JP2011119197A - Gel-system lead-acid battery - Google Patents

Gel-system lead-acid battery Download PDF

Info

Publication number
JP2011119197A
JP2011119197A JP2009293333A JP2009293333A JP2011119197A JP 2011119197 A JP2011119197 A JP 2011119197A JP 2009293333 A JP2009293333 A JP 2009293333A JP 2009293333 A JP2009293333 A JP 2009293333A JP 2011119197 A JP2011119197 A JP 2011119197A
Authority
JP
Japan
Prior art keywords
gel
battery
electrolyte
aqueous solution
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009293333A
Other languages
Japanese (ja)
Inventor
Akiya Kozawa
昭弥 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009293333A priority Critical patent/JP2011119197A/en
Publication of JP2011119197A publication Critical patent/JP2011119197A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means of elongating life of a gel-system lead-acid battery. <P>SOLUTION: The gel-system lead-acid battery has an aqueous solution containing at least one out of a group consisting of polyvinyl alcohol, polyacrylate, and lignin by 3 to 12 wt.% arranged in contact with electrolyte of the gel-system lead-acid battery with diluted sulfuric acid as an electrolyte. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ゲル式鉛蓄電池の寿命を数倍以上に延長する技術に関する。  The present invention relates to a technique for extending the life of a gel-type lead storage battery to several times or more.

ゲル式鉛蓄電池には、その電解液である希硫酸は、比重1.28ないし1.35のやや高濃度のものをシリカゲル中に浸み込ませた状態で、電極の間に配置している。この電池を3ないし6ヶ月使用していると、水が減少して電極の一部が希硫酸に接しなくなり、電池の容量が減少する。この水の減少が更に進むと、電極の大部分が希硫酸に接しなくなり、電池の寿命が尽きる。我々は、希硫酸中で電極の水素過電圧を大きくする作用を持つポリビニルアルコール、ポリアクリル酸塩等の化合物(以下有機ポリマーという)が劣化電池のサルフェーション解消や、新電池の長寿命化に有効であることを発見し、特許出願した(例えば、特許文献1、特許文献2、特許文献3参照)。  In the gel type lead-acid battery, the dilute sulfuric acid, which is the electrolyte, is placed between the electrodes with a slightly higher concentration of 1.28 to 1.35 specific gravity immersed in silica gel. . If this battery is used for 3 to 6 months, water decreases and a part of the electrode does not come into contact with dilute sulfuric acid, thereby reducing the capacity of the battery. If this water further decreases, most of the electrodes will not come into contact with dilute sulfuric acid, and the battery life will be exhausted. We have found that polyvinyl alcohol, polyacrylate, and other compounds (hereinafter referred to as organic polymers), which have the effect of increasing the hydrogen overvoltage of the electrode in dilute sulfuric acid, are effective in eliminating the sulfation of deteriorated batteries and extending the life of new batteries. We discovered that there was a patent application (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).

最近は、大容量電池がコンパクトに出来るというゲル式鉛蓄電池の特色を生かしたゲル式鉛蓄電池が電気自動車、電気バス等に多く使われるようになった。このゲル式鉛蓄電池では、電解液である希硫酸は、流動性の状態では含まれていないので、上記の有機ポリマーの水溶液を電池の電槽の蓋を取って補充し、電解液中に均一に混合して全ての電極表面に吸着させることは困難であった。即ち、ゲル式鉛蓄電池に上記の有機ポリマー添加剤を使用してその寿命を延長させる適当な方法が無かった。  Recently, gel-type lead-acid batteries that take advantage of the characteristics of gel-type lead-acid batteries that can make large-capacity batteries compact are often used in electric vehicles, electric buses, and the like. In this gel type lead-acid battery, dilute sulfuric acid, which is an electrolyte, is not contained in a fluid state, so the above-mentioned organic polymer aqueous solution is replenished by removing the lid of the battery case, and the electrolyte is evenly mixed. It was difficult to mix and adsorb to all electrode surfaces. That is, there was no suitable method for extending the life of the gel type lead-acid battery by using the above-mentioned organic polymer additive.

特開2000−149980号 公報  JP 2000-149980 A 特開2000−149981号 公報  JP 2000-149981 A 特開2001−313064号 公報  JP 2001-313064 A

本発明は、ゲル式鉛蓄電池に高粘度の有機ポリマー高濃度水溶液を加えることにより、その寿命を延長させる手段を提供するものである。  The present invention provides means for extending the life of a gel-type lead-acid battery by adding a high-viscosity organic polymer high-concentration aqueous solution.

本発明は、粘性の高い有機ポリマー高濃度水溶液を電解液を含むゲルに接して配置し、少しづつ時間をかけてポリマーを電解液中に拡散させることで、電極表面へ有機ポリマーを供給して、電極のサルフェーションを防止・回復させることが可能であることを発見したことに基づくものであって、第一の課題解決手段は、ポリビニルアルコール、ポリアクリル酸塩、リグニンよりなる群の少なくとも一つを3ないし12重量%含む水溶液を、希硫酸を電解液とするゲル式鉛蓄電池の電解液に接触して配置したゲル式鉛蓄電池である。  In the present invention, a highly viscous organic polymer high-concentration aqueous solution is placed in contact with a gel containing an electrolytic solution, and the organic polymer is supplied to the electrode surface by gradually diffusing the polymer into the electrolytic solution over time. The first problem-solving means is based on the discovery that electrode sulfation can be prevented / recovered. At least one of the group consisting of polyvinyl alcohol, polyacrylate, and lignin is used. Is a gel-type lead acid battery in which an aqueous solution containing 3 to 12% by weight is placed in contact with the electrolyte solution of a gel-type lead acid battery using dilute sulfuric acid as an electrolyte.

また、第二の課題解決手段は、ポリビニルアルコール、ポリアクリル酸塩、リグニンよりなる群の少なくとも一つを3ないし12重量%含む水溶液を、希硫酸を電解液とするゲル式鉛蓄電池の電解液に接触して配置した鉛蓄電池において、単電池あたり、2.5ボルト以上の端子電圧の状態で補充電を行なうゲル式鉛鉛蓄電池の充電方法である。  The second problem-solving means is an electrolyte solution for a gel-type lead acid battery using dilute sulfuric acid as an electrolyte solution containing an aqueous solution containing 3 to 12% by weight of at least one of the group consisting of polyvinyl alcohol, polyacrylate, and lignin. In the lead storage battery arranged in contact with the battery, the charging method of the gel-type lead lead storage battery in which auxiliary charging is performed in a state of a terminal voltage of 2.5 volts or more per unit cell.

第一の課題解決手段による作用は次の通りである。すなわち、従来、ポリビニルアルコール、ポリアクリル酸等の有機ポリマーの電解液中の適正濃度は0.01ないし1%であり、過剰に添加した場合は、電池の内部抵抗の上昇、有機ポリマーの酸化分解に伴う発泡等の好ましくない現象が生じた。これに対し、本第一の課題解決手段によれば、有機ポリマーは高粘度の液体中を徐々に拡散してゲル状の電解液に到達し、そのゲル中も徐々に拡散して電極表面に到達するので、電極表面での有機ポリマー濃度は比較的低い状態に保たれて、内部抵抗の上昇や発泡等を引き起こすことなく、電極のサルフェーションを防止・回復させることができる。更に、本発明に使用する有機ポリマーの高濃度水溶液は高粘度であるので、電池に衝撃や振動が加わっても水溶液が飛散することが抑制され、電池の使用条件の妨げになることが無い。  The operation of the first problem solving means is as follows. That is, conventionally, an appropriate concentration of an organic polymer such as polyvinyl alcohol or polyacrylic acid in an electrolyte is 0.01 to 1%. When excessively added, the internal resistance of the battery is increased, and the organic polymer is oxidatively decomposed. Undesirable phenomena such as foaming occurred. On the other hand, according to the first problem solving means, the organic polymer gradually diffuses in the high-viscosity liquid to reach the gel electrolyte, and gradually diffuses in the gel to the electrode surface. Therefore, the organic polymer concentration on the electrode surface is kept at a relatively low state, and the sulfation of the electrode can be prevented / recovered without causing an increase in internal resistance or foaming. Furthermore, since the high-concentration aqueous solution of the organic polymer used in the present invention has a high viscosity, even if impact or vibration is applied to the battery, the aqueous solution is prevented from scattering and does not hinder the use conditions of the battery.

第二の課題解決手段による作用は次の通りである。すなわち、第一の課題解決手段による作用を充分に機能させるために、その充電方法として、下記の手段が好ましい。従来の6セルの単電池からなる自動車用鉛蓄電池は、過充電と水の電気分解による電解液の減少を防止する目的で、通常14.5ボルト(単電池では2.42ボルト)を上限とする充電方法がとられてきた。しかし、この充電電圧では負極活物質のかなりの部分は還元されて金属鉛になるものの、一部は硫酸鉛の結晶として残り、サルフェーションの解消は不十分であり、何回も充放電を繰り返すうちに少しづつ未分解の硫酸鉛の結晶が蓄積し、サルフェーションが進行した。このサルフェーションを解消するには、電池の端子電圧が13.5ボルト未満の領域を0.1C程度の大電流で充電し、その後15ボルト以上(単電池では2.5ボルト以上)の充電電圧で0.01C程度の小電流で10ないし30時間補充電を行なうことにより、達成される。なお、その際電極表面に吸着した有機ポリマーにより、電極の水素過電圧が上昇し、その結果水の電気分解による水素発生が抑制されるので、水分の損失も防止される。なお、ここでCとは、充電電流(A)÷電池の定格容量(AH)の数値を意味し、定格容量40AHの電池の場合、0.01Cとは、0.4Aの充電電流を意味する。  The operation of the second problem solving means is as follows. That is, the following means are preferable as the charging method in order to make the function of the first problem solving means sufficiently function. Conventional lead-acid batteries for automobiles consisting of 6-cell single cells usually have an upper limit of 14.5 volts (2.42 volts for single cells) for the purpose of preventing electrolyte reduction due to overcharge and water electrolysis. Charging methods have been taken. However, at this charging voltage, a considerable part of the negative electrode active material is reduced to lead metal, but part of it remains as lead sulfate crystals, and sulfation is insufficiently resolved. Slowly, undecomposed lead sulfate crystals accumulated and sulfation proceeded. In order to eliminate this sulfation, the region where the terminal voltage of the battery is less than 13.5 volts is charged with a large current of about 0.1 C, and then the charging voltage is 15 volts or more (2.5 volts or more for a single cell). This is achieved by performing supplementary charging with a small current of about 0.01 C for 10 to 30 hours. At this time, the organic polymer adsorbed on the electrode surface increases the hydrogen overvoltage of the electrode, and as a result, the generation of hydrogen due to the electrolysis of water is suppressed, so that the loss of moisture is also prevented. Here, C means a value of charging current (A) / battery rated capacity (AH), and in the case of a battery with a rated capacity of 40 AH, 0.01 C means a charging current of 0.4 A. .

第一の課題解決手段による効果は、従来3ないし6ヶ月程度であったゲル式鉛蓄電池の寿命を、1ないし3年とすることができる。更に、第二の課題解決手段を用いた場合、サルフェーションの完全な防止と電解液の電気分解の防止により、その寿命を5ないし10とすることが可能になった。  The effect of the first problem solving means is that the life of the gel type lead-acid battery, which has been about 3 to 6 months in the past, can be set to 1 to 3 years. Further, when the second problem solving means is used, the lifetime can be reduced to 5 to 10 by completely preventing sulfation and preventing electrolysis of the electrolytic solution.

充電量と電池端子電圧のグラフ  Graph of charge and battery terminal voltage 有機ポリマー高濃度水溶液の配置を示す鉛蓄電池の断面図  Cross-sectional view of a lead-acid battery showing the placement of a high concentration organic polymer aqueous solution 有機ポリマー高濃度水溶液の他の配置を示す鉛蓄電池の断面図  Cross-sectional view of a lead-acid battery showing another arrangement of organic polymer high-concentration aqueous solution

有機ポリマー高濃度水溶液のゲル状電解液への供給方法としては、図2に示すように、高粘度の水溶液8をそのままゲル状電解液7の上に乗せても良いが、更に拡散速度を遅くして、長期間にわたり添加剤の効果を継続させる目的で、図3に示すように、有機ポリマー高濃度水溶液を電解液との境界部に細孔10を設けたプラスチック容器9に入れて、その細孔を介して有機ポリマーを拡散させることにより、拡散速度を任意に制御することができる。また、有機ポリマーの重合度を選択することにより、有機ポリマー高濃度水溶液の粘度を調節することもできる。有機ポリマー高濃度水溶液の濃度は、振動や衝撃による飛散を効果的に防止する粘性を持たせる意味で3重量%以上が好ましく、4重量%以上がより好ましい。また、乾燥に伴う皮膜の形成等の取り扱いの制約を防止するため、有機ポリマー高濃度水溶液の濃度は、12重量%以下が好ましく、10重量%以下がより好ましい。なお、本発明のポリアクリル酸塩とは、ポリアクリル酸ソーダ、ポリアクリル酸カリウム等の塩類を意味する。  As a method for supplying the organic polymer high-concentration aqueous solution to the gel electrolyte solution, as shown in FIG. 2, the high-viscosity aqueous solution 8 may be put on the gel electrolyte solution 7 as it is, but the diffusion rate is further reduced. Then, for the purpose of continuing the effect of the additive over a long period of time, as shown in FIG. 3, an organic polymer high-concentration aqueous solution is placed in a plastic container 9 provided with pores 10 at the boundary with the electrolytic solution. By diffusing the organic polymer through the pores, the diffusion rate can be arbitrarily controlled. Moreover, the viscosity of organic polymer high concentration aqueous solution can also be adjusted by selecting the polymerization degree of organic polymer. The concentration of the organic polymer high-concentration aqueous solution is preferably 3% by weight or more, more preferably 4% by weight or more in terms of imparting a viscosity that effectively prevents scattering due to vibration or impact. Moreover, in order to prevent the restriction | limiting of handling, such as film formation accompanying drying, the density | concentration of organic polymer high concentration aqueous solution has preferable 12 weight% or less, and its 10 weight% or less is more preferable. The polyacrylate of the present invention means salts such as sodium polyacrylate and potassium polyacrylate.

本発明で行なう補充電は、有機ポリマーの作用により負極の水素過電圧を高めた状態で、残存する硫酸鉛を完全に電気分解するために高い電圧を印加するもので、図1の充電量と端子電圧との関係を示す曲線1において、通常の充電である6セル当たり14.5ボルトを上限とする領域2の充電の後、水素発生の少ない低電流で長時間行なうもので、6セル当りの端子電圧が15ないし16ボルト程度の領域3で行うのが好ましい。またその補充電の時間は、10ないし30時間が実用的であるが、これに限定されるものではない。この補充電の条件は本発明の最も特徴とするところで、従来の充電では水の電気分解が激しくて実施が不可能であった高電圧での充電を、有機ポリマーの作用によって水の電気分解を抑制しつつ行なうことで初めて可能としたものである。  The supplementary charging performed in the present invention applies a high voltage in order to completely electrolyze the remaining lead sulfate with the hydrogen overvoltage of the negative electrode increased by the action of the organic polymer. In curve 1 showing the relationship with voltage, after charging in region 2 where the upper limit is 14.5 volts per 6 cells, which is a normal charge, it is performed for a long time at a low current with little hydrogen generation. It is preferable to carry out in the region 3 where the terminal voltage is about 15 to 16 volts. The supplementary charging time is practically 10 to 30 hours, but is not limited thereto. This supplementary charging condition is the most characteristic feature of the present invention. In the conventional charging, the electrolysis of water is intense and impossible to carry out. It is possible for the first time by carrying out while suppressing.

単電池が図2の構造を持った100AHの定格容量のゲル式鉛蓄電池において、電槽4の中に負極5と正極6を比重1.32の希硫酸をシリカゲル中に含ませた電解液7を介して交互に配置し、それらの上部にポリビニルアルコールの濃度8重量%の水溶液100ミリリットルを乗せ、電解液7と接触させた。この電池を毎日1回50%程度の放電を行なう条件で使用し、充電は、14.5ボルトまで30アンペア(0.3C)の第一段充電の後、3アンペア(0.03C)で端子電圧が15.5ボルトに達するまで約10ないし25時間の補充電(第二段充電)を行なった。この結果、従来6ヶ月程度で定格容量の50%以下まで劣化していた電池が、この方法では5年以上にわたり定格容量の50%以上で使用できた。  A gel type lead-acid battery having a rated capacity of 100 AH having a structure of FIG. 2 in a single cell, an electrolytic solution 7 in which a negative electrode 5 and a positive electrode 6 are contained in a battery 4 and dilute sulfuric acid having a specific gravity of 1.32 is contained in silica gel. And 100 ml of an aqueous solution with a polyvinyl alcohol concentration of 8% by weight were placed on top of them and brought into contact with the electrolyte solution 7. This battery is used under the condition of discharging about 50% once a day. Charging is performed at the first stage of 30 amperes (0.3C) up to 14.5 volts and then connected at 3 amperes (0.03C). About 10 to 25 hours of supplementary charging (second stage charging) was performed until the voltage reached 15.5 volts. As a result, the battery that has been degraded to 50% or less of the rated capacity in about 6 months can be used at 50% or more of the rated capacity for 5 years or more.

電動車で6ヶ月使用していて容量が定格容量の50%以下にまで低下した12ボルト、17AHのゲル式鉛蓄電池について、ゲル式電解液の上にポリビニルアルコールの5%水溶液を各セルあたり35ミリリットルづつ加え、14.5ボルトを上限とする充電と、電動車が動かなくなるまでの放電を毎日1回繰り返した結果、14日後に電池の容量が新品の80%にまで回復した。  For a 12 volt, 17 AH gel-type lead acid battery that has been used in an electric vehicle for 6 months and the capacity has dropped to 50% or less of the rated capacity, a 5% aqueous solution of polyvinyl alcohol on the gel-type electrolyte is 35 per cell. As a result of adding 1 milliliter at a time and charging 14.5 volts as the upper limit and discharging until the electric car stopped working once a day, the battery capacity was restored to 80% of the new battery after 14 days.

7:電解液
8:水溶液
7: Electrolytic solution 8: Aqueous solution

Claims (2)

ポリビニルアルコール、ポリアクリル酸塩、リグニンよりなる群の少なくとも一つを2ないし10重量%含む水溶液を、希硫酸を電解液とするゲル式鉛蓄電池の電解液に接触して配置したことを特徴とするゲル式鉛蓄電池。  An aqueous solution containing 2 to 10% by weight of at least one of the group consisting of polyvinyl alcohol, polyacrylate and lignin is disposed in contact with the electrolyte of a gel-type lead storage battery using dilute sulfuric acid as an electrolyte. Gel type lead acid battery. ポリビニルアルコール、ポリアクリル酸塩、リグニンよりなる群の少なくとも一つを2ないし10重量%含む水溶液を、希硫酸を電解液とするゲル式鉛蓄電池の電解液に接触して配置した鉛蓄電池において、単電池あたり、2.5ボルト以上の端子電圧の状態で補充電を行なうことを特徴とするゲル式鉛鉛蓄電池の充電方法。  In a lead storage battery in which an aqueous solution containing 2 to 10% by weight of at least one of the group consisting of polyvinyl alcohol, polyacrylate, and lignin is placed in contact with the electrolyte of a gel type lead storage battery using dilute sulfuric acid as an electrolyte, A method for charging a gel-type lead-acid storage battery, wherein auxiliary charging is performed with a terminal voltage of 2.5 volts or more per unit cell.
JP2009293333A 2009-12-04 2009-12-04 Gel-system lead-acid battery Pending JP2011119197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293333A JP2011119197A (en) 2009-12-04 2009-12-04 Gel-system lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293333A JP2011119197A (en) 2009-12-04 2009-12-04 Gel-system lead-acid battery

Publications (1)

Publication Number Publication Date
JP2011119197A true JP2011119197A (en) 2011-06-16

Family

ID=44284291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293333A Pending JP2011119197A (en) 2009-12-04 2009-12-04 Gel-system lead-acid battery

Country Status (1)

Country Link
JP (1) JP2011119197A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593530A (en) * 2012-02-27 2012-07-18 超威电源有限公司 Colloidal electrolyte for power battery
WO2013125417A1 (en) * 2012-02-20 2013-08-29 間瀬 俊三 Activator for lead acid storage battery, and lead acid storage battery
RU2817056C1 (en) * 2023-11-21 2024-04-09 Акционерное общество "Северный пресс" (АО "Северный пресс") Method of producing gel electrolyte based on polyvinyl alcohol

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125417A1 (en) * 2012-02-20 2013-08-29 間瀬 俊三 Activator for lead acid storage battery, and lead acid storage battery
CN102593530A (en) * 2012-02-27 2012-07-18 超威电源有限公司 Colloidal electrolyte for power battery
RU2817056C1 (en) * 2023-11-21 2024-04-09 Акционерное общество "Северный пресс" (АО "Северный пресс") Method of producing gel electrolyte based on polyvinyl alcohol

Similar Documents

Publication Publication Date Title
JP6168138B2 (en) Liquid lead-acid battery
WO2010058240A1 (en) Low water loss battery
JP2008130516A (en) Liquid lead-acid storage battery
CN104067436B (en) Lead accumulator
JP2001313064A (en) Lead storage battery and its additive agent
JP2009016324A (en) Regenerating method for lead storage battery and its device
JP2007328979A (en) Lead acid storage battery
US20160254573A1 (en) Water loss separators used with lead acid batteries, systems for improved water loss performance, and methods of manufacture and use thereof
JP2011119197A (en) Gel-system lead-acid battery
JP4325153B2 (en) Control valve type lead acid battery
WO2004105161A2 (en) Lead-acid battery having an organic polymer additive and process of charging thereof
JP3386801B1 (en) Lead-acid battery electrolyte composition
JP2008071491A (en) Used lead battery regenerating/new lead battery capacity increasing method
Kozawa et al. Beneficial effect of carbon–PVA colloid additives for lead–acid batteries
JP2007035339A (en) Control valve type lead-acid storage battery
JP2005044689A (en) Life-prolonging solution for lead storage battery
JP2006173075A (en) Lead-acid battery and its charging method
JP2005294142A (en) Lead storage battery
KR20190019412A (en) Electrolyte for a lead storage battery and lead storage battery comprising it
JP2008084804A (en) Life extension agent for lead storage battery, life extension method of lead storage battery, electrolyte of lead storage battery and lead storage battery
JP2008152968A (en) Lead storage battery
JP4789419B2 (en) Lead-acid battery separator
JP2004356080A (en) Formation method for battery jar of lead-acid storage battery
JP2022049421A (en) Regeneration method of lead-acid battery and production method of regenerated lead-acid battery
Böhnstedt Separators and organics for lead–acid batteries