 1989-06-12 Matsushita Electric Ind Co Ltd Manufacture of sealed lead-acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218085A (en) * 1986-03-20 1987-09-25 株式会社日立製作所 Robot device
JPH01149374A (en) * 1987-12-04 1989-06-12 Matsushita Electric Ind Co Ltd Manufacture of sealed lead-acid battery

Similar Documents

Publication Publication Date Title
KR100299389B1 (en) Sealed lead acid battery
WO2005124920A1 (en) Lead storage battery
JP2014157703A (en) Lead accumulator
US20050084762A1 (en) Hybrid gelled-electrolyte valve-regulated lead-acid battery
JPWO2018229875A1 (en) Liquid lead storage battery
JPS609065A (en) Sealed lead storage battery
JPS5920970A (en) Method for manufacturing lead storage battery
JP4538864B2 (en) Lead acid battery and manufacturing method thereof
JPH08329975A (en) Sealed lead-acid battery
JP2006318658A (en) Lead-acid battery
JP4857894B2 (en) Lead acid battery
JPS6040672B2 (en) Manufacturing method of sealed lead-acid battery
US1737039A (en) Preservice protection of storage-battery electrodes
JP4719962B2 (en) Manufacturing method of sealed lead-acid battery
JP2007250361A (en) Lead-acid battery
JPS5911185B2 (en) Lead-acid batteries and their manufacturing, and lead-acid battery exhaust seals
JP2024044869A (en) Lead-acid battery
JP2002367586A (en) Sealed lead-acid battery
JPS607069A (en) Manufacture of sealed lead-acid battery
JPS607061A (en) Manufacture of plate for sealed lead storage battery
JPH0426072A (en) Manufacture of sealed-type lead battery
JPH0530291Y2 (en)
JP2001256970A (en) Anode plate for lead battery
JPH04118854A (en) Gel type lead storage battery
JPS63187576A (en) Enclosed type lead storage cell