実施の形態1.
図1〜図11は、本発明の実施の形態1に係る誘導加熱調理器を示すものであって、ビルトイン(組込)型の誘導加熱調理器の例を示している。
図1は本発明の実施の形態1に係るビルトイン型の誘導加熱調理器全体の基本構成を示すブロック図である。
図2は本発明の実施の形態1に係るビルトイン型の誘導加熱調理器における誘導加熱コイルの平面図である
図3は本発明の実施の形態1に係るビルトイン型の誘導加熱調理器における誘導加熱コイルの加熱動作説明図1である
図4は本発明の実施の形態1に係るビルトイン型の誘導加熱調理器における誘導加熱コイルの通電説明図1である
図5は本発明の実施の形態1に係るビルトイン型の誘導加熱調理器全体の基本的な加熱動作を示す制御ステップ説明図である。
図6は本発明の実施の形態1に係るビルトイン型の誘導加熱調理器全体の基本的な加熱動作を、簡単操作モードで使用する場合で示す制御ステップ説明図である。
図7は本発明の実施の形態1に係るビルトイン型の誘導加熱調理器における誘導加熱コイルの変形例を示す平面図である
図8は本発明の実施の形態1に係るビルトイン型の誘導加熱調理器における誘導加熱コイルの通電説明図2である
図9は本発明の実施の形態1に係るビルトイン型の誘導加熱調理器における誘導加熱コイルの通電説明図3である
図10は本発明の実施の形態1に係るビルトイン型の誘導加熱調理器における誘導加熱コイルの加熱動作説明図2である。
図11は本発明の実施の形態1に係るビルトイン型の誘導加熱調理器全体を示す平面図である。なお、各図において同じ部分又は相当する部分には同じ符号を付している。
本発明の実施の形態において用いられる用語をそれぞれ定義する。
加熱手段の「動作条件」とは、加熱するための電気的、物理的な条件を言い、通電時間、通電量(火力)、加熱温度、通電パターン(連続通電、断続通電等)等を総称したものである。つまり加熱手段の通電条件をいうものである。
「表示」とは、文字や記号、イラスト、色彩や発光有無や発光輝度等の変化により、使用者に調理器の動作条件や調理に参考となる関連情報(異常使用を注意する目的や異常運転状態の発生を知らせる目的のものを含む。以下、単に「調理関連情報」という)を視覚的に知らせる動作をいう。但し、後述する「広域発光部」や「個別発光部」が発光、点灯して表示する場合及び「第1の表示」、「第2の表示」という場合の「表示」とは、単に発光、点灯して所定の色の光を出すことを言い、光の色や、明るさ、連続点灯と点滅状態のように点灯形態や視覚効果を変えた場合は表示を「変更する」又は「切り替える」などと表現する場合がある。また本発明においては「発光」と「点灯」とは同じ意味であるが、発光ダイオードなどの発光素子自体が光を発する場合を発光、ランプが光を発する場合を点灯と呼ぶことが多いので、以下の説明ではこのように2つの表現を用いる場合がある。なお、電気的又は物理的には発光又は点灯していても、使用者が目視で確認できない程度の弱い光しか使用者に到達しない場合は、使用者が「発光」または「点灯」の結果を確認できないので、特に明記しない限り、「発光」または「点灯」という用語に該当しない。例えば後述するトッププレートは一般的に無色透明ではなく表面に塗装などをする前からその素材自体に薄い色があるので、可視光線の透過率は100%ではないから、例えば発光ダイオードの光が弱いとトッププレートの上からはその光が視認できないことが起こる。
表示部の「表示手段」としては、特に明示のない限り、液晶(LCD)や各種発光素子(半導体発光素子の一例としてはLED(Light Emitting Diode、発光ダイオード)、LD(Laser Diode)の2種類がある)、有機電界発光(Electro Luminescence:EL)素子などを含む。このため表示手段には、液晶画面やEL画面等の表示画面を含んでいる。但し、後述する「広域発光部」や「個別発光部」の表示手段は、単なるランプやLEDなどの発光手段でも良い。
「報知」とは、文字や数字、記号、図形、アニメーション等の可視情報の表示や、電気的音声(電気的に作成又は合成された音声をいう)により、制御手段の動作条件や調理関連情報を使用者に認識させる目的で知らせる動作をいう。
「報知手段」とは、特に明示のない限り、ブザーやスピーカー等の可聴音による報知手段と、文字や記号、イラスト、アニメーションあるいは可視光による報知手段とを含んでいる。
「協同加熱」とは、誘導加熱源となる2つ以上の加熱コイルにそれぞれ電力を供給して、同一の被加熱物を誘導加熱する動作をいう。本発明では後述する実施の形態2及び3において協同加熱の例を示している。
以下、図1〜図11を参照しながら、本発明に係る誘導加熱調理器の実施の形態1について詳細に説明する。図1および図2は、本願発明に係る誘導加熱調理器1の誘導加熱コイル全体を概略的に図示する平面図である。
図1および図2において、本発明の誘導加熱調理器は、1つの矩形の本体部A(図11参照)を備えている。この本体部Aは、本体部Aの上面を構成し、周囲の一部分を除き上面全体の表面がトッププレートで覆われた天板部B(図示せず)と、本体部Aの上面以外の周囲(外郭)を構成する筐体部C(図示せず)と、鍋や食品等を電気的エネルギー等で加熱する加熱手段D(後述する主加熱コイルMCなど)と、使用者により操作される操作手段Eと、操作手段からの信号を受けて加熱手段を制御する制御手段Fと、加熱手段の動作条件を表示する表示手段Gと、をそれぞれ備えている。
また、加熱手段Dの一部として、実施の形態1では使用していないが、グリル庫(グリル加熱室)又はロースターと称される電気加熱手段を備えたものもある。図1においてE1は本体部Aの上面前方部に設けた操作手段Eに、静電容量変化を用いて入力有無を検知するタッチ式のキーや機械式電気接点を有する押圧式キー等によって入力操作される第1の選択部、同じくE2は第2の選択部、E3は同じく第3の選択部であり、使用者がこれら選択部を操作することにより後述する各種調理メニューが選択できる。各選択部E1〜E3の機能の特徴については後で詳しく述べる。
図1および図2において、MCは誘導加熱源(以下、「IH加熱源」という)の主加熱コイルであり、金属性の鍋等の被加熱物Nを載せるトッププレート(図示せず)の下方に接近して配置されている。図中、破線の円で示したのが鍋等の被加熱物Nの外形である。
またこの主加熱コイルは、渦巻状に0.1mm〜0.3mm程度の細い線を30本程束にして、この束(以下、集合線という)を1本又は複数本撚りながら巻き、中心点X1を基点として外形形状が円形になるようにして最終的に円盤形に成形されている。主加熱コイルMCの直径(最大外径寸法)は約180mm〜200mm程度であり、半径R1は90〜100mmである。この実施の形態1では例えば、最大消費電力(最大火力)1.5KWの能力を備えている。
SC1〜SC4は、4個の長円形副加熱コイルであり、前記主加熱コイルMCの中心点X1を基点として前後・左右に、かつ等間隔にそれぞれ対称的に配置されており、中心点X1から放射状に見た場合の横断寸法、つまり「厚み」(「横幅寸法」ともいう)WAは、前記主加熱コイルMCの半径R1の50%〜30%程度の大きさであり、図1、図2の例ではWAは40mmに設定されたものが使われている。また長径MWは前記R1の2倍程度、つまり主加熱コイルMCの直径(最大外径寸法)と同じく180mm〜200mm程度である。なお、主加熱コイルMCの「側方」とは、特に他の説明と矛盾がない場合、図2で言えば右側、左側は勿論、上側と下側(手前側)を含んでおり、「両側」とは左右両方をいうことは勿論、前後及び斜め方向も意味している。
4個の副加熱コイルSC1〜SC4は、前記主加熱コイルMCの外周面に所定の空間(数mmから1cm程度の大きさ)の空間271を保って配置されている。副加熱コイルSC1〜SC4の相互は略等間隔(相互に空間273を保って)になっている。この副加熱コイルSC1〜SC4も、集合線を1本又は複数本撚りながら巻き、外形形状が長円形や小判形になるように集合線が所定の方向に巻かれ、その後形状を保つために部分的に結束具で拘束され、又は全体が耐熱性樹脂などで固められることで形成されている。4つの副加熱コイルSC1〜SC4は平面的形状が同じで、縦・横・高さ(厚さ)寸法も全て同一寸法である。従って1つの副加熱コイルを4個製造し、それを4箇所に配置している。
これら4つの副加熱コイルSC1〜SC4は図2に示すように、中心点X1から半径R1の主コイルMCの周囲において、その接線方向が丁度各副加熱コイルSC1〜SC4の長手方向の中心線と一致している。言い換えると長径方向と一致している。
副加熱コイルSC1〜SC4は、それぞれの集合線が長円形に湾曲しながら伸びて電気的に一本の閉回路を構成している。また主加熱コイルMCの垂直方向寸法(高さ寸法、厚さともいう)と各副加熱コイルSC1〜SC4の垂直方向寸法は同じであり、しかもそれら上面と前記トッププレートの下面との対向間隔は同一寸法になるように水平に設置、固定されている。
図2において、DWは金属製の鍋等の被加熱物Nの外径寸法を示す。前記したような主加熱コイルMCの直径や副加熱コイルSC1〜SC4の厚みWAから、この図2の例では、被加熱物Nの外形寸法DWは220mm〜240mm程度である。
図1は、誘導加熱調理器1に内蔵された電源装置の回路ブロック図である。本願発明に係る電源装置は、概略、三相交流電源を直流電流に変換するコンバーター(例えばダイオードブリッジ回路、または整流ブリッジ回路ともいう)と、コンバーターの出力端に接続された平滑用コンデンサー、この平滑用コンデンサーに並列に接続された主加熱コイルMCのための主インバーター回路(電源回路部)MIVと、同様に平滑用コンデンサーに並列に接続された各副加熱コイルSC1〜SC4のための副インバーター回路(電源回路部)SIV1〜SIV4とを備える。
50は吹き零れ検知部で、後で説明する第1の電極40と、第2の電極41を有しており、当該電極は後述するガラス製のトッププレート下面に密着接合されている。
被加熱物Nの鍋等から零れ出た被調理物の液体が、当該電極40,41の真上位置に至った場合、電極の静電容量が変化するので、この変化を捉えて吹き零れ検知部50は吹き零れがあったと判別信号を通電制御回路200に送る。なお、判別の仕方については後で詳しく述べる。
主インバーター回路MCと副インバーター回路SIV1〜SIV4は、前記コンバーターからの直流電流を高周波電流に変換し、それぞれ主加熱コイルMCおよび副加熱コイルSC1〜SC4に高周波電流を(互いに)独立して供給するものである。
一般に、誘導加熱コイルのインピーダンスは、誘導加熱コイルの上方に載置された被加熱物Nの有無および大きさ(面積)に依存して変化するから、これに伴って前記主インバーター回路MIVと副インバーター回路SIV1〜SIV4に流れる電流量も変化する。本発明の電源装置では、主加熱コイルMCと副加熱コイルSC1〜SC4に流れる、それぞれの電流量を検出するための電流検出部(検出手段)280を有する。この電流検出部は、後述する被加熱物載置判断部の一種である。
本発明によれば、電流検出部280を用いて、主加熱コイルMCと副加熱コイルSC1〜SC4に流れる電流量を検出することにより、それぞれのコイルの上方に被加熱物Nが載置されているか否か、または被加熱物Nの底部面積が所定値より大きいか否かを推定し、その推定結果を制御部(以下、「通電制御回路」という)200に伝達するので、被加熱物Nの大きさ(底部直径)や載置位置を検出することができる。
なお、被加熱物Nの載置状態を検出するものとして、主インバーター回路MIVと副インバーター回路SIV1〜SIV4に流れる電流量を検出する電流検出部280を用いたが、これに限定されるものではなく、機械式センサー、光学的センサーなどの他の任意のセンサーを用いて被加熱物Nの載置状態を検知してもよい。
本発明の電源装置の通電制御回路200は、図1のように、電流検出部(検知回路部)280に接続されており、被加熱物Nの載置状態に応じて、主インバーター回路MIVと副インバーター回路SIV1〜SIV4に制御信号を与えるものである。すなわち、通電制御回路200は、電流検出部280で検出された主加熱コイルMCと副加熱コイルSC1〜SC4に流れる電流量に関する信号(被加熱物Nの載置状態を示すデータ)を受け、被加熱物Nが載置されていないか、あるいは被加熱物Nの直径が所定値(例えば120mmφ)より小さいと判断した場合には、それら主加熱コイルMCと副加熱コイルSC1〜SC4への高周波電流の供給を禁止又は(既に供給開始されている場合はそれを)停止するように主インバーター回路MIVと副インバーター回路SIV1〜SIV4を選択的に制御する。
本発明によれば、通電制御回路200は、被加熱物Nの載置状態に応じた制御信号を主インバーター回路MIVと副インバーター回路SIV1〜SIV4に供給することにより、主加熱コイルMCと副加熱コイルSC1〜SC4への給電を互いに独立して制御することができる。また、中央にある主加熱コイルMCを駆動せず(OFF状態とし)、かつ、すべての副加熱コイルSC1〜SC4を駆動する(ON状態とする)ことにより、フライパンなどの鍋肌加熱が可能となり、鍋の底面と同時にその側面までも余熱するといった調理方法も実現可能となる。なお、通電制御回路200には、被加熱物Nの温度をトッププレート21の下方から測定する赤外線センサーやサーミスタ等の温度センサーを備えた温度検出回路240(温度検出回路ともいう)(図示せず)が接続され、誘導加熱調理中や調理終了後(主電源が切られない限り所定時間あるいはトッププレート21が所定の温度に下がるまでの期間)に随時温度データが伝達されるようになっている。
図1において、277は前記主加熱コイルMCと全ての副加熱コイルSC1〜SC4の全体を包含するような広い加熱域の外縁位置を光で示す広域発光部で、トッププレート21(図示せず)の下方に設置されている。278はこの広域発光部を通電制御回路200の指令に従って発光させる駆動回路である。前記広域発光部277は、電球や有機EL、LED(発光ダイオード)などを用いた光源(図示せず)と、この光源から入射した光を導光する導光体とを備えている。また広域発光部277は、後述する吹き零れ検知用の電極40、41に近接した位置にあり、例えば電極40,41の外側に数mm〜30mm程度離れた位置にあり、電極が円弧形状であればその円弧に沿った形状で円弧状に設けても良い。電極が仮に半円形状であれば、広域発光部277も半円形状にしても良いが、本発明では必ずしも電極の平面形状と広域発光部277の平面形状(この場合の形状とは、実際に発光した場合に使用者から識別できる形状である)とは同じである必要はない。また広域発光部277は電極40、41の必ずしも外側位置にある必要はない。
図1において310は、本体部Aの上面前方部に設けた操作手段Eに設けた操作モード選択手段としての切り替えスイッチであり、押圧式スイッチや静電容量変化を用いて入力するタッチ式のスイッチである。
この切り替えスイッチ310では「簡単操作モード」と「通常モード」の2者から一つを使用者は任意に選択できる。「通常操作モード」とは、この誘導調理器の使用にある程度慣れた主婦などの使用者を想定し、調理条件の設定や加熱の開始、停止などを通常のレベルで要求するものである。
これに対し「簡単操作モード」とは、この種の誘導調理器の使用に慣れていない使用者や初めて使用する使用者等を想定し、通常操作モードで要求していたような操作手順の一部を省略できるものであり、操作に不慣れな使用者がより簡単に調理でき、かつ的確に操作しやすいようにすることを目的に設けている。対象とする使用者から「初心者操作モード」と呼ぶ場合や、より安心して使用できるという意味から「安心操作モード」と呼ぶ場合もある。簡単操作モードと通常操作モードの違いについては後の説明によっても明らかになる。なお、この切り替えスイッチは、特定の誘導加熱コイルの制御だけに適用されるものではなく、誘導加熱調理器全体の操作モードを切り替えるものである。
また「簡単操作モード」では、調理器の使用可能な機能が一部制限されるようにしても良い。例えば、操作部に含まれるスイッチのうち、基本的な調理メニューである「加熱」と「揚げ物の自動調理(図示しない赤外線センサー等の温度センサーにより、油温が一定になるように火力が自動制御されるもの)」に関連するスイッチのみが使用可能となり、高速湯沸し(任意火力で湯沸しでき、最大火力3KWでも湯沸し可能)や手動天ぷら調理(手動で任意に火力を調節しながら天ぷら調理するもの)、自動炊飯の3つを選択するスイッチを使用不能にする(当該スイッチの入力キー自体が操作部に表示されない)というようなものでも良い。簡単操作モードのときは、通常操作モードのときよりも詳細な内容の音声ガイドが出力される。簡単操作モードでは、音声ガイドの内容を詳細にすることにより、誘導加熱調理器の操作に不慣れな初心者の操作性及び安全性の向上を図っている。また簡単操作モードでは、通常操作モードのときよりも操作部に表示される入力キーの総数を減らすという工夫をしても良い
次に具体的な動作について説明するが、その前に本発明でいう制御手段Fの中核を構成している通電制御回路200で実行可能な主な調理メニューについて説明する。
高速加熱モード(加熱速度を優先させた調理メニューで、第1の選択部E1で選択)
このモードでは、被加熱物Nに加える火力を手動で設定できる。
主加熱コイルMCと副加熱コイルの合計火力は、120W〜3.0KWまでの範囲で次の9段階の中から使用者が1段階選定する。
120W、300W、500W、750W、1.0KW、1.5KW、2.0KW、2.5KW、3.0KW。
主加熱コイルMCと副加熱コイルSC1〜SC4の火力比(以下、「主副火力比」という)は、使用者が選定した上記合計火力を超えない限度で、かつ所定火力比の範囲内になるように自動的に通電制御回路200で決定され、使用者が任意に設定することはできない。
例えば主副火力比は(大火力時)2:3〜(小火力時)1:1まで。
主加熱コイルMCと副加熱コイルSC1〜SC4は同時に駆動されるが、この場合、両者の隣接する領域での高周波電流の向きは一致させるよう制御される。
揚げ物モード(自動)(加熱速度と保温機能を要求される調理メニューで、第3の選択部E3で選択)
揚げ物油を入れた被加熱物N(天ぷら鍋等)を所定の温度まで加熱し(第1工程)、その後被加熱物Nの温度を所定範囲に維持するように、通電制御回路200が火力を自動的に調節(第2工程)する。
第1工程:所定の温度(例えば180℃)まで急速に加熱する。
主加熱コイル火力は2.5KW
第2工程:ここで揚げ物が実施され、天ぷらの具材等が投入される。最大30分間運転。この工程では、火力設定部による(任意の)火力設定は禁止される。30分経過後に自動的に加熱動作終了(延長指令も可能)。
主副火力比は、第1工程、第2工程とも所定範囲内になるように自動的に決定され、使用 者が主加熱コイルと副加熱コイルの火力比を任意に設定することはできない。例えば主副火力比は(大火力時)2:3〜(小火力時)1:1まで自動的に変化する。
主・副加熱コイルは、第1工程では同時駆動され、互いの隣接する領域でのコイルの高周波電流の流れが一致。これは、所定温度まで急速に加熱するため。第2工程でも、同様に同時駆動され、電流の流れは一致させる。但し、揚げ物途中で温度の変化が少ない状態が継続すると、電流の向きを反対にし、加熱の均一化を図る。
予熱モード(加熱の均一性を優先させた調理メニュー。第2の選択部E2で選択)
火力設定や変更を禁止して、予め決められた火力で被加熱物Nを加熱する第1予熱工程を行い、第1予熱工程終了後は(温度センサーからの検出温度信号を利用して)被加熱物Nを所定温度範囲に維持する保温工程を行う。
予熱工程:
主加熱コイル1.0KW(固定)
副加熱コイル1.5KW(固定)
保温工程:最大5分間。この間に(任意の)火力設定が行われない場合、5分経過後に自動的に加熱動作終了。
主加熱コイル300W〜100W(使用者には設定不可能)
副加熱コイル300W〜100W(使用者には設定不可能)
任意の火力設定を保温工程期間中した場合、高速加熱と同じになる。
任意の火力設定は、主加熱コイルMCと副加熱コイルの合計火力が、120W〜3.0KWまでの範囲で次の9段階の中から使用者が1段階を選定できる。
120W、300W、500W、750W、1.0KW、1.5KW、2.0KW、2.5KW、3.0KW。
この場合、主副火力比は、所定火力比の範囲内になるように自動的に通電制御回路200で決定され、使用者が任意に設定することはできない。例えば主副火力比は(大火力時)2:3〜(小火力時)1:1まで。
主・副加熱コイルは、予熱工程では同時に駆動されるが、その際互いに隣接する領域での高周波電流の流れが正反対方向。これは、隣接領域では双方の加熱コイルから発生させた磁束を干渉させ、加熱強度を均一化させることを重視するため。保温工程でも同時駆動されが、互いに隣接する領域での高周波電流の向きは反対である。これは全体の温度分布均一化のためである。
なお、保温工程では、(被加熱物Nの温度が98℃以上である場合には)、使用者の指令に基づいて対流促進制御が開始される。この対流促進制御については後述する。
湯沸しモード(加熱速度を優先させた調理メニューで、第1の選択部E1で選択)
被加熱物N内の水を、使用者が任意の火力で加熱開始し、水が沸騰(図示していない赤外線センサー等の温度センサーにより、被加熱物Nの温度や温度上昇度変化等の情報から通電制御回路200が沸騰状態と判定した際に、表示手段Gによって使用者にその旨を知らせる。その後火力は自動的に設定され、そのまま2分間だけ沸騰状態維持する。
湯沸し工程:
主加熱コイルと副加熱コイル合計の火力が120W〜3.0KW(火力1〜火力9まで9段階の中から任意設定。デフォルト設定値は火力7=2.0KW)。
主副火力比は、使用者が選定した上記合計火力を超えない限度で、所定火力比の範囲内になるように自動的に通電制御回路200で決定され、使用者が任意に設定することはできない。例えば主副火力比は(大火力時)2:3〜(小火力時)1:1まで。
保温工程:最大2分間。2分経過後に自動的に加熱動作終了。
主加熱コイル1.0KW以下(使用者には設定不可能)
副加熱コイル1.5KW以下(使用者には設定不可能)
この期間中に、使用者が任意の火力を設定した場合、高速加熱と同じになる。火力も120W〜3.0KWの範囲にある9段階の中から任意に一つ選択可能。
沸騰までは、主加熱コイルMCと副加熱コイルSC1〜SC4は同時駆動され、その際に互いに隣接する領域での高周波電流の向きは一致させるよう制御される。沸騰後は電流の向きは反対になる。
炊飯モード(加熱の均一性を優先させた調理メニュー。第2の選択部E2で選択)
使用者が米飯と水を適当量入れた被加熱物Nとなる容器をセットし、その容器を所定の炊飯プログラム(吸水工程・加熱工程・沸騰工程・蒸らし工程などの一連のプログラム)に従って加熱し、自動で炊飯を行う。
吸水工程及び炊飯工程
主加熱コイル0.6KW以下(使用者には設定不可能。工程の進行に応じて自動的に変化)
副加熱コイル0.7KW以下(使用者には設定不可能。工程の進行に応じて自動的に変化)
蒸らし工程:5分間
主コイル 加熱ゼロ(火力0W)
保温工程:最大5分間。
主加熱コイル200W以下(使用者には設定不可能)
副加熱コイル200KW以下(使用者には設定不可能)
主・副加熱コイルは同時に駆動されるが、その互いに隣接する領域での高周波の電流の流れが反対方向となるように制御される。これは、隣接領域で双方の加熱コイルから発生させる磁束を互いに干渉させ、加熱強度を均一化させることを重視するためである。
なお、炊飯工程終了後、被加熱物Nが主・副加熱コイルの上に置かれていないことが検知回路部(被加熱物載置検知部)280によって検知された場合、または蒸らし工程や保温工程の何れかにおいて、同様に被加熱物Nが主・副加熱コイルの上に同時に置かれていないことが被加熱物載置検知部によって検知された場合、主・副加熱コイルは、加熱動作を直ちに中止する。
茹でモード(加熱速度を優先させた調理メニューで、第1の選択部E1で選択)
加熱工程(沸騰まで):
被加熱物Nに加える火力を手動で設定できる。
主加熱コイルMCと副加熱コイルの合計火力は、120W〜3.0KWまでの範囲で次の9段階の中から使用者が1段階選定する。
120W、300W、500W、750W、1.0KW、1.5KW、2.0KW、2.5KW、3.0KW。
デフォルト値は2KW(使用者が火力を選択しない場合、2KWで加熱開始)
主副火力比は、所定の火力比の範囲内になるように自動的に通電制御回路200で決定され、使用者が任意に設定することはできない。例えば主副火力比は(大火力時)2:3〜(小火力時)1:1まで。
沸騰以後:
水が沸騰(温度センサーにより、被加熱物Nの温度や温度上昇度変化等の情報から制御部は沸騰状態と推定)した際に、使用者にその旨を知らせる。
その後連続30分間(延長可能)、沸騰状態を維持するようにデフォルト値(600W)で自動的に加熱動作を継続するが、使用者が沸騰以後の火力を任意に選んでも良い。
沸騰までの加熱工程全域に亘り、主加熱コイルMCと副加熱コイルSC1〜SC4は同時駆動され、互いに隣接する領域での高周波電流の向きは一致させるよう制御される。また沸騰以降は使用者の操作に基づいて対流促進制御が開始される。この対流促進制御については後述する。
湯沸し+保温モード(加熱速度と均一性を優先させた調理メニューで、第3の選択部E3で選択)
被加熱物N内の水を、使用者が任意の火力で加熱開始し、水が沸騰(温度センサーにより、被加熱物Nの温度や温度上昇度変化等の情報から制御部は沸騰状態と推定)した際に、使用者には表示部Gよってその旨を知らせる。その後火力は自動的に設定され、そのまま2分間だけ沸騰状態維持する。
湯沸し工程:
主加熱コイルと副加熱コイル合計の火力が120W〜3.0KW(火力1〜火力9まで9段階の中から任意設定。デフォルト設定値は火力7=2.0KW)。
主副火力比は、使用者が選定した上記合計火力を超えない限度で、所定火力比の範囲内になるように自動的に通電制御回路200で決定され、使用者が任意に設定することはできない。例えば主副火力比は(大火力時)2:3〜(小火力時)1:1まで。
保温工程:最大10分間。10分経過後に自動的に加熱動作終了。
主加熱コイル1.0KW以下(使用者には設定不可能)
副加熱コイル1.5KW以下(使用者には設定不可能)
沸騰までは、主加熱コイルMCと副加熱コイルSC1〜SC4の隣接する領域での高周波電流の向きは一致させるよう制御される。沸騰後は電流の向きは反対になる。また沸騰以降は使用者の操作に基づいて対流促進制御が開始される。この対流促進制御については後述する。
以下、図5を参照しながら、本発明に係る誘導加熱調理器の基本動作について説明する。図5は、操作モード切り替えスイッチ310を操作し、通常操作モードで加熱調理する場合である。まず主電源を投入すると、操作モード切り替えスイッチ310の操作が表示手段Gによって文字などで促されるので、操作モード切り替えスイッチ310で通常操作モードを選択する(ステップMS1)。すると、加熱準備動作が使用者によって操作部(図1の符号E)で指令したことになるので、前記電流検出部280を用いて、主加熱コイルMCと副加熱コイルSC1〜SC4に流れる電流量を検出することにより、それぞれのコイルの上方に被加熱物Nが載置されているか否か、または被加熱物Nの底部面積が所定値より大きいか否かを判定し、この結果を制御部である通電制御回路200に伝達する(ステップMS2)。
適合鍋であった場合、通電制御回路200は操作部E又はその近傍に設置されている表示手段Gの、例えば液晶表示画面に対し、希望する調理メニューを選択するように促す表示をする(MS3)。適合しない変形鍋(底面が凹んだもの等)や異常に小さい鍋等の場合は、加熱禁止処理がされる(MS7)。
使用者が調理メニューや火力、調理時間などを操作部で選択、入力した場合、本格的に加熱動作が開始される(MS5)。
表示手段Gに表示される調理メニューとしては、上記した「高速加熱モード」、「揚げ物モード」、「湯沸しモード」、「予熱モード」、「炊飯モード」、「茹でモード」、「湯沸し+保温モード」という7つである。以下の説明ではモードという記述を省略し、例えば「高速加熱モード」は「高速加熱」と記載する場合がある。
使用者がこれら7つの調理メニューの中から任意の一つを選択した場合、それらメニューに対応した制御モードが、通電制御回路200の内蔵プログラムによって自動的に選択され、主加熱コイルMCや副加熱コイルSC1〜SC4のそれぞれの通電可否や通電量(火力)、通電時間などが設定される。調理メニューによっては使用者に任意の火力や通電時間等を設定するように促す表示が表示部にて行われる(MS6)。
なお、前記第1、第2、第3の選択部E1、E2、E3は合計3つであるのに対し、前記表示手段Gに表示される調理メニューは合計で7つあるが、実際には例えばE1の中に、「高速加熱」と「湯沸し」、「茹で」の3つを選択できるキーがある。同様に選択部E2の中に「予熱」と「炊飯」の2つが、また選択部E3の中に「湯沸し+保温」と「揚げ物」の2つのキーがある。
図6は、操作モード切り替えスイッチ310を操作し、簡単操作モードで加熱調理する場合の基本動作を示すものである。図5に示す動作の過程で簡単操作モードが選択された場合(ステップKTM)、次に前記電流検出部280を用いて、主加熱コイルMCと副加熱コイルSC1〜SC4に流れる電流量を検出することにより、それぞれのコイルの上方に被加熱物Nが載置されているか否か、または被加熱物Nの底部面積が所定値より大きいか否かを判定し、この結果を制御部である通電制御回路200に伝達する(ステップMSK11)。適合鍋であった場合、通電制御回路200は操作部E又はその近傍に設置されている表示手段Gの、例えば液晶表示画面に対し、希望する調理メニューを選択するように促す表示をする(MSK12)。適合しない変形鍋(底面が凹んだもの等)や異常に小さい鍋等の場合は、加熱禁止処理がされる(MSK6)。
表示手段Gの液晶画面には、調理メニューとして上記した「高速加熱モード」、「揚げ物モード」、「湯沸しモード」、「予熱モード」、「炊飯モード」、「茹でモード」、「湯沸し+保温モード」という7つの制御モードが表示されるが、初心者や使用に不慣れの使用者にはこれら調理メニューの内容を直ぐに理解できない場合がある。そこで表示手段Gの液晶画面には、例えば「調理メニューの中身を知りたい場合は、ここを押して下さい」、あるいは「調理メニューの中身を知りたい場合は、○○キーを押して下さい」等の表示が出る(なお、これと同時に、図示していないが、音声合成装置によって、音声で案内しても良い)。
調理メニューの内容表示要否のステップ(MSK13)で、「表示要」を選択した場合、通電制御回路200は、表示手段Gの液晶画面に、「高速加熱モード」、「揚げ物モード」、「湯沸しモード」、「予熱モード」、「炊飯モード」などの各種調理メニューの特徴を一覧形式又は順次表示形式などで表示する(MSK14)。
調理メニュー解説のステップ(MSK14)では、例えば次のような情報が表示される。
高速加熱モードの場合:
加熱速度を優先させた調理メニュー。
火力を任意に設定可能。
選べる火力は、主加熱コイルMCと副加熱コイルの合計で120W〜3.0KWまで。
揚げ物モード(自動)の場合:
加熱速度と保温機能を要求される調理メニュー。
第1工程(所定の温度、例えば180度まで急速に加熱すること)と第2工程(ここで揚げ物が実施される)の2工程がある。
最大30分間運転されるが、第2の工程では任意の火力設定は禁止され、油の温度を指定すること。
茹でモードの場合:
加熱速度を優先させた調理メニュー。
沸騰までの加熱工程では、火力を任意に設定可能。
その火力は、主加熱コイルMCと副加熱コイルの合計で、120W〜3.0KWまで。設定しないと自動的に2KWで加熱開始される。
沸騰以後は、100℃が維持されるように火力は自動調節されるが、使用者が沸騰以後の火力を任意に選んでも良い。
湯沸しモードの場合:
加熱速度を優先させた調理メニュー。
火力を任意に設定可能。指定しないと2.0KWで加熱開始される。
水が沸騰した際に、表示手段Gで報知される。
沸騰以後は、火力は自動的に設定され、そのまま2分間だけ沸騰状態維持される。
使用者が調理メニューや火力、調理時間などを操作部で選択、入力した場合(MSK15)、本格的に加熱動作が開始される(MSK16)。
(対流促進制御)
次に、本発明の特徴である対流促進制御について説明する。対流促進制御は大きく分けて3種類ある。なお、沸騰以降又は沸騰直前、例えば98℃まで被加熱物Nの温度が上昇したことを、温度センサー(図示せず)を有する温度検出部240(図示せず)が検知した場合、または調理開始からの経過時間から沸騰状態に近いと温度検出部240が検出した場合等においては、それ以降において使用者の任意に指令した時期、例えば操作直後に、対流促進制御が開始されるようにしておくことが望ましいが、特定の調理メニューの場合、沸騰状態になったら使用者が禁止したり、途中で加熱停止したりしない限り、自動的に対流促進制御に移行するようにしても良い。
(第1の対流促進制御)
この制御は、主加熱コイルMCの駆動しない期間中において、副加熱コイルSC1〜SC4によって被加熱物Nを加熱するものである。
図2の(A)は、4つの副加熱コイルSC1〜SC4に同時に、各インバーター回路SIV1〜SIV4より高周波電流が供給されている状態を示す。
同じく図2の(B)は、4つの副加熱コイルSC1〜SC4には高周波電流を供給せず、加熱動作停止しており、一方、主加熱コイルMCのみ主インバーター回路MIVからの高周波電流が供給され、加熱駆動されている状態を示す。
図3の(A)は、4つの副加熱コイルSC1〜SC4の内、互いに隣り合う2つの副加熱コイルSC1,SC3の組(以下、「グループ」ともいう)に対して各インバーター回路SIV1、SIV3より高周波電流が個別に、しかも同時に供給されている状態を示す。この場合、被加熱物Nの発熱部は隣り合う2つの副加熱コイルSC1,SC3の真上とその両者の間に亘る帯状の部分になる。従ってその発熱部を基準として被加熱物Nの内部に収容された被調理物、例えば味噌汁やシチュー等は2つの副加熱コイルSC1,SC3の真上とその両者の間に亘る帯状の部分で加熱され、比重が小さくなり、自ずと上昇流が発生する。従ってこの状態を継続すると図3(A)に矢印YCで示したように、副加熱コイルSC1,SC3から最も遠い反対側に向かう長い対流を発生させることができる。反対側で下降流となり、被調理物の底部を横に流れて再び副加熱コイルSC1,SC3の方に戻るという還流が発生しやすくなる。
言い換えると温度が上昇して自然に上昇する液体被調理物が再び温度が下がって戻ってくる一連の経路(循環路、あるいは対流ループともいう)の長さを大きくできる。
RL1は上昇した被調理物の液体が反対側に向かって移動し、下降流に変わるまでの長い対流経路の長さを示す。RL1の始点は副加熱コイルSC1〜SC4の中心点XSである。またRL2は一つの副加熱コイルSC1から被加熱物Nである鍋等の反対側の壁面までの長さを示す。図3(A)から分かるようにRL1とRL2は同じである(RL1=RL2)。
次に図3の(B)に示すように、4つの副加熱コイルSC1〜SC4の内、互いに隣り合う2つの副加熱コイルSC1,SC2に対して、高周波電流IBが各インバーター回路SIV1、SIV2より個別に、同時に供給されている状態を示す。副加熱コイルSC1,SC2流れる電流IBの向きは互いに反対方向である。この場合、被加熱物Nの発熱部は隣り合う2つの副加熱コイルSC1,SC2の真上とその両者の間に亘る帯状の部分になるから、発生する対流の向きは図3(B)に矢印YCで示したようになる。
同様に、図3の(C)に示すように、4つの副加熱コイルSC1〜SC4の内、互いに隣り合う2つの副加熱コイルSC2,SC4の組に対して同時に高周波電流IBが各インバーター回路SIV2、SIV4より個別に供給されている状態を示す。この場合、被加熱物Nの発熱部は隣り合う2つの副加熱コイルSC2,SC4の真上とその両者の間に亘る帯状の部分になるから、発生する対流の向きは図3(C)に矢印YCで示したように、図3(A)で示した状態とは正反対の方向なる。なお、図2、図3においては、主加熱コイルMCや副加熱コイルSC1〜SC4が通電されていることを、それら全体にハッチングを付けて表示している。
以上の実施に形態の説明のように、第1の対流促進制御は、4つの副加熱コイルSC1〜SC4の内、隣り合う2つの副加熱コイルの組によって主要な加熱をする方式である。言い換えると、4つの副加熱コイルの内の、半数以上で全数未満の副加熱コイルを同時に駆動する方式である。この第1の対流促進制御は、4つの副加熱コイルSC1〜SC4だけの場合に実現するものではなく、例えば6個の副加熱コイルを用いる場合は、3個又は4個の副加熱コイルを同時駆動すれば良い。つまり3個又は4個の副加熱コイルを一つの組にして、その組単位で加熱駆動することである。
この第1の対流促進制御によれば、鍋の横幅全体に亘り、その一方の側方から対向する反対側へ、また逆に反対側からその一方の側方に戻るように、対流を促進する流れを誘発することができる。また対流が起こらなくとも、鍋は副加熱コイルSC1〜SC4で加熱される位置が、主加熱コイルMCの外周側において変化するので、特にとろみのある粘性の高い調理液体の加熱時、一箇所だけに熱が集中することで水分が蒸発し局部的に焦げるということも抑止できる。
図3(A)から図3(B)、図3(B)から図3(C)と順次切り替わるための好ましいタイミングは、被調理物によって一様ではないが、少なくとも被調理物の温度が沸騰したあと、又は沸騰直前の100℃近い状態から開始され、以後は例えば10〜15秒間隔で切り替えが行われる。
あるいは、30分間の煮込み調理が設定されていた場合、調理が終了する前の5分前から開始され、終了までの5分間に亘り実施されるものでも良い。また、野菜や肉類等の具材にダシ汁が吸収されやすくするため、例えば30秒ずつ数回繰り返し行うということでも良い。実際に同じ副加熱コイルを同じ火力で加熱駆動しても、発生する対流の強さは被調理物の液体の粘性に大きく影響受けるので、色々な調理の実験結果から4つの副加熱コイルSC1〜SC4の火力や通電間隔、順番などを選定することが望ましい。
この第1の対流促進制御によれば、被加熱物Nの周縁部に対応する(同一円周上に所定間隔で配置した)4つの副加熱コイルSC1〜SC4を駆動する(ON状態とする)ことにより、フライパンなどの鍋肌加熱、つまり鍋の側面までも余熱するといった調理方法(加熱方法)も実現可能となる。
図4は、主加熱コイルMCと副加熱コイルSC1〜SC4に流れる電流のタイミングを示した説明図であり、加熱駆動される高周波電流が印加されているON状態を「ON」、印加されていないOFF状態を「OFF」と表示している。
この図4では破線に示すように、主加熱コイルMCは通電されていないが、その非通電期間中に、半数以上、全数未満、この実例では隣り合う2個の副加熱コイルによって構成された1組の副加熱コイル群によって誘導加熱される。
この図4から明らかなように、所定の時間間隔に定められた最初の通電区間(以下、通電区間は「区間」と省略する)T1では、副加熱コイルSC1、SC2がONであり、次の区間T2では、副加熱コイルSC1はOFFになり、SC2がON継続する。SC3がONになる。
次の区間T3では、副加熱コイルSC1はOFF継続し、SC2がOFFとなる。SC3がON継続し、新たにSC4がONとなる。次の区間T4では、SC3がOFFとなる。SC4がON継続し、新たにSC1がONとなる。この図で示す区間T1〜T4は前記したように10〜15秒程度で良い。以後このように所定の間隔で副加熱コイルSC1〜SC4に流れる電流がON、OFFされる。
(副加熱コイルの組の変形例)
なお、この実施の形態では、一つの区間(T1、T2、T3等)毎に、一つの組を構成する副加熱コイルの構成が変化したが、変化させずに固定化しても良い。例えば常にSC1、SC2の組と、SC3、SC4の組に分け、一方の組がONしている期間中は、他方の組はOFFになるというように、2つの組を交互に通電することでも良い。
(副加熱コイルの変形例)
図7に示したように4つの副加熱コイルSC1〜SC4を2個にしても良い。すなわち、図7に示した右側の副加熱コイルSCRは、図1〜図3に示した2つの副加熱コイルSC1、SC2を連結したようなものであり、主加熱コイルMCの右側外周縁の略全体に沿うよう、全体が湾曲している。左側副加熱コイルSCLは、主加熱コイルMCの左側外周縁の略全体に沿うよう、全体が湾曲した形状になっており、主加熱コイルMCの中心点X1を挟んで左右対称形状になっている。
右側副加熱コイルSCR、左側副加熱コイルSCLは全く同一のものであり、向きを変えて設置するだけで共用できる。また2つの副加熱コイルSCR、SCLは、その横幅は主加熱コイルMCの半径の半分程度であり、主加熱コイルMCが直径180〜200mm程度である場合、副加熱コイルSCR、SCLの横幅は、それぞれ45〜50mm程度となる。偏平度を上げて更に細長い形状にするには集合線の巻き方など色々技術的制約がある。
この変形では、右側の副加熱コイルSCRと左側副加熱コイルSCにそれぞれインバーター回路から交互に所定間隔(一定間隔ではなくとも良い)で高周波電流を印加すれば、被加熱物Nはその右側外周縁部と左側外周縁部が交互に集中して誘導加熱されるので、被調理物の中に左右から交互に対流が生まれる。この場合も、右側と左側の副加熱コイルSCR,SCLを同時にON状態にして誘導加熱する場合の最大火力時における、右側の副加熱コイルSCRの火力、左側副加熱コイルSCLの火力よりも、対流促進モードにおける右側の副加熱コイルSCR単独加熱時の火力、あるいは左側副加熱コイルSCL単独加熱時の火力を大きくすると効果的である。なお、主加熱コイルMCに矢印IAで示したものは主加熱コイルMCの駆動時にそれに流れる高周波電流IAの向きを示す。
主加熱コイルMCと、右側副加熱コイルSCR又は左側の副加熱コイルSCLの何れか一方あるいは双方を同時に加熱駆動する場合、主加熱コイルMCに流れる高周波電流IAと左右の副加熱コイルSCR、SCLにそれぞれ流れる高周波電流IBの向きは、図7に実線の矢印で示すように、隣接する側において同じ向きとなることが加熱効率の観点から好ましい(図7では主加熱コイルMCにおいて時計回り、左右の副加熱コイルSCR、SCLは反時計回りの場合を示す)。これは、このように2個の独立したコイルの隣接する領域において、同一方向に電流が流れる場合、その電流で発生する磁束は互いに強め合い、被加熱物Nを鎖交する磁束密度を増大させ、被加熱物底面に渦電流を多く生成して効率良く誘導加熱できるからである。
右側副加熱コイルSCRと左側副加熱コイルSCLと主加熱コイルMCの3者で同時に一つの鍋を加熱している場合の火力が3KWであり、その場合、右側副加熱コイルSCRは1KW、左側副加熱コイルSCLも1KW、主加熱コイルMCも1KWで加熱している場合、上記した対流促進モードでは、例えば右側副加熱コイルSCRは1.5KW、左側副加熱コイルSCLも1.5KWで交互にON状態にする。なお、このように副加熱コイルを2つだけにした場合、駆動するインバーター回路の数を減らすことができ、回路構成の減少によるコストダウンや回路基板の面積減少による小型化などのメリットが期待できる。
図7の変形例から明らかなように第1の対流促進制御には、被調理物を入れる鍋などの被加熱物を載置するトッププレートと、前記トッププレートの下方に配置された円環状の主加熱コイルMCと、前記主加熱コイルの両側に近接して配置され、主加熱コイルの半径より小さな横幅寸法を有する扁平形状の第1副加熱コイルSCR及び第2副加熱コイルSCLと、前記主加熱コイルMC及び第1、第2副加熱コイルSCR、SCLにそれぞれ誘導加熱電力を供給するインバーター回路と、前記インバーター回路の出力を制御する制御部と、前記制御部に加熱の開始や火力設定などを指示する操作部と、を有し、前記制御部は、前記第1副加熱コイルに誘導加熱電力を供給しない期間を設け、この期間中に前記第2副加熱コイルに前記インバーター回路から誘導加熱電力を供給し、この後前記第2副加熱コイルへの誘導加熱電力供給を停止した期間を設け、この期間中に前記第1副加熱コイルに前記インバーター回路から誘導加熱電力を供給し、前記制御部は第1、第2副加熱コイルに対する前記通電切り替え動作を複数回繰り返すものが含まれている。
以上説明したように、本実施の形態1によれば、加熱条件を表示する表示手段Eには、前記第1、第2、第3の選択部の選択用キーE1、E2、E3が使用者によって選択操作可能な状態に、静電容量式スイッチのキー等の形態で表示されるから、目的とする調理メニューを容易に選択できる。その選択によって適合する加熱駆動パターンが制御部により自動的に決定されるから、加熱時間重視や温度均一性重視などの使用者の目的、希望に応じた加熱コイルの駆動形態で加熱調理が実行できる。このように調理メニューの選択キーが表示部で操作できることにより使用者の誤使用解消や精神的な負担の軽減等もできるという利点がある。なお、図1では操作手段Eに、第1、第2、第3の選択部の選択用キーE1、E2、E3が描かれているが、これらキーは、表示手段Gの表面にタッチすることにより静電容量式タッチスイッチの原理で通電制御回路200に対する入力機能を発揮するものである。表示手段Gの画面に使用者が触れることで、その画面に配置した電極の静電容量変化を捉えてスイッチ機能を実現した場合、その表示手段もこの発明でいう「操作部」に該当することになる。
この変形例の応用として、中心部の主加熱コイルMCの通電と、右側副加熱コイルSCRと左側副加熱コイルSCLの通電時期を交互にすると、別の対流経路を発生させることができる。例えば最初に右側副加熱コイルSCRを1KWの火力で15秒間駆動し、次に左側副加熱コイルSCLを1KWの火力で15秒間駆動し、これを2回繰り返したあと、主加熱コイルMCだけを1KWで15秒間駆動する。こうすることで主加熱コイルMCの真上から上昇し、次に鍋の外周縁側に放射状に広がる対流を作ることができる。これによって左右の副加熱コイルSCR,SCLによる鍋底外周部からの加熱による、経路の長い対流と合わせて、2種類の対流が形成され、鍋内部の被調理物全体の攪拌効果や温度均一化、吹き零れ抑止などの効果が期待できる。
(第2の対流促進制御)
この制御は、主加熱コイルMCを駆動しない期間中において、副加熱コイルSC1〜SC4の内、隣り合う複数個以上の副加熱コイルの組(グループともいう)によって被加熱物Nを加熱するが、副加熱コイルの組の間で駆動電力に差を付けるものである。つまり、第1組の副加熱コイル群に供給している誘導加熱電力より大きな電力を第2組の副加熱コイル群に供給し、次に第1組の副加熱コイル群に供給している誘導加熱電力を小さくし、この電力より大きな電力を第2組の副加熱コイル群に対して供給し、これら動作を複数回繰り返すことを特徴とするものである。言い換えると、4つの副加熱コイルの内の、半数以上で全数未満の副加熱コイルからなる組を同時に駆動する方式で、残りの副加熱コイル単体又はその組の間で駆動電力に差を付け、半数以上で全数未満の副加熱コイルからなる組の火力総和の方を、残りの副加熱コイル単体又はその組の火力操作より大きくするものである。
以下具体的に説明する。
図3の(B)に示すように4つの副加熱コイルSC1〜SC4の内、隣り合う2つの副加熱コイルSC1、SC2に同時に高周波電流を各インバーター回路SV1、SIV2から供給する。この場合、2つの副加熱コイルSC1、SC2には、それぞれ1.0KWずつの火力(第2の火力)が設定される。この場合、2つの副加熱コイルSC1、SC2と中心点X1を挟んで対称的位置にある2つの副加熱コイルSC4、SC3はそれぞれが火力500W(第1の火力)で駆動される。
次に同じく図2の(C)に示すように、前記した2つの副加熱コイルSC1、SC2の内、SC1の火力は半減させて500W(第1の火力)にし、SC2はそのままの火力を維持させた状態において、SC2と隣接する副加熱コイルSC4を1.0KW(第2の火力)で駆動する。SC3は500W(第1の火力)のままとする。
次に同じく図2の(D)に示すように、前記した2つの副加熱コイルSC2、SC4の内、SC2の火力は半減させて500Wにし、SC4はそのままの火力を維持させた状態において、SC4と隣接する副加熱コイルSC3を1.0KWで駆動する。SC1は500Wのままとする。
以上の説明から明らかなように、隣接する2つの副加熱コイルのグループを大火力で、残りの2つの副加熱コイルのグループをそれより小さい火力で駆動し、この大火力グループと小火力グループを切り替えることで強く加熱する部分を位置的に変化させることに特徴がある。
この制御によれば、フライパンなどの中心部を加熱しながらも、鍋肌(鍋の側面)を効果的に余熱するといった調理方法、加熱方法も実現可能となる。また鍋は副加熱コイルSC1〜SC4で加熱される中心部位が、主加熱コイルMCの周囲において変化するので、特にとろみのある粘性の高い調理液体の加熱時、局部的に焦げるということも抑止できる。
このように第2の対流促進制御は、4つの副加熱コイルSC1〜SC4の内、隣り合う2つの副加熱コイルの組によって主要な加熱をする方式である。言い換えると、4つの副加熱コイルの内の、半数以上で全数未満の副加熱コイルを同時に駆動し、残りの1つ又は複数個の副加熱コイルの組との間に駆動火力の差を付ける方式である。この第2の対流促進制御は、4つの副加熱コイルSC1〜SC4だけの場合に実現するものではなく、例えば6個の副加熱コイルを用いる場合は、3個又は4個の副加熱コイルを同時駆動すれば良い。なお、第2の火力は、第1の火力の2倍以上が望ましいが、1.5倍以上でも良い。また4個以上の副加熱コイルを、隣り合う2つの副加熱コイルの第1組と他の組(第2組)に分けて駆動する方式においては、前記第1組の副加熱コイルの第2の火力総和は、第2の火力総和の2倍以上が望ましいが、1.5倍以上でも良い。
また、副加熱コイルの変形例として図7に示したように4つの副加熱コイルSC1〜SC4を2個にしたものを前述したが、その変形例はこの第2の対流促進制御にも適用できる。すなわち、調理物を入れる鍋などの被加熱物を載置するトッププレートと、このトッププレートの下方に配置された円環状の主加熱コイルMCと、この主加熱コイルの両側に近接して配置され、主加熱コイルの半径より小さな横幅寸法を有する扁平形状の第1副加熱コイルSCR及び第2副加熱コイルSCLと、主加熱コイルMC及び第1、第2副加熱コイルSCR、SCLにそれぞれ誘導加熱電力を供給するインバーター回路と、このインバーター回路の出力を制御する制御部と、この制御部に加熱の開始や火力設定などを指示する操作部と、を有し、前記制御部は、前記インバーター回路から前記第1副加熱コイルSCRに供給している誘導加熱電力より大きな電力を前記第2副加熱コイルSCLに供給し、この後前記前記第2副加熱コイSCLルに供給している誘導加熱電力を小さくし、この電力より大きな電力を前記インバーター回路から前記第1副加熱コイルSCRに対して供給し、前記制御部は第1、第2副加熱コイルSCR、SCLに対する前記通電切り替え動作を複数回繰り返すという構成で実現できる。
(第3の対流促進制御)
この制御は、主加熱コイルMCを駆動しながら、その駆動期間と同時に、あるいは駆動休止している期間において、副加熱コイルSC1〜SC4によって被加熱物Nを加熱するものである。つまり、主加熱コイルの両側に配置された、主加熱コイルの半径より小さな横幅を有する扁平形状の複数個の副加熱コイルを、第1の組と第2の組に分け、それら組を主加熱コイルの両側にそれぞれ配置し、前記主加熱コイルに第1の火力で誘導加熱電力を連続して又は断続的に供給している期間中において、前記第1の組への誘導加熱電力を停止している状態で、前記第2の組に前記インバーター回路から前記第1の火力より大きい第2の火力を供給し、次に前記第1の組への誘導加熱電力を停止し、前記第2の組に前記インバーター回路から前記第1の火力より大きい第3の火力を供給し、これら動作を複数回繰り返すことで前記被加熱物内の被調理物に長い経路の対流を発生させることを特徴とするものである。これにより対流が発生しない場合でも、鍋は副加熱コイルSC1〜SC4で加熱される中心部位が、主加熱コイルよりも外側において変化するので、特にとろみのある粘性の高い調理液体の加熱時、局部的に焦げるということも抑止できる。
図8は、主加熱コイルMCと副加熱コイルSC1〜SC4に流れる電流のタイミングを示した図であり、加熱駆動される高周波電流が印加されているON状態を「ON」、印加されていないOFF状態を「OFF」と表示している。
図8に破線に示すように、主加熱コイルMCは最初の区間T1〜T4までは連続して通電されているが、次の4区間は非通電期間となる。この通電及び非通電期間中に、半数以上、全数未満(この例では2個)の副加熱コイルの組によって誘導加熱される。この誘導加熱時の火力の総和は、「非対流促進制御用の駆動時」の主加熱コイルの火力(第1の火力)よりも大きい火力にしたことが特徴である。
ここで、「非対流促進制御用の駆動時」とは、次に掲げる2つのケース、それぞれをいう。但し、制御を行う場合、下記の2つのケース双方を満足させる条件で第1の火力を決定せず、どちらか一方のケースで第1の火力を設定しても良い。
(1)主加熱コイルMCと全ての副加熱コイルを同時に駆動し、最大加熱量を発揮させるような通常運転をして調理するとき。例えば主加熱コイルMCと全ての副加熱コイルを同時に駆動し、最大火力設定は3KWであり、その3KW加熱時、主加熱コイルに配分される火力割合は1KWである場合、この1KWが「非対流促進制御用の駆動時」の主加熱コイルの火力になる。
(2)主加熱コイルMCを単独で普通に加熱駆動して調理する場合、最も大きな火力設定で運転をするとき。例えば主加熱コイルMC単体での最大火力は1.2KWである場合、この1.2KWが「非対流促進制御用の駆動時」の主加熱コイルの火力になる。
図8から明らかなように、全ての区間に亘り、半数以上、全数未満の副加熱コイルの組(第1の組)は副加熱コイルSC1、SC2の2者で構成し、第2の組はSC3、SC4の2者で構成している。最初の区間T1では第1の組がONであり、第2の組はOFFである。次の区間T2では、第1の組はOFFになり、第2の組がONする。
次の区間T3では、第1の組は再びONになり、第2の組はOFFとなる。この図で示す区間T1〜T4は例えば10〜15秒程度で良い。以後このように所定の間隔で第1の組と第2の組の副加熱コイル群に流れる電流が交互にON、OFFされる。
(第3の対流促進制御の変形例)
図9は、主加熱コイルMCと副加熱コイルSC1〜SC4に流れる電流のタイミングを示した図であり、加熱駆動される高周波電流が印加されているON状態を「ON」、印加されていないOFF状態を「OFF」と表示している。副加熱コイルは、その半数以上、全数未満で副加熱コイルの組(第1の組)を構成しており、副加熱コイルSC1、SC2の2者で構成されている。一方、第2の組は残りのSC3、SC4の2者で構成している。この組の構成は加熱調理中、変更されず、第1組は常に副加熱コイルSC1、SC2の2者となるように固定されている。
この図9に破線に示すように、主加熱コイルMCは最初の区間T1〜T2までは連続して(第1の火力で)通電されているが、次の4区間(T3〜T6)は非通電期間となる。この最初の2区間における主コイルMCの(第1の火力での)誘導加熱期間中には、4つの副加熱コイルSC1〜SC4は全て駆動休止している。
次に区間T3になると主加熱コイルMCの通電は休止する。代わりにこの区間T3に入ると、副加熱コイルの第1の組が加熱駆動される。この誘導加熱時の火力の総和は、前記主加熱コイルの第1の火力(例えば1KW)よりも大きい(第2の)火力(例えば1.5KW又は2KW)である。副加熱コイルの第2の組は加熱駆動されない。
次に区間T4になると主加熱コイルMCの通電は休止したままであるが、この区間T4では副加熱コイルの第1の組が、加熱休止される。代わりに第2の組の副加熱コイルSC3、SC4が加熱駆動される。この誘導加熱時の火力の総和は、前記主加熱コイルの第1火力(1KW)よりも大きい(第3の)火力(例えば1.5KW又は2KW)である。なお、第3の火力と第2の火力は同じ火力であるが、第1の火力(1KW)よりも大きければ、同じでなくとも良い。
次に区間T5になると主加熱コイルMCの通電は休止したままであるが、この区間T5では再び副加熱コイルの第1の組が、加熱駆動される。この場合の2つの副加熱コイルSC1、SC2の駆動火力の総和は第1の火力より大きい前記第2の火力(例えば1.5KW又は2KW)である。この区間T5では第2の組の副加熱コイルSC3、SC4は加熱休止される。
次に区間T6になると主加熱コイルMCの通電は休止したままであるが、この区間T6では再び副加熱コイルの第1の組が、加熱休止し、代わりに第2の組が加熱駆動される。この場合の第2の組の2つの副加熱コイルSC3、SC4の駆動火力の総和は第1の火力より大きい第3の火力である。
次に区間T7になると主加熱コイルMCの通電は再開される。その時の火力は第1の火力である。またこの区間T7では再び副加熱コイルの第1の組が、加熱駆動され、この場合の第1の組の2つの副加熱コイルSC1、SC2の駆動火力の総和は第1の火力より大きい火力2である。第2の組は加熱休止する。
次に区間T8になると主加熱コイルMCの通電は火力1で維持されたままであるが、副加熱コイルの第1の組のSC1、SC2が加熱休止される。代わりに再び副加熱コイルの第2の組が加熱駆動され、この場合の火力レベルは第3の火力である。
以上のように、主加熱コイルMCは2つの区間で加熱駆動され、4つの区間で加熱休止する。以後この繰り返しである。一方、副加熱コイルの第1、第2の組は、4つの区間で加熱休止したのち、一区間毎に交互に加熱駆動されるというパターンである。なお、図9の区間T1に(A)、区間T3に(B)、T4に(C)、区間T7に(D)という符号を付けたが、この(A)、(B),(C)、(D)の区間は、図10の(A)、(B)、(C)、(D)と対応しており、図10で駆動時期が順次切り替わる様子が理解される。このようにして通電パターンは合計5種類ある。
なお、通電の切り替えの好ましいタイミング、つまり各区間(T1〜T9等)は、被調理物によって一様ではないが、少なくとも被調理物の温度が沸騰したあと、又は沸騰直前の100℃近い状態から開始され、以後は例えば10〜15秒間隔で切り替えが行われる。あるいは、30分間の煮込み調理が設定されていた場合、調理が終了する前の5分前から開始され、終了までの5分間に亘り実施されるものでも良い。
実際に主加熱コイルMCと副加熱コイルを第1、第2の火力で加熱駆動しても、第1、第2、第3の火力の差や、第1、2、3の火力の各絶対値によって発生する対流の強さは被調理物の液体の粘性に大きく影響受けるので、色々な調理の実験結果から火力値や通電間隔、順番などを選定することが望ましい。
以下、実際の調理メニューに適用された場合の具体例で説明する。
例えば2.0KWで「茹で」の調理メニューを行った場合について説明する。
図示していない火力設定部で最初2.0KWを入力しなくとも上述したようにデフォルト値は2.0KWであるので、最初から2.0KWで加熱開始される。この場合、主副火力比は自動的に通電制御回路200で決定され、使用者が任意に設定しなくとも良く、例えば主加熱コイルMCの火力は800W、副加熱コイル4つの内の合計火力は(前記「第1の火力」より大きな)1200Wに設定される。
そして2.0KWで加熱され、水が沸騰(温度センサーにより、被加熱物Nの温度や温度上昇度変化等の情報から制御部は沸騰状態と推定)した際に、通電制御回路200は報知信号を出し、加熱手段の動作条件を表示する表示手段Gにて文字や光で表示し、使用者にその旨を知らせる。このときに、火力を再度設定しない場合は、自動的に火力を下げる旨報知する。
使用者が何の操作もしない場合、沸騰状態になると通電制御回路200は火力を下げる指令信号を主インバーター回路MIVと副インバーター回路SIV1〜SIV4に出力し、例えば主加熱コイルMCの火力は300W、副加熱コイル4つの合計火力は300Wに設定される。
この状態は最長で30分間継続し、その間に何の操作も行われないと自動的に全ての誘導加熱源は駆動停止する。この沸騰までの工程では、主加熱コイルMCと副加熱コイルSC1〜SC4の隣接する領域での高周波電流の向きは一致させるよう制御される。
一方、沸騰後において使用者が再度火力を設定した場合、自動的に第3の対流促進制御が実施される。
例えば、沸騰後にデフォルト値(600W)のままではなく、使用者が火力を2.0KWに上げた場合、通電制御回路200は主加熱コイルMCの火力(第1の火力)を500W(第1の火力)、互いに隣接する二つの副加熱コイルの合計火力を1.5KWと、もう一つの副加熱コイルの組の合計火力(第3の火力)を1.5KWに設定する。
主加熱コイルMCを500Wで連続駆動している期間中、隣接する4つの副加熱コイルを、例えばSC1、SC2の2個の組と、SC3、SC4の2個の組に分け、これら2つのグループを交互に15秒ずつ、それぞれ合計1.5KWずつで加熱駆動する(一つの副加熱コイルは750Wの火力が投入される)。
また使用者が沸騰直後に、火力を2KWではなく、最大火力である3.0KWに上げた場合、通電制御回路200は主加熱コイルMCの火力(第1の火力)を1.0KW(第1の火力)、互いに隣接する二つの副加熱コイルの合計火力を2.0KWと、もう一つの副加熱コイルの組の口径火力(第3の火力)を2.0KWに設定する。
前記沸騰工程までは、主加熱コイルMCと副加熱コイルSC1〜SC4の隣接する領域での高周波電流の向きは一致させ、強い火力が出るよう制御されていたが、沸騰後は電流の向きは反対に切換えられ、例えば主加熱コイルMCと副加熱コイルSC1との隣接領域及び、主加熱コイルMCと副加熱コイルSC2との隣接領域では高周波電流が反対向きとなるように流す。
なお、上記説明では、沸騰後火力を2KWにした場合、主加熱コイルMCを500Wで間欠的に駆動する方式であったが、連続的に駆動しても良い。何れにしても、少なくとも隣接する2個の副加熱コイルによってより多くの対流を発生させるものである。つまり、被加熱物Nの周縁部にできるだけ近い場所で2組の副加熱コイル群によって交互に誘導加熱されるから、被調理物の外周縁部では比重が軽くなり、被調理物の中に自然に上昇する流れが作られる。なお本発明は、上記したような主加熱コイルMCの火力と副加熱コイル側の合計火力の例には何ら限定されない。
また、対流促進効果を上げるため、被加熱物Nの外周縁部での加熱を、中心部より強くすることが望ましいので、仮に前記主加熱コイルMCに第1の火力として1.5KW、副加熱コイルSC1〜SC4の中の隣接する複数個の副加熱コイル合計で(第2の火力として)1.5KWにした場合でも、主加熱コイルMCを常に通電率制御し、例えば沸騰以後の時間における通電率を50%にすれば実質750W相当の火力になるので、このようなものでも本発明の対流促進効果が得られる。
図3に示したような副加熱コイルSC1〜SC4の「時間選択的」な通電切替え制御は、煮物や茹で物をする場合の吹き零れの抑制にもなる。すなわち、前記した「湯沸し+保温モード」のように、加熱速度と均一性を優先させた調理メニューで沸騰後の茹での段階になった際、図3に示したような副加熱コイルSC1〜SC4の通電切替え制御を行えば、鍋の中央や特定の一箇所だけが強く加熱されるという状態を回避でき、鍋の底部に対する誘導加熱部を順次移動させるような形になる。
通電している副加熱コイル部で鍋が加熱され、一方、それと離れた個所にある非通電状態の副加熱コイル部分の鍋底では加熱が行われないものの、加熱部からの熱が鍋底を伝わり予熱されている形になり、これらによって鍋内部の被調理物全体に熱を均一に行き渡らせる効果が期待できる。ここで「時間選択的」という意味は、一定の周期(例えば30秒ごと)とうだけではなく。同じ調理メニューの中で最初の開始タイミングと終了タイミング、つまり次の切替え周期を変化させたり、あるいは調理メニューや被調理物の種類によって周期と繰り返し回数を変えたりしても良いという意味である。
このように第3の対流促進制御は、主加熱コイルによって中心部を加熱しながら、4つの副加熱コイルSC1〜SC4の内、隣り合う2つの副加熱コイルの組によって周辺部の加熱をする方式である。言い換えると、4つの副加熱コイルの内の、半数以上で全数未満の副加熱コイルを同時に駆動し、残りの1つ又は複数個の副加熱コイルの組との間に駆動火力の差を付ける方式である。この第2の対流促進制御は、4つの副加熱コイルSC1〜SC4だけの場合に実現するものではなく、例えば6個の副加熱コイルを用いる場合は、3個又は4個の副加熱コイルを同時駆動すれば良い。
(副加熱コイルの組の変形例)
なお、この実施の形態では、全ての区間(T1、T2、T3等)を通じて副加熱コイルの組を構成する副加熱コイルを固定化し、SC1、SC2の組と、SC3、SC4の組に分けたが、これを所定時間間隔で変化させても良い。例えば図4に示したように、区間毎に変化させても良い。つまり一つの区間毎に、一つの組を構成する2つの副加熱コイルの組み合わせが、時計周り方向又は右回り方向に順次変化するものでも良い。
なお、副加熱コイルの変形例として、第1の対流促進制御において、4つの副加熱コイルSC1〜SC4を2個に統合したものを示した(図7参照)が、この変形例は、この第3の対流促進制御にも適用できる。
すなわち、第1、第2副加熱コイルSCR、SCLを用いた場合の第3の対流促進制御は、被調理物を入れる鍋などの被加熱物Nと、この被加熱物を載置するトッププレートと、このトッププレートの下方に配置された円環状の主加熱コイルMCと、この主加熱コイルの片側にそれぞれ近接して配置され、主加熱コイルの半径より小さな横幅を有する扁平形状の第1副加熱コイルSCR及び第2副加熱コイルSCLと、主加熱コイルMC及び前記第1、第2副加熱コイルSCR、SCLにそれぞれ誘導加熱電力を供給するインバーター回路と、前記インバーター回路の出力を制御する制御部と、前記制御部に加熱の開始や火力設定などを指示する操作部と、を有し、前記制御部は、前記主加熱コイルMCを第1の火力(例えば800W)で誘導加熱電力を供給している期間中において、前記第1副加熱コイルSCRに前記インバーター回路から前記第1の火力より大きい第2の火力(例えば1.2KW)で誘導加熱電力を供給し、その後前記第1副加熱コイルSCRへの誘導加熱電力を停止し、前記第2副加熱コイルSCLに前記インバーター回路から前記第1の火力より大きい第3の火力(例えば1.2KW)で誘導加熱電力を供給し、前記制御部が、第1、第2副加熱コイルSCR、SCLに対する前記通電切り替え動作を複数回繰り返す、という構成で実現できる。
またこの場合、主加熱コイルMCと、右側副加熱コイルSCR又は左側の副加熱コイルSCLとが同時に加熱駆動される期間において、主加熱コイルMCに流れる高周波電流IAと左右の副加熱コイルSCR、SCLにそれぞれ流れる高周波電流IBの向きは、図7に実線の矢印で示すように、隣接する側において同じ向きにすると加熱効率の観点から好ましいことは上で述べた通りである。従って対流促進モードにおいては、このように2個の独立したコイルの隣接する領域において、同一方向に電流を流すように制御すれば、その電流で発生する磁束は互いに強め合い、被加熱物Nを鎖交する磁束密度を増大させ、被加熱物底面に渦電流を多く生成して効率良く誘導加熱できるため、対流を発生させるための加熱を効果的に行うことができる。
前述したような対流促進制御を行えば被調理液の吹き零れは発生する可能性が少ないが、それでも万一、吹き零れが発生した場合は吹き零れ検知部50の第1の電極40と、第2の電極41の少なくとも何れか一方で検知される。吹き零れ検知部50が電極40,41の静電容量変化を捉えて吹き零れがあったと判別信号を通電制御回路200に送ると、通電制御回路200は加熱駆動中の主加熱コイルMCと副加熱コイルSC1〜SC4の出力を低下させて駆動継続し、またはゼロにして駆動を緊急停止する。
次に以上のような誘導加熱源を用いた加熱調理器の全体構造について説明する。図11において本体部Aの上面全体は、周囲を額縁状の金属製枠体(上枠ともいう)20で覆われたトッププレート21が覆っている。
20Bは枠体20の右後部に形成した右通風口、20Cは枠体20の後部中央に形成した中央通風口、20Dは同じく枠体20の左後部に形成した左通風口で、左右の通風口20B、20Dから強制的に室内の空気が本体部Aの内部空間に導入され、誘導加熱源や電力制御用半導体部品等を冷却した後、中央通風口20Cから排出される。
トッププレート21の下方空間には、トッププレート21の左右中心線CL1を挟んで、その左右対称的な位置に 左誘導加熱源(以下、「左IH加熱源」という)6Lと、右誘導加熱源(以下、「右IH加熱源」という)6Rが配置されている。右IH加熱源6Rは、図1〜図3に示したように主加熱コイルMCの前後・左右にそれぞれ1個ずつ副加熱コイルSC1〜SC4を配置した形状である。
左IH加熱源6Lは、右IH加熱源6Rと基本的に同じ構成であるが、本体部Aの中に設置された状態では、右IH加熱源6Rと比較して、4つの副加熱コイルSC1〜SC4の位置を時計周りに45度回動させた構成になっている。
右IH加熱源6Rの中心点X2と左IH加熱源6Lの中心点X1は、ともに本体部Aの前後方向の中心を通る直線VLの上に位置している。なお、SLは前記直線VLに対して中心点X1において45度の角度で交差する直線で、図10に示すようにこの直線SLが副加熱コイルSC2とSC3の中心部を横切っている。なお、この直線SLの方向が若干長くなるように前記主コイルMCは若干楕円形状になっており、これに伴って副加熱コイルSC2とSC3の対向間隔は、SC1とSC4の対向間隔よりも若干大きくなっている。この構成により、直線SL方向に、より長径の大きい楕円鍋などを置いて使用できる。
40は、右IH加熱源6Rと左IH加熱源6Lの外周近傍で、トッププレート21の下面に設けた第1の電極で、副加熱コイルSC1及びこれと隣り合う副加熱コイルSC3の外周側全体を覆うような半円形状をしている。42Aはその第1の電極40の一方の接続端子、42Bは第1の電極40の他方の接続端子であり、この両方の端子42A、42Bの間の第1の電極40における静電容量の値は吹き零れ検知部50に所定の短時間(例えば1秒以下)間隔で常に入力される。図示していないが、トッププレート21の下方から被加熱物Nの温度を検知する赤外線センサー方式の温度センサーの情報から、通電制御回路200が被加熱物Nの温度を推定し、被加熱物Nの温度が100℃又は98℃まで上昇していない場合は、吹き零れ検知部50を動作させないようになっているが、その吹き零れ検知部50は、静電容量の変化を判定する基準値を確定するため、誘導加熱開始直後または例えば98℃になった時点で静電容量の値を測定し、その結果を即時メモリ(図示せず)に記録していく。これら吹き零れ検知方法については後で詳しく述べる。
41は前記第2の電極で、副加熱コイルC2及びこれと隣り合う副加熱コイルSC4の外周側全体を覆うような半円形状をしている。中心点X2を挟んで、前記第1の電極40と第2の電極41は互いに対称的に配置されている。43Aはその第2の電極41の一方の接続端子、43Bは第2の電極41の他方の接続端子であり、この両方の端子43A、43Bの間の第2の電極41における静電容量の値は吹き零れ検知部50に所定の短時間(例えば1秒以下)間隔で常に入力される。電極40と同様に所定のタイミングで、電極41の静電容量の値を測定し、その結果は吹き零れ検知部50に所定の短時間(例えば1秒以下)間隔で常に入力される。
63Aは、左IH加熱源6L、右IH加熱源6Rの全ての電源を一斉に投入・遮断する主電源スイッチ63(図示せず)の操作ボタンであり、本体部Aの上面前方に横に長く帯状に設けた操作手段Eの右端部に設けてある。310はその主電源スイッチの操作ボタン63Aの直ぐ左隣りに設けた操作モード切り替えスイッチである。なお、この図11には図示していないが、操作手段Eの上面には火力設定キーや加熱時間設定用のタイマーの操作ボタンなど各種操作キー、操作ボタンが並べて設けてある。
100は操作手段Eの左右中央部に横に長く設けた表示手段であり、左IH加熱源6Lと右IH加熱源6Rの双方に共用されるものであるから、以下、「統合表示手段」と呼ぶ。この統合表示手段は、ドットマトリックス方式のような情報表示量の豊富な液晶表示画面などで構成されている。前記操作モード切り替えスイッチ310によって、簡単操作モードや通常操作モードが選択された場合、この統合表示手段の中にその旨表示される。
図11において、277A、277Bは一対の広域発光部であり、トッププレート21の下面に接着などの固定手段によって設置されている。この広域発光部277A、277Bは図1の広域発光部277と基本的構成は同一である。つまり、広域発光部277は、主加熱コイルMCの円周方向において互いに独立して発光する2つの発光部277A,277Bの集合体から構成されている。また2つの発光部277A,277Bは、電極40、41の外側に30mm程度離れた位置にある。電極40、41は中心点X2を中心にした円の上に沿った円弧状であるが、広域発光部277A、277Bも、同じ中心点X2を中心とした円の周囲に沿って設けてある。言い換えると、電極40、41と広域発光部277A、277Bは、中心点X2を基準にした同心円の上にある。従って中心点X2から2つの電極40、41の距離は同じであり、また同様に2つの広域発光部277A、277Bまでの距離も同じである。円形の被加熱物Nが中心点X2を中心にして置かれた場合、その被加熱物Nの外周縁から各電極40、41までの距離は等しくなるから、どの方向に吹き零れが発生しても、2つの電極40、41まで距離に差がないことになる。
この図11に示す実施態様では、前記した第1の対流促進制御を採用している。但し、図3〜図4に示したような、一つの区間(T1、T2、T3等)毎に、一つの組を構成する副加熱コイルの構成が変化したものではなく、固定化している。具体的には常に2つの副加熱コイルSC1、SC2からなる第1の組と、2つの副加熱コイルSC3、SC4からなる第2の組に分け、一方の組がONしている期間中は、他方の組はOFFになるというように、2つの組を交互に通電するものであり、前記した第1の対流促進制御の変形例に相当する。
次に本実施の形態の特徴である「吹き零れ検知動作」について説明する。
調理開始時は、主加熱コイルMCと4つの副加熱コイルSC1〜SC4が同時に加熱駆動され、被加熱物Nの中の被調理物の温度が98℃又はそれ以上の沸騰温度である100℃まで上昇したことを温度センサーが検知した場合、通電制御回路200は第1の対流促進制御を開始する指令を各インバーター回路SV1〜SIV4に出す。なお、前記した変形例のように、中心部の主加熱コイルMCの通電と、右側副加熱コイルSCRと左側副加熱コイルSCLの通電を交互に行うという制御の場合では、当然ながら主インバーター回路MIVも通電制御回路200によって対流促進制御がされる。通電制御回路200は誘導加熱調理の開始時点で第1の対流促進制御を開始する温度を90℃〜100℃の範囲内の特定温度に設定しており、この実施の形態1では、98℃又は100℃の何れか一方に決定してある。このような制御温度は前述した調理メニューやその他使用者の操作入力内容に応じて適宜変化する。
対流促進制御を継続すると、第1、第2の組の副加熱コイルから真上に上昇する対流を作ることができる。この対流はその位置から遠い鍋の反対側の縁に向かう対流になる。これによって第1、第2の組の4つの副加熱コイルによる鍋底外周部からの加熱による、経路の長い対流が被加熱物Nの内部に生じ、鍋内部の被調理物全体の攪拌効果や温度均一化、吹き零れ抑止などの効果が期待できる。しかしながら、調理の過程が進行すると被調理物の液体表面に発生した細かい泡が次第に増大して大きく盛り上がる場合もある。また使用者が途中で液体調味料や水、他の調理汁を被加熱物の中に投入する場合もあり、対流促進制御を実施している過程で被調理物の液体がその被調理物の縁を乗り越えて吹き零れる懸念がある。
そこでこの発明ではこのような吹き零れの対策として以下のような吹き零れ検知動作を行っている。吹き零れが検知された場合、通電制御回路200は直ちに駆動中の全てのインバーター回路の駆動を停止し、あるいは火力を減ずる指令をする。前記した通常操作モードと簡単操作モードにおいては、このような火力下げの程度や加熱停止にする条件が異なるが、これについて後で詳しく述べる。
次に吹き零れ検知方法について説明する。吹き零れ検知方法は次のように3つかの方法があるが、この実施の形態1では(3)の方法を中心に採用している。(1)(2)の方法を組み合わせて同時に使用する場合があるが、(3)の判定結果が優先するようになっている。
(1)第1の電極40と第2の電極41のぞれぞれの静電容量変化を捉える。この一例として、対流促進制御の開始時点、あるいは吹き零れ検知の開始時点の第1の電極40と第2の電極41のぞれぞれの静電容量の値を基準値とし、この基準値からの変化を捉える。このため、所定の時間間隔で静電容量が吹き零れ検知部50の中に蓄積され、前回の値と今回の値が毎回比較され、今回の値が前回の値に比較して例えば5%増加した場合に吹き零れ検知と判定する。
あるいは対流促進制御の開始時点、あるいは吹き零れ検知の開始時点の第1の電極40と第2の電極41の静電容量の変化の幅を設定しておき、例えば初期の値を基準に、前回の値との比較で(前回の値から)10%の幅を超えた増加や減少が発生した場合、吹き零れと判定する。
(2)第1の電極40と第2の電極41との間の静電容量値の格差変化を捉える。例えば静電容量値の相対比較で、その比率が1:1〜1:1.1の場合は吹き零れがないと判定する。1:1.11以上は吹き零れありと判定する。
(3)対流促進制御の開始時点、あるいは吹き零れ検知の開始時点の第1の電極40と第2の電極41のぞれぞれの静電容量の値を基準値とし、加熱駆動される副加熱コイル(単体又は組)の外周側近傍にある第1の電極40又は第2の電極41の静電容量値の変化を捉える。例えば、副加熱コイルSC1、SC3の組と、副加熱コイルSC2、SC4の組が、15秒間隔で交互に1KWずつ加熱駆動されている場合、副加熱コイルSC1、SC3の組が駆動されている期間は、第1の電極40の静電容量変化を優先的に捉えて吹き零れ有無を判定する。ここで「優先的」とは、第1の電極40の側の静電容量変化が所定値を超えた場合、第2の電極41側の静電容量の変化がなくともという意味である。第1の電極40と第2の電極41のそれぞれの静電容量の値を検知する動作を、副加熱コイルSC1、SC3の組と、副加熱コイルSC2、SC4の組に対する、加熱駆動動作と同期して切り替えても良い。このようにすれば副加熱コイルSC1、SC3の組だけが加熱駆動されている場合は、第1の電極40だけで吹き零れ検知動作が行われる。
副加熱コイルSC1、SC3の組と、副加熱コイルSC2、SC4の組が、所定時間間隔、例えば15秒間隔で交互に加熱駆動されている場合、被調理液の動きを見ると、その加熱駆動されている組の副加熱コイルSC1、SC3側の被調理液表面が対流によって盛り上がる傾向が見られる。特に火力を大にして加熱駆動した場合である。つまりこの盛り上がり現象によって鍋等の縁を越える場合が想定されるので、このように加熱駆動する側の副加熱コイルに近い電極で吹き零れ検知をすれば、吹き零れがあった場合も短時間で検知でき、吹き零れ検知の信頼性を向上させることができる。
なお、以上の説明は、右IH加熱源6Rでの加熱調理時における吹き零れ検知であった。図11のように左IH加熱源6Lで同時に誘導加熱している場合について以下説明する。
このように右IH加熱源6Rでは、第1の組の副加熱コイルSC1、SC3が加熱駆動されている期間では、それら第1の組に近い第1の電極40で吹き零れ検知をするが、これと同時に左IH加熱源6Lで加熱調理されている場合は、右IH加熱源6Rにおける吹き零れ検知の方法が変化する。
具体的には、第1の組の副加熱コイルSC1、SC3が加熱駆動されている期間においても、それら第1の組に近い第1の電極40だけではなく、遠い位置にある第2の電極41によっても吹き零れ検知を行うことである。
この場合、当然に左IH加熱源6Lでは、加熱駆動する側の副加熱コイルに近い電極で吹き零れ検知をすると、吹き零れがあった場合も短時間で検知でき、吹き零れ検知の信頼性を向上させることができるので、第1の組の副加熱コイルSC1,SC3が加熱駆動されている期間中は、左IH加熱源6Lでも第1の電極40で吹き零れ検知が行われ、第2の組の副加熱コイルSC2,SC4が加熱駆動されている期間中は、左IH加熱源6Lの第2の電極41で吹き零れ検知が行われる。但し、このように隣の加熱源の吹き零れ有無までカバーして検知するのは、隣の加熱源の調理内容や調理の進行状態から見て、沸騰状態に近い状態の調理が行われ、あるいは行われる直前の状態にある場合である。言い換えると、吹き零れが発生しやすい調理過程にある場合であって、常に右IH加熱源6Rの吹き零れ電極が、左IH加熱源6Lの吹き零れを検知すること、あるいはその逆の関係にある訳ではない。基本的には左右IH加熱源6R、6Lはそれぞれ自らの部分に配置された2つの電極によって吹き零れ検知している。このように左右IH加熱源6R、6Lの電極による吹き零れ検知情報を相互に利用し、より的確な吹き零れ検知を行えるのは吹き零れ検知部50が左右IH加熱部6R、6Lで共通となっているからであり、また通電制御回路200が全ての誘導加熱源の動作を統合して制御しているからである。
なお、第1、第2の電極40,41は主加熱コイルMCからは遠い位置にあり、また副加熱コイルSC1〜SC4の外周縁形状に沿って湾曲状になっているので、主加熱コイルMCはもちろん、副加熱コイルの駆動時における電界の影響を受けにくい。
さらに第1、第2の電極40,41は、主加熱コイルMCの直径方向や副加熱コイルの横幅WA方向に長く設けてそれらに接近すると、それらコイルに流れる強い高周波電流による電界の影響を受け、誘導加熱動作中に静電容量が減少する現象が懸念され、正確な静電容量変化を捉えることができなくなるが、この実施の形態ではその懸念がない。また両方の電極40、41の各端子42,43、44、45の位置は、隣り合う副加熱コイルの端部間に形成された空間に配置されているので、主加熱コイルMCの電界の影響はもちろん、各副加熱コイルSC1〜SC4の駆動時の電界の影響も受けにくいという利点がある。
この実施の形態1では、通常操作モードと簡単操作モードにおいて吹き零れ検知以後の制御動作が異なる。
第1の制御形態:
通常操作モードの場合:
誘導加熱が、120W、300W、500W、750W、1.0KW、1.5KW、2.0KW、2.5KW、3.0KWの9段階の何れかで行われていた前提で以下説明する。
吹き零れが検知された場合、そのときの火力が3、0KW〜1.5KWの間であった場合、通電制御回路200は直ちに駆動中のインバーター回路の火力を一律に2段階下げる。例えば3.0KWの場合は、2.0KWに、また2.0KWの場合は1.0KWまで下げる。
一方、吹き零れが検知された場合、そのときの火力値が1.5KW未満〜500Wの間で使用していた場合、通電制御回路200は直ちに駆動中のインバーター回路の火力を一律に300Wまで下げる。
吹き零れが検知された場合、そのときの火力値が500W未満であった場合、通電制御回路200は直ちに駆動中のインバーター回路の火力をゼロWまで下げ、加熱動作を緊急停止する。
簡単操作モードの場合:
吹き零れが検知された場合、そのときの火力値が3、0KW〜1.5KWの間で使用していた場合、通電制御回路200は直ちに駆動中のインバーター回路の火力を一律に750Wまで一気に下げる。
吹き零れが検知された場合、そのときの火力値が1.5KW未満であった場合、通電制御回路200は直ちに駆動中のインバーター回路の火力をゼロWまで下げ、加熱動作を緊急停止する。
このように簡単操作モードの方が通常操作モードよりも吹き零れ発生以後の火力制御度合いが大きい。
このように火力の大きさを変える以外に、吹き零れと判断する時間を変えるようにしても良い。例えば、通常操作モードでは電極40,41の静電容量が所定の変化幅よりも大きく変化した場合、2秒後にもう一度静電容量変化を測定して、2秒後にも依然として大きな変化が起っている場合に初めて吹き零れ検知部50は「吹き零れ発生」と判定するのに対し、簡単操作モードでは電極40,41の静電容量が所定の変化幅よりも大きく変化した場合、0.5秒後にもう一度静電容量変化を測定し、0.5秒後にも依然として大きな変化が起っている場合に初めて吹き零れ検知部50は「吹き零れ発生」と判定するようにしても良い。つまり、簡単操作モードでは安全性や安心感を高めるため、通常操作モードよりも迅速に吹き零れ判定を実施するのである。
以上説明したように、この第1の実施形態の誘導加熱調理器で、第1の吹き零れ制御形態は、被調理物を入れる鍋などの被加熱物を載置するトッププレート21と、前記トッププレートの下方に配置された円環状の主加熱コイルMCと、前記主加熱コイルの両側に近接して配置された複数個の副加熱コイルSC1〜SC4と、前記主加熱コイル及び全ての副加熱コイルにそれぞれ誘導加熱電力を供給するインバーター回路MIV、SIV1〜SIV4と、前記トッププレート21に複数の電極40、41を配置し、当該電極における静電容量変化を捉えて吹き零れを検知する吹き零れ検知部50と、前記インバーター回路MIV、SIV1〜SIV4の出力を制御する通電制御回路200と、前記制御部に調理動作を指示する操作部Eと、前記操作部の操作結果を表示する統合表示手段100と、前記通電制御回路200の操作を通常モードと簡単モードに切り替える操作モード切替手段310と、を有し、前記通電制御回路200は、使用者の操作又は被加熱物の大きさに応じて、前記主加熱コイルMCと副加熱コイルSC1〜SC4に対して前記インバーター回路MIV、SIV1〜SIV4から供給される誘導加熱電力を同時又は所定の時間差で供給し、さらに前記通電制御回路200は、通常モードに切り替えられた状態において、前記吹き零れ検知部50が吹き零れを検知した場合、前記インバーター回路の出力を(500W以上で加熱調理されていた場合であれば)2段階又は300Wまで低下させるとともに、簡単モードに切り替えられた状態においては、前記吹き零れ検知部50が吹き零れを検知した場合、(500W以上で加熱調理されていた場合であっても1.5KW以下であれば)前記インバーター回路の駆動を全て停止する構成を具備したものである。
これにより、調理器の使用に不慣れな使用者が簡単モードを選択して調理を開始した場合、吹き零れが発生したことを吹き零れ検知部が検知した際に制御部は、1.5KW以下で加熱している場合は全て即時その加熱動作を停止するから、調理に不慣れな使用者や初心者も小火力や中火力程度で調理している場合、必ず吹き零れ時に自動的に加熱停止され、安心して使用できる。
次に通常操作モードと簡単操作モードにおいて吹き零れ検知以後の制御動作が異なる第2の制御形態について説明する。
通常操作モードの場合:
誘導加熱が、120W、300W、500W、750W、1.0KW、1.5KW、2.0KW、2.5KW、3.0KWの9段階の何れかで行われていた前提で以下説明する。
吹き零れが検知された場合、そのときの火力が3、0KW〜1.5KWの間であった場合、通電制御回路200は直ちに駆動中のインバーター回路の火力を一律に2段階下げる。例えば3.0KWの場合は、2.0KWに、また2.0KWの場合は1.0KWまで下げる。
一方、吹き零れが検知された場合、そのときの火力値が1.5KW未満〜500Wの間で使用していた場合、通電制御回路200は直ちに駆動中のインバーター回路の火力を一律に300Wまで下げる。
吹き零れが検知された場合、そのときの火力値が500W未満であった場合、通電制御回路200は直ちに駆動中のインバーター回路の火力をゼロWまで下げ、加熱動作を緊急停止する。
簡単操作モードの場合:
吹き零れが検知された場合、そのときの火力値が3、0KW〜1.5KWの間で使用していた場合、通電制御回路200は直ちに駆動中のインバーター回路の火力を一律に3段階下げる。例えば3.0KWの場合は、1.5KWに、また2.0KWの場合は750KWまで下げる。
吹き零れが検知された場合、そのときの火力値が1.5KW未満〜500Wの間であった場合、通電制御回路200は直ちに駆動中のインバーター回路の火力を一律に120Wまで下げる。
吹き零れが検知された場合、そのときの火力値が500W未満であった場合、通電制御回路200は直ちに駆動中のインバーター回路の火力をゼロWまで下げ、加熱動作を緊急停止する。
このように簡単操作モードの方が通常操作モードよりも吹き零れ発生以後の火力制御度合いが大きい。つまり前記通電制御回路200は、3、0KW〜1.5KWの間で使用している場合、通常操作モードに切り替えられているときは、前記吹き零れ検知部50が吹き零れを検知した場合、前記インバーター回路の出力を2段階まで低下させるとともに、簡単モードに切り替えられた状態においては、一律3段階下げられる。また1.5KW未満〜500W以上の場合で比較すると、通常操作モードでは一律300Wまで引き下げられるのに対し、簡単操作モードでは120Wという最小火力まで引き下げるものである。つまり大火力から中火力域において簡単操作モードの方が通常操作モードよりも火力の引き下げ度合いが大きい。
以上の説明から明らかなように、吹き零れ検知以後の制御動作が第2の制御形態である誘導加熱調理器は、被調理物を入れる鍋などの被加熱物Nを載置するトッププレート21と、前記トッププレート21の下方に配置された円環状の主加熱コイルMCと、前記主加熱コイルの両側に近接して配置された複数個の副加熱コイルSC1〜SC4と、前記主加熱コイルMC及び全ての副加熱コイルSC1〜SC4にそれぞれ誘導加熱電力を供給するインバーター回路MIV、SIV1〜SIV4と、前記トッププレート21に複数の電極40、41を配置し、当該電極による静電容量変化を捉えて吹き零れを検知する吹き零れ検知部50と、前記被加熱物Nの温度を検知する温度検出部(温度検出回路)240と、この温度検出部の検知情報が入力されるとともに前記インバーター回路の出力を制御する通電制御回路200と、この通電制御回路200に調理動作を指示する操作部Eと、この操作部Eの操作結果を表示する統合表示手段100と、前記通電制御回路200の操作を通常モードと簡単モードに切り替える手段である、操作モード切り替えスイッチ310と、を有し、前記通電制御回路200は、使用者の操作又は被加熱物の大きさに応じて、前記主加熱コイルMCと副加熱コイルSC1〜SC4に対して前記インバーター回路から誘導加熱電力を同時又は所定の時間差で供給し、さらに前記通電制御回路200は、通常操作モードが選択されて加熱調理中に、前記吹き零れ検知部50が吹き零れを検知した場合、前記インバーター回路MIV、SIV1〜SIV4の駆動を、所定火力(3.0KW〜1.5KW)以上で加熱していた場合は火力を2段階低下させるとともに、簡単操作モードが選択された加熱調理中に、吹き零れを検知した場合、前記インバーター回路の駆動を、所定火力(3.0KW〜1.5KW)以上で加熱していた場合は(通常操作モードの場合よりも1段階分だけ大きく)3段階まで低下させる構成を具備したものである。これにより、調理器の使用に慣れた使用者が通常モードを選択して調理を開始していた場合においては、吹き零れが発生したことを吹き零れ検知部が検知した際に制御部は、通常モードの場合に比較して(吹き零れが特に発生しやすい、大火力〜中火力領域において)さらに安全側に制御するから、調理に不慣れな使用者や初心者も安心して使用できる調理器を提供できる。さらに通電制御回路200は、使用者の操作又は被加熱物の大きさに応じて、前記主加熱コイルMCと副加熱コイルSC1〜SC4に対して前記インバーター回路MIV、SIV1〜SIV4から供給される誘導加熱電力を同時又は所定の時間差で供給するから、被加熱物の中にある水や煮物汁などの液体に対流の発生を促進でき、調理の出来上がりを向上させることができる。
さらにこの実施の形態1の誘導加熱調理器は、被調理物を入れる鍋などの被加熱物Nを載置するトッププレート21と、前記トッププレートの下方に配置された円環状の主加熱コイルMCと、前記主加熱コイルの両側に近接して配置された複数個の副加熱コイルSC1〜SC4と、主加熱コイルMC及び全ての副加熱コイルSC1〜C4にそれぞれ誘導加熱電力を供給するインバーター回路MIV、SIV1〜SIV4と、前記トッププレート21に複数の電極40、41を配置し、当該電極による静電容量変化を捉えて吹きこぼれを検知する吹き零れ検知部50と、前記被加熱物Nの温度を検知する温度検出部240と、この温度検出部の検知情報が入力されるとともに前記インバーター回路の出力を制御する通電制御回路200と、この通電制御回路に調理動作を指示する操作部Eと、この操作部の操作結果や制御条件、加熱手段の動作条件等の情報が表示される統合表示手段100と、前記通電制御回路200の操作を通常モードと簡単モードに切り替える切り替えスイッチ310、とを有し、 前記通電制御回路200は、使用者の操作又は被加熱物の大きさに応じて、前記主加熱コイルMCと副加熱コイルSC1〜SC4に対して前記インバーター回路から誘導加熱電力を同時又は所定の時間差で供給し、さらに前記通電制御回路200は、前記吹き零れ検知部50が吹き零れを検知した場合、前記インバーター回路の駆動を停止又は出力を低下させるとともに、前記操作部Eには、加熱温度の均一性を重視する調理メニューと加熱速度を重視する調理メニューの何れかを選択する選択手段E1〜E3を設け、前記統合表示手段100には、簡単モードが選択されている場合、加熱温度の均一性を重視する調理メニューと加熱速度を重視する個々の調理メニューについて、その特徴や加熱工程が表示される構成を具備したものである。これにより、調理器の使用に不慣れな使用者が簡単モードを選択して調理を開始した場合、加熱温度の均一性を重視する調理メニューと加熱速度を重視する個々の調理メニューについて、その特徴や加熱工程を表示部の表示から容易に知ることができ、使用者の的確なメニュー選択を導き、あるいは使用者の不安感を解消することができる。また制御部は、もし吹き零れが発生した場合、加熱動作を停止又は抑制するから、調理に不慣れな使用者や初心者も安心して使用できる調理器を提供できる。さらに通電制御回路200は、使用者の操作又は被加熱物の大きさに応じて、前記主加熱コイルMCと副加熱コイルSC1〜SC4に対して前記インバーター回路MIV、SIV1〜SIV4から供給される誘導加熱電力を同時又は所定の時間差で供給するから、被加熱物の中にある水や煮物汁などの液体に対流の発生を促進でき、調理の出来上がりを向上させることができる。
さらにこの実施の形態1の誘導加熱調理器は第1の発明に係る構成を備えている。
すなわち、トッププレートに配置した電極の静電容量変化を捉えて吹き零れを検知する吹き零れ検知部50と、被加熱物の温度を検知する赤外線センサー等を備えた温度検出部240と、この温度検出部の検知情報が入力されるとともにインバーター回路MIV、SIV1〜SIV4の出力を制御する通電制御回路200と、この通電制御回路に調理動作を指示する上面操作部61と、使用者に操作方法や調理の状態等を音声と文字等で案内する報知部と、加熱コイルの加熱域を前記トッププレート21上に光で示す環状の発光部277と、を備え、この発光部は、主加熱コイルMCの円周方向において互いに独立して発光する複数個の発光体277A、277Bの集合体からなり、前記通電制御回路200は、前記発光部277A、277Bを誘導加熱期間中に第1の発光形態である黄色に発光させるともに、吹き零れ検知部50が吹き零れを検知して前記制御部が加熱コイルの駆動を停止又はその火力を減少させた場合、前記発光部277を構成する一方の発光部277Aか又は他方の発光部277Bを第2の発光形態である赤色で発光させる。なお、第1の発光形態はオレンジ色でも良い。あるいは黄色又はオレンジ色で点滅させても良い。例えば1秒間隔で発光、休止を繰り返せば点滅になる。一方、第2の発光形態は赤色の点滅でも良いし、他の色に合成させて発光させても良い。
さらには、吹き零れを検知した電極40、41に近い発光部277A、277Bを、吹き零れで誘導加熱が停止した場合、発光を停止して暗い状態にしても良い。あるいは逆に輝度を上げて明るく表示しても良い。何れにしてもこのような構成によれば、調理器の使用に慣れた使用者が調理を開始した場合でも、吹き零れ検知部50が吹き零れを検知して加熱駆動を制限又は停止した際に、その使用者は発光部277A、277Bの発光状態を見て吹き零れの発生を知ることができる。しかも、吹き零れの発生箇所と発光部277A、277Bの発光又は停止を対応付けることで、操作に不慣れな使用者でも吹き零れの発生場所を特定することが可能となる。これにより、調理に不慣れな使用者や初心者も吹き零れで緊急停止したことを故障と誤解したり、操作ミスと誤解したりせず、安心して使用できる。
実施の形態2.
図12〜33は本発明の実施の形態2に係る誘導加熱調理器を示すものであり、図12は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器全体を一部分解して示す斜視図である。図13は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の天板部を取り外した状態での本体部全体を示す斜視図である。図14は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の本体部全体の平面図である。図15は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の加熱コイルの全体の配置を示す平面図である。図16は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の左側の誘導加熱源を示す平面図である。図17は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の左側の誘導加熱源の主加熱コイルの配線説明図である。図18は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の左側の誘導加熱源の主加熱コイルとその周辺部分の拡大平面図である。図19は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の左側の誘導加熱源の主加熱コイル用コイル支持体の平面図である。図20は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の制御回路全体図である。図21は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の制御回路主要部となるフル・ブリッジ方式回路図である。図22は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の制御回路主要部となるフル・ブリッジ方式回路の簡略図である。図23は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の主要構成図である。図24は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の左IH加熱源部分の縦断面図である。図25は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器全体の基本的な加熱動作を示す制御ステップ説明図である。図26は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の制御動作のフローチャート1である。図27は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の制御動作のフローチャート2である。図28は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の火力変更する場合の制御動作を示すフローチャート3である。図29は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の右IH加熱部における吹き零れ検知部と個別発光部の、通常操作モードにおける制御動作を示すフローチャート4である。図30は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器の右IH加熱部における吹き零れ検知部と個別発光部の、簡単操作モードにおける制御動作を示すフローチャート4である。図31は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器で、火力3KWと1.5KWの場合の主加熱コイルMCと副加熱コイルSC1〜4の火力値(加熱電力)の値を示す図である。図32は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器で、火力500Wの場合の主加熱コイルMCと副加熱コイルSC1〜4の火力値(加熱電力)の値を示す図である。図33は本発明の実施の形態2に係るビルトイン型の誘導加熱調理器で、主・副火力比が1:1の場合で、火力2400Wの場合の主加熱コイルMCと副加熱コイルSC1〜4の火力値(加熱電力)の値を示す図である。なお、前記実施の形態1の構成と同一又は相当部分には同一符号を付している。また特に明示しない限り、実施の形態1において用いられた用語は、本実施の形態2でも同じ意味で使用する。
(加熱調理器本体)
この実施の形態2における加熱調理器も、1つの矩形の本体部Aと、本体部Aの上面を構成する天板部Bと、本体部Aの上面以外の周囲(外郭)を構成する筐体部Cと、鍋や食品等を電気的エネルギー等で加熱する加熱手段Dと、使用者により操作される操作手段Eと、操作手段からの信号を受けて加熱手段を制御する制御手段Fと、加熱手段の動作条件を表示する表示手段Gとをそれぞれ備えている。また、加熱手段Dの一部として、以下に説明するように、グリル庫(グリル加熱室)又はロースターと称される電気加熱手段を備えている。
この実施の形態2における誘導加熱調理器の特徴は、通常の大きさの鍋等は従前からの主加熱コイルMCで加熱し、通常の鍋よりも遥かに直径の大きい円形鍋や長方形の大形鍋(大径鍋ともいう)などが誘導加熱部上に置かれた場合、その置かれた位置に近い(主加熱コイルMCの周囲に設けた複数個の)副加熱コイルSC1〜SC4と主加熱コイルとの連携によって協同加熱を行われるようにしたものであり、そのような協同加熱動作を実行中の副加熱コイルSCを特定できるように当該副加熱コイルSCの外側位置に対応してトッププレート21の下方にある個別発光部だけを発光、点灯させるようにしたものである。
また主加熱コイルMCと全ての副加熱コイルSC1〜SC4の協同加熱を可能とする広域加熱部を囲むように、その広域加熱域の境界を示す広域発光部277をトッププレート21の下方に配置した点では前述した実施の形態1と共通しているが、その広域発光部277は2つの副加熱コイルに対し1つずつ設けた半円形状ではなく、全ての副加熱コイルSC1〜SC4と主加熱コイルMCを包囲するように全体が一つで環状であることは異なっている。使用者がトッププレート21の上方から広域発光部277の点灯を認識する場合、その広域発光部277の形は連続した一本の環状の帯、線となる。
(本体部A)
本体部Aは図12に示すように、上面全体を後述する天板部Bで覆われたものであり、この本体部Aは、外形形状が流し台等の厨房家具(図示せず)に形成した設置口を覆う大きさ、スペースに合わせている所定の大きさで、略正方形又は長方形に形成されている。
図13に示す本体ケース2は、この筐体部Cの外郭面を形成するものであり、1枚の平板状の金属板をプレス成形機械で複数回折り曲げ加工して形成した胴部2Aと、この胴部の端部に、溶接又はリベット、ネジ等の固定手段で継ぎ合わせた金属板製の前部フランジ板2Bとから構成されており、これら前部フランジ板2Bと胴部2Aとを固定手段で結合した状態では、上面が開放した箱形になる。その箱形の胴部2Aの背面部下部が傾斜部2Sで、これより上方が垂直な背面壁2Uになっている。
図13に示す本体ケース2の上面開口の後端部、右端部及び左端部の三個所には、それぞれ外側へL字形に一体に折り曲げて形成したフランジを有しており、後方のフランジ3B、左側のフランジ3L、右側のフランジ3Rと前部フランジ板2Bが厨房家具の設置部上面に載置され、加熱調理器の荷重を支えるようになっている。
そして、加熱調理器が厨房家具の設置口に完全に収容された状態では、厨房家具の前方に形成した開口部から加熱調理器の前面部が露出するようになり、厨房家具の前面側から加熱調理器の前面(左右)操作部60(図13参照)が操作可能となる。
傾斜部2Sは、胴部2Aの背面と底面を結ぶものであり(図13参照)、加熱調理器を厨房家具に嵌め込んで設置する場合には、厨房家具の設置口後縁部に衝突したり干渉したりしないようにカットしてある。つまり、この種の加熱調理器は厨房家具に嵌め込んで設置する際、加熱調理器の本体部Aの手前側が下になるように傾け、その状態で手前側から先に厨房家具の設置口に落とし込む。その後に遅れて後ろ側を、弧を描くようにして設置口に落とし込む(このような設置方法は、例えば特開平11−121155号公報に詳しく記載されている)。このような設置方法のために、前部フランジ板2Bは、加熱調理器を厨房家具に設置する際に、厨房家具の設置口前縁部との間に十分なスペースが確保されるような大きさになっている。
本体ケース2の内部には、後述するトッププレート21に載置された磁性を有する、例えば金属から成る鍋等の被加熱物Nを誘導加熱するための加熱源6L、6Rと、輻射熱で加熱する電気ヒーター、例えばラジエントヒーターと呼ばれる輻射式中央電気加熱源7と、該加熱手段の調理条件を制御する後記する制御手段Fと、該制御手段に前記調理条件を入力する後述する操作手段Eと、該操作手段により入力された加熱手段の動作条件を表示する表示手段Gとを備えている。以下、それぞれについて詳細に説明する。
なお、この実施の形態2では、被加熱物Nの鍋としては、直径が12cm以上の鍋の使用を想定したものであり、鍋(片手鍋、両手鍋など)では直径が16cm、18cm、20cm、24cm、フライパンとして直径20cm、天ぷら鍋として直径22cm、中華鍋として直径29cm等、各種のものを使用可能である。
筐体部Cの内部は、図13に示すように大きく分けて前後方向に長く伸びた右側冷却室8R、同じく前後方向に長く伸びた左側冷却室8L、箱形のグリル(又はロースター)加熱室9、上部部品室10、後部排気室12が区画形成されているが、各部屋は互いに完全に隔絶されている訳ではない。例えば右側冷却室8R及び左側冷却室8Lは、後部排気室12に対し、それぞれ上部部品室10を経由して連通している。
グリル加熱室9は、その前面開口9A部が後述するドア13が閉じられた状態では、略独立した密閉空間になっているが、排気ダクト14を介して筐体部Cの外部空間、つまり台所などの室内空間に連通している(図12参照)。
(天板部B)
天板部Bは以下述べるように、上枠(枠体ともいう)20とトッププレート(上板、トップガラス、天板とも称する)21の2つの大きな部品から構成されている。上枠20は、全体が非磁性ステンレス板又はアルミ板などの金属製板から額縁状に形成され、本体ケース2の上面開口を塞ぐような大きさを有している(図14参照)。
トッププレート21は、額縁形状の上枠20の中央に設けられた大きな開口部を隙間無く完全に覆うような横幅寸法Wを有し(図15参照)、本体ケース2上方に重ね合わせて設置されている。このトッププレート21は、全体が耐熱強化ガラスや結晶化ガラス等の赤外線及びLEDからの可視光線を透過させる透明又は半透明な材料からなり、上枠20の開口部の形状に合わせて長方形又は正方形に形成されている。なお、透明の場合、トッププレート21の上方から使用者に内蔵部品が全て見えてしまい、見栄えを損なうことがあるので、トッププレート21の表面や裏面には遮蔽用の塗装を施したり、あるいは細かい斑点状や格子上に可視光線を通さない部分を印刷などで施したりすることがある。
さらにトッププレート21の前後左右側縁は、上枠20の開口部との間にゴム製パッキンやシール材(図示せず)を介在させて水密状態に固定されている。したがって、トッププレート21の上面から水滴などが上枠20とトッププレート21との対面部分に形成される間隙を通じて本体部Aの内部に侵入しないようにしてある。
図12において、右通風口20Bは、上枠20の形成時にプレス機械で同時に打ち抜き形成されたものであり、送風機30(図示せず)の吸気通路となる。中央通風口20Cは同じく上枠20の形成時に打ち抜き形成されたものであり、左通風口20Dは同じく上枠20の形成時に打ち抜き形成されたものである。なお、図12では上枠20の後部部分しか示していないが、図14のように上方から見た場合、本体ケース2の上面全体を額縁状に覆っている。
トッププレート21は、実際の調理の段階では後で詳しく述べる右IH加熱源6R、左IH加熱源6Lによって誘導加熱され、高温になった鍋等の被加熱物Nからの熱を受けて300度以上にもなることがある。さらにトッププレート21の下方に後述する輻射式の電熱ヒーターである輻射式中央電気加熱源7が設けられている場合には、その輻射式中央電気加熱源7からの熱でトッププレート21は直接高温に熱せられ、その温度は350度以上にも至ることがある。
トッププレート21の上面には、図12及び図14に示すように後記する右IH加熱源6R、左IH加熱源6L、輻射式中央電気加熱源7のおおまかな位置を示す円形の案内マーク6RM、6LM、7Mが、それぞれ印刷などの方法で表示されている。左右案内マーク6RM、6LMの直径はそれぞれ220mmである。
(加熱手段D)
この発明の実施の形態2では加熱手段Dとして、本体部Aの上部右側位置にある右IH加熱源6R、反対に左側にある左IH加熱源6L、本体部Aの左右中心線上で後部寄りにある輻射式中央電気加熱源7及びグリル加熱室9の内部にロースター用の上下1対の輻射式電気加熱源22、23を備えている。これら加熱源は制御手段Fにより互いに独立して通電が制御されるように構成されているが、詳細は後で図面を参照しながら述べる。
(右IH加熱源)
右IH加熱源6Rは、本体ケース2の内部に区画形成された前記上部部品室10内部に設置されている。そして前記トッププレート21の右側の下面側に、右IH加熱コイル6RCを配置している。このコイル6RCの上端部がトッププレート21の下面に微小間隙を置いて近接しており、IH(誘導)加熱源となる。この実施の形態では例えば、最大消費電力(最大火力)3KWの能力を備えたものが使用されている。右IH加熱コイル6RCは、渦巻状に0.1mm〜0.3mm程度の細い線を30本程束にして、この束(以下、集合線という)を1本又は複数本撚りながら巻き、図15に示すように中心点X2を基点として外形形状が円形になるようにして最終的に円盤形に成形されている。右IH加熱コイル6RCの直径(最大外径寸法)は約180mm〜200mm程度である。
トッププレート21に表示された円(図14において実線で表示)である案内マーク6RMの位置は、右IH加熱源6Rの右IH加熱コイル6RCの最外周位置と完全に一致させても良いが、本発明の実施にあたって完全一致は必須の条件ではない。前記左右案内マーク6RM、6LMの直径は220mmであるので、右IH加熱コイル6RCの直径(最大外径寸法)が200mmであった場合、右IH加熱コイル6RCの最外周縁からそれぞれ10mm外側の真上が右案内マーク6RMの位置となる。この案内マーク6RMは適正な誘導加熱領域を示すものにすぎない。図12に示す右側の破線の円が、大体右IH加熱コイル6RCの最外周位置を示す。
(左IH加熱源)
左IH加熱源6Lは、本体部Aの左右中心線CL1(図15参照)を挟んで右IH加熱源6Rと略線対称な位置(左右中心線CL2を中心)に設置されている。この実施の形態では例えば、最大消費電力(最大火力)3KWの能力を備えたものが使用されている。また左IH加熱コイル6LCは、図16に示すように中心点X1を基点として半径R1とする2つの同心状に配置された環状の外形形状を有するものから成り、その直径(最大外径寸法)は約180mmであるが、これは後述する副加熱コイルSCを含まない寸法である。また約180mmの寸法は、左IH加熱コイルを構成する、後述する外側コイル6LC1と内側6LC2の内、その外側コイル6LC1の最大外径寸法(図16のDAに相当する)。後述する副コイルSCとの差異を示すため、左IH加熱コイル6LCを構成する外側コイル6LC1と内側コイル6LC2の両者を以下「主加熱コイルMC」と称する(図18参照)。
トッププレート21に表示された円形の案内マーク6LMの位置は、左IH加熱コイル6LCの最外周位置と完全に一致させても良いが、本発明の実施にあたって完全一致は必須の条件ではない。案内マークは適正な誘導加熱領域を示すものである。図14の左側の破線の円が、大体左IH加熱コイル6LCの最外周位置を示す。
トッププレート21に表示された円形の案内マークEMは、後述する主加熱コイルMCと、その前後左右位置に略等間隔に配置された全ての副加熱コイルSC(合計4個)を包含する広い円形のエリア(以下、「協同加熱エリアマーク」という)を示すものである。またこの協同加熱エリアマークEMの位置は、前記主加熱コイルMCと副加熱コイルSCの協同加熱時における好ましい被加熱物載置場所の外側限界を、前記トッププレート21の下から光を放射して示すための、後述する「広域発光部277」からの光が透過する位置と大体一致している。
右IH加熱コイル6RCと同様に、左IH加熱コイル6LCの内側空間には赤外線式の温度検出素子(以下、赤外線センサーという)31Lが設置されている(図16、図23、図24参照)。この詳細は後で詳しく述べる。
前記左IH加熱源6のIH加熱コイル6LCは、半径方向に分割された外側コイル6LC1、内側コイル6LC2から構成され、この2つのコイルは図17に示すように、直列に接続された一連のものである。なお、空間を隔てて位置する2つの部分に分けたコイルにすることなく、全体が一つに固まったコイルであっても良い。
左右IH加熱コイル6LC、6RCの下面(裏面)には、図19、図24に示すようにそれら加熱コイルからの磁束漏洩防止材73として、高透磁材料、例えばフェライトで形成された断面方形の棒が配置されている。例えば左IH加熱コイル6LCでは、その中心点X1から放射状に4本、6本又は8本配置してある(必ずしも偶数本である必要はない)。
つまり、磁束漏洩防止材73は、左右IH加熱コイル6LC、6RCの下面全体を覆う必要はなく、断面が例えば正方形又は長方形等で棒状に成形した磁束漏洩防止材73を右IH加熱コイル6RCのコイル線と交差するように所定間隔で複数個設ければ良い。従ってこの実施の形態2では左IH加熱コイルの中心点X1から放射状に複数個設けている。このような磁束漏洩防止材73により、IH加熱コイルから発生する磁力線をトッププレート21上の被加熱物Nに集中させることができる。
前記右IH加熱コイル6RCと、左IH加熱コイル6LCの主加熱コイルMCは、それぞれ独立して通電される複数部分に分けたものでもよい。例えば最も内側に渦巻き状に小さい径でIH加熱コイルを巻き、そのIH加熱コイルの外周側にはそれと同心円上でかつ略同一平面上に別の大径の渦巻き状に巻いたIH加熱コイルを置き、内側のIH加熱コイル通電、外側のIH加熱コイル通電、及び内側と外側のIH加熱コイル共に通電、という3つの通電パターンで被加熱物Nを加熱するようにしても良い。
このように2個のIH加熱コイルに流す高周波電力の出力レベル、デューティ比、出力時間間隔の少なくとも一つ又はこれらを組み合わせることにより、小型から大形(大径寸法)の被加熱物(鍋)Nまで効率良く加熱するようにしても良い(このような独立通電できる複数の加熱コイルを使用した技術文献として代表的なものとしては、特許第2978069号が知られている)。
温度検出素子31Rは、右IH加熱コイル6RCの中央部に設けた空間内部に設置された赤外線式の温度検出素子であり、上端部にある赤外線受光部をトッププレート5の下面に向けている(図23参照)。
また、左IH加熱コイル6LCにも同様に、その中央部に設けた空間内部には赤外線式の温度検出素子31Lが設置されている(図23参照)が、あとで詳しく説明する。
赤外線式の温度検出素子31R、31L(以下、赤外線センサーという)は、鍋等の被加熱物Nから放射される赤外線の量を検知して温度を測定できるフォトダイオード等から構成されている。なお、前記温度検出素子31R(温度検出素子31Lも同様であるため、以下では双方に共通な場合には、温度検出素子31Rのみを代表させて説明する)は伝熱式の検知素子、例えばサーミスタ式温度センサーでも良い。
このように被加熱物からその温度に応じて発せられる赤外線を、赤外線センサーによってトッププレート5の下方から迅速に検出することは例えば特開2004−953144号公報(特許第3975865号公報)、特開2006−310115号公報や特開2007−18787号公報等により知られている。
温度検出素子31Rが赤外線センサーである場合は、被加熱物Nから放射された赤外線を集約させ、かつリアルタイムで(時間差が殆んどなく)受信してその赤外線量から温度を検知できることで(サーミスタ式よりも)優れている。この温度センサーは、被加熱物Nの手前にある耐熱ガラスやセラミックス製等のトッププレート21の温度と被加熱物Nとの温度が同じでなくても、またトッププレート21の温度に拘わらず、被加熱物Nの温度を検出できる。すなわち、被加熱物Nから放射される赤外線がトッププレート21に吸収されたり遮断されたりしないように工夫しているためである。
例えばトッププレート21は4.0μm又は2.5μm以下の波長域の赤外線を透過させる素材が選択されており、一方、温度センサー31Rは4.0μm又は2.5μm以下の波長域の赤外線を検出するものが選択されている。
一方、温度検出素子31Rが、サーミスタ等の伝熱式のものである場合には、前記した赤外線式温度センサーと比較すると急激な温度変化をリアルタイムで捕捉することでは劣るが、トッププレート21や被加熱物Nからの輻射熱を受け、被加熱物Nの底部やその直下にあるトッププレート21の温度を確実に検出できる。また被加熱物Nが無い場合でもトッププレート21の温度を検出できるものである。
なお、温度検出素子がサーミスタ等の伝熱式の場合には、その温度感知部をトッププレート21の下面に直接接触させ、あるいは伝熱性樹脂等のような部材を介在させて、トッププレート21自身の温度を出来るだけ正確に把握させるようにしても良い。温度感知部とトッププレート21の下面との間に空隙があると、温度の伝達に遅れが生ずるからである。
以下の説明において、左右に共通に配置された部材について共有する内容については、名称における「左、右」および符号における「L、R」の記載を省略する場合がある。
(輻射式中央電気加熱源)
輻射式中央電気加熱源7(図13参照)は、本体部Aの内部であって、トッププレート21の左右中心線CL1上で(図15参照)、かつ、トッププレート21の後部寄りの位置に配置されている。輻射式中央電気加熱源7は、輻射によって加熱するタイプの電気ヒーター(例えばニクロム線やハロゲンヒーター、ラジエントヒーター)が使用され、トッププレート21を通してその下方から鍋等の被加熱物Nを加熱するものである。そして、例えば、最大消費電力(最大火力)1.2kWの能力を備えたものが使用されている。
輻射式中央電気加熱源7は上面全体が開口した円形容器形状を有しており、その最外周部分を構成する断熱材製の容器状カバーは、最大外径寸法が約180mmで、高さ(厚さ)が15mmになっている。
トッププレート21に表示された円(図14において実線で表示)である案内マーク7Mの位置は、輻射式中央電気加熱源7の最外周位置と完全に一致しているものではない。この案内マーク7Mは適正な加熱領域を示すものに過ぎないのである。図14に実線の円で示す案内マーク7Mが、大体輻射式中央電気加熱源7の容器状カバーの最外周位置を示す。
(輻射式電気加熱源)
右側の上下仕切り板24Rは、鉛直に設置されており(図13参照)、筐体部Cの内部で右側冷却室8Rとグリル加熱室9間を隔絶している仕切り壁の役割を果たしている。左側の上下仕切り板24Lは、同じく鉛直に設置されており(図13参照)、筐体部Cの内部で左側冷却室8Lとグリル加熱室9間を隔絶している仕切り壁の役割を果たしている。なお、上下仕切り板24R、24Lはグリル加熱室9の外側壁面と数mm程度の間隔を保って設置されている。
水平仕切り板25(図13参照)は、左右の上下仕切り板24L、24Rの間全体を上下2つの空間に区画する大きさを有しており、この仕切り板25の上方が前記上部部品室10である。またこの水平仕切り板25はグリル加熱室9の天井面と数mmから10mm程度の所定の空隙を持って設置されている。
切欠き部24Aは左右の上下仕切り板24L、24Rにそれぞれ形成され、後述する冷却ダクトを水平に設置する際にそれと衝突しないように設けている。
矩形箱状に形成されたグリル加熱室9は、ステンレスや鋼板等の金属板により左右、上下及び背面側の壁面が形成され、上部天井付近および底部付近には輻射式の電気ヒーター、例えばシーズヒーターによる上下1対の輻射式電気加熱源22、23(図20参照)が略水平に広がるように設置されている。ここで「広がる」とは、シーズヒーターの途中が水平面において複数回屈曲して、できるだけ平面的に広い範囲の面積を占めるように蛇行している状態をいい、平面形状がW字形になっているものが代表的な例である。
この上下二つの輻射式電気加熱源22、23を同時又は個別に通電してロースト調理(例えば焼き魚)、グリル調理(例えばピザやグラタン)やグリル加熱室9内の雰囲気温度を設定して調理するオーブン調理(例えば、ケーキや焼き野菜)が行えるようになっている。例えば、グリル加熱室9の上部天井付近の輻射式電気加熱源22は最大消費電力(最大火力)1200W、底部付近の輻射式電気加熱源23は最大消費電力800Wのものが使用されている。
前記水平仕切り板25とグリル加熱室9の外枠9Dとの間に形成された間隙は、最終的に後部排気室12と連通しており、空隙26内の空気が後部排気室12を通じて本体部Aの外に誘引されて排出されるようになっている。
図13において、後部仕切り板28は上部部品室10と後部排気室12とを仕切るものであり、下端部は前記水平仕切り板25に、また上端部は上枠20に達する高さ寸法を有している。排気口28Aは後部仕切り板28に2箇所形成されており、上部部品室10に入った冷却風を排気するためのものである。
(冷却用送風機)
この実施の形態2では、本体部Aの内部を冷却する送風機30(図示せず)として、遠心型多翼式送風機(代表的なものとしてシロッコファンがある)を使用しており、その駆動モータ300(図20参照)は駆動回路33で駆動される。また送風機は、前記右側冷却室8Rと左側冷却室8Lのそれぞれに設置され、左右の左IH加熱コイル6LC、6RC用の回路基板とそれら加熱コイル自体を冷却するようになっており、詳しくは以下で説明する。
本体部Aの内部を冷却する前記送風機30を内蔵した箱形形状の冷却ユニット(図示せす)は、前記冷却室8R、8Lに上方から挿入されて固定され、インバーター回路MIV、SIVを構成する回路基板を収容している。
前記冷却室8R、8Lに上方から挿入されて設置された箱形形状の冷却ユニットに回路基板を内蔵していることは前に述べたが、その回路基板上にインバーター回路MIV、SIVを構成する各種電子・電気部品が実装されている。
46は図19、図24に示すように、左右IH加熱源6R、6Lの加熱コイル用のコイル支持体290をそれぞれ載せた冷却ダクトであり、全体が耐熱性樹脂で一体に形成されており、下面全体に開口を有している。右IH加熱源6Rと、左IH加熱源6Lの各加熱コイルの大きさが異なるため、冷却ダクト46は右IH加熱源6R用と左側IH加熱源6L用で大きさや形状が異なっているが、冷却風を噴き出すため多数の噴き出し孔46Cをそれぞれ形成していることでは共通している。
47は冷却ダクト46の下面全体を覆い、その下面との間に冷却用の空気の流れY5(図24参照)ができるようにした平板である。この空気の流れY5は本体部Aの内部を冷却する前記送風機30からの風である。
(操作手段E)
この実施の形態における加熱調理器の操作手段Eは、前面操作部60と上面操作部61とからなっている(図12、図14参照)。
(前面操作部)
本体ケース2の左右両側の前面にプラスチック製の前面操作枠62R、62Lが取り付けられており、この操作枠前面が前面操作部60となっている。この前面操作部60には、左IH加熱源6L、右IH加熱源6R、輻射式中央電気加熱源7及びグリル加熱室9の輻射式電気加熱源22、23の全ての電源を一斉に投入・遮断する主電源スイッチ63の操作ボタン63A(図13参照)と、右IH加熱源6Rの通電とその通電量(火力)を制御する右電源スイッチ(図示せず)の電気接点を開閉する右操作ダイアル64Rと、同じく左IH加熱源6Lの通電とその通電量(火力)を制御する左制御スイッチ(図示せず)の左操作ダイアル64Lと、がそれぞれ設けられている。主電源スイッチ63を経由して図20に示す全ての電気回路構成部品へ電源が供給される。
前面操作部60には、左操作ダイアル64Lによって左IH加熱源6Lに通電が行われている状態でのみ点灯する左表示灯66Lと、右操作ダイアル64Rによって右IH加熱源6Rに通電が行われている状態でのみ点灯する右表示灯66Rとが設けられている。
なお、左操作ダイアル64Lと右操作ダイアル64Rは、使用しない状態では、図12に示されるように、前面操作部60の前方表面から突出しないように内側へ押し込まれており、使用する場合には、使用者が指で一度押してから指を離すと、前面操作枠62に内蔵しているバネ(図示せず)の力によって突出し(図13参照)、使用者が周囲を掴んで回せる状態になるものである。そして、この段階で1段階右か左に回せば、初めて左IH加熱源6Lおよび右IH加熱源6Rにはそれぞれ(最小設定火力120Wでの)通電が開始される。
そこで、突出している左操作ダイアル64L、右操作ダイアル64Rの何れかをさらに同じ方向に回せば、その回動の量に応じて内蔵したロータリエンコーダー(図示せず)より発生する所定の電気的パルスを前記制御手段Fが読み取り、当該加熱源の通電量が決まり、火力設定が行えるようになっている。なお、左操作ダイアル64L、右操作ダイアル64Rの何れも、初期の状態であるか途中で左右に回した状態であるかに関係なく、使用者が指で一度押して前面操作部10の前方表面から突出しないような所定の位置に押し込む(押し戻すと、その位置で保持され、かつ左IH加熱源6L、右IH加熱源6Rの何れも通電を瞬時に停止できる(例えば、調理中であっても、右操作ダイアル64Rを押し込めば、右IH加熱源6Rは直ちに通電停止される)。
なお、前記主電源スイッチ63(図12参照)の操作ボタン63Aを開成操作すれば、それ以後、右操作ダイアル64Rおよび左操作ダイアル64Lの操作は一斉に無効となる。同様に輻射式中央電気加熱源7とグリル加熱室9に設置された輻射式電気加熱源22、23の通電も全て遮断される。
また、前面操作枠62の前面下部には、図示していないが3つの独立したタイマーダイアルが設けられている。これらタイマーダイアルは、それぞれ左IH加熱源6L、右IH加熱源6R、輻射式中央電気加熱源7を通電開始から所望の時間(タイマーセット時間)だけ通電し、その設定時間を経過した後は自動的に電源を切るタイマースイッチ(タイマーカウンターともいう。図示せず)を操作するためのものである。
(上面操作部)
上面操作部61は、図14に示すように右火力設定用操作部70、左火力設定用操作部71及び中央操作部72とからなっている。すなわちトッププレート21の上面前部において、本体部Aの左右中心線を挟んで、右側には右IH加熱源6Rの右火力設定用操作部70が、中央部には輻射式中央電気加熱源7及びグリル加熱室9に設置された輻射式電気加熱源22、23の中央操作部72が、左側には左IH加熱源6Lの左火力設定用操作部71が、それぞれ配置されている。
この上面操作部には、ステンレス製又は鉄製の調理容器(図示せず)を使用する場合の各種キーが設けてあり、その中にはパン専用キー250が設けてある。なお特定の調理(例えばパン)の専用キーではなく、調理容器使用のための専用の共通キーを1個設け、それを押すたびに、後述する統合表示手段100の中に所望の調理名(例えばパン)が表示された操作可能なキー(図示せず)を表示させ、当該キーのエリアを使用者が指で触れてその所望の調理開始指令を入力するような形態にしても良い。なお、前記調理容器は、グリル加熱室9の内部にその前面開口から挿入されても使用可能である。
さらに上面操作部61には、前記調理容器をIH加熱源と輻射式電気加熱源22、23の両方で使用して調理する場合(以下、「複合加熱調理」又は「複合調理」という)のための複合調理キー251が設けてある。この実施の形態1では右IH加熱源6Rとグリル加熱室9の輻射式電気加熱源22、23との複合加熱ができるようにしたものであり、前記複合調理キー251は、右火力設定用操作部70寄りに設けてある(図14参照)。
310は、主電源スイッチの操作ボタン63Aの直ぐ左隣りに設けた操作モード切り替えスイッチ310である。
なお前記複合調理キー251は、使用者に直接操作される部分であるキーやボタン、摘み等の構造物が存在するものではなく、後述する統合表示手段100の表示画面(液晶画面など)の中に所望のキーを表示させ、当該キーのエリアを使用者が指で触れることで、複合調理の入力を可能にする形態であっても良い。つまり統合表示手段100の表示画面中にソフトウエアによって適時に入力可能なキー形状を表示し、それをタッチして入力操作する方法でも良い。
(右火力設定用操作部)
右火力設定用操作部70には、使用者が1度押圧するだけで右IH加熱源6Rの火力を簡単に設定することができる各火力のワンタッチ設定用キー部(図示せず)が設けられている。具体的には各火力毎にワンタッチで火力設定できるキーが複数個設けられている。
(左火力設定用操作部)
同様に左IH加熱源6Lの火力設定のための左火力設定用操作部71にも右火力設定用操作部70と同様なワンタッチキー群が設置されている。
(中央操作部)
中央操作部72にも、グリル(ロースト)調理およびオーブン調理に用いられるグリル加熱室9の輻射式電気加熱源22、23の通電を開始する操作スイッチの操作ボタンと、その通電を停止する操作スイッチの操作ボタンが並べて設けられている。また輻射式中央電気加熱源7の電源入り・切りスイッチボタンや火力を1段階ずつ加算的又は減算的に設定する設定スイッチもここに設けてある。
前記したタイマーカウンター(図示せず)を操作・スタートさせるスタートスイッチを操作すると、トッププレート21の左右に配置した液晶表示画面45R、45Lに、そのスタート時点からの経過時間が計測されて数字で表示される。液晶表示画面45R、45Lの表示光はトッププレート21を透過し、経過時間が「分」と「秒」単位で明瞭に使用者に表示される。
液晶表示画面45Rは右IH加熱源6R用、左側の液晶表示画面45Lは左IH加熱源6L用である。
(火力表示ランプ)
トッププレート21の右前側で、右IH加熱源6Rと右火力設定用操作部70との間の位置に、右IH加熱源6Rの火力の大きさを表示する右火力表示ランプ101Rが設けられている。右火力表示ランプ101Rはトッププレート21を介して(透過させて)その下面から表示光を上面側に放つようにトッププレート21の下面近傍に設けられている。
同様に、左IH加熱源6Lの火力の大きさを表示する左火力表示ランプ101Lが、トッププレート21の左前側で、左IH加熱源6Lと左火力設定用操作部71との間の位置に設けられ、トッププレート21を介して(透過させて)その下面から表示光を上面側に放つようにトッププレート21の下面近傍に設けられている。なお、これら表示ランプ101R、101Lは図20の回路構成図には表示を省略している。
(表示手段G)
この実施の形態2における加熱調理器の表示手段Gは、統合表示手段100からなっている。
統合表示手段100は、トッププレート21の左右方向の中央部で、前後方向の前側に設けられている。この統合表示手段100は液晶表示パネルを主体に構成され、トッププレート21を介して(透過させて)その下面から表示光を上面側に放つようにトッププレート21の下面近傍に設けられている。
統合表示手段100は、左IH加熱源6L、右IH加熱源6R、輻射式中央電気加熱源7及びグリル加熱室9の輻射式電気加熱源22、23等の通電状態(火力や時間等)を入力したり、動作状況を確認したりすることができるものである。
この統合表示手段100で使用されている液晶画面は、周知のドットマトリックス型液晶画面である。液晶画面の表示領域の大きさは縦(前後方向)約4cm、横約10cmとなっている長方形である。
また情報を表示する画面区域を加熱源毎に複数個に分割している。例えば画面を合計6個のエリアに割り当ててあり、次のように定義されている。
(1)左IH加熱源6Lの対応エリア用。
(2)輻射式中央電気加熱源7の対応エリア用。
(3)右IH加熱源6Rの対応エリア用。
(4)グリル加熱室9の対応エリア用。
(5)各種調理における参考情報を随時又は使用者の操作で表示するとともに、異常運転検知時又は不適正操作使用時に使用者に報知するガイドエリア用。
(6)各種調理条件等を直接入力可能な機能を有する、互いに独立した数個の入力キー表示エリア用。
被加熱物Nの底部直径が所定の値よりも小さい、後述する被加熱物載置判断部280で判断された場合、調理メニュー選択用の7つのキーE1A、E1B、E1C、E2A、E2B、E3A、キーE3Bは統合表示手段の液晶画面には表示されない。つまり副加熱コイルSC1〜SC4の何れの上にも跨るような大きな被加熱物Nの場合に初めて、調理メニュー選択用の7つのキーE1A、E1B、E1C、E2A、E2B、E3A、キーE3Bを統合表示手段100の液晶画面上で選択できる。
上記の合計6個の各エリア(表示領域)は、統合表示手段100の液晶画面の上に実現されたものではあるが、画面自体に物理的に個別に形成され、又は区画されているものではない。すなわち、画面表示のソフトウエア(マイコンのプログラム)により確立されたものであるので、そのソフトウエアによりその都度面積や形、位置を変えることは可能であるが、使用者の使い勝手を考え、左IH加熱源6L、輻射式中央電気加熱源7、右IH加熱源6Rなど各加熱源の左右の並び順序に合わせて常に同じ並び順序にしている。
つまり、画面上では左側に左IH加熱源6L、真中に輻射式中央電気加熱源7、右側に右IH加熱源6Rについての情報が表示される。またグリル加熱室9の調理用表示エリアは、必ず上記左IH加熱源6Lの対応エリア、輻射式中央電気加熱源7の対応エリア、右IH加熱源6Rの対応エリアよりも手前側に表示される。さらに入力キーの表示エリアがいかなる場面でも必ず最も手前に表示される。
(グリル加熱室9)
グリル加熱室9の前面開口9Aは、図13に示すように、ドア13によって開閉自在に覆われ、ドア13は使用者の操作によって前後方向に移動自在になるよう前記グリル加熱室9にレール、コロ等の支持機構(図示せず)によって保持されている。また、ドア13の中央開口部13Aには耐熱ガラス製の窓板が設置され、グリル加熱室9の内部が外側から視認できるようになっている。13Bはドア13を開閉操作するために前方に突出した取っ手である。なお、グリル加熱室9の後部には排気ダクト14が設置され、内部の高温空気が排出されるようになっている。
このグリル加熱室9には、この室内温度を検出する庫内温度センサー242(図20参照)が設けられており、庫内温度を所望の温度に維持させて調理をすることも可能になっている。
グリル加熱室9の後部に接続された金属製排気ダクト14は、その末端部にある開口が上枠20に形成した中央通風口20C近傍まで連通している。そしてその排気ダクト14の内部には脱臭用触媒用の電気ヒーター121H(図20参照)により加熱されることで活性化し、排気ダクト14を通るグリル加熱室9内部の熱い排気から臭気成分を除去する働きをする。
(排気構造・吸気構造)
前記した通り、上枠20の後部には横に長く右通風口(吸気口になる)20B、中央通風口(排気口になる)20C、左通風口20Dがそれぞれ形成されている。これら3つの後部通風口の上には、上方全体を覆うように全体に亘り無数の小さな連通孔が形成された金属製平板状のカバー130(図12参照)が着脱自在に載せられている。カバー130は金属板に連通孔用の小孔をプレス加工で形成したもの(パンチングメタルとも言う)の他に、金網や細かい格子状のものでも良い。何れにしても上方から使用者の指や異物等が各通風口20B、20C、20Dに入らないようなものであれば良い。
前記後部排気室12の中には、前記排気ダクト14の上端部が位置した状態である。言い換えると排気ダクト14の左右両側には、前記グリル加熱室9の周囲に形成された空隙と連通する後部排気室12が確保されている。グリル加熱室9は、前記した水平仕切り板25との間に所定の空隙を持って設置されているが、この空隙116は最終的には後部排気室12に連通している。前記したように後部仕切り板28に形成した1対の排気口28Aを通じて上部部品室10の内部は後部排気室12と連通しているから、加熱コイルを冷却する冷却風(図24の矢印Y5)が本体1の外部へ図13の矢印Y9のように排出されるが、この際、これに誘引されて水平仕切り板25とその下方のグリル加熱室9の天井面との空隙の空気も一緒に誘引され排出される。
(制御手段F)
この実施の形態における加熱調理器の制御手段(制御部)Fは、通電制御回路200からなっている(図20参照)。
図20は加熱調理器の制御回路全体を示す構成要素図であり、該制御回路は、1つ又は複数のマイクロコンピュータを内蔵して構成されている通電制御回路200によって形成されている。通電制御回路200は、入力部201と、出力部202と、記憶部203と、演算制御部(CPU)204と、の4つの部分から構成され、定電圧回路(図示せず)を介して直流電源が供給されて、全ての加熱源と表示手段Gを制御する中心的な制御手段の役目を果たすものである。図20において、100V又は200V電圧の商用電源76に対し、整流回路(整流ブリッジ回路ともいう)221を介して右IH加熱源6R用のインバーター回路210Rが接続されている。なお、通電制御回路200を複数個のマイクロコンピュータで構成し、その1個を統合表示手段100や音声合成装置315等の報知手段専用に割り当てても良い。
同様に、この右IH加熱源6R用のインバーター回路210Rと並列に、図20に示した右IH加熱コイル6RC(誘導加熱コイル)の基本構成と同様な左IH加熱源6L用のインバーター回路210Lが、前記整流ブリッジ回路221を介して前記商用電源に接続されている。このインバーター回路210Lは、主インバーター回路MIVと4つの副インバーター回路SIV1〜SIV4を含んだものである。
左IH加熱源6L用のインバーター回路210Lが、右IH加熱源6R用のインバーター回路210Rと大きく異なるところは、主加熱コイルMCと副加熱コイルSCを有するところである。このため、左IH加熱源6L用のインバーター回路210Lは、図22に示すように、内側コイルLC2と外側コイルLC1の両者、すなわち主加熱コイルMCに対して電力を供給する主加熱コイル用のインバーター回路MIVと、後述する4つの独立した副加熱コイルSC1〜SC4に対してそれぞれ個別に電力を供給する副加熱コイル用のインバーター回路SIV1〜SIV4とから構成されている。そして4つの副加熱コイルSC1〜SC4の通電タイミングや通電量は全て通電制御回路200によって決定されるようになっている。
主加熱コイル用のインバーター回路MIVは、可変周波数出力制御方式を採用しているため、その周波数を変化させることでインバーター電力、すなわち得られる火力を可変とすることができる。インバーター回路MIVの駆動周波数を高く設定していくと、インバーター電力は低下していき、後述するスイッチング手段(IGBT)77A、81A、88Aや共振コンデンサー110A等の回路構成電気・電子素子の損失が増加し、発熱量も多くなって好ましくないので、所定の上限周波数を決め、それ以下で変化させるように制御している。上限周波数で連続的に制御できるときの電力が最低電力となるが、これ未満の電力を投入する場合は通電を断続的に行う、通電率制御を併用して最終的な小火力を得ることができる。副加熱コイル用のインバーター回路SIV1〜SIV4も同様にして火力制御できる。
またインバーター回路MIVの駆動に用いる駆動周波数は、副加熱コイル用のインバーター回路SIV1〜SIV4の駆動周波数と基本的に同じにしている。変える場合は、両者の駆動周波数の差が可聴周波数域とならないよう、駆動周波数の差が15〜20kHzの範囲から外れるように通電制御回路200が制御する。これは2つ以上の誘導加熱コイルを同時に駆動した場合、その周波数の差によってビート音又は干渉音と呼ばれるような、不快な音の原因になるからである。
なお、主インバーター回路MIVと、副加熱コイル用のインバーター回路SIV1〜SIV4とは、常に同時に駆動する必要はなく、例えば、通電制御回路200が指令する火力によっては、短い時間間隔で交互に加熱動作を行うように切り替えても良い。ここで「同時」とは、通電開始のタイミングと通電休止のタイミングが全く同時である場合をいう。
ヒーター駆動回路211は輻射式中央電気加熱源7のヒーター駆動回路、212はグリル加熱室9の庫内加熱用輻射式電気加熱源22を駆動するヒーター駆動回路、213は同じくグリル加熱室9の庫内加熱用輻射式電気加熱源23を駆動するヒーター駆動回路、214は前記排気ダクト14の途中に設けた触媒ヒーター121Hを駆動するヒーター駆動回路、215は統合表示手段100の液晶画面を駆動する駆動回路である。
左右IH加熱源6R、6Lのインバーター回路には、それぞれ電流検出センサー(図示せず)がある。左IH加熱源6Lの主加熱コイルMCの場合は、主加熱コイルMCと共振コンデンサー110Aの直列回路を含む共振回路に流れる電流を検出する電流センサー266(図23参照)がある。これら電流検出センサーの検出出力は後述する被加熱物載置判断部280に入力され、これを介して通電制御回路200の入力部に被加熱物Nがあるかどうかという判定情報が供給され、被加熱物Nの存在判定が行われる。また誘導加熱に不適当な鍋(被加熱物N)などが用いられた場合や、何らかの事故などによって正規の電流値に比較して所定値以上の差の過少電流や過大電流が検出された場合は、通電制御回路200により駆動回路228A、228Bを介してIGBT等のスイッチング素子79A、81A、88A、89Aが制御され、瞬時に主加熱コイルMCの通電を停止するようになっている。なお電流検出センサーとしては抵抗器を用いて電流を計測する分流器や、カレントトランスを用いて構成する方法がある。
同様に、4つの独立した副加熱コイルSC1〜SC4に対してそれぞれ個別に電力を供給する副加熱コイル用のインバーター回路SIV1〜SIV4も、主加熱コイルMCのインバーター回路MIVと同等の回路構成であるので、あとで詳しく説明するが、それらの共通的な回路構成を纏めて図23では左IH加熱源6Lのインバーター回路210Lとして示している。なお、図20で224は共振コンデンサーであり、主加熱コイルMCと4つの副加熱コイルSC1〜SC4を纏めて左IH加熱コイルと呼ぶ場合に、後述する共振コンデンサー110A、110B等を総称する符号として使用している。
図22において、駆動回路228Aは前記主加熱コイル用インバーター回路MIVを駆動するものであり、図20、図21の駆動回路228Aと228Bに相当する。これらは前記(右IH加熱源6R用の)駆動回路228と同様な役目を果たす。
同じく駆動回路228Cは、前記副加熱コイル用インバーター回路SIV1を駆動するものであり、図20、図21の駆動回路228Cと228Dに相当する。
同じく駆動回路228Eは、前記副加熱コイル用インバーター回路SIV2を駆動するものである。同様にして副加熱コイル用インバーター回路SIV3、SIV4をそれぞれ駆動する駆動回路がある。つまり後で述べるが、副加熱コイル用インバーター回路SIV1〜SIV4を駆動する駆動回路として、228C、228D、228E、228F、228G、228H、228I、228Jがある(これらは、いずれも図示されていない)。
図22において、267A、267B、267C(図示せず)、267D(図示せず)は主インバーター回路MIVの電流検出センサー266と同様の機能を果たす電流検出センサーである。
本発明のような誘導加熱方式で被加熱物Nを加熱する加熱調理器においては、左右のIH加熱コイル6LC、6RCに高周波電力を流すための電力制御回路は、いわゆる共振型インバーターと呼ばれている。被加熱物N(金属物)を含めた左右のIH加熱コイル6LC、6RCのインダクタンスと、共振コンデンサーを接続した回路に、スイッチング回路素子を20〜40kHz程度の駆動周波数でオン・オフ制御することによって高周波電流を供給する構成である。
共振型インバーターには、200V電源に適すると言われている電流共振型と、100V電源に適すると言われている電圧共振型とがある。このような共振型インバーター回路の構成には、左右のIH加熱コイル6LC、6RCと共振コンデンサー224の接続先をどのように切り替えるかによって、いわゆるハーフ・ブリッジ回路とフル・ブリッジ回路と呼ばれる方式に分かれる。
共振型インバーター回路を使用して被加熱物を誘導加熱する場合、被加熱物Nが鉄や磁性ステンレス等の磁性材である場合は加熱に寄与する抵抗分(等価抵抗)が大きく、電力が投入しやすいから加熱しやすいが、被加熱物Nがアルミ等の被磁性材の場合は等価抵抗が小さくなるため被加熱物Nに誘起される渦電流がジュ-ル熱に変わりにくい。このため被加熱物Nの材質が磁性材であると判定されると自動的にインバーター回路構成をハーフ・ブリッジ方式に変え、また磁性体が使用された被加熱物Nの場合は、フル・ブリッジ方式に切り替えるという制御を行うことが知られている(例えば、特開平5−251172、特開平9−185986、特開2007−80751号公報)。本発明は特に明示しない限り、インバーター回路210R、210Lは、ハーフ・ブリッジ回路でもフル・ブリッジ回路で構成しても良い。
図20は説明を簡単にするために、右IH加熱源のインバーター回路210Rと、左IH加熱源のインバーター回路210Lの内部構成について詳しく説明して来なかったが、本発明を実際に実施するには図21、図22のようなフル・ブリッジ回路のものが望ましい。
図21、図22を参照して以下具体的に説明すると、加熱調理器は、商用電源部(電源回路)74を有する。電源部74は、直流電源部80と、主インバーター回路MIV、4つの副インバーター回路SIV1〜SIV4を有する。なお、図21では主インバーター回路MIVと、副インバーター回路SIV1の2つしか記載していないが、接続点CP1、CP2を有したインバーター回路SIVと同様構成の、3つの副インバーター回路SIV2〜SIV4が、図21に示すように通電制御回路200に対してそれぞれ並列に接続されている。つまり副インバーター回路SIV1と同様に、他の3つの副インバーター回路SIV2、SIV3、SIV4の両端部になる接続点CP3,CP4、CP5,CP6、CP7が、それぞれ接続点CP1、CP2の回路に接続されている。なお、3つの副インバーター回路SIV2〜SIV4には、図21に示している駆動回路228A,228Bと同様な機能を有する駆動回路を接続してある。駆動回路228A,228Bについては後で詳しく述べる。
以上の説明から明らかなように、4つの副インバーター回路SIV1〜SIV4は、直流電源部80と通電制御回路200に対してそれぞれ並列に接続された構成になっている。
直流電源部80は、交流電源75に接続されている。交流電源75は、単相又は三相の商用交流電源である。交流電源75は、この交流電源75から出力される交流電流を全波整流する整流回路76に接続されている。整流回路76は、この整流回路で全波整流された直流電圧を平滑化する平滑コンデンサー86に接続されている。主インバーター回路MIVと、4つの副インバーター回路SIV1〜SIV4は、交流を直流に変換したのち、更にこの直流を高周波の交流に変換する、フルブリッジインバータである。各インバー回路MIV、SIV1〜SIV4は、電源部74の直流電源部80に接続されている。
主インバーター回路MIVと、副インバーター回路SIV1はそれぞれ、2組のスイッチング素子の対(ペア、組ともいう)77A,78A、77B、78Bを有する。図示するように、主インバーター回路MCのスイッチング素子の対77Aと78Aはそれぞれ、直列接続された2つのスイッチング素子79A,81Aと88A、89Aを有する。副インバーター回路SIV1のスイッチング素子の対77Bと78Bはそれぞれ、直列接続された2つのスイッチング素子102B,103Bと104B,105Bを有する。図示していないが、図24に示す副インバーター回路SIV2、SIV3、SIV4にも、前記したような2組のスイッチング素子をそれぞれ備えている。
そして、スイッチング素子79A,81Aの出力点間とスイッチング素子88A,89Aの出力点間に、主加熱コイルMCと、共振コンデンサー110Aを含む直列共振回路とが接続されている。また、スイッチング素子102B、103Bの出力点間とスイッチング素子104B,105Bの出力点間に、副加熱コイルSC1と共振コンデンサー110Bを含む直列共振回路とが接続されている。同様に図示していないが、他の3つの副インバーター回路SIV2、SIV3、SIV4にも、それぞれ同様に副加熱コイルSC2〜SC4と共振コンデンサー(図示せず)110Aを含む直列共振回路が接続されている。
主インバーター回路MIVの2組のスイッチング素子の対77A,78Aには、それぞれ駆動回路228A、228Bが接続されている。副インバーター回路1の2組のスイッチング素子の対77B、78Bには、駆動回路228C,228Dが接続されている。残りの3つの副インバーター回路SIV2〜SIV4にも、それぞれ駆動回路228E、228F、228G、228H、228I、228J(いずれも図示せず)が1個ずつ接続されている。そして、これら全ての駆動回路228A〜228Jが通電制御回路200を介して被加熱物載置判断部280に接続されている。
通電制御回路200は、主インバーター回路MIVと全ての副インバーター回路SIV1〜SIV4に出力するスイッチ駆動信号の周波数を同一にする機能を有する。
以上の構成であるので、使用者が前面操作部60を通じて主電源を投入したあと、上面操作部61や前面操作部60を通じて通電制御回路200に加熱駆動開始を指令すると、交流電源75の出力が直流電源部80で直流に変換された後、通電制御回路200から出される指令信号(スイッチ駆動信号)に基き、各駆動回路228A、228B、228C、228C(この他の駆動回路の動作説明は省略する)から駆動信号が出される。するとスイッチング素子79A,89Aと81A、88A、スイッチング素子102B,105Bと103B、104Bがそれぞれ交互にオン・オフして、前記直流が高周波の交流に再び変換され、主加熱コイルMCと副加熱コイルSC1に高周波電流が印加される。これにより誘導加熱動作が開始される。なお、通電制御回路200から主インバーター回路MIVと副インバーター回路SIV1に出力される前記スイッチ駆動信号の周波数は等しくなるように自動的に設定されている。
以上の構成であるので、通電制御回路200は、主加熱コイルMCに時計回り方向の高周波電流を流す場合、互いに隣接する領域(主加熱コイルの外周領域)において、4つの副加熱コイルSC1〜SC4に印加された高周波電流IBと、主コイルMCに流れる高周波電流IAとが同一方向(反時計回り方向)に流れるよう主インバーター回路MIVと副インバーター回路SIV1〜SIV4を制御する機能を有する。
逆に、主加熱コイルMCに反時計回り方向の高周波電流IAを流す場合、副加熱コイルSC1〜SC4に印加された高周波電流IBが、互いの隣接領域において同一方向(時計回り方向)に流れるよう、主インバーター回路MIVと全ての副インバーター回路SIV1〜SIV4を制御するものである。 これは前記したように周波数の差に起因する異音の発生を抑止できる。
上記したように被加熱物Nを左右のIH加熱コイル6LC、6RCの通電により誘導加熱する際、被加熱物Nが鉄等の磁性材料で作られている場合は、IH加熱コイル6LC、6RCにそれぞれ共振コンデンサー(図20では224、図22では110Aと110B)を接続した共振回路に、スイッチング回路素子(図21ではスイッチング素子77A,81A,88A,89A、102B,103B,104B,105B)を20〜40KHz程度の駆動周波数でオン・オフ制御して、20〜40KHz程度の周波数の電流を流せば良い。
一方、被加熱物Nがアルミや銅などの高電気導電率の材料で作られている場合には、所望の加熱出力を得るために左右のIH加熱コイル6LC、6RCに大電流を流して被加熱物Nの底面に大きな電流を誘起させる必要がある。そのため高電気導電率の材料で作られている被加熱物Nの場合は、60〜70KHzの駆動周波数でオン・オフ制御している。
図20において、モータ駆動回路33は、図12の本体部Aの内部空間を一定の温度範囲に保つための前記送風機30の駆動モータ300の駆動回路である。
(温度検出回路)
図20において、温度検出回路240には以下の各温度検出素子からの温度検出情報が入力される。
(1)右IH加熱コイル6RCの略中央に設けた温度検出素子31R。
(2)左IH加熱コイル6LCの中央部に設けた温度検出素子31L。
(3)輻射式中央電気加熱源7の電気ヒーター近傍に設けた温度検出素子241。
(4)グリル加熱室9の庫内温度検出用の温度検出素子242。
(5)統合表示手段100の近傍に設置した温度検出素子243。
(6)左右の冷却室8R、8Lの中の冷却ユニットに内蔵された(主・副インバーター回路用の)2つの放熱フィンに密着して取り付けられ、それら2つの放熱フィンの温度を個別に検出する温度検出素子244、245。
なお、温度検出素子を温度検出対象物に対して2箇所以上設けても良い。例えば右IH加熱源6Rの温度センサー31Rを、その右IH加熱コイル6RCの中央部と、外周部分に設け、より正確に温度制御を実現しようとするものでも良い。また温度検出素子を異なる原理を利用したもので構成しても良い。例えば右IH加熱コイル6RCの中央部の温度検出素子は赤外線方式で、外周部分に設けたものはサーミスタ式としても良い。
通電制御回路200は、温度検出回路240からの温度測定状況に応じ、それぞれの温度測定部分が所定温度以上高温にならないように常に送風機30の駆動モータ300のモータ駆動回路33を制御して送風機30を運転させることで、風で冷却する。
前記左IH加熱コイル6LCの中央部に設けた前記温度検出素子31Lは、5つの温度検出素子31L1〜31L5から構成されているが、これについては後で詳しく述べる。
(副加熱コイル)
図17及び図18において、左IH加熱コイル6LCの外側コイル6LC1は中心点X1を有した最大外径がDA(=半径R1の2倍)の環状のコイルであり、内側コイル6LC2は外側コイル6LC1の内側に空間270を置いて環状に巻かれたコイルであり、同じ中心点X1を有している。このような同心円上にある二つの環状コイルから主加熱コイルMCを構成している。
4個の副加熱コイルSC1〜SC4は、前記主加熱コイルMCの外周面に所定の空間271を保って配置され、図18に示すように前記中心点X1を中心とする半径R2の同一円周上に沿って湾曲し、かつ相互が略等間隔に点在するように配置されており、その外形形状は湾曲した長円形もしくは小判型である。この副加熱コイルSC1〜SC4も、集合線を1本又は複数本撚りながら巻き、外形形状が長円形や小判形になるように、部分的に結束具で拘束され、又は全体が耐熱性樹脂などで固められることで形成されている。
これら4つの副加熱コイルSC1〜SC4は図18に示すように、中心点X1から半径R3の円上において、相互に一定寸法の空間273を保って配置されており、その半径R3の円周線が丁度各副加熱コイルSC1〜SC4の長手方向の中心線と一致している。言い換えると、一つの閉回路を構成している環状の主加熱コイルMCの周囲には、その主加熱コイルMCの中心点X1から所定の半径R2を描く円弧が内側(主加熱コイルMCの外周と対面する側)に形成されるように、副加熱コイルSC1〜SC4が4個配置されており、前記円弧に沿った曲率半径で前記集合線が湾曲しながら伸びて電気的に閉回路を構成している。
主加熱コイルMCの高さ寸法(厚さ)と各副加熱コイルSC1〜SC4の高さ寸法(厚さ)は同じであり、しかもそれら上面と前記トッププレート21の下面との対向間隔は同一寸法になるように前述したコイル支持体(コイルベース)290の上に水平に設置、固定されている。
図16に示した直線Q1は、4つの副加熱コイルSC1〜SC4の、内側の湾曲縁、言い換えると湾曲した円弧の一方の端RA(言い換えると、始点)と中心点X1を結ぶ直線である。同じく、直線Q2は、副加熱コイルSC1〜SC4の、円弧の他方の端RB(言い換えると、終点)と中心点X1を結ぶ直線である。この2つの端RAと端RBの間(始点と終点の間)の長さ、つまり主加熱コイルMCの外周面に沿って半径R2で湾曲する(副加熱コイルSCの)円弧の長さが大きいことが加熱効率の観点から望ましい。それは後述するように、主加熱コイルMCの外周縁と、副加熱コイルSC1〜SC4との間で、高周波電流が同じ向きで流れ、磁気的干渉を低減するように工夫しているからである。
しかしながら現実的には、隣り合う2つの副加熱コイルSC1〜SC4の間では高周波電流の向きが反対になるため、これによる影響が問題になる。この影響を抑制するため、一定距離(後述する空間273)を離している。このため、円弧の長さには一定の限界がある。具体的には図16、図18に示したものにおいて、主加熱コイルMCと副加熱コイルSC1〜SC4との間の電気絶縁距離となる空間271が仮に5mmであった場合、主加熱コイルMCの外径はR1の2倍=180mmであるから、R2=180mm+5mm+5mm=190mm、R2の円周の長さは、約596.6mm(=直径R2の190mm×円周率3.14)になる。従って副加熱コイルSC1〜SC4が4個均等に(角度90度ずつ)配置されている場合、4分の1の長さは149.15mmになる。Q1とQ2で構成される角度は90度ではなく、例えば60度〜75度である。そこで70度の場合は、前記149.15mmは、70度÷90度の比率(約0.778)×149.15mmの式から約116mmになる。つまり、各副加熱コイルSC1〜SC4の最も内側の円弧の長さは約116mmである。
またこの実施の形態2のように副加熱コイルSCが4個の場合、主加熱コイルMCの周囲360度の内、280度(=前記した70度の4倍)の範囲が主加熱コイルMCの外周面に沿って(曲率半径R2で)湾曲した(副加熱コイルSCの)円弧であるから、約77.8%(=280度÷360度)の範囲(この率を、以下の説明で「合致率」という)において主加熱コイルMC外周縁と、副加熱コイルSC1〜SC4内周縁の向きが合致(並行)していると言える。これは主加熱コイルMCと副加熱コイルSC1〜SC4との間で、高周波電流IA,IBを同じ向きに流すことが可能となる度合いが大きいことを意味し、磁気的干渉を低減して被加熱物Nに対する磁束密度高め、加熱効率を高める上で貢献している。
図16、図19は説明を分かり易くするため、主加熱コイルMCや副加熱コイルSC1〜SC4など各構成部分の大きさを比例尺で描いていない。合致率が大きい程、高周波電流が同じ向きに流れて、2つの加熱コイルの隣接する領域で磁束密度高め合う長さが大きく加熱効率の観点で望ましいが、実際には前記空間273を確保するため限界があり、100%にはできない。
なお、図18において、直径R3の大きさは、R2+(2×副加熱コイルSCの主加熱コイルMCに隣接した側の集合線全体の平均的横幅W1)+(2×副加熱コイルSCの外側の集合線全体の平均的横幅W2)であるから、W1=15mm、W2=15mmとすると、R3は250mm(=190mm+30mm+30mm)である。空間271は前記した最小寸法の5mmではなく、例えば10mmでも良い。空間はそれぞれ別の電源から電気が供給される主加熱コイルMCと副加熱コイルSC1〜SC4という二つの物体間の絶縁性を保つために必要な絶縁空間であるが、主加熱コイルMCと副加熱コイルSC1〜SC4の間を遮るように、磁器や耐熱性プラスチック等の電気絶縁物を例えば薄い板状にして介在させれば、空間271の電気絶縁性が向上し、空間271の寸法を更に小さくすることができる。
そしてこの副加熱コイル4個SC1〜SC4は、図16に示すように最大外径がDBとなるように配置されている。図17で説明したように、前記外側コイル6LC1と内側コイル6LC2は直列に接続されている。従って、外側コイル6LC1と内側コイル6LC2は同時に通電されるものである。
各副加熱コイルSC1〜SC4は、真円形でないため製造を容易にするには例えば上下2層に分けること、つまり渦巻状に0.1mm〜0.3mm程度の直径を有する細い線(素線)を30本程束にした集合線を1本又は複数本撚りながら、全く平面形状が同じ形で2個を巻いて長円形や小判形に巻き、それを結線して直列に接続し、電気的には単一のコイルとするようにしても良い。なお、主コイルMCよりも同じ単位平面積あたりの磁気駆動力を向上させ、平面積が小さくとも高い出力を出すため主加熱コイルMCの素線よりも、一段と細い素線を用いても良い。
空間(空洞)272は副加熱コイルSC1〜SC4を形成したときに自然とできるものである。つまり集合線を一方方向に巻いていくと必然的に形成される。この空間272は、副加熱コイルSC1〜SC4自体を空冷する場合に利用され、前記送風機30から供給された空冷用空気がこの空間272を通って上昇する。
290は全体が耐熱性樹脂で一体成形されたコイル支持体で、中心点X1から放射状に8本の腕290Bが伸び、また最外周縁部290Cが連結された円形形状になっている。
赤外線センサー31L1〜31L5をそれぞれ保持させる場合、5個の支持部290D1〜290D5を腕290Bの上面又は側面に一体又は別部品にして取り付ける(図19、図23参照)。支持用突起部290Aは放射状に伸びた8本の腕290Bの内、副加熱コイルSC1〜SC4の中央部分に対面することになる4本の腕290Bに一体に形成されるものであり、4箇所において3個ずつ点在するように設けられており、その内の1個は前記副加熱コイルSC1〜SC4の空間272の中に入り、残りの2個の内一方は副加熱コイルSC1〜SC4より中心点X1寄りに、また他方は逆に外側に配置されている。
支持舌部290Eは副加熱コイルSC1〜SC4の両端部に対面することになる4本の腕290Bに、2個ずつ一体に形成されたものであり、この上に副加熱コイルSC1〜SC4の両端部が載せられ、また他の2本の腕290Bの上面に副加熱コイルSC1〜SC4の中央部が載せられている。
円柱状固定部290Fは、前記した支持舌部290Eの全ての上面に1個ずつ一体に突出形成されたものであり、この固定部290Fは副加熱コイルSC1〜SC4を設置したとき、その空間272の両端位置に対応した位置に位置付けられる。この固定部290Fと前記支持用突起部290Aにより、副加熱コイルSC1〜SC4は、その中心部の空間272と内側及び外側位置の3箇所が位置規制されるから、不用意な横移動や加熱に伴う膨張の力(代表的なものとして、図19に一点鎖線で示す矢印FUとFIなどによって変形しない。
なお、支持用突起部290Aと固定部290Fによって、副加熱コイルSC1〜SC4の内側と周囲に部分的に当接させて位置を規制し、そのコイルの全周に亘って囲むような壁(リブともいう)を形成していないのは、副加熱コイルSC1〜SC4の内側や周囲を出来るだけ開放し、冷却用空気の通路となるようにしたためである。
コイル支持体290は、図19と図24に示すように冷却ダクト46の上面に載置されており、冷却ダクト46の噴き出し孔46Cから上方へ噴き出される冷却風によって冷却され、その上方にある主加熱コイルMCと副加熱コイルSC1〜SC4が発熱によって異常に高温度にならないように冷却される。そのため、前記コイル支持体290はその略全体が通気性を確保できる格子状(図19参照)になっており、中心点X1から放射状に配置された前記磁束漏洩防止材73がその風の通路を部分的に横切る形になっている。また副加熱コイルSC1〜SC4の底面も腕290Bや支持舌部290Eの対向部分という一部分を除き、露出した状態であるので、その露出部分の存在によって放熱効果が向上している。
前記磁束漏洩防止材73は、前記中心点X1から放射状になるように前記コイル支持体290の下面に取り付けられている。空間273は図18に示すように隣り合う副加熱コイルSC1〜SC4同士が同時に通電されたとき、それに流れる高周波電流IBが同じ方向であった場合、隣り合う副加熱コイルSC1〜SC4の短部同士が磁気的に干渉しないために設けられている。すなわち、環状の主加熱コイルMCに対して、例えば上面から見て反時計回り方向に駆動電流を流したとき、副加熱コイルSC1〜SC4に対して時計回り方向に駆動電流を流すと、主加熱コイルMCを流れる高周波電流IAの向きと、副加熱コイルSC1〜SC4の主加熱コイルMCに近い側、つまり隣接する側を流れる電流IBの向きは図17に示すように同じになるが、副加熱コイルSC1〜SC4の内、隣り合う同士の端部間では高周波電流IBの向きが互いに反対になるため、これによる磁気的干渉を低減するようにした工夫である。
なお、主加熱コイルMCに対して、例えば上面から見て時計回り方向に駆動電流を流している期間中、副加熱コイルSC1〜SC4に対して反時計回り方向に駆動電流を流し、その後時計回りに駆動電流を流すというように、所定時間間隔で交互に、反対方向に電流の方向を切り替えても良い。
この副加熱コイルSC1〜SC4の端部相互間の空間273の寸法は、前記空間271よりも大きくすることが望ましい。
また図18では実際の製品寸法を正確に表した図ではないため、図面から直接読み取れないが、前記副加熱コイルSC1〜SC4における空間(空洞)272の、中心点X1を通る直線上の横断寸法、すなわち図17に矢印で示すような横幅寸法は、前記空間271よりも大きくすることが望ましい。それは副加熱コイルSC1〜SC4を流れる電流同士が互いに反対向きになるため、個々の副加熱コイルSC1〜SC4自体に生ずる磁気的干渉を少なくするためである。これに比較して空間271は磁気的結合をさせて協同加熱させるため、間隔が狭くても良い。
(個別発光部)
図16、図18、図19及び図20において、個別発光部276は前記主加熱コイルMCと同じ同心円上に点在するように4箇所設置された発光体である。この個別発光部276は、電球や有機EL、LED(発光ダイオード)などを用いた光源(図示せず)と、この光源から入射した光を導光する導光体とを備えており、図20に示す駆動回路278によって駆動される。
導光体としてはアクリル樹脂、ポリカーボネイト、ポリアミド、ポリイミドなどの合成樹脂、またはガラスなどの透明な材料で良い。導光体の上端面は図24に示すように、トッププレート21の下面に向けられており、導光体の上端面から図24に一点鎖線で示すように光源からの光が放射される。なお、このような上方向に対して線条に発光させる発光体については、例えば特許第3941812号により提案されている。この個別発光部276が発光、点灯することによって前記副加熱コイルSC1〜SC4が誘導加熱動作をしているかどうかを知ることができる。
(広域発光部)
再び図16、図18、図19及び図20において、広域発光部277は前記個別発光部276と同心円上に存在するように、個別発光部276の外側を所定の空間275を置いて囲んだ、最大外径寸法がDCである環状の発光体である。この広域発光部277は、前記個別発光部276と同様に光源(図示せず)と、この光源から入射した光を導光する導光体とを備えており、図20に示すように駆動回路278によって駆動される。
この広域発光部277の導光体上端面は図24に示すように、トッププレート21の下面に向けられており、導光体の上端面から図24に一点鎖線で示すように光源からの光が放射されるので、この広域発光部277が発光、点灯することによって前記副加熱コイルSC1〜SC4と主加熱コイルMCとの全体の外縁部が判別できる。
トッププレート21に表示された円である案内マーク6LMの位置と、前記個別発光部276の位置とは完全に一致しているものではない。
案内マーク6LMの位置は主加熱コイルMCの外径寸法DAに略対応しているが、個別発光部276は副加熱コイルSC1〜SC4を包囲するような大きさであるからである。
また、トッププレート21に表示された円形の協同加熱エリアマークEMの位置と、広域発光部277の位置とは大体一致しているが、協同加熱エリアマークEMは通常印刷等によってトッププレート21の上面に形成されるので、その印刷や塗装の皮膜(可視光線を殆ど透過しない材質が用いられている)を考慮し、その僅か数mm程度外側位置に、広域発光部277の上端面が近接対向するように設定されている。なお、協同加熱エリアマークEMの透光性が確保されれば、完全に一致させても良い。
40は吹き零れ検知用の、細い金属導体から形成された第1の電極で、前記中心点X1を中心として略半円形状に形成されている。前後両端部側に端子42、43をそれぞれ有している。第1の電極40は、右IH加熱源6Rと左IH加熱源6Lの外周近傍で、トッププレート21の下面に設けており、副加熱コイルC1及びこれと隣り合う副加熱コイルSC3の外周縁形状に沿って湾曲している。
41は吹き零れ検知用の、細い金属導体から形成された第2の電極で、前記中心点X1を中心として略半円形状に形成されている。前後両端部側に端子44,45をそれぞれ有している。第2の電極41は、右IH加熱源6Rと左IH加熱源6Lの外周近傍で、トッププレート21の下面に設けており、副加熱コイルC2及びこれと隣り合う副加熱コイルSC4の外周縁形状に沿って湾曲している。
第1の電極40と第2の電極41は、図24に示すようにトッププレート21の下面で、防磁リング291と個別発光部276からの光が透過する部分の間の狭い環状エリアに設けてある。従って個別発光部276の真上部分に被加熱物Nからの被調理物が吹き零れたり、あるいはさらにこの部分より外側まで広がって広域発光部277の真上位置まで流れたりした場合には、何れも吹き零れと判定される。なお、トッププレート21の上方から見た場合、広域発光部277から第1の電極40と第2の電極41までの距離は、それぞれ10〜20mm程度である。従って広域発光部277が点灯した場合、その光の帯のすぐ内側位置に第1の電極40と第2の電極41が位置していることになる。
全ての接続端子42,44、44、45は、前記空間273を通して空間271部分まで延び、上面操作部61の真下など別の箇所に設置した吹き零れ検知部50と電気的に接続されている。空間271から、後述するコイル支持体290に設けた孔を貫通させて裏側に配線を回し、磁気的影響を少なくする工夫をしているが、逆に中心点X1から放射方向に水平に延ばしても良い。なお主加熱コイルMCと副加熱コイル群SCとの間の空間271は、空間273に比較するとそれより大きくないので、主加熱コイルや副加熱コイル群SCの駆動時の電界の影響を少なくする観点からが、放射方向に配線する方法がある。但し、外側に直線的に延ばした場合、広域発光部277が全周にあるから、接続端子からの配線がその広域発光部277の上を交差することになり、広域発光部277の点灯時にトッププレート21の上面に影となって見えることがある。また接続端子42,44、44、45から吹き零れ検知部50までの間を磁気シールド効果のあるチューブで覆ったり、テープを巻いたりすると、誘導加熱時に外乱信号(ノイズ)の影響を受けないので更に好ましい。
(赤外線センサー配置)
前記赤外線センサー31Lは、図16に示すように31L1〜31L5の5個から構成されており、この内、赤外線センサー31L1は前記空間270に設置されている。この温度センサー31L1は主加熱コイルMCの上に置かれる鍋等の被加熱物Nの温度を検知するものである。この主加熱コイルMCの外側には、各副加熱コイルSC1〜SC4のための赤外線センサー31L2〜31L5がそれぞれ配置され、これら赤外線センサーは全て前記コイル支持体290に形成された突起状の支持用突起部290Aの中に設置されている。
なお、被加熱物載置判断部280の機能、すなわち被加熱物Nが載置されているかどうかを判定する機能を発揮するために前記した赤外線センサー31L2〜31L5を使用しないことも可能であり、代わりの手段として光検出部(光センサー)がある。これはトッププレート21の上方から室内の照明の光や太陽光線などの自然界の光が届くかどうかを判別できるからである。被加熱物Nが置かれていない場合、その被加熱物Nの下方にある光検出部は、室内照明等の外乱光を検出するから鍋等の物体が載置されていないという判断情報にできる。
各温度センサー31R、31L、241、242、244、245からの温度データは、温度検出回路240を経由して通電制御回路200に送られるが、加熱コイル6RC、6LCに関する赤外線センサー(31L1〜31L5の5つ全てを指す)の温度検出データは、前記被加熱物載置判断部280に入力される。
金属製防磁リング291(図24参照)はコイル支持体290の最も外側に設置されたリング状のものである。図20に示すスピーカー316は音声合成装置315からの信号で駆動される。この音声合成装置315は、前記統合表示手段100に表示される各種情報を音声でも報知するものであり、火力値や加熱動作を実行中の加熱源の名称(例えば、左IH加熱源6L)、調理開始からの経過時間、タイマーで設定した残りの加熱時間、各種の検出温度、操作に参考になる情報が報知される。参考になる情報とは、異常運転を検知したこと及び不適正操作が使用時によって行われたこと等の情報も含む。また各種調理をできるだけ好ましい状態や加熱位置(被加熱物Nの位置含む)で行えるような情報も含まれる。後述する主加熱コイルMCや副加熱コイルSCのどれが実際に加熱動作を実行しているのかという情報も含まれている。さらに吹き零れが発生する懸念があることや、実際に吹き零れが発生したという情報も含まれる。
(加熱調理器の動作)
次に、上記の構成からなる加熱調理器の動作の概要を説明する。
電源投入から調理準備開始までの基本動作プログラムが、通電制御回路200の内部にある記憶部203(図20参照)に格納されている。
使用者は、まず電源プラグを200Vの商用電源に接続し、主電源スイッチ63の操作ボタン63A(図12参照)を押して電源を投入する。
すると電源部74と定電圧回路(図示せず)を介して所定の低い電源電圧が通電制御回路200に供給され、通電制御回路200は起動される。通電制御回路200自身の制御プログラムにより自己診断し、異常がない場合には送風機30の駆動モータ300を駆動するためのモータ駆動回路33が予備駆動される。また、左IH加熱源6Lおよび右IH加熱源6R、統合表示手段100の液晶表示部の駆動回路215もそれぞれ予備起動する。
図20の温度検出回路240は各温度検出素子(温度センサー)31R,31L(特に明示しない限り、以下説明では、31L1〜31L5の5つ全てを含んだものを指す)、温度検出素子241、242、244、245によって検出された温度データを読み込み、そのデータを通電制御回路200に送る。
以上のようにして通電制御回路200には、主要な構成部分の回路電流や電圧、温度などのデータが集まるので、通電制御回路200は、調理前の異常監視制御として、異常加熱判定を行う。例えば、統合表示手段100の液晶基板周辺の温度がその液晶表示基板の耐熱温度(例えば70℃)よりも高い場合、通電制御回路200は異常高温と判定する。
また図20の電流検出センサー227は、右IH加熱源6Rと左IH加熱源6Lの各インバーター回路に流れる電流を検出し、この検出出力は通電制御回路200の入力部201に供給される。通電制御回路200は、取得した電流検出センサーの検出電流を記憶部203に記憶されている判定基準データの正規の電流値と比較して、過少電流や過大電流が検出された場合には、通電制御回路200は何らかの事故や導通不良などによる異常と判定する。
以上の自己診断ステップによって異常判定が無かった場合は「調理開始準備完了」となる。しかし、異常判定が行われた場合には、所定の異常時処理が行われ、調理開始ができないようになる。
異常判定がなかった場合、統合表示手段100の各加熱源対応エリアには、加熱動作できる旨の表示が出て、希望の加熱源を選択し、誘導加熱の場合は、鍋等の被加熱物Nをトッププレート21に描かれた希望の加熱源の案内マーク6LM、6RM、7Mの上に置くように表示される(統合表示手段100と連動するよう音声合成装置315は、同時に音声でそのような操作を使用者に促がす)。また同時に、全ての個別発光部276と広域発光部277も所定の色(例えば黄色。以下「形態1」という)の光で発光、点灯するように通電制御回路200で指令される。
次に上記のように異常判定が完了して加熱調理準備完了するまでの全体の主要な制御動作について図25を参照しながら説明する。図25は図5で示したような通常操作モード又は簡単操作モードの選択を終え、通常操作モードでスタートした場合である。
まず前記被加熱物載置判断部280によって、主加熱コイルMCと副加熱コイルSC1〜SC4それぞれのコイルの上方に被加熱物Nが載置されているか否か、または被加熱物Nの底部面積が所定値より大きいか否かが推定され、この推定結果が制御部である通電制御回路200に伝達され、大径鍋に適する加熱処理にするか通常鍋に適する加熱処理にするか等が決定される(ステップMS11)。
適合鍋であるが通常サイズの鍋や小鍋、あるいは加熱不適合等の場合は、大径鍋とは別の処理(MS16)になる。
通電制御回路200は操作部E近傍に設置されている統合表示手段100の液晶表示画面に対し、希望する調理メニューを選択するように促す表示をする(MS12)。
使用者が調理メニューや火力、調理時間などを操作部で選択、入力した場合(MS13)、本格的に誘導加熱動作が開始される(MS14)。
統合表示手段100に表示される調理メニューとしては、実施の形態1と同様に「高速加熱」、「揚げ物」、「湯沸し」、「予熱」、「炊飯」、「茹で」、「湯沸し+保温」という7つである。
使用者がこれら7つの調理メニューの中の何れか一つを選択した場合、それらメニューに対応した制御モードが通電制御回路200の内蔵プログラムによって自動的に選択され、主加熱コイルMCや副加熱コイルSC1〜SC4のそれぞれの通電可否や通電量(火力)、通電時間などが設定される。調理メニューによっては使用者に任意の火力や通電時間等を設定するように促す表示を表示部に行う(MS15)。
以上によって大径鍋を対象にした調理工程に移行する準備完了となり、調理メニュー選択後、速やかに誘導加熱動作が開始される。なお、「通常鍋」や「小型鍋」の場合も基本的には上記ステップMS12〜MS15と同様である。「通常鍋」や「小型鍋」の場合も調理メニューとして7つの調理メニューが統合表示手段100に表示されるが、「通常鍋」や「小型鍋」の場合は、この実施の形態2では中心部の主加熱コイルMCだけでしか加熱しないので、制御内容(火力や通電パターンなど)は大きくことなる。当然、副加熱コイルSC1〜SC4の全部やその一部だけを個別に加熱駆動できないので、副加熱コイルSC1〜SC4を利用した加熱パターンはない。すなわち、副加熱コイルSC1〜SC4を利用した対流促進制御は実施されない。
(調理工程)
次に、調理工程に移行した場合について、右IH加熱源6Rを「通常鍋や小型鍋」で使用した場合を例にして説明する。なお小型鍋とはこの実施の形態2では直径10cm未満のものをいう。
右IH加熱源6Rを使用する方法には、前面操作部60を使用する場合と、上面操作部61を使用する場合の2つがあるが、前面操作部での調理開始については説明を省略し、上面操作部61を使用する場合について説明する。
(上面操作部での調理開始)
次に、上面操作部61(図14参照)を使用する場合について説明する。
既に通電制御回路200は起動され、統合表示手段100の液晶表示部の駆動回路215(図20参照)も予備起動されているから、統合表示手段100の液晶表示部には全ての加熱源を選択する入力キーが表示されている。そこで、その中の右IH加熱源6Rを選択する入力キーを押せば、液晶表示部の右IH加熱源6Rの対応エリアの面積が自動的に拡大され、さらにその状態で各入力キーは場面毎に入力機能が切り替えられて表示されるので、その表示された入力キーを次々に操作すれば、調理の種類と、火力レベルや加熱時間などの調理条件が設定される。
そして所望の調理条件が設定できた段階では、入力キーには「決定」という文字が表示されるので、これに触れれば調理条件の入力が確定する。
そして次に前記したように通電制御回路200は鍋適否判定処理を実施し、適合する鍋(被加熱物N)であると判定した場合、通電制御回路200は右IH加熱源6Rに、使用者が設定した所定の設定火力を発揮するように、自動的に適応する通電制御処理を実行する。これにより右IH加熱コイル6RCからの高周波磁束により被加熱物Nの鍋が高温になり、電磁誘導加熱調理動作(調理工程)に入る。
(グリル加熱室での調理開始)
次に、グリル加熱室9の輻射式電気加熱源22、23(図20参照)に通電した場合について説明する。この調理は右IH加熱源6Rや左IH加熱源6Lによる加熱調理中にも行えるが、輻射式中央電気加熱源7とは同時に行えないようにインターロック機能を組み込んだ制限プログラムが通電制御回路200に内蔵されている。これは調理器全体の定格電力の制限を超えることになるからである。
グリル加熱室9内部で各種調理を開始する方法には、上面操作部61の中で統合表示手段100の液晶表示部に表示される入力キーを使う方法と、上面操作部61に常に表示されている輻射式電気加熱源22、23用の押圧式の操作ボタンを押す方法の2つがある。
これら何れの方法でも、輻射式電気加熱源22、23を同時又は個別に通電することでグリル加熱室9内部において各種調理ができる。通電制御回路200は、温度センサー242、温度制御回路240からの情報を受けて、グリル加熱室9の内部雰囲気温度が予め通電制御回路200で設定している目標温度になるように、前記輻射式電気加熱源22、23の通電を制御し、調理開始から所定時間を経過した段階でその旨を報知し(統合表示手段100による表示や音声合成装置315による報知もある)、調理は終了する。
輻射式電気加熱源22、23による加熱調理に伴ってグリル加熱室9の内部には高温の熱気が発生する。このためグリル加熱室9の内部圧力は自然と高まり、後部の排気口9Eから排気ダクト14の中を自然と上昇していき室内へ排気される。
(左IH加熱源6Lでの調理開始)
次に、左IH加熱源6Lを用いた加熱調理を行う場合の動作について説明する。なお、左IH加熱源6Lも右IH加熱源6Rと同様に調理前異常監視処理を終えた後に調理モードに移行し、また左IH加熱源6Lを使用する方法には、前面操作部60(図11参照)を使用する場合と、上面操作部61(図14参照)を使用する場合の2つがあるが、以下の説明では、上面操作部61(図14参照)を使用する場合であって、大径鍋が被加熱物Nとして使用された場合において、左IH加熱コイル6LC(図12参照)に通電が開始されて調理開始された段階から説明する。
鍋底径が主加熱コイルMCの最大外径DA(図16参照)よりも遥かに大きな1つの楕円形や長方形の鍋(被加熱物N)を使用する場合、本実施の形態2の加熱調理器では、その楕円状の被加熱物Nを主加熱コイルMCで加熱するとともに、副加熱コイルSC1〜SC4で協同加熱することができることが出来るというメリットがある。
例えば、主加熱コイルMCと、その右側にある1つの副加熱コイルSC1の双方の上に跨るような楕円状の鍋(被加熱物N)であった場合を想定する。
そのような楕円状の鍋(被加熱物N)が載置されて加熱調理が開始されると、楕円状の鍋(被加熱物N)が温度上昇していくが、主加熱コイルMCの赤外線センサー31L1(図16参照)と、副加熱コイルSC1の赤外線センサー31L2の双方は、他の赤外線センサー31L3、31L4、31L5の受光量との比較では外乱光(室内照明の光や太陽光など)の入力が少なく、温度上昇傾向にあるという現象を示すので、このような情報を基にして前記被加熱物載置判断部280が、楕円状の鍋(被加熱物N)が存在しているという判定を行う。
また、主加熱コイルMCの電流センサー227と副加熱コイルSC1〜SC4の各電流センサー267A〜267D(図20参照)によっても、上方に同一の被加熱物Nが載置されているか否かを判断する基礎情報が前記被加熱物載置判断部280(図20、図23参照)に入力される。電流変化を検出することで、前記被加熱物載置判断部280は主加熱コイルMCと副加熱コイルSCのインピーダンスの変化を検出し、楕円状の鍋(被加熱物N)が載置されている主加熱コイルMCのインバーター回路MIV及び副加熱コイルSC1〜SC4の各インバーター回路SIV1〜SIV4を駆動し、4つの副加熱コイルSC1〜SC4の内、楕円状の鍋(被加熱物N)が載置されているもの(少なくとも1つ)に高周波電流を流し、楕円状の鍋(被加熱物N)が載置されていない他の副加熱コイルに対しては、高周波電流を抑制又は停止するように前記通電制御回路200が指令信号を発する。
例えば、被加熱物載置判断部280が主加熱コイルMCと、1つの副加熱コイルSC1の上方に同一の楕円状の鍋(被加熱物N)が載置されていると判断したときに、通電制御回路200は、主加熱コイルMCと特定の副加熱コイルSC1だけを連動して動作させ、予め定めた火力割合によってそれら二つの加熱コイルにそれぞれのインバーター回路MIV、SIV1によって高周波電力を供給する(この火力配分については、後で詳しく説明する)。
ここで「火力割合」とは、例えば使用者が左IH加熱源6Lで3KWの火力で調理しようと調理開始している場合、通電制御回路200が、主加熱コイルMCを2.4KW、副加熱コイルSC1を600Wというように配分した場合、その2.4KWと600Wの比のことをいう。この例の場合では4:1である。また、その副加熱コイルSC1の外側位置にある個別発光部276(図16、図18参照)だけが黄色やオレンジ色の発光状態(形態1)から赤色発光状態(以下、「形態2」という)に変化する、駆動回路278(図20参照)が個別発光部276を駆動し、個別発光部276にある所定の光源(LED)が発光、点灯し、ここまで発光、点灯していた黄色用光源は消灯する。従って実行中の副加熱コイルSC1だけが赤い光の帯でトッププレート21の上方から視認できるように表示される。他の副加熱コイルに対応した個別発光部276は発光を停止する。
この副加熱コイルSC1単体を駆動して誘導加熱調理することはできず、また他の3つの副加熱コイルSC2、SC3、SC4の各単体及びそれらを組み合わせても誘導加熱調理することはできないようになっている。言い換えると主加熱コイルMCが駆動される場合に初めてその周辺にある4つの副加熱コイルSC1、SC2、SC3、SC4の何れか1つ又は複数が同時に加熱駆動されることが特徴である。但し、4つの副加熱コイルSC1、SC2、SC3、SC4の全ての上方を覆うような大きな外径の被加熱物Nが置かれた場合、対流促進のモードを実施する場合には、次のように4つの副加熱コイルが駆動される制御パターンが、通電制御回路200の制御プログラムの中に用意されている。
(1)主加熱コイルMCが加熱駆動されている場合に、同時に副加熱コイルSC1、SC2、SC3、SC4の全部又は一部が、所定の順序や火力で加熱駆動される。
(2)主加熱コイルMCが加熱駆動している期間中、副加熱コイルSC1、SC2、SC3、SC4の全部又は一部が、所定の順序や火力で加熱駆動される。
(3)主加熱コイルMCの加熱駆動が(例えば調理の終盤で)終了する前の所定時間、副加熱コイルSC1、SC2、SC3、SC4の全部又は一部が、所定の順序や火力で加熱駆動される。
また、このような協同加熱が行われている場合、通電制御回路200は、主加熱コイルMCと特定の副加熱コイルSC1だけに、予め定めた火力割合によってそれら二つの加熱コイルを専用のインバーター回路MIV、SIV1によって高周波電力を供給して加熱動作を実行しているから、この情報に基づいて通電制御回路200は、駆動回路278(図20参照)に駆動指令を発し、また個別発光部276は、前記したように協同加熱動作の開始時点から、実行中の副加熱コイルSC1を特定できるように発光する。
また、協同加熱を表示する一手段として、本実施の形態2では個別発光部276が発光、点灯して表示している。すなわち、個別発光部276が、最初の黄色又はオレンジ色の発光状態(形態1)から赤色発光状態(「形態2」)に変化した段階で協同加熱状態に入ったことが使用者には認識できる。
尚、このような表示形態ではなく、統合表示手段100の液晶表示画面にて文字で直接表示するものでも良い。
なお、広域発光部277(図16、図18、図24参照)は、使用者が主電源スイッチ63の操作ボタン63A(図12参照)を押して電源を投入し、異常判定が済んだ段階から駆動回路278(図20参照)によって駆動され、最初は黄色又はオレンジ色に連続的に発光しているので、楕円状の鍋(被加熱物N)を左IH加熱源6Lの上方に置く段階から、その載置場所を使用者に案内することができる。主加熱コイルMCに加熱用高周波電力が供給されて加熱動作が開始された段階で、通電制御回路200は広域発光部277の発光色を変更(例えば黄色であったものを赤色に)する。例えば広域発光部277にある黄色光源(LED)の発光、点灯を止め、代わりにその光源の隣に設置している赤色光源(LED)の発光、点灯を開始するようにしても良いし、多色光源(3色発光LED等)を使用し発光色を変更するようにしても良い。
また、所定の時間t(数秒〜10秒程度)楕円状の鍋(被加熱物N)を一時的に持ち上げたままにしたり、左右に移動したりしても、通電制御回路200は加熱動作を維持するとともに、この広域発光部277の発光、点灯状態を変化させず、使用者に対して楕円状の鍋(被加熱物N)を載置するのに好ましい場所を表示し続ける。
ここで、前記所定の時間tを超えて楕円状の鍋(被加熱物N)を持ち上げたままにすると、楕円状の鍋(被加熱物N)が無いという判定を被加熱物載置判断部280が行い、通電制御回路200にその旨を出力する。通電制御回路200は、被加熱物載置判断部280からの判別情報に基づいて再度楕円状の鍋(被加熱物N)が置かれるまでの期間、一時的に誘導加熱の火力を下げたり、停止したりする指令を発する。
この場合、使用者に対して楕円状の鍋(被加熱物N)を載置するのに好ましい場所の表示はそのまま維持するが、広域発光部277の発光、点灯状態(点灯色など)を火力の状態に合わせて変更しても良い。例えば火力が下がった状態では、オレンジ色に発光、点灯させたり火力が停止したら黄色に発光、点灯させたりすると、載置するのに好ましい場所の表示と併せて火力の状態を使用者に報知することが可能となる。
さらに、楕円状の鍋(被加熱物N)を例えば左に移動させると、被加熱物載置判断部280が主加熱コイルMCと、左側の副加熱コイルSC2の上方に同一の楕円状の鍋(被加熱物N)が載置されていると判断し、通電制御回路200は、被加熱物載置判断部280からの判別情報に基づいて主加熱コイルMC及びその左側にある特定の副加熱コイルSC2の2者だけを連動して動作させ、予め定めた火力割合によってそれら二つの加熱コイルに対してそれぞれのインバーター回路MIV、SIV2から高周波電力を供給する。そして左側の副加熱コイルSC2への通電は停止され、既に実行中の「火力」(例えば3KW)と所定の火力配分(例えば、左IH加熱源6Lで3KWの火力で調理しようと調理している場合、主加熱コイルMCは2.4KW、副加熱コイルSC1は600Wであるから、4:1)が維持されてそのまま調理が継続される。この3KWという火力はそのまま統合表示装置100によって数字と文字で表示され続ける。
また、副加熱コイルSC1が協同加熱に寄与しなくなり、代わりに別の副加熱コイルSC2が協同加熱動作に加わったことで専用のインバーターSIV2に高周波電力が供給される。即ち、通電制御回路200は、被加熱物載置判断部280からの判別情報に基づいて副加熱コイルがSC1からSC2へ切り替えられたことを検知すると、駆動回路278に駆動指令を発し、個別発光部276が協同加熱動作を実行中の副加熱コイルSC2を特定できるように指令する。つまり、通電制御回路200は、その副加熱コイルSC2の外側(図19では左側)位置にある個別発光部276だけが発光、点灯するように駆動回路278が個別発光部276を駆動する。そのため、個別発光部276にある所定の光源(LED)が(形態2で)発光し、ここまで副加熱コイルSC2に近接した位置で発光し、その光で誘導加熱動作中であることを使用者に視認できるように表示していた赤色の光源(LED)は消える。
インバーター回路MIVの駆動に用いる駆動周波数は、副加熱コイル用のインバーター回路SIV1〜SIV4の駆動周波数と基本的に同じにしているが、これは前記したように、異音(うなり)発生の防止の観点からである。主加熱コイルMCに流れる高周波電流IAと副加熱コイルSC1〜SC4に流れる高周波電流IBの向きは、図18に実線の矢印で示すように、隣接する側において同じ向きとなることが加熱効率の観点から好ましい(図18では主加熱コイルMCにおいて反時計回り、4個の副加熱コイルSC1〜4は時計回りで一致している場合を示す)。
これは、このように2個の独立したコイルの隣接する領域において、同一方向に同時に電流が流れる場合、その電流で発生する磁束は互いに強め合い、被加熱物Nを鎖交する磁束密度を増大させ、被加熱物底面に渦電流を多く生成して効率良く誘導加熱できるからである。図24に破線で示すループは、図21で示した高周波電流IA、IBの流れる方向と逆の方向でそれら高周波電流を流した場合における磁束ループを示す。
この磁束ループで被加熱物Nの底壁面には、前記高周波電流とは逆の向きに流れる渦電流が生成され、ジュール熱を発生させる。主加熱コイルMCと副加熱コイルSC1〜SC4が接近して設置されている場合で電流が互いに逆方向に流れると、両者にて生成される交流磁場がその近接しているある領域範囲において干渉しあい、結果的にそれら主加熱コイルMCと副加熱コイルSC1〜SC4にて生成される鍋電流(被加熱物Nに流れる電流)を大きくできず、この鍋電流の二乗に比例して大きくなる発熱量を大きくできない。しかしながら、このことは逆に別の利点を生む。すなわち、前記したような磁束密度が高くなる隣接領域で、磁束密度が低く抑えられるため、主加熱コイルMCと、協同加熱動作する一つ又は複数個の副加熱コイルSC1〜SC4とを平面的に包含するような広い領域においては、被加熱物Nを鎖交する磁束の分布を平均化、つまり均一化でき、そのような広い加熱領域で調理をする場合に温度分布を平均化できるという利点がある。
従って本実施の形態2では、加熱コイルMCと副加熱コイルSC1〜SC4との隣接する領域において、互いに同一方向に電流を流すという方式を特定の調理メニューの場合には採用し、別の調理メニューによっては電流の向きを逆に反対方向にするという切り替え動作を採用している。なお、図24に示したような磁気ループは、加熱コイルに流れる高周波電流IA、IBの方向によって生成される方向が決まる。
次に、図25〜図30に示すものは本発明の実施の形態2における加熱調理動作のフローチャートである。
このフローチャートの制御プログラムは、通電制御回路200の内部にある記憶部203(図20参照)に格納されている。
図25は前に説明したので、図26を説明する。まず調理を開始する場合、まず図12に示す調理器本体部Aの前面操作部60に設けた主電源スイッチ63の操作ボタンを押してONにする(ステップ1。以下、ステップは「ST」と省略する)。すると通電制御回路200には所定の電圧の電源が供給され、通電制御回路200は自ら調理器全体の異常有無チェックを実行する(ST2)。通電制御回路200自身の制御プログラムにより自己診断し、異常がない場合には送風機30の駆動モータ300を駆動するためのモータ駆動回路33(図22参照)が予備駆動される。また、左IH加熱源6L、統合表示手段100の液晶表示部の駆動回路215もそれぞれ予備起動する(ST3)。
そして異常があるかどうかは判定処理(ST2)の結果、異常が発見されなかった場合はST3に進む。一方、異常が発見された場合は所定の異常処理に進み、最終的には通電回路200自身が自ら電源を切って停止する。
ST3に進むと、通電制御回路200は、駆動回路278を制御して、全ての個別発光部276と広域発光部277を一斉に発光、点灯させる(黄色の光やオレンジ色の光。形態1)。なお、個別発光部276又は広域発光部277の何れかが先に1つずつ発光し、次に別の発光部が発光し、次第に発光部の数が増えるという方法で全ての個別発光部276と広域発光部277が発光をすることでも良い。そしてこのように全ての個別発光部276と広域発光部277が(形態1で)発光したままの状態で使用者からの次の指令を待つ状態になる。なお、ここで全ての個別発光部276と広域発光部277は、例えば黄色の光を連続的に発している状態である(ST3A)。なお、個別発光部276と広域発光部277を「発光、点灯」と説明している部分があるが、個別発光部276と広域発光部277がLED等半導体発光素子で構成されている場合は、その素子が表示光を発している場合を「発光」、ランプから表示光が放射されている場合は「点灯」と分けて記載することを省略し、以下の説明では「発光」に統一する
次に前記したように左右にそれぞれIH加熱源6L、6R(図13参照)があるから、そのどちらかを使用者が前面操作部60や上面操作部61で選択する(ST4)。ここで左IH加熱源6Lを選択すると、この選択結果は統合表示手段100における左IH加熱源6Lの対応エリアに表示される。その対応エリアの面積は自動的に拡大され、その面積が一定時間維持される(右IH加熱源6Rなどの他の加熱源が運転されていない場合は、調理完了まで、この拡大された面積がそのまま維持される)。そして選択された加熱コイル6LCの上に鍋(被加熱物N)があるかどうかが検知される。この検知は被加熱物載置判断部280によって行われる。
通電制御回路200は、被加熱物載置判断部280からの検知情報に基づいて鍋(被加熱物N)が置いてあると判定すると(ST5)、その鍋(被加熱物N)が誘導加熱に適するものかどうかを判定する(ST6)。この判定は被加熱物載置判断部280からの判別情報によって行われる。被加熱物載置判断部280は、直径が数cm等のように余りにも小さい鍋(被加熱物N)や底面が大きく変形、湾曲等しているような鍋(被加熱物N)は電気的特性の違いで被加熱物Nを判別し、判別結果を判別情報として出力する。
そして、通電制御回路200は、被加熱物載置判断部280からの判別情報に基づいて鍋(被加熱物N)が適正であるかどうかの判定処理をST6で行い、適正であると判定した場合は加熱動作開始のステップST7に進む。統合表示手段100における左IH加熱源6Lの対応エリアに、設定された火力(例えば、最小火力の「火力1」の120W〜「火力8」の2.5KW。「最大火力」の3KWの9段階の何れか一つ)が表示される。例えば1KWである。なお、最初に火力が所定の火力、例えば中火(例えば火力5で、1KW)にデフォルト設定されていて、使用者が火力設定を行わずともその初期設定火力で調理開始できるようにしたものでも良い。
また不適正であった場合、前記した統合表示手段100のような表示手段がこの段階で既に動作しているので、通電制御回路200は、その統合表示手段100に鍋(被加熱物N)が不適当である旨を表示させ、また同時に音声合成装置315にその旨のメッセージ情報を出力してスピーカー316より音声で報知出力させる。
このように左右IH加熱源6L、6Rの何れかを選択した場合、予め定められた火力(前記したように例えば1KW)に基づいて自動的に調理開始を行うので、新たに調理開始指令を入力キーやダイアル、操作ボタンなどで行わなくて良い。もちろん、使用者は誘導加熱開始後に随時火力を任意に変更できる。
ST7Aで左IH加熱源6Lにて誘導加熱動作が開始されると、左IH加熱源6Lを構成する主加熱コイルMCと副加熱コイルSC1〜SC4による誘導加熱が行われるが、ST5において鍋(被加熱物N)が主加熱コイルMCだけの上にあるのか、又はそれに加えてどの副加熱コイルSC1〜SC4の上にあるのかが検知されているので、主加熱コイルMCだけの上にある場合は、その主加熱コイルMC単独での誘導加熱になり、また少なくとも1つの副加熱コイルSCの上にも同じ鍋(被加熱物N)が置かれている場合は、主加熱コイルMCと副加熱コイルSCによる協同加熱になる。ST8ではこのような判定処理が行われる。
協同加熱の場合、それに関与する副加熱コイルSC1〜SC4と主加熱コイルMCに対し、通電制御回路200の制御の下に、インバーター回路MIV、SIV1〜SIV4から高周波電流がそれぞれ供給され、協同加熱が開始される(ST9)。そして通電制御回路200からの制御指令により広域発光部277は黄色(又はオレンジ色)の発光状態(形態1)から赤色の発光状態(形態2)に発光形態を変化させる(ST10)。なおST3Aと同じ黄色を発光させたまま、発光を間欠的にして使用者には点滅しているように見えるようにすること、又は発光の明るさを増すことなど変化させても良い。
また、通電制御回路200は、統合表示手段100に例えば、主加熱コイルMCと副加熱コイルSC1による協同加熱動作中である旨の情報を火力情報と共に出力する。これにより、加熱動作開始している副加熱コイルがSC1であることが前記統合表示手段100の対応エリアに文字や図形などで表示される。また、通電制御回路200は、同様に「右側の副コイルも加熱しています」等という音声情報を作成してスピーカー316に出力し、スピーカー316から上記メッセージが表示と同時に音声で報知される。
なお、広域発光部277の発光状態継続とは別に、協同加熱に関与している副加熱コイルSC1〜SC4を使用者が視覚的に特定できるように、例えば図16に示したように、副加熱コイルSC1〜SC4毎に、その側方近傍位置に設けた個別発光部276を同時に発光させても良い。
そして使用者からの加熱調理停止指令が来るまでST8〜ST10の処理が数秒間隔の短い周期で繰り返される。一旦、右側の副加熱コイルSC1が協同加熱に関与していたとしても、使用者が調理の途中で鍋(被加熱物N)を無意識に、又は意識して前後左右に少し移動させる場合があるため、その移動後には鍋(被加熱物N)の載置場所が変わってしまう。そこで、常に協同加熱の判断ステップST8では、前記被加熱物載置判断部280の情報を音声合成装置315にも出力する。これにより、音声合成装置315では、被加熱物載置判断部280や温度センサー31L1〜31L5の情報から通電制御回路200加熱駆動すべき副加熱コイルSC1〜SC4を特定した処理を行った場合、その結果をリアルタイムで報知する。
一方、ST8で協同加熱ではないとの判断がされた場合(図25でいうステップMS11に相当する)、通電制御回路200が主インバーター回路MIVを制御して主加熱コイルMCのみを駆動させる。これにより、主加熱コイルMCに対し、インバーター回路MIVから高周波電流が供給され、個別加熱が開始される(ST11)。そしてその個別加熱に関与している主加熱コイルMCに対応してその加熱域の外周縁部に光を放射する個別発光部276を、黄色(又はオレンジ色)の発光、点灯状態(形態1)から赤色の発光状態(形態2)に発光形態を変化させる(ST12)。
なお、ST3と同じ色を発光させたまま、発光を間欠的にして使用者には点滅しているように見えるようにすること、又は発光の明るさを増すことなどの変化にしても良く、何れも形態の変化、切り替えの一種である。なお、個別発光部276の発光状態の継続とは別に、広域発光部277の発光をそのまま継続しても良いが、停止して消しても良い。そしてステップ13に進む。
そして使用者からの加熱調理停止指令が来た場合、あるいはタイマー調理を行っていて所定の設定時間が経過した(タイムアップ)ことが通電制御回路200で判定された場合、通電制御回路200は主インバーター回路MIVと、副インバーター回路SIV1〜SIV4を制御して、主加熱コイルMCと、その時点で加熱駆動されていた全ての副加熱コイルSC1〜SC4の通電を停止させる。また通電制御回路200はトッププレート21の温度が高温であるという注意喚起を行うため、全ての広域発光部277と個別発光部276を赤色で点滅させる等の方法で高温報知動作を開始させる(ST14)。
高温報知動作は、主加熱コイルMCと、全ての副加熱コイルSC1〜SC4の通電が停止されてから予め定められていた所定時間(例えば20分間)経過するまで、または温度検出回路240からの温度検出データによってトッププレート21の温度が例えば50℃に下がるまで(自然放熱のため通常20分間以上要する)継続する。このような温度低下又は時間経過の判断がST15で行われ、高温報知条件を満たした場合、通電制御回路200は高温報知を終了させ、加熱調理器の動作を終了する(この後、自動的に電源スイッチもOFFになる。即ち、電源スイッチがONされたときに、図示しない電源スイッチON保持用のリレーへの電源供給が絶たれることにより、このリレーがOFFすることで、電源スイッチも自動的にOFFになる。)。
なお、通電制御回路200は、高温報知動作開始ST14と同期して、前記統合表示手段100の液晶画面に「トッププレートがまだ高温であるから手を触れないように」という注意文やそのようなことが分かる図形などを表示する。なお統合表示手段100の周囲でその近傍に、LEDによって「高温注意」という文字がトッププレート21の上に浮かび上がって表示されるような表示部を別に設けてそれで高温報知を更にしても良い。
以上のような構成であるから、この実施の形態2においては、従来加熱できなかったような大径の鍋も誘導加熱でき、しかも加熱コイルに通電が開始されて実質的な誘導加熱動作が始まる前に、全ての加熱領域を個別発光部276と広域発光部277の発光によって使用者に知らせることができる。その上で使用者が加熱源を選択して加熱動作が開始された後で、個別発光部276と広域発光部277の発光状態が使用者には視認できるから、鍋(被加熱物N)を置く前の準備段階でも鍋(被加熱物N)を載置する最適な場所が分かり、使用者には使い勝手が良い。
また高温報知もその個別発光部276と広域発光部277を利用して行うので、部品点数を増やすことなく、安全性の高い調理器を提供できる。
次に、広域発光部277が、黄色(又はオレンジ色)の発光状態(形態1)から赤色の発光状態(形態2)に発光形態が変化(ST10)した後、協同加熱動作をする副加熱コイルがSC1からSC2へ切り替わった場合の動作について図27を用いて説明する。
前記したように、使用者が楕円状の鍋(被加熱物N)をトッププレート21上で例えば左に移動させると、被加熱物載置判断部280が主加熱コイルMCと、左側の副加熱コイルSC2の上方に同一の楕円状の鍋(被加熱物N)が載置されていると判断し、この旨の判別情報を通電制御回路200に出力する。
図27において、通電制御回路200は、被加熱物載置判断部280からの判別情報に基づいてこのことを検知すると(ST10A)、副加熱コイルSC1に対応する副インバーター回路SIV1の制御を停止して、主インバーター回路MIVと副インバーター回路SIV2を制御して、主加熱コイルMCとその左側にある特定の副加熱コイルSC2だけを連動して動作させる。これにより、予め定めた火力割合によってそれら二つの加熱コイルMCとSC2に対してそれぞれのインバーター回路MIV、SIV2から高周波電力が供給される。そして右側の副加熱コイルSC1への通電は停止され、既に実行中の「火力」(例えば3KW)と所定の火力配分(例えば、左IH加熱源6Lで3KWの火力で調理しようと調理している場合、主加熱コイルMCは2.4kW、副加熱コイルSC1は600Wであるから、4:1)が維持されてそのまま調理が継続される。この3KWという火力はそのまま統合表示手段100によって数字と文字で表示され続ける(ST10B)。
さらに加熱動作している副加熱コイルがSC1からSC2へ切り替わったことが前記統合表示手段100の対応エリアに文字や図形などで表示される。
そして次のステップST10Cで使用者が火力設定を変えない限り、使用者からの加熱調理停止指令が来るまでST8〜ST10の処理が繰り返され、使用者からの加熱調理停止指令が来た場合、あるいはタイマー調理を行っていて所定の設定時間が経過した(タイムアップ)ことが通電制御回路200で判定された場合、図26のST14へ飛び、通電制御回路200は主加熱コイルMCと、その時点で加熱駆動されていた全ての副加熱コイルSC1〜SC4の通電を停止し処理を終了する(ST14〜ST16)。
この加熱動作終了が前記統合表示手段100の対応エリアに表示される。また使用者が音声合成装置315をスイッチ(図示せず)で切っていない限り、ST10と同様に、音声でも同時に運転終了が報知される。なお、図25〜図30では、制御プログラムを一連のフローチャートで説明したが、異常があるかどうかの判定処理(ST2)や、鍋の載置有無判定処理(ST5)、鍋適正判定処理(ST6)などはサブルーチンとして用意されている。そして加熱制御動作を決めるメインルーチンに対して適宜のタイミングでサブルーチンが割り込み処理されるようになっており、実際の誘導加熱調理実行中には、異常検知や鍋有無検知などが何度も実行されている。吹き零れ検知もその一つである。後述する吹き零れ検知制御も被加熱物Nの温度が所定温度まで上昇した場合に追加される制御である。
一方、ステップST10Cで使用者が「大径鍋」加熱時の火力設定を変えた場合について説明する。図27のST10Cにおいて、火力の変更指令があったと判断された場合は、図28のST17に進む。ST17ではその変更後の火力が所定の火力レベル(例えば501W)よりも大きいか小さいかの判断がされ、所定火力よりも大きい火力に変更される場合はST18に進み、通電制御回路200の制御によって所定の火力配分が維持される。つまり、前記した3KWの例では、実行中の火力が3KWの場合、所定の火力配分とは、主加熱コイルMCは2.4KW、副加熱コイルSC2は600Wで、4:1であったので、この配分が維持される。そして通電制御回路200によって変更後の設定火力が統合表示手段100の対応エリアに「火力「中」 1KW」のように表示される。
一方、所定の火力レベル(501W)より小さい火力(120W、300Wと500Wの3つがある)に変更される場合、ステップ17の処理でステップ19に進むようになり、別の火力配分になるように通電制御回路200が制御指令信号を主インバーター回路MIVと、副インバーター回路群SIV1〜SIV4に出力する。このため、協同加熱する副加熱コイルSCが1つの場合でも2個以上の場合でも、主加熱コイルMCと副加熱コイルSCとの火力の差は一定の率に維持される。またこの変更後の火力は、そして変更後の設定火力が統合表示手段100の対応エリアに「火力「小」 500W」のように表示される。
具体的に代表的な火力と主副火力比の例を、図31と図32に示す。
図31(A)は、最大火力3KWの場合の主加熱コイルMCと副加熱コイルSC1〜4の火力値(W)で、主加熱コイルと副加熱コイル全体の火力比4:1固定の場合である。
図31(B)は、火力6(1.5KW)の場合の主加熱コイルMCと副加熱コイルSC1〜4の火力値(W)を示し、主加熱コイルと副加熱コイル全体の火力比4:1固定の場合である。
図32(A)は火力3(500W)の場合の主加熱コイルMCと副加熱コイルSC1〜4の火力値(W)を示し、主加熱コイルと副加熱コイル全体の火力比3:2に変化した場合である。
一方、所定の火力レベル(501W)より小さい火力(120W、300Wと500Wの3つ)に変更される場合、副加熱コイルSCの最小駆動火力を50Wとした場合、火力比が4:1では、図32(B)に示すように、25Wや33Wという小火力にて駆動することになるから問題がある。
すなわち、現実の製品では被加熱物Nとなる金属鍋の個々のインピーダンスが異なるため、所定値以上の大きさ高周波電力を印加しても鍋に投入され熱に変換される割合は一定ではないことから、本実施の形態で説明したように、例えば主加熱コイルMCの電流検出センサー266で、主加熱コイルMCと共振コンデンサー110Aの直列回路からなる共振回路に流れる電流を検出し、被加熱物Nがあるかどうかという判定や誘導加熱に不適当な鍋(被加熱物N)であるかどうかの判定、さらには正規の電流値に比較して所定値以上の差の過少電流や過大電流が検出されていないかどうか等の判定に利用している。これにより指定された火力を発揮するように誘導加熱コイルに印加する電流を細かく制御している。従って、火力設定を小さくした場合、流れる電流も微小で、その検知が正確にできなくなる問題が生ずる。言い換えると、火力が大きい場合は共振回路に流れる電流成分の検知が比較的容易であるが、火力が小さい場合は、電流センサーの感度上げるなどの対策を実施しない限り火力変化に正確に対応できないことがあり、目的とするような正確な火力制限動作を実行できないからである。
なお、図示していないが、実際にはインバーター回路MIV、SIV1〜SIV4に対する電源の入力電流値も検知し、前記したように電流センサーによるコイルの出力側の電流値と両方を併用して適切な制御をするものでも良い。
なお、副加熱コイルSCも、左IH加熱コイル6LCの主加熱コイルと同様に、渦巻状に0.1mm〜0.3mm程度の細い線からなる集合線で形成されているが、誘導加熱を生じさせる電流が流れる断面積自体が小さいから、主加熱コイルMCに比較して大きな駆動電力を投入できず、最大加熱能力も相対的に小さい。但し、前記したようにコイル単体の細い線の線径を更に細くし、かつより多く巻いてコイル導線の表面積を増やせば、インバーター回路SIV1〜SIV4の駆動周波数を上昇させても表皮抵抗を減らすことができ、損失を抑制して温度上昇も抑制しながら更に小さな火力を連続的に制御できる。
図32(B)は、火力3(500W)の場合の主加熱コイルMCと副加熱コイルSC1〜4の火力値(W)を示し、主加熱コイルと副加熱コイル全体の火力比4:1固定の場合である。
そこで、この実施の形態2では火力配分を3:2に変更する制御を行っている。
なお、火力120Wや300Wの場合、火力配分3:2でも最小駆動火力50W以上が維持できない場合があるので、その場合は、統合表示手段100の対応エリアに「設定された火力が小さすぎて加熱調理できません。火力を500W以上に設定して下さい」のように火力変更を促す表示がされるか、または主加熱コイルMCだけの加熱に制限するなどの制御が行われる。実際に主加熱コイルMCと副加熱コイルSCの両方に跨るような大きな鍋を120Wや300Wで加熱する場面は想定しにくいので、上記のような制御をしても実際の使い勝手を損なう懸念はない。
協同加熱動作時に、主加熱コイルMCと副加熱コイル群SC1〜SC4の火力比、すなわち主副火力比が略一定の範囲となるように、それぞれに供給する電力量を通電制御回路200にて制御しているが、上記したように小さな火力設定の場合に印加する電力量を低く抑えることが難しいから、実際の電力供給時間を制限することによって単位時間当たりの電力量を下げるような制御にしても良い。例えば副インバーター回路SIV1〜SIV4から各副加熱コイルSC1〜SC4に対して電力印加時間を通電率制御によって例えば50%に減らせば、実際に加熱に寄与する単位時間あたりの電力量を50%にすることが可能である。つまり印加する電力の周波数を制限するだけでは火力を減らすことが困難な場合は、通電率制御により電力を供給する時間と供給しない時間との割合を減らすことで更に実質的に作用する電力を、より小さな値まで絞ることができるので、このような制御を採用しても良い。
なお、この発明の実態形態2において協同加熱時に、主加熱コイルMCと副加熱コイル群SC1〜SC4との火力比を略一定に維持するとしているが、協同加熱中のあらゆる場面において常に火力比を「所定の比」に維持することが保証されたものではない。例えば、加熱駆動中には常にインバーター回路の入力側と出力側に流れる電流との差を検知し、その結果を通電制御回路200にフィードバックする制御が行なわれているため、火力設定を使用者が変えた場合に、その変更直後は過渡的に制御が安定しない場合があり、目標とする火力比から一時的に外れることがある。
また鍋を協同加熱中に横に移動させたり、短時間だけ持ち上げたりした場合、そのような挙動を電流センサー227、267A〜267Dが検知して誤った使用方法でないかどうか等を識別することが必要であり、適当な制御方法を選択する時間が必要となる。
この識別や適応制御の実行が確定するまでの間、目標とする火力比から一時的に外れることがあっても良い。使用者は瞬間的な印加電流の変化などを知るよりも、自分が設定した火力が意図に反して変更されていないことを確認できれば、調理の過程で不安感を抱くことがない。
なお、火力設定を使用者が変えない場合であっても、別の調理を使用者が選択した場合、主加熱コイルMCと副加熱コイル群SC1〜SC4との火力比は変わる場合がある。例えば外形が長方形の大型のフライパンを用い、それを前後方向に長くなるように、かつ中心点X1より少し左側位置でトッププレート21の上に置いてハンバーグを数個焼いている場合は、図16に示した主加熱コイルMC並びに左斜め前の第2の副加熱コイルSC2と左斜め後部の第4の副加熱コイルSC4で加熱することになる。
そのフライパン底面全体が平均的に温度上昇するよう、例えば火力1.5KW又は2KWが推奨され、所定の火力比で主加熱コイルMCと副加熱コイルSC2、SC4に対する供給電力量の制御目標値が設定されるが、同じ位置に同じフライパンを置いて2KW又は1.5KWで今度は数個以上の卵を使った卵焼きをする場合、フライパン底面全体に調理の具材(卵を溶いたもの)が薄く広がるので、フライパンの底面中央部より周辺部の温度上昇を早め、周辺部の火力を少し強めた方が調理の出来映えが良い場合がある。
そこでこのような調理の場合は、2つの副加熱コイルSC2、SC4全体の火力の方を、主加熱コイルMCの火力よりも大きくする。このように実際の調理内容によっては、主加熱コイルMCと副加熱コイル群SC1〜SC4との火力比を(同じ火力レベルであっても)変えることが望ましい。
また実施の形態1でも説明したように、このような温度均一性が重視される調理メニューの場合、例えば加熱開始から所定時間の間は、中央にある主加熱コイルMCを最終火力で駆動しておき、同時に協同加熱に参加する副加熱コイルSC1〜SC4をそれよりも大きな火力で駆動する(ON状態とする)ことにより、フライパンなどの鍋肌(鍋の側面)だけを余熱するといった調理が実現できる。
なお、この実施の形態2では、主加熱コイルMC側の方が副加熱コイル群SC1〜SC4全体の火力よりも大きな火力を発揮するように設定されているが、本発明はこれに何ら限定されるものではない。主加熱コイルMC側と個々の副加熱コイルSC1〜SC4の構造や大きさ、あるいは副加熱コイルSCの設置数などの条件によって、色々な変更が可能であり、例えば、副加熱コイル群SC1〜SC4全体の火力の方を主加熱コイルMCの火力よりも大きくしたり、両者を同じにしたりしても良い。図33は主・副火力比を1:1にした場合で、2.4KWの火力に設定した場合の各副加熱コイルSC1〜SC4と主加熱コイルMCにおける火力値の一例を示す。
但し、一般家庭での使用を考えた場合、通常は円形の普通サイズの鍋、例えば直径20cm〜24cm程度の鍋を使用する頻度が高いので、そのような一般的な鍋を使用した場合、主加熱コイルMC単独で誘導加熱することになるから、このような調理に必要な最低火力を発揮できる配慮をすることが望ましい。一般家庭で使用される場合は通常サイズの鍋の使用頻度が大きく、大径鍋の使用頻度は小さいと考え、それを前提にすれば、一般家庭で使用されるのは主に主加熱コイルであると考え、中央の加熱コイルを主加熱コイルMCと呼んでいる。
また協同加熱時、つまりある時間内において2つ以上の独立した誘導加熱コイルを共に駆動して磁気的に連携させる場合は、主インバーター回路MIVと副インバーター回路SIV1〜SIV4の動作タイミングを合わせることが安定した確実な制御の観点から望ましい。例えば、主インバーター回路MIVと第1の副インバーター回路SIV1による加熱の開始タイミング、加熱の停止タイミング、火力の変更タイミングの少なくとも何れか1つを合わせることが望ましい。この一例としては、主インバーター回路MIVと第1の副インバーター回路SIVIが同時に動作している状態から、第2の副インバーター回路SIV2に動作が切り替わる際、主インバーター回路MIVと第1の副インバーター回路SIVIの動作を同期させて停止し、その後、主インバーター回路MIVと第2の副インバーター回路SIV2の2つを同時に駆動開始させるようにすることが考えられる。
なお、主インバーター回路MIVと各副インバーター回路SIVは、駆動直後の所定時間(例えば10秒間)だけは所定の低火力に制限され、この所定時間内に実施の形態1において図26で示したような、異常があるかどうかの判定処理(ST2)や、鍋の載置有無判定処理(ST5)、鍋適正判定処理(ST6)などの一部又は全部を割り込み処理し、問題なければ、その後自動的に使用者が設定されている火力まで増加させて調理続行するという制御にしても良い。
なお、上記の例では、IH加熱コイルと共振コンデンサーの直列回路から成る共振回路を例に挙げて説明したが、IH加熱コイルと共振コンデンサーの並列回路から成る共振回路を用いても良い。
また、以上の実施の形態2では、統合表示手段100は、左IH加熱コイル6LC、右IH加熱コイル6RC、輻射式中央電気加熱源(ヒーター)7、輻射式電気加熱源(ヒーター)22、23の4つの熱源の動作条件を個別又は複数同時に表示できる上、液晶画面上に適宜タイミングで表示される複数個の入力キーをタッチ操作することで、加熱動作の開始や停止を指令し、また通電条件を設定することが出来たが、このような通電制御回路200に対する入力機能を備えず、単なる表示機能だけに限定したものであっても良い。
さらに前記主加熱コイルMC及び副加熱コイルSC1〜SC4の上方に同一の鍋(被加熱物N)が載置されているか否かを判断する被加熱物載置判断部280は、上記実施の形態で説明した赤外線センサー31のように温度を検出するものや、電流検出センサー266のように加熱コイルに流れる電流を検出するものの他に、センサーの上方に鍋(被加熱物N)があるかどうかを光学的に検知する手段を用いても良い。例えば、トッププレート21の上方に鍋(被加熱物N)がある場合は、台所の天井の照明器具や太陽光などが入射されないが、鍋(被加熱物N)が無い場合はそれら照明光や太陽光などの外乱光が入射するので、これらの変化を検知するものであっても良い。
また加熱コイルに流れる電流とインバーター回路に流れる入力電流とに基づいて鍋(被加熱物N)の材質を判定する方法以外としては、例えば加熱コイルに流れる電圧とインバーター回路に流れる入力電流とに基づいて鍋(被加熱物N)の材質を判定する方法など、他の電気的特性を利用する方法が考えられる。例えば、特開2007−294439号公報には、そのようにインバーター回路への入力電流値と加熱コイルに流れる電流値とに基づいて被加熱体の材質と大きさを判別する技術が紹介されている。
なお、この発明の実態形態2で、主加熱コイルMCと1つ以上の副加熱コイルSC1〜SC4の上に、同一の鍋(被加熱物N)が載っていることを被加熱物載置判断部280が「判断する」と説明しているが、実際に鍋が1つであること自体は判断していない。つまり現実に置かれた鍋の数をカウントする処理は採用していない。この種の誘導加熱調理器においては、一つの誘導加熱コイルの上に複数個の被加熱物Nが同時に載せられた状態で調理されるということは想定しにくいので、本発明者らは、前記した電流センサー227、267A〜267Dによって主加熱コイルMCと1つ以上の副加熱コイルSC1〜SC4のインピーダンスの大きさを検知し、そのインピーダンスに大きな差がない場合を「同一の鍋(被加熱物N)が載っていること」とみなすことにしたものである。
言い換えると、被加熱物載置判断部280は、主加熱コイルMCと1つ以上の副加熱コイルSC1〜SC4に流れる電流の大きさが分かるから、それぞれのインピーダンスの大きさが分かる。そこでこのインピーダンスの値が所定の範囲に入っている場合には、同一の鍋(被加熱物N)が載っているという判断信号を通電制御回路200に送信する。同じように赤外線センサー31で温度を検知する場合も、複数個の加熱コイルに対応した各赤外線センサー31の検出温度が同等であるかどうかという比較結果から同一の鍋(被加熱物N)が載っていると被加熱物載置判断部280が判断するものであり、前記した鍋の有無によって受光量が変化することを利用した光センサーという手段を用いる場合も、光の受光量の大小比較から主加熱コイルMCと1つ以上の副加熱コイルSC1〜SC4の上に鍋が載っていると処理することが現実的である。
前記したように、被加熱物載置判断部280が、主加熱コイルMCの上方とその周辺にある4つの副加熱コイルSC1〜SC4の上にも跨るような大きさの被加熱物Nが載置されていると判断した場合、誘導加熱を開始する前の最初の段階(異常検知処理を終えたあと)、統合表示手段100には、選択できる調理メニューとしては、実施の形態1と同様に「高速加熱」、「揚げ物」、「湯沸し」、「予熱」、「炊飯」、「茹で」、「湯沸し+保温」という7つが表示される。
そこでこれら調理メニュー選択用の7つのキーE1A、E1B、E1C、E2A、E2B、E3A、キーE3Bの部分の内、例えば「高速加熱」のキー部分にタッチすると、「高速加熱」の調理メニューが選択され、「高速加熱」が選択されたことが文字で表示される。
この実施の形態2においても、この「高速加熱」を選定した場合、被加熱物Nに加える火力を手動で設定でき、主加熱コイルMCと副加熱コイルの合計火力は、実施の形態1と同様に120W〜3.0KWまでの範囲での中から使用者が任意で選定できる。
主加熱コイルMCと副加熱コイルSC1〜SC4の主副火力比は、使用者が選定した上記合計火力を超えない限度で、かつ所定火力比の範囲内になるように自動的に通電制御回路200で決定され、使用者が任意に設定することはできない。また主加熱コイルMCと副加熱コイルSC1〜SC4の隣接する領域での高周波電流の向きは一致させるよう制御される。
また、調理メニュー選択用の7つのキーの内、「茹で」の選択キーE1Cをタッチすれば、「茹で」の調理メニューを行なえる。例えば主にパスタを茹でる目的で使用される大径で深い「パスタ鍋」という深鍋を用いる場合でも、この実施の形態2では高速度で湯を沸かし、茹で調理に移行できる。
例えば火力のフォルト値は2.0KWであるが、使用者は最初から火力を3.0KWに設定して加熱開始すると良い。この場合、主副火力比は自動的に通電制御回路200で決定され、使用者が任意に設定しなくとも良く、例えば主加熱コイルMCの火力は1.0KW、副加熱コイル4つの内の合計火力は2.0KWに設定される。水が沸騰した際に、通電制御回路200は報知信号を出し、統合表示手段100の所定の表示エリアに、パスタや麺の投入を促す表示を行い、同時に音声合成装置315で使用者にその旨報知する。このときに、火力を再度設定しない場合は、自動的に火力を下げる旨報知する。
使用者が何の操作もしない場合、実施の形態1のように、沸騰状態になると通電制御回路200は火力を下げる指令信号を主インバーター回路MIVと副インバーター回路SIV1〜SIV4に出力する。使用者が再度火力を設定した場合、あるいは統合表示手段100の所定の表示エリア100に現れる「茹で開始」という入力キーをタッチすると、再度3.0KW加熱が開始されが、この場合、隣接する4つの副加熱コイルを、例えばSC1、SC2の2個の組と、SC3、SC4の2個の組に分け、これら2つの組を交互に15秒ずつ、それぞれの組の火力総和は1.5KWずつに設定されて加熱駆動する。
このようにして沸騰以後はお湯の対流を促進する制御が自動的に行われる。なお、また使用者が沸騰直後に、火力を3.0KW未満、例えば2。0KWや1.0KWに下げても、その火力量の総和を超えない範囲で、同様な対流促進制御による加熱動作が実行される。
以上のように、本実施の形態2にいては、加熱条件を表示する統合表示手段100には前記した7つの調理メニューE1A、E1B、E1C、E2A、E2B、E3A、キーE3B選択用キーが、使用者によって選択操作可能な状態に表示される。このため、目的とする調理メニューの選択によって適合する加熱駆動パターンが制御部により自動的に決定されるから、加熱時間重視や温度均一性重視などの使用者の目的、希望に応じた加熱コイルの駆動形態になることに加え、その調理メニューの選択キーが表示部で操作できることにより使用者の誤使用解消や精神的な負担の軽減等ができるという利点がある。
この実施の形態2で特徴となる対流促進制御の選択スイッチ350は、上面操作部71に操作部を露出させている。このスイッチは、前記通電制御回路200に対して前記実施の形態1で述べたような対流促進制御を動作させるか否かの指令信号を与えるものである。このスイッチを調理工程の途中で1回押すと、被調理物が沸騰した後、または沸騰直前(例えば98℃に被加熱物や被調理物の温度が上昇した場合)の段階から、自動的に実施の形態1で述べたような対流促進制御を実施し、副加熱コイル群SCの通電タイミングを切り替えたり、その火力を変化したり、あるいは主加熱コイルMCと隣接する領域での電流の向きを同じにする等の制御を実行する。
選択スイッチ350は、4つの副加熱コイルと主加熱コイルMCの上方全体に及ぶような大径の鍋が置かれていると、被加熱物載置検知部280が判定しない限り、有効に機能しないよう通電制御回路200にプログラムされている。また被加熱物Nの温度を測定している前記した温度センサーからの温度検知情報を受けて温度検出回路240が、被加熱物Nの中の液体が沸騰温度になっていると判定した場合、または沸騰直前(例えば98℃に被加熱物や被調理物の温度が上昇した場合)であると判定した場合でない限り、対流促進選択スイッチ350を操作しても何ら有効な指令が通電制御回路200へ入力されず、あるいは通電制御回路200から有効な指令信号が、主インバーター回路MIVや副インバーター回路SIV1〜SIV4等へ出力されない。なお、このスイッチを統合表示手段100の表示画面の表面にタッチ式のキーとして配置しても良い。
協同加熱動作開始前や加熱動作中に、使用者が対流促進制御選択スイッチ350を操作することによって、通電制御回路200は主加熱コイルMCのインバーター回路MIVと副インバーター回路SIV1〜SIV4に対して制御信号を出し、主加熱コイルMCと副加熱コイル群SCに対する高周波電力の供給状態を変化させ、実施の形態1で説明したような対流促進制御を実施する。つまり、この実施の形態2では被加熱物載置検知部280によって、主コイルMCと副加熱コイルSC1〜SC4の全部の真上に大径鍋が置かれていることが検知された場合、協同加熱実施できるが、その後の加熱工程で被調理物が沸騰した後、または沸騰直前(例えば98℃に被加熱物や被調理物の温度が上昇した場合)の段階から自動的に協同加熱に移行できる。
このように、使用者は協同加熱後に対流促進制御をさせるかどうか選択スイッチ350で任意に決定できる。つまり、協同加熱開始前の調理メニューに拘わらず、調理工程の途中において使用者が対流促進の加熱方式を行いたいと思った場合、対流促進制御選択スイッチ350を操作すれば、その被調理物が沸騰した段階あるいは沸騰直前の段階から、副加熱コイルSC1〜SC4の駆動を自動的に切り替えた制御を実施することができる。なお、対流促進制御選択スイッチ35を選択した場合、実施の形態1で説明した第1の対流促進制御だけでなく、第2又は第3の対流促進制御を行うものであっても良い。
一方、調理開始前から、使用者が対流促進制御選択スイッチ350を押していた場合は、被加熱物Nの中の被調理物の温度が98℃又はそれ以上の沸騰温度まで上昇したことを温度検知回路240が検知した場合、通電制御回路200は第1の対流促進制御を開始する指令を各インバーター回路SV1〜SIV4に出す。なお、前記した実施の形態1に述べた第1の対流促進制御の変形例のように、中心部の主加熱コイルMCの通電と、右側副加熱コイルSCRと左側副加熱コイルSCLの通電を交互に行うという制御の場合では、当然ながら主インバーター回路MIVも制御対象になり、通電制御回路200によって対流促進制御が実施される。
対流促進制御を継続すると、第1の組の副加熱コイルSC1、SC3及び第2の組の副加熱コイルSC2,SC4から、ぞれぞれの真上方向に上昇する対流を作ることができる。この対流はその位置から遠い鍋の反対側の縁に向かう対流になる。これによって第1、第2の組の4つの副加熱コイルによる鍋底外周部からの加熱による、経路の長い対流が被加熱物Nの内部に生じ、鍋内部の被調理物全体の攪拌効果や温度均一化、吹き零れ抑止などの効果が期待できる。しかしながら、調理の過程が進行すると被調理物の液体表面に発生した細かい泡が次第に増大して大きく盛り上がる場合もあり、また使用者が途中で液体調味料や水、他の調理汁を被加熱物の中に投入する場合もあり、対流促進制御を実施している過程で被調理物の液体がその被調理物の縁を乗り越えて吹き零れる懸念がある。
この実施の形態2では、このような吹き零れの抑制策として、以下のような吹き零れ検知動作と加熱制御動作を行っている。吹き零れが検知された場合、通電制御回路200は直ちに駆動中の全てのインバーター回路の駆動を停止し、あるいは火力を減ずる指令をする。火力を下げる例としては前記したように火力が使用者によって9段階の中で設定されている場合、例えば2.0KWで使用されている場合、2段階下げ、1.0KWにする。なお、火力引き下げ指令が出た場合は、主加熱コイルMCの火力も制限され、仮に副加熱コイルSCと同時に通電される場合が生じても上記の場合は、合計で1.0KWを超えられないように制御される。このため、引き下げられた火力を超えないよう、駆動される1組全体の火力又は1個の副加熱コイルの火力は当然に制限され、そのための方法として、副加熱コイルの1回あたりの駆動時間を短くし、通電率を下げて火力を抑制することもある。
なお、通常の直径レベルの鍋の場合、火力を120Wに下げ、大径鍋で協同加熱している場合は300Wに下げるというように、被加熱物Nの大きさに応じて強制的に下げる火力値を変えても良い。
次に吹き零れ検知方法について説明する。吹き零れ検知方法は実施の形態1は3つの方法があったが、この実施の形態2では実施の形態1で述べた(3)の方法を基本に改良し、以下の(4)の方法を採用している。なお、以下の(4)の方法は、左IH加熱部6Lの場合である。
(4)対流促進制御の開始時点、あるいは吹き零れ検知の開始時点の第1の電極40と第2の電極41のぞれぞれの静電容量の値を基準値とし、加熱駆動される2組の副加熱コイルの外周側近傍にある第1の電極40と第2の電極41の静電容量値の変化を捉える。
具体的には第1の組を構成する副加熱コイルSC1、SC3と、第2の組を構成する副加熱コイルSC2、SC4が、15秒間隔で交互に1KWずつ加熱駆動されている場合、第1の組が駆動されている期間は、第1の電極40の静電容量変化を優先的に捉えて吹き零れ有無を判定する。ここで「優先的」とは、第1の電極40の側の静電容量変化が所定値を超えた場合、直ちに誘導加熱を停止又は火力を3段階下げるという制御をすることであり、第2の電極41側の静電容量の変化は、第1の電極40よりも長い時間間隔(例えば1秒又は2秒間隔)で吹き零れを検知するのに対し、第1の電極40は短い(例えば0.5秒間隔)で吹き零れ有無を監視しているという意味である。
第1の電極40と第2の電極41のぞれぞれの静電容量の値を検知する上記「優先的処理」動作は、第1の組と、第2の組のインバーター回路SIV1〜SIV4による加熱駆動動作と同期して切り替えている。このようにして、副加熱コイルSC1、SC3の第1の組だけが加熱駆動されている場合は、第1の電極40が主に吹き零れ検知のために利用される。
なお、誘導加熱調理の開始時に、第1の電極40と第2の電極41の位置を使用者に表示するため、前記の個別発光部276や広域発光部277を所定時間光らせても良い。この場合、音声合成装置315によって、「光っているリング部分の内側に鍋を置いて下さい。このリングの外まで鍋が出ていると、鍋の適性チェックや適正な加熱、あるいは吹き零れ検知が行えない場合があります」というような注意喚起を行っても良い。このようにすれば、使用者は鍋の置く位置の目安を容易に理解することができ、また吹き零れ検知の動作も確実にするような鍋位置の補正を促すことができる。つまり個別発光部276や広域発光部277の発光によって、使用者は吹き零れ検知エリアが確認し易くなり、鍋を置く位置の適否の目安にできる等、利便性を向上させることができる。なお、初心者モードを選択した場合、上記のように広域発光部277を所定の形態、例えばオレンジ色で発光させておき、吹き零れが発生した場合は、その広域発光部を別の形態、例えば赤色にて点滅させたり、あるいは吹き零れが検知された電極に近い位置にある個別発光部266を点滅させ、吹き零れのあった位置を統合表示手段100で表示したり、音声合成装置315で報知したりしても良い。
また、実施の形態2では、高速加熱用の選択キーE1A、湯沸し用選択キーE1B、茹で選択キーE1C、予熱用選択キーE2A、炊飯選択キーE2B、揚げ物選択キーE3A、湯沸し+保温の選択キーE3Bの7つのキーは、統合表示手段100の表示画面に透明電極を利用した静電容量式タッチスイッチとして適宜タイミングで表示されるものであったが、上枠20やトッププレート21の表面に常に機能が文字で表示された押圧式形態のスイッチとして設けても良い。
次に、吹き零れ検知と個別発光部276の動作について図29を参照しながら説明する。図29は通常操作モードで加熱駆動している場合の制御を示している。
主加熱コイルMCだけの単独加熱と、副加熱コイルSC1〜SC4を利用した協同加熱の場合も、吹き零れ検知後の個別発光部276は図29のように動作する。この動作は通電制御回路200の内部に格納された制御プログラムによって実行される。
すなわち、誘導加熱調理中に吹き零れが検知された場合(ST20)、火力を300Wに下げる(ここは、120Wでも良い)(ST21)。
次に、その検知が主加熱コイルMCから見て左の外側にある電極41又は右の電極40の何れで検知したかどうかの判定が行われる(ST22)。
右側にある電極40で検知された場合、図17、図18に示すように、副加熱コイルSC1の右側に接近している個別発光部276と、副加熱コイルSC3の右側に接近している個別発光部276とがそれぞれ同時に赤色点滅となる。この赤色点滅前に広域発光部277や個別発光部276が点灯していた場合、全て消灯する。つまり黄色や赤色で連続点灯していたとしても、吹き零れ検知の発生を受けて全て消灯になり、個別発光部276だけが赤点滅になる(ST23)。
また電極41で検知された場合、図17、図18に示すように、副加熱コイルSC2の左側に接近している個別発光部276と、副加熱コイルSC4の右側に接近している個別発光部276とがそれぞれ同時に赤色点滅となる(ST24)。
これにより使用者は赤色点滅しているトップテーブル21の上面に注目し、吹き零れが起っていることを確認できる。仮に背の高い大形のパスタ鍋のような深鍋で麺を茹でていて、吹き零れが発生したときも、右側か左側の個別発光部が赤色点滅するので、使用者が背の高い鍋の背後側での吹き零れの発生に気がつく。なお、電極40,41を(実施の形態1で示したように)2分割し、各副加熱コイルSC1〜SC4のそれぞれの近傍に一個ずつ設ければ、更に吹き零れ位置の特定は容易、かつ迅速に可能となる。なお、吹き零れ発生と同時に、統合表示手段100の液晶画面や音声合成装置315によって、吹き零れの発生が使用者に知らされる。
以上のように火力を強制的に下げた状態で、かつ吹き零れを光によって報知したことにより、使用者が鍋等の被加熱物Nを一時的に移動させる場合があるが、このように移動させると鍋検知動作によって、被加熱物Nが所定の加熱領域に無いことが検知される(ST24)と、加熱駆動は完全に停止する。つまり使用者が吹き零れに対して直ぐに鍋を移動させ、零れた液体を除去しようとするときには加熱駆動は停止され(ST25)、以後、鍋を元の位置に戻しても自動的に加熱が再開されることはない。このようにして使用者が気がつかない内に再加熱されるということを防止している。
なお、吹き零れが検知され、火力が最低火力の120W又はそれより1段階上の300Wまで強制的に下げられた以降、そのまま調理は続行されるが、使用者が予め加熱時間をタイマーで設定していた場合、その延長を途中でしない限り、最初に設定された調理時間が到来した時点で加熱は停止し、その旨音声報知手段315と統合表示手段100によって報知される。
また使用者が強制的に下げられた火力を少しでも上げ、例えば300Wを500Wに上げた場合、通電制御回路200は再度吹き零れ有無の監視を開始する。
なお、使用者の利便性を考えると、一度強制的に火力を下げられた場合、例えば1KW加熱していて吹き零れがあった場合、その後再度火力を上げる場合に吹き零れ時の火力を忘れている場合があるが、統合表示手段100や音声合成装置315が「吹き零れがあったときの火力は1KWでした」というように報知すると良い。また再度設定する場合は微細火力設定ができるよう、初期の火力設定可能レベル数を増加させ、中間値を追加したり、1回押すごとに僅かずつ火力アップ、又は火力ダウンするキーを表示したり、機能させたりする等により、例えば火力500W、750W、1KWという段階で選択できた火力が、500W,600W、750W、800Wのように細かい火力設定を可能にするとさらに便利である。吹き零れ発生時点の火力値を使用者がキー操作によって呼び出すことでも良い。
次に、簡単操作モードで使用している場合の、吹き零れ検知と個別発光部276の動作について図30を参照しながら説明する。
主加熱コイルMCだけの単独加熱と、副加熱コイルSC1〜SC4を利用した協同加熱の場合も、吹き零れ検知後の個別発光部276は図30のように動作する。この動作は通電制御回路200の内部に格納された制御プログラムによって実行される。
前述したように異常判定が完了して加熱調理準備完了した場合、(複数個のIH加熱源の内、使用する加熱源が選択されれば)自動的に加熱動作が開始される。
加熱動作は開始されると、被加熱物Nの温度は急激に上昇する。この温度上昇は温度検出回路240で逐次検知され、被調理液が沸騰する可能性のある温度に近づいた場合、例えば被加熱物Nの温度が98℃まで上昇した場合、通電制御回路200は、吹き零れ検知部50を起動する。なお、この98℃という値に本発明は何ら限定されるものではなく、例えば沸騰開始までの余裕を考えて90℃に設定されていても良い。
これと同時に、使用者に対して吹き零れが万一発生した場合に備えて、使用者に有益な情報を報知する(ST200)。統合表示手段100や音声合成装置315の両方によって報知される有益な情報としては、例えば現在の被調理物の温度は水の沸騰温度に近づいているので、これから調理液の表面の動きに注意することや、吹き零れが起らないように現時点で火力を1段階さげると良いことなどである。また吹き零れが起る挙動が見られる場合、火傷を防ぐため慌てて鍋を持ち上げて移動したりしないこと等の安全上の助言もある。なお、操作部に設けている加熱停止キーをこの段階から例えば黄色に点滅させておき、緊急で加熱停止する場合はその加熱停止キーを使用者が素早く操作できるようにしても良い。
次に万一、誘導加熱調理中に吹き零れが検知された場合(ST201)、その時点で使用している火力設定値が仮に3.0KW〜1.0KWの範囲のどこにあっても全て一律に火力は300Wまで下げる(ここは、120Wでも良い)(ST202)。もし1.0KW未満で加熱していた場合は、直ちに停止する。
次に、統合表示手段100又は音声合成装置315は、吹き零れが発生してしまった後の対処法として使用者に有益な情報を報知する(ST203)。有益な情報としては、例えば、吹き零れた液体の除去又は被加熱物の移動に際しての安全上の注意事項が含まれる。例えば慌てて鍋を持ち上げたりしないこと、トッププレートの上が熱いので吹き零れた被調理液を除去する場合は火傷しないように注意が必要であること等である。また吹き零れのあった場所を個別発光部276で表示するので、慌ててトッププレート21の上に触れないようにというアナウンスをしても良い。報知部を構成している統合表示手段100や音声合成装置315は、通常モードが選択された状態においても、使用者に有益な情報を報知しても良い。例えば、トッププレートの上が熱いので吹き零れた被調理液を除去する場合は火傷しないように注意が必要であることなど、安全上に関する情報である。但し、通常モードの場合に比較して簡単操作モードの方が、使用者に有益な情報の内容が充実していることが望ましい。初心者や使用に不慣れな使用者には、安全や的確な操作に役立つような情報をできるだけタイムリーに分りやすく報知することが望まれる。
次に、その検知が主加熱コイルMCから見て左の外側にある電極41又は右の電極40の何れで検知したかどうかの判定が行われる(ST204)。
右側にある電極40で検知された場合、図18、図19に示すように、副加熱コイルSC1の右側に接近している個別発光部276と、副加熱コイルSC3の右側に接近している個別発光部276とがそれぞれ同時に赤色点滅となる。この赤色点滅前に広域発光部277や個別発光部276が点灯していた場合、全て消灯する。つまり黄色や赤色で連続点灯していたとしても、吹き零れ検知の発生を受けて全て消灯になり、個別発光部276だけが赤点滅になる(ST205)。
また電極41で検知された場合、図18、図19に示すように、副加熱コイルSC2の左側に接近している個別発光部276と、副加熱コイルSC4の右側に接近している個別発光部276とがそれぞれ同時に赤色点滅となる(ST206)。
これにより使用者は赤色点滅しているトップテーブル21の上面に注目し、吹き零れが起っていることを確認できる。仮に背の高い大形のパスタ鍋のような深鍋で麺を茹でていたような場合、吹き零れが鍋の背後側であっても、右側か左側の個別発光部が赤色点滅するので、使用者が吹き零れが発生したことに気がつく。なお、電極40,41を2分割し、各副加熱コイルSC1〜SC4のそれぞれの近傍に一個ずつ設ければ、更に吹き零れ位置の特定は容易、かつ迅速に可能となる。
次に、吹き零れを検知した電極が主加熱コイルMCから見て左の外側にある電極41であるか、又は右の電極40であるかどうかの報知が行われる(ST207)。これにより使用者は仮に目視で直ぐに吹き零れ位置が分からなくても、個別発光部276の赤色点滅と、統合表示手段100による表示、あるいは音声合成装置315によるアナウンスによって、吹き零れの場所を容易に特定することができる。
以上のように火力を強制的に下げた状態で、かつ吹き零れを光によって報知したことにより、使用者が鍋等の被加熱物Nを一時的に移動させる場合があるが、このように移動させると鍋検知動作によって、被加熱物Nが所定の加熱領域に無いことが検知される(ST208)と、(仮に火力を下げて運転されていた場合であっても、加熱が既に停止されていた場合であっても)調理動作は完全に停止する(ST209)。つまり使用者が吹き零れに対して直ぐに鍋を移動させ、零れた液体を除去しようとするときには、火力が下げられている場合でも、その加熱駆動は停止され、以後、鍋を元の位置に戻しても自動的に加熱が再開されることはない。このようにして使用者が気づかない内に再加熱されるということを防止している。
なお、吹き零れが検知され、火力が最低火力の120W又はそれより1段階上の300Wまで強制的に下げられた以降、そのまま調理は続行されるが、使用者が予め加熱時間をタイマーで設定していた場合、その延長を途中でしない限り、最初に設定された調理時間が到来した時点で加熱は停止し、その旨音声報知手段315と統合表示手段100によって報知される。
また使用者が強制的に下げられた火力を少しでも上げ、例えば300Wを500Wに上げた場合、通電制御回路200は再度吹き零れ有無の監視を開始し、再度図30に示すフローチャートの最初のステップに戻る。
このように、簡単操作モードにしていると、実際に吹き零れが起ることを未然に防止するための対処方法を使用者に教えることになり、あるいは吹き零れがあったときも、使用者に対処方法を音声等で教えることになるので、使用に不慣れな使用者も安心して使用することができる。なお、安心感だけではなく、実際に吹き零れが発生した場合もその規模を拡大しないように迅速に、かつ火力も大きく低減させるなどの制御が行われる。
以上のように、図30に示した制御動作を行う実施の形態2の誘導加熱調理器は、被調理物を入れる鍋などの被加熱物Nを載置するトッププレート21と、前記トッププレートの下方に配置された円環状の主加熱コイルMCと、前記主加熱コイルの両側に近接して配置された複数個の副加熱コイルSC1〜SC4と、前記主加熱コイルMC及び全ての副加熱コイルSC1〜SC4にそれぞれ誘導加熱電力を供給するインバーター回路MIV、SIV1〜SIV4と、前記トッププレート21に複数の電極40,41を配置し、当該電極による静電容量変化を捉えて吹き零れを検知する吹き零れ検知部50と、前記被加熱物の温度を検知する温度検出手段240と、この温度検出手段の検知情報が入力されるとともに前記インバーター回路の出力を制御する通電制御回路200と、この通電制御回路に調理動作を指示する操作部(上面操作部)61と、この操作部の操作結果や操作方法等を表示する統合表示手段100と音声合成部315とからなる報知部と、前記通電制御回路200の操作を通常モードと簡単モードに切り替える操作モード切替手段310と、を有し、前記通電制御回路200は、使用者の操作又は被加熱物の大きさに応じて、前記主加熱コイルMCと副加熱コイルSC1〜SC4に対して前記インバーター回路から誘導加熱電力を同時又は所定の時間差で供給し、さらに前記通電制御回路200は、前記吹き零れ検知部50が吹き零れを検知した場合、前記インバーター回路の駆動を停止又は出力を低下させるとともに、簡単モードが選択された加熱調理においては、前記温度検出手段240によって被加熱物の温度が所定温度、例えば90℃になった段階又はそれよりも前の段階において、前記統合表示手段100や音声合成部315は、吹き零れ発生に関して使用者に有益な情報を報知する構成を具備したものである。これにより調理に不慣れな使用者や初心者も安心して使用できる調理器を提供できる。さらに通電制御回路200は、使用者の操作又は被加熱物の大きさに応じて、前記主加熱コイルと副加熱コイルに対して前記インバーター回路から供給される誘導加熱電力を同時又は所定の時間差で供給するから、被加熱物の中にある水や煮物汁などの液体に対流の発生を促進でき、調理の出来上がりを向上させることができる。
また、副加熱コイルの外側位置に対応する前記トッププレート21下に複数の電極40,41を配置した吹き零れ検知部50を設け、また副加熱コイルSC1〜SC4が加熱駆動されていることを前記トッププレート21の下方から光で表示する個別発光部276を備えたので、吹き零れが発生した場合、個別発光部276によって吹き零れを検知した電極を特定でき、これにより吹き零れの大体の位置も把握できるので、特にこのような調理器に不慣れな使用者でも、吹き零れの発生とその位置を簡単に知ることができる。
さらに、実施の形態2に係る誘導加熱調理器は、第2の発明に係る構成を備えている。すなわち、トッププレート21に配置した電極40、41における静電容量変化を捉えて吹き零れを検知する吹き零れ検知部50と、被加熱物の温度を検知する温度検出回路240と、この温度検出回路240の温度検知情報が入力されるとともにインバーター回路MIV,SIV1〜SIV4の出力を制御する通電制御回路200と、この通電制御回路に調理動作を指示する上面操作部61と、使用者に対して操作方法や調理状態等を音声で案内する音声合成部315と、前記主加熱コイルMCと副加熱コイルSC1〜SC4を包含する広域の加熱域を前記トッププレート21上に光で示す広域発光部277と、前記副加熱コイルSC1〜SC4毎に設けられ、その駆動状態にあることを前記トッププレート21上に光で示す個別発光部276と、を備え、前記通電制御回路200は、主加熱コイルMCと副加熱コイルSC1〜SC4の協同加熱中は、前記広域発光部277を点灯させるとともに、吹き零れ検知部50が吹き零れを検知した場合、その吹き零れが発生した部分に近い位置にある個別発光部276を点灯させる構成にしたものである。これにより、主加熱コイルと副加熱コイルを包含する広域の加熱域で協同加熱を行うことができるとともに、その加熱域を広域発光部277でトッププレート21の上に表示できる。さらに調理器の使用に不慣れな使用者が調理を開始した場合でも、吹き零れ検知部50が吹き零れを検知して加熱駆動を制限又は停止した際に、その使用者は個別発光部276の発光状態を見て吹き零れの発生を知ることができる。しかも、吹き零れの発生箇所に近い位置にある個別発光部276の発光状態で、使用者は吹き零れの発生場所を特定することが可能となる。これにより、調理に不慣れな使用者や初心者も吹き零れで緊急停止したことを故障と誤解したり、操作ミスと誤解したりせず、安心して使用できる。
(実施の形態3)
図34は本発明の実施の形態3に係るビルトイン型の誘導加熱調理器の右側要部を示す平面図である。なお、図において前記実施の形態1及び2と同じ部分又は相当する部分には同じ符号を付している。
この実施の形態3では、広域発光部277は個別発光部276を兼ねており、また1つの副加熱コイルに対し1つずつ設けていること、さらにその広域発光部277は電極40、41の設置位置よりも内側、つまり中心点X2側にあるという3点で実施の形態2と大きく異なっている。使用者がトッププレート21の上方から広域発光部277の点灯を認識する場合、その広域発光部277の形は実施の形態2のように円環状や実施の形態1のような半円形状ではなく、円弧状、又は三日月形状である。つまり主加熱コイルMCと全ての副加熱コイルSC1〜SC4による協同加熱時の広い加熱域外縁部の位置を光で示す広域発光部277は、X2の点を中心とする同一円の上に等間隔で、合計4個点在している点が特徴の一つである。
図34において48は、第1の内側電極であり、副加熱コイルSC3を囲むようにトッププレート21の下面に密着状態に設置されており、一方の端子部48Aから他方の端子部48Bに対して所定電圧の検知電流が流され、この両端子間の静電容量変化に伴う電圧又は電流の変化が吹き零れ検知部50(図示せず)によって検知される。
48Cは端子Aに連側した内側湾曲部で、前記主加熱コイルMCの外周縁形状に沿って湾曲している。つまり主加熱コイルMCと同心円状に形成されている。
48D1は内側湾曲部48Cに連続し、そこから主加熱コイルMCより遠ざかる方向、すなわち放射状に延びる腕部で、前記空間273の中を横断している。48Eは副加熱コイルSC3の外周縁形状に沿った外側湾曲部である。この外側湾曲部は副加熱コイルSC3の反対側端部で再び内側に延びている腕部48D2に繋がり、内側湾曲部48Cを介して端子部48Bに連続している。
図33において49は、第2の内側電極であり、副加熱コイルSC2を囲むようにトッププレート21の下面に密着状態に設置されており、一方の端子部49Aから他方の端子部49Bに対して所定電圧の検知電流が流され、この両端子間の静電容量変化に伴う電圧又は電流の変化が吹き零れ検知部50によって検知される。
49Cは端子Aに連側した内側湾曲部で、前記主加熱コイルMCの外周縁形状に沿って湾曲している。つまり主加熱コイルMCと同心円状に形成されている。49D1は内側湾曲部49Cに連続し、そこから主加熱コイルMCより遠ざかる方向、すなわち放射状に延びる腕部で、前記空間273の中を横断している。
49Eは副加熱コイルSC3の外周縁形状に沿った外側湾曲部である。この外側湾曲部は副加熱コイルSC2の反対側端部で再び内側に延びている腕部49D2に繋がり、内側湾曲部49Cを介して端子部49Bに連続している。
前記第1、第2の内側電極48、49における静電容量の値は、吹き零れ検知部50に所定の短時間(例えば1秒以下)間隔で常に入力されるが、被加熱物Nの温度をトッププレート21の下方から検知する赤外線センサー方式の温度センサーの情報から通電制御回路200が被加熱物Nの温度を推定し、被加熱物Nの温度が100℃又は90℃まで上昇していない場合は、吹き零れ検知部50の吹き零れ検知動作を開始させないようにしている。
40は、右IH加熱源6Rを構成する主加熱コイルMCと、3つの副加熱コイルSC3、SC1,SC2の外周近傍を囲むように形成された第1の電極で、第1、第2の内側電極48、49との対比上、以後、この実施の形態3において「第1の外側電極」と呼ぶ。この電極は、トッププレート21の下面に密着状態に設けてあり、図33に示すように副加熱コイルSC3の前方右半分、これと隣り合う右側の副加熱コイルSC1の右側全体、及び後方の副加熱コイルSC2の後方右半分を一連に覆うような半円形状をしている。つまり、第1の外側電極は、中心点X2を中心とする同一半径の円の上に位置するよう、全体が一定の曲率で形成してある。
41は第2の外側電極で、中心点X2を挟んで前記第1の外側電極40と左右対称形状になっており、トッププレート21の下面に密着状態に設けてある。
前記第1、第2の外側電極40、41は、それぞれの一方の端子部42、44から他方の端子部43、45に対して所定電圧の検知電流が流され、この両端子間の静電容量変化に伴う電圧又は電流の変化が吹き零れ検知部50によって検知される。なお、これら第1、第2の外側電極における静電容量の値は吹き零れ検知部50に所定の短時間(例えば1秒又は0.5秒以下)間隔で常に入力される。
図33において61は上面操作部であり、その右端部には図11に示した主電源スイッチ63の操作ボタン63Aに相当する主電源スイッチ用押圧式操作キーが配置されている。90は右IH加熱源6Rの火力を設定するワンタッチ設定用キーであり、火力「弱」、「中」「強」の3つと、それら3段階の火力の微調整用キー2個(増、減の各1個)が設けられている。
91は、右IH加熱源6Rの誘導加熱を開始・停止するスイッチ用の操作キーである。主電源スイッチ63の操作ボタン63Aを押して電源投入後にこのキーを操作すれば誘導加熱が開始され、この後再び操作すれば誘導加熱停止される。このように操作するたびに機能が変更される。またこの操作キー91は、静電容量変化を利用したタッチ式入力キーであるため、軽く触れるだけで操作信号が通電制御回路200(図示せず)に入力される。
310は、簡単操作モードと通常操作モードの何れかを選択するスイッチであり、このスイッチも静電容量変化を利用したタッチ式スイッチである。
この実施の形態3においても、図示していないが、主加熱コイルMCの電流センサー227と副加熱コイルSC1〜SC4の各電流センサー267A〜267Dを備えており、これら各加熱コイルの上方に同一の被加熱物Nが載置されているか否かを判断する基礎情報が前記被加熱物載置判断部280(図示せず)に入力されるようになっている。誘導加熱を本格的に開始する前の段階で、電流センサーからの電流値を検出することで、前記被加熱物載置判断部280は主加熱コイルMCと副加熱コイルSCのインピーダンスの変化を検出し、楕円状の鍋(被加熱物N)が載置されている主加熱コイルMCのインバーター回路MIV及び副加熱コイルSC1〜SC4の各インバーター回路SIV1〜SIV4を駆動し、4つの副加熱コイルSC1〜SC4の内、楕円状の鍋(被加熱物N)が載置されているもの(少なくとも1つ)に高周波電流を流し、楕円状の鍋(被加熱物N)が載置されていない、他の副加熱コイルに対しては、高周波電流を抑制又は停止するように前記通電制御回路200が指令信号を発する。従って、主加熱コイルMCと、1つ又は複数の副加熱コイルSC1〜SC4によって協同加熱を行うことができる。
例えば、図34に一点鎖線で示したような楕円形の被加熱物Nであっても、主加熱コイルMCと3つの副加熱コイルSC2、SC3、SC4との協同加熱によって誘導加熱調理ができる。この場合、この楕円形の被加熱物Nの周縁から被調理物の一部が溢れ出た場合、吹き零れ検知部50(図示せず)の第1の外側電極40あるいは第2の外側電極41が吹き零れを検知し、通電制御回路200(図示せず)を介してインバーター回路MIV、SIV2〜SIV4の駆動を瞬時に制限又は停止する。
この協同加熱時は、前記被加熱物載置判断部280(図示せず)からの入力を受けて制御部である通電制御回路200は、吹き零れ検知部50(図示せず)に対し、前記第1、第2の内側電極48、49における静電容量の変化を監視する動作を停止する指令を与えているため、第1、第2の内側電極48、49による吹き零れ検知動作は行われない。
一方、図34に破線の円で示したように、主加熱コイルMCの外形形状よりも大きいが、協同加熱には不適当な大きさ、底部面積の被加熱物Nが載置されていることを前記被加熱物載置判断部280(図示せず)で判別された場合、主加熱コイルMCのみの単独加熱によって調理をすることができる。
この場合、仮に被加熱物Nが図34に示すように、主加熱コイルMCの真上に置かれず、左方向に所定距離だけずれた位置に置かれている場合(以下、これを「偏位している場合」という)であっても、主インバーター回路MIVによる加熱駆動に何ら支障はないので、このような状況でも誘導加熱開始する。なお、このような偏位している場合に、使用者に何らかの報知を行い、被加熱物Nを置き直してもらうことでも良い。
仮に被加熱物Nが図34に破線で示したような位置にある状態で、主加熱コイルMCにより誘導加熱が開始されると、被加熱物Nの半分から右側部分は主加熱コイルMCの真上になり、半分から左側部分に比較して強く加熱される傾向となる。
そのため、このような状態で沸騰状態に至ると、被加熱物Nの右側周縁に近い所が被調理液の沸騰によって最も早く表面が盛り上がり、吹き零れに発展する懸念がある。図34に右、斜め右上、斜め右下の3方向に記載した矢印は、吹き零れた場合にその液体が展開する可能性のある主な方向である。この実施の形態3ではこのような何れの方向に対する吹き零れにも対処できるものである。
すなわち、本実施の形態3では、第1の内側電極48と第2の内側電極49が、主加熱コイルMCの外側から後方の副加熱コイルSC2と、前方の副加熱コイルSC3を囲むように設置されているから、被加熱物Nから吹き零れがあった場合は、まずこの第1の内側電極48又は第2の内側電極49によって検知され、吹き零れが検知されると、主加熱コイルMCの火力は通電制御回路200の指令によって主インバーター回路MIVにより、300Wまで瞬時に低下させられる。
また仮にこの第1の内側電極48と第2の内側電極49の少なくとも何れか一方によって吹き零れが検知され、火力を強制的に下げられたあとに、第1又は第2の外側電極40,41の少なくとも何れか一方によって再び吹き零れが検知された場合、主加熱コイルMCの誘導加熱は即時停止される。
またこの第1の内側電極48又は第2の内側電極49によって吹き零れが検知されず、第1又は第2の外側電極40,41の少なくとも何れか一方によって吹き零れが検知された場合、主加熱コイルMCの誘導加熱は即時停止される。
このように、第1の内側電極48と第2の内側電極49と、第1又は第2の外側電極40,41の検知結果に差を設けたのは、前者による吹き零れは、まだ右IH加熱源6Rの中央部近くであるのに対し、後者の吹き零れは右IH加熱源6Rの外周縁まで被調理液が流れていることであり、後者の吹き零れの拡大防止の方が、緊急性があるからである。
吹き零れと判定する方法は、前記実施の形態1,2に示したように色々あるが、この実施の形態3では、静電容量検知手段50は、内側の電極48,49と、外側の電極40,41の静電容量の差を常に監視・比較し、その差が所定値を超えた場合、吹き零れ発生と判別することを特徴としている。このため吹き零れが発生していなければ、内側の電極48,49と、外側の電極40,41の静電容量の差は所定範囲であるが、吹き零れが発生して内側の電極48,49の静電容量が急激に減少し、あるいは増大した場合、外側の電極40,41の静電容量との差が拡大し、吹き零れ検知と判定される。
内側電極48と第2の内側電極49には内側湾曲部48C、49Cが形成されているので、普通の大きさの鍋等が主加熱コイルMCの真上に置かれた場合、その鍋から万一吹き零れが発生した場合、中心点X2に最も近い側にある内側湾曲部48C,49Cによって吹き零れが検知される。
さらに第1の内側電極48と第2の内側電極49には、この内側湾曲部48C、49Cから外側方向に向かって一直線状に腕部48D1、48D2、49D1,49D2が形成されているので、主加熱コイルMCの上に置かれる被加熱物Nの直径が色々変化しても、その変化に対応して主加熱コイルMCから周囲4方向での吹き零れ検知ができる。
また腕部48D1、48D2、49D1,49D2は、空間273を通って副加熱コイルSC2、SC3の外周側にある外側湾曲部48E,49Eに至っている。この空間は、隣り合う副加熱コイルSC1〜SC4同士が同時に通電されたとき、それに流れる高周波電流が同じ方向であった場合、隣り合う副加熱コイルSC1〜SC4の短部同士の高周波電流の向きは反対方向になり、その端部同士が磁気的に干渉しないために設けられているものであるので、この空間の中を通る腕部48D1、48D2、49D1,49D2も磁気的影響を受けることは少なく、副加熱コイルSC1〜SC4の加熱駆動時に静電容量が大きな影響を受けることを回避できる。なお、前記したように主加熱コイルMCだけの加熱時は、このようなは副加熱コイルSC1〜SC4の加熱駆動時の磁気的影響を考慮する必要がない。
なお、主加熱コイルMCに最も近い内側湾曲部48C、49Cは、その主加熱コイルMCの外周縁形状に沿った形状になっているので、主加熱コイルMCの駆動時に発生する磁界の影響を受けにくい。
また同様に、外側湾曲部48E,49Eも、副加熱コイルSC2、SC3の外周縁形状に沿った湾曲形状であるので、副加熱コイルSC2、SC3の駆動時に発生する磁界の影響を受けにくい。
従って、第1の内側電極48と第2の内側電極49は、このような工夫によって主加熱コイルMCや副加熱コイルSC1〜SC4の駆動時にも確実な静電容量変化を捉えて、吹き零れを検知させることができる。
前記操作部61は、静電容量変化を利用し、火力を設定するための操作情報が入力可能な複数個の入力キー90と、加熱停止指令を入力可能な停止キー91とをそれぞれ有しているが、2つの外側電極40,41の少なくとも何れか一方の容量変化が吹き零れ検知部50によって検出された場合、入力キー90からの操作を無効にする。具体的には通電制御回路200は操作部61の入力キー90からの入力指令を無効と判断する処理を実行する。一方、駆動中の主加熱コイルMCや副加熱コイルSC1〜SC4の全てを一斉に停止することができる停止キー91の機能は有効に維持するので、吹き零れ直前又は直後の状態を使用者が見て、素早く加熱停止したい場合でもその停止操作を有効にしている。このため、吹き零れの液体が操作部61に至って、入力キー90から誤った操作入力を発しないようになっている。なお、2つの外側電極40,41ではなく、2つの内側電極48,49の少なくとも何れか一方の容量変化が吹き零れ検知部50によって検出された場合に操作部61の一部の機能を無効にしたり、制限したりすることでも良い。前記実施の形態2のような統合表示手段100のような表示手段で、吹き零れで入力操作を安全上、一部無効にしていることを表示したり、音声合成装置315によってその旨報知したりすると、さらに使用者に安心感を与えることができる。
以上の説明で明らかなように、この図34に示す実施の形態3に示す誘導加熱調理器は、被調理物を入れる鍋などの被加熱物を載置するトッププレート21と、前記トッププレートの下方に配置された円環状の主加熱コイルMCと、この主加熱コイルMCの両側に近接して配置され、主加熱コイルの半径より小さな横幅寸法を有する扁平形状の第1副加熱コイルSC1、SC4及び第2副加熱コイルSC2、SC3と、前記主加熱コイルMC及び全ての副加熱コイルSC1〜SC4にそれぞれ誘導加熱電力を供給するインバーター回路MIV、SIV1〜SIV4と、前記副加熱コイルSC1〜SC4の外側位置に対応する前記トッププレート21下に複数の電極40、41、48、49を配置した吹き零れ検知部50と、主加熱コイル及び副加熱コイルの上方に被加熱物が載置されているか否かを判断する被加熱物載置判断部280と、前記インバーター回路の出力を制御する通電制御回路(制御部)200と、前記通電制御回路に加熱停止や加熱条件を指示する操作部61と、前記主加熱コイルMCの外周側下方にある内側電極48、49と、前記第1、第2副加熱コイルの外周側下方にある外側電極40、41とを具備している。
そして上記構成であるから、前記通電制御回路200は、前記被加熱物載置判断部280が前記主加熱コイルMCと第1、第2副加熱コイルSC1〜SC4の上方に同時に被加熱物Nが載置されていると判断した場合に、協同加熱動作を実行可能にし、この協同加熱期間中に、前記通電制御回路200は、前記インバーター回路から前記第1副加熱コイルSC1、SC4と、第2副加熱コイルSC2、SC3に対して誘導加熱電力を交互又は所定の時間差で供給する制御を可能とし、前記被加熱物載置判断部280が、被加熱物Nの大きさが協同加熱に適さない小径であることを判別した場合、前記通電制御回路200は主加熱コイルMCのみの誘導加熱動作を実行可能とし、前記通電制御回路200は、協同加熱時に、前記吹き零れ検知部50によって外側電極40、41の静電容量の変化が検出された場合、前記インバーター回路の駆動を停止又は出力を低下させるとともに、前記主加熱コイルMCによる非協同加熱時は、前記吹き零れ検知部50によって前記内側電極48、49と外側電極40,41の静電容量変化を監視させ、内側電極48,49と外側電極40、41の何れか一方の静電容量が変化した場合、主加熱コイルを駆動している前記インバーター回路の駆動を停止又は出力を低下させる構成である。
またこの実施の形態3の誘導加熱調理器は、被加熱物Nの大きさが、主加熱コイルMCを中心にして左側にある副加熱コイルSC4の方向に一定の限度で偏位した状態では、主加熱コイルのみの誘導加熱動作が実行されるものであり、その場合、通電制御回路200は、内側電極48,49の静電容量が変化した場合、主加熱コイルMCの駆動出力を300Wまで低下させるとともに、前記副加熱コイルの偏位した方向(左側)と反対側にある外側電極40の静電容量が変化した段階で、主加熱コイルMCを駆動している主インバーター回路MCの駆動を停止する構成である。これにより偏位した位置で主加熱コイルMCで誘導加熱されても、吹き零れが発生しやすい(偏位方向と反対側の)方向への吹き零れが発生した場合でも、外側電極40によって誘導加熱は停止させられ、吹き零れが拡大することを防止できる。
またこの実施の形態3の誘導加熱調理器は、簡単操作モードと通常操作モードの何れかを選択するスイッチ310を設け、このスイッチの操作によって吹き零れ検知動作やそれに関連する報知内容を選択することができるので、使用に不慣れな初心者でも誘導加熱の開始時点で簡単操作モードを選択することができ、安心感を持って通常操作モードの場合よりも簡単に使用することができる。
すなわち、この実施の形態3の誘導加熱調理器は、被調理物を入れる鍋などの被加熱物を載置するトッププレートと、前記トッププレートの下方に配置された円環状の主加熱コイルと、前記主加熱コイルの両側に近接して配置された複数個の副加熱コイルと、前記主加熱コイル及び全ての副加熱コイルにそれぞれ誘導加熱電力を供給するインバーター回路と、前記トッププレートに配置した電極における静電容量変化を捉えて吹き零れを検知する吹き零れ検知部と、前記インバーター回路の出力を制御する通電制御回路と、この通電制御回路に調理動作を指示する上面操作部と、前記通電制御回路の操作を通常操作モードと簡単操作モードに切り替える操作モード切替手段(スイッチ)310と、を有し、前記通電制御回路は、使用者の操作又は被加熱物の大きさに応じて、前記主加熱コイルと副加熱コイルに対して前記インバーター回路から供給される誘導加熱電力を同時又は所定の時間差で供給し、さらに前記通電制御回路は、通常操作モードに切り替えられた状態において、前記吹き零れ検知部が吹き零れを検知した場合、前記インバーター回路の出力を低下させる動作をするが、簡単操作モードに切り替えられた状態においては、前記吹き零れ検知部が吹き零れを検知した場合、前記インバーター回路の駆動を停止する構成を採用している。また吹き零れが発生した場合に使用者に報知する内容も、簡単操作モードの方が充実化している。
実施の形態3において、まず調理を開始する場合、まず上面操作部61に設けた主電源スイッチ63の操作ボタンを押してONにする。すると通電制御回路200には所定の電圧の電源が供給され、通電制御回路200は自ら調理器全体の異常有無チェックを実行する。異常がない場合には上面操作部61の各種キー90や加熱開始・停止キー91の操作は有効になり、使用者からの次の指令を待つ状態になる。
すると通電制御回路200(図示せず)は、駆動回路278(図示せず)を制御して、全ての広域発光部277を一斉に発光させる(黄色の光で1秒置きにて発光と停止を繰り返す。形態1)。そのため左右に誘導加熱部を備えた、いわゆる2口の誘導加熱調理器であっても、その左右の誘導加熱部のそれぞれに対応して、トッププレート21の下方から4つの三日月形で光った部分が現れる。
またこれと同時に、使用者には音声メッセージが流れ、「鍋を希望する加熱部の上に置いて下さい。鍋を置く場合、4箇所の黄色の光が点滅しているマークから外側に外れないように、光っている4つのマークのできるだけ中心位置に置いて下さい」というような案内が行われる。従って使用者は、広域発光部277からの光が透過している位置を目安にして、その内側に鍋を置けば良いことを容易に認識できる。
次に通電制御回路200は、使用者に対して簡単操作モードと通常操作モードの何れかを選択するように促すため、スイッチ310の部分を点滅させる。この点滅はスイッチ310の下方にある発光部(図示せず)を駆動することで行われる。同時に使用者には音声メッセージが流れ、「簡単操作モードを選択する場合は、光っているキーにタッチしてください。通常の操作モードで使用される場合は、光っているキーの左側にあるスタート・ストップキーにタッチして下さい」というような案内が行われる。
ここで簡単操作モードを選択するために、点滅しているスイッチ310の部分を軽く押すと、点滅は連続発光に変わり、誘導加熱が開始されるとの音声メッセージが流れ、誘導加熱が所定の火力、例えば中火力1.5KWにて開始される。
図34に示すように右IH加熱源6Rの上に鍋を置いて加熱調理開始した場合、広域発光部277は第1の形態から第2の形態に変化して発光を継続する。ここで第2の形態とは黄色で連続発光をいう。
通電制御回路200は、被加熱物載置判断部280(図示せず)からの検知情報に基づいて鍋(被加熱物N)が置いてあると判定すると、その鍋(被加熱物N)が誘導加熱に適するものかどうかを判定し、また鍋の直径が数cm等のように余りにも小さい場合や底面が大きく変形、湾曲等しているような鍋は不適正と判別して、使用者に音声で知らせる。
通電制御回路200は、被加熱物載置判断部280からの判別情報に基づいて加熱に適する鍋であると判定処理すると予め設定された火力(1.5KW)で誘導加熱開始する。なお、加熱開始後にキー90を操作して使用者が任意に火力設定を行っても良い。
主加熱コイルMC単独での誘導加熱の場合でも協同加熱の場合でも、それに関与する副加熱コイルSC1〜SC4と主加熱コイルMCに対し、通電制御回路200の制御の下に、インバーター回路MIV、SIV1〜SIV4から高周波電流がそれぞれ供給され、加熱が開始される。
そして通電制御回路200からの制御指令により広域発光部277は黄色の点滅状態(形態1)から黄色の連続発光状態(形態2)に変化したまま誘導加熱調理されるが、仮にこの状態において、吹き零れが万一発生した場合について説明する。なお、被加熱物Nの大きさは主加熱コイルMCの直径に相当する程度のものであっても、あるいは4つの副加熱コイルSC1〜SC4の上まで及ぶような大きさのものであっても良い。
仮に、右側の副加熱コイルSC1の方向に吹き零れが発生した場合、吹き零れ検知部50は、その右側の電極92の静電容量変化を最初に捉え、駆動中の主加熱コイルMC又は全ての副加熱コイルSC1〜SC4を即時停止する(これは簡単操作モードの場合。通常操作モードでは3段階火力が下げられるか、または300Wまで即時下げられるという処理になる)。電極92だけで吹き零れを検知し、加熱停止された場合は、4つの広域発光部277の内、右側の広域発光部277だけが赤色に発光する(形態3)。他の3つの広域発光部277は全て消えた状態になる。
例えば使用した鍋の直径が大きく、広域発光部277の真上位置よりも外側まで及ぶような鍋であった場合を想定すると、吹き零れが電極92の円弧部の上に到達せず、円弧部の外側に広がる懸念があるが、このような場合でもこの実施の形態4では、加熱調理器に隣接する厨房家具や台所の壁などに吹き零れ液が到達しないように、あるいは被加熱物N自体の直径が大きく、最初から4つの副加熱コイルSC1〜SC4の上を一面に覆うような大きさであった場合は、そのような吹き零れは、外側電極40,41の少なくとも何れか一つによって検知される。
吹き零れ検知部50は、その外側電極40、41の静電容量変化を捉えて、駆動中の主加熱コイルMCと全ての副加熱コイルSC1〜SC4を即時停止する(これは簡単操作モードの場合。通常操作モードでは3段階火力が下げられるか、または300Wまで即時下げられるという処理になる)。外側電極40、41で吹き零れを検知し、加熱停止された場合は、4つの広域発光部277は表示形態を変化させる。例えば、前記したように右側方向に吹き零れが発生した場合、吹き零れ検知部50は、協同加熱域の右半分を覆うように半円形に設けた右側の外側電極40で吹き零れが検知されるので、この場合は右側の副加熱コイルSC1の右隣にある広域発光部277だけを表示形態3(赤色点滅)に変える。他の3つの広域発光部は即時発光停止する。また音声ガイトとして例えば「吹き零れが発生したので、加熱を停止しました。赤く点滅している部分を中心にトッププレートに触れないで吹き零れを確認して下さい。トッププレートはまだ高温で、手を触れると危険です」というメッセージが流れる(この音声ガイドは簡単操作モードの場合。通常操作モードでは単に、吹き零れが発生して火力を下げた、というだけが報知される)。
以上のように、この実施の形態4の構成では、実施の形態2に比較して広域発光部277と個別発光部276の両方を設ける必要がなく、広域発光部277だけで良いので構成を簡単にすることができ、製造コスト的に有利である。また実施の形態2の広域発光部277のように、円環状に連続して設けるのではなく、4箇所に点在状態で広域発光部277を設ければ良いので、光を案内する導光板も短くでき、また光源の数や発光能力をより小さなもので実現できるという利点がある。
なお、実施の形態安全性を更に強化するため、操作モードの設定に拘らず、いかなる状況でも、内側電極48、49と外側電極40,41の少なくとも何れか一つが静電容量変化を捉えた場合、駆動中の主加熱コイルMCと全ての副加熱コイルSC1〜SC4を即時停止するような制御方法を採用しても良い。
以上の説明から明らかなように、この実施の形態3に係る誘導加熱調理器は、第3の発明に係る構成を備えている。すなわち、トッププレート21の下方に配置された主加熱コイルMCと、この主加熱コイルの両側に近接して配置された4個の副加熱コイルSC1〜SC4と、主加熱コイル及び副加熱コイルにそれぞれ誘導加熱電力を供給するインバーター回路MIV、SIV1〜SIV4と、トッププレート21に配置した電極40、41、48,49における静電容量変化を捉えて吹き零れを検知する吹き零れ検知部50と、被加熱物の温度を検知する温度検出部240と、この温度検出手段の検知情報が入力されるとともに前記インバーター回路の出力を制御する通電制御回路200と、この通電制御回路に調理動作を指示する上面操作部61と、使用者に操作方法や操作結果を音声で案内・報知する音声合成部315と、前記主加熱コイルと副加熱コイルを包含する広域の加熱域を前記トッププレート21上に光で示す4個の広域発光部277と、を備え、前記広域発光部277は前記4個の副加熱コイルSC1〜SC4毎に少なくとも一つ設置され、前記通電制御回路200は、主加熱コイルと副加熱コイルの協同加熱中は、前記広域発光部277を黄色の連続発光させるとともに、吹き零れ検知部が吹き零れを検知した場合、その吹き零れが発生した部分に近い位置にある広域発光部276を黄色の連続発光状態にしたり、あるいは他の形態(赤色発光)にて発光させたりし、他の広域発光部277の発光は停止する構成を具備したものである。これにより、主加熱コイルと副加熱コイルを包含する広域の加熱域で協同加熱を行うことができるとともに、その加熱域を広域発光部277でトッププレート21の上に表示できる。さらに調理器の使用に不慣れな使用者が調理を開始した場合でも、吹き零れ検知部50が吹き零れを検知して加熱駆動を制限又は停止した際に、その使用者は広域発光部277の発光状態を見て吹き零れの発生を知ることができる。しかも、吹き零れの発生箇所に近い位置にある広域発光部277の発光状態で、使用者は吹き零れの発生場所を特定することが可能となる。これにより、調理に不慣れな使用者や初心者も吹き零れで緊急停止したことを故障と誤解したり、操作ミスと誤解したりせず、安心して使用できる。
(実施の形態4)
図35は本発明の実施の形態3に係るビルトイン型の誘導加熱調理器の右側要部を示す平面図である。図36は本発明の実施の形態4に係るビルトイン型の誘導加熱調理器の加熱調理動作を示す説明図である。なお、図において前記実施の形態1〜3と同じ部分又は相当する部分には同じ符号を付している。
この実施の形態4では、本体部Aの左右中心線CL2を挟んで、その左右対称的位置にはそれぞれ誘導加熱部を有しており、いわゆる2口のビルトイン型誘導加熱調理器である。図35は、その右側のIH加熱源6Rのみの誘導加熱コイルの位置や形状を描いている。
本体部Aの上面を覆うトッププレート21の下方に、外形形状が円形の環状に巻かれた主加熱コイルMCとその周囲に4つの長円形副加熱コイルSC1〜SC4がそれぞれ設置されている。主加熱コイルMCと各副加熱コイルSC1〜SC4は互いに接触することなく、相互に所定の間隙を有している。
この実施の形態4では、広域発光部277は個別発光部276を兼ねており、また1つの副加熱コイルに対し1つずつ設けていること、さらにその広域発光部277は4つの副加熱コイルSC1〜SC4に隣接してそれぞれ設けた電極92、93、94、95の設置位置よりも内側、つまり中心点X2側にあるという3点が特徴である。
使用者がトッププレート21の上方から広域発光部277の点灯を認識する場合、その広域発光部277の形は円弧状である。つまり主加熱コイルMCと全ての副加熱コイルSC1〜SC4による協同加熱時の広い加熱域外縁部の位置を光で示す広域発光部277は、X2を中心とする同一円の上に等間隔で、合計4個点在している点が特徴の一つである。
図35において92、93、94、95は吹き零れ検知部50が静電容量変化を監視するための4つの独立した電極であり、電極92は主加熱コイルMCを中心として右側にある副加熱コイルSC1の更に右隣にあり、電極93は同様に後方側にある副加熱コイルSC2の更に後方にあり、電極94は同様に左側にある副加熱コイルSC4の更に左隣にあり、電極95は同様に手前側、すなわち上面操作部61側にある副加熱コイルSC3の更に手前側にある。4つの電極92、93、94、95にはそれぞれ両端部に接続端子部92A、92B、93A、93B、94A、94B、95A、95Bを有しており、これら端子を介して吹き零れ検知部50(図示せず)に接続されている。
4つの電極92、93、94、95は、その一方の接続端子92A,93A、94A、95Aが主加熱コイルMCの外周縁に近い位置にあり、その位置から各電極92、93、94、95は中心点X2から見て放射状に直線的に延びている部分を備えている。その直線的に延びた先の部分は、中心点X2を中心とする一つの円の円周に沿うように同一の曲率で湾曲しており、この湾曲部の端から再び放射方向に延びる部分があって、電極93、94はその末端部に他方の接続端子93B、94Bがある。
95Sは電極95の一部を構成する前方直線部であり、上面操作部61の後縁と略平行になるように真横に直線的に延びている。92Sは電極92の一部を構成する右側方直線部であり、トッププレート21を上方から押えている額縁形状の上枠20の左側縁と略平行になるように前後方向に直線的に延びている。
電極95の前方直線部95Sは、電極95の湾曲部の手前側にあり、その湾曲部の外側に吹き零れが発生した場合、それを検知するためのものである。電極92の右側方直線部92Sも、電極92の湾曲部の右側方側にあり、その湾曲部の外側に吹き零れが発生した場合、それを検知するためのものである。
SSFは、電極95のの湾曲部から後述する対流促進制御選択スイッチ350や、2つの火力設定キー90等までの最短距離を示す。またSSSは、電極92のの湾曲部から上枠20の最も右側端までの最短距離を示す。上枠20の右側には流し台等の厨房家具(図示せず)が通常存在する。
本体部Aの前方側にある横長帯状の上面操作部61は、静電容量変化を利用し、火力を設定するための操作情報が入力可能な複数個の入力キー90と、加熱停止と開始指令を入力可能な停止・開始操作スイッチの操作キー91とをそれぞれ有している。これら各種キーは、左右の誘導加熱部毎に、左右中心線CL2の両側にそれぞれ配置しているが、上面操作部61の右端部に配置した主電源スイッチ63の操作ボタン63Aだけは、左右の誘導加熱部共通のものである。主電源スイッチ63は誘導加熱調理器の主電源を遮断・投入するものであり、機械的なスイッチで構成されている。310は、上面操作部61の右端部に設けた操作モード選択手段としての切り替えスイッチであり、機械的な押圧式スイッチを用いているが、表面を例えば青色に発光させるため、スイッチ操作面は半透明シートで形成され、その下方には青色LEDが配置されている。。このLEDは通電制御回路200に発光が制御される。
前記停止・開始操作スイッチの操作キー91は、左側と右側の誘導加熱源の通電を開始したり停止したりすることができる静電容量式スイッチの操作キーである。一度押すと回路を閉じ(ONになり)、次に再度押すと回路を開成(OFF)するように動作し、以後このように操作する毎にON−OFF動作を繰り返す。このようにスイッチの機能を切り替えるのは実施の形態1〜2で示したような通電制御回路200によって行われる。
91Aは、操作キー91の周囲を囲むように半透明な皮膜で覆われた発光枠であり、この発光枠はその下方に設置された赤色光LEDと黄色光LEDによって照らされる。これら一対のLEDは駆動回路(図示せず)で駆動されるが、その駆動回路に駆動信号を与えるのは通電制御回路200である。なお、操作キーの表面に「ON」や「OFF」の文字が交互に浮かび上がるようになっているが、これはその操作キーの下方にONとOFFの文字を白抜きで印刷した半透明なシートがあり、ONとOFFの文字部分を照らすように前記LEDが1個ずつ対応しているからである。停止・開始操作スイッチ91がONの場合は、ONの文字部分が一方のLEDで照らされ、またOFFの場合はそのOFFの文字部分がもう一方のLEDで照らされる。このような発光動作も前記通電制御回路200からの指令によって行われる。なお、操作キーの表面の機能については「ON」や「OFF」ではなく、「開始」や「停止」を文字で表示しても良い。
100は右側のIH加熱源6R、左側のIH加熱源6Lの両方に共通の統合表示手段で、トッププレート21の下方に配置され、トッププレート21を通して表示内容が視認できるようにしてあり、表示部として液晶画面を備えている。この統合表示手段には加熱調理の設定条件、例えば火力や調理時間などが表示され、また使用者に便利な操作に関する参考情報やトッププレート21の温度が高いことや、吹き零れが発生したことなどの警報も表示される。なお、この実施の形態4においても、図示はしていないが、実施の形態2で説明したような音声合成装置315とスピーカー316を具備している。
実施の形態4における調理動作について以下説明する。図36において、調理を開始する場合、まず上面操作部61に設けた主電源スイッチ63の操作ボタンを押してONにする。すると通電制御回路200(図示せず)には所定電圧の商用電源が供給され、通電制御回路200は自ら調理器全体の異常有無チェックを実行する(ST300)。異常がない場合には上面操作部61の各種キー90や加熱開始・停止キー91の操作は有効になり、使用者からの次の指令を待つ状態になる。また通電制御回路200は、左右の誘導加熱部における広域発光部277を黄色の点滅状態(形態1)になるように駆動指令を発する(ST301)とともに、前記操作モード選択手段である切り替えスイッチ310の操作面を緑色で点滅状態に発光させる。
次に通電制御回路200は、使用者に対して、簡単操作モードと通常操作モードの何れかを選択するように促すため、音声合成装置315から音声メッセージを流す(ST302)。例えば「簡単操作モードを選択する場合は、青色に光っているキーにタッチしてください。通常の操作モードで使用される場合は、光っているキーの左側にある黄色に点滅しているスタート・ストップキーにタッチして下さい」というような案内が行われ、スイッチ310の操作面部分を点滅させる。このように最初に操作モードの選択スイッチ310の操作面とスタート・ストップ(スイッチの)キー(操作面)91の2者の内から、何れかを選択してもらう場合、一方を青色に、他方を黄色にして使用者に明確に識別できるようにしている。
ここで簡単操作モードを選択するために、点滅しているスイッチ310の部分を軽く押すと、簡単操作モードが設定され、もう一度押すと今度は通常操作モードに切り替わり、以後このように押圧操作する度に操作モードは切り替わる(ST303)。なお、この状態でも依然としてスイッチ310の操作面は青色点滅状態を維持している。
次に通電制御回路200は、使用者に対して、使用する加熱源を選択する動作を促すため、音声メッセージを流す(ST304)。例えば「右側IH加熱部と左側IH加熱部のどちらかを選択して下さい。選択は、黄色に光っている操作キー91にタッチすることで行えます」というような案内が行われる。そこで、図35に示したように右側にある誘導加熱部を選択するため、上面操作部61の左右中心線CL2より右側にある停止・開始操作スイッチの操作キー91にタッチすると、右側誘導加熱源の選択が行われる(ST305)。操作キー91は表示は、操作面に「OFF」の文字が現れ、赤色LEDが連続的に発光して赤色の「OFF」表示に切り替わる。
操作モードの選択スイッチ310の点滅はここで始めて連続発光に変わり、誘導加熱が開始されるとの音声メッセージが流れ、誘導加熱が所定の火力、例えば中火力1.5KWにて開始される(ST306)。主加熱コイルMC単独での誘導加熱の場合でも協同加熱の場合でも、それに関与する副加熱コイルSC1〜SC4と主加熱コイルMCに対し、通電制御回路200の制御の下に、インバーター回路MIV、SIV1〜SIV4から高周波電流がそれぞれ供給され、加熱が開始される。
通電制御回路200は、左右の誘導加熱部における広域発光部277を黄色の点滅状態(形態1)から黄色の連続発光(形態2)になるように駆動指令を発する。なお、火力を増減させたい場合は使用者は複数のキー90をタッチすれば、1回のタッチで火力は1段階毎に増加又は減少させることができる。
すると、停止・開始操作スイッチの操作キー91の発光枠91Aは、赤色光LEDが駆動されることで全体が黄色になり、目立った存在になる。つまり操作キーの表示は赤色「OFF」のままで、黄色表示部面積が拡大されたような視覚効果になる。従って使用者が右側の誘導加熱を停止したい場合は、上面操作部61の中で赤色「OFF」と表示されている操作キー91を押せば良いことが容易に理解できる。発光枠91Aは、誘導加熱の開始から黄色に表示しても良いが、被加熱物Nが所定温度まで上昇しない期間では、発光しないようにしておいても良い。すなわち、被加熱物Nの中の被調理液により吹き零れが発生するのは、沸騰状態に近い温度か沸騰温度以上になったときであるから、温度検出回路240(図示せず)が被加熱物Nの温度が例えば98℃や100℃になった時点で、通電制御回路200が発光枠91A下方の黄色LEDを発光させることで良い。なお、発光枠91Aを赤色に表示して操作キー91の操作面の色彩と合わせても良い。
加熱開始してから時間が経過すると被加熱物Nの温度が上昇するが、その温度が例えば100℃又は90℃になったことを、温度センサーによって温度検出回路240(図示せず)が判定し、この情報を通電制御回路200に伝達する。すると、簡単操作モードを選択していた場合には、統合表示手段100の液晶画面には、沸騰する鍋のマークやアニメーション、又は文字で沸騰が近いという表示がされる。また音声メッセージが流れ、例えば「沸騰状態が近づいています。吹き零れないように火力に注意して下さい。もし吹き零れの兆候があって、誘導加熱を直ぐに停止したい場合は、手前の操作部中央にある黄色に光っているスイッチ表面に触れて下さい」というようなメッセージが流れる(ST307)。通常操作モードではこのメッセージは流れない。このように吹き零れの発生が想定される場面になると、停止・開始スイッチ91の存在や機能が音声で強調される。
そして通電制御回路200からの制御指令により広域発光部277は黄色の点滅状態(形態1)から黄色の連続発光状態(形態2)に変化したまま誘導加熱調理されるが、仮にこの状態において、吹き零れが万一発生した場合について説明する。なお、被加熱物Nの大きさは主加熱コイルMCの直径に相当する程度のものであっても、あるいは4つの副加熱コイルSC1〜SC4の上まで及ぶような大きさのものであっても良い。
仮に、右側の副加熱コイルSC1の方向に吹き零れが発生した場合、吹き零れ検知部50は、その右側の電極92の静電容量変化を最初に捉え、通電制御回路200に吹き零れ発生の情報を伝達する(ST308)。すると通電制御回路200は「吹き零れ対応制御」を開始する(ST309)。通電制御回路200は、駆動中の主加熱コイルMC又は全ての副加熱コイルSC1〜SC4を即時停止する(これは簡単操作モードの場合。通常操作モードでは3段階火力が下げられるか、または300Wまで即時下げられるという処理になる)(ST310)。電極92だけで吹き零れを検知し、加熱停止された場合は、4つの広域発光部277の内、右側の広域発光部277だけが赤色点滅状態で発光する(形態3)(ST312)。他の3つの広域発光部277は全て黄色の連続点灯のままの状態を維持する。
例えば使用した鍋の直径が大きく、広域発光部277の真上位置よりも外側まで及ぶような鍋であった場合を想定すると、吹き零れが電極92の円弧部の上に到達せず、円弧部の外側に広がる懸念があるが、このような場合でもこの実施の形態4では、加熱調理器に隣接する厨房家具や台所の壁などに吹き零れ液が到達しないように、あるいは被加熱物N自体の直径が大きく、最初から4つの副加熱コイルSC1〜SC4の上を一面に覆うような大きさであった場合は、そのような吹き零れは、電極92の一部を構成する右側方直線部92Sで検知される。また前方の上面操作部61の方向に吹き零れた場合は、同じく電極95の一部を構成する前方直線部95Sで吹き零れが検知される。
簡単操作モードでも通常操作モードでも、吹き零れ検知部50が吹き零れを検知して、誘導加熱を緊急停止(あるいは火力の強制的ダウン)した場合、統合表示装置100の液晶画面には、その旨警報表示が出る(ST311)。しかしながら、簡単操作モードでは、統合表示装置100により文字や図形、アニメーション等での吹き零れ発生表示に加え、音声合成装置(図示せず)とスピーカー(図示せず)のよって音声ガイトが行われる(ST311)。音声ガイドの内容として例えば「吹き零れが発生したので、加熱を停止しました。赤く点滅している部分を中心にトッププレートに触れないで吹き零れを確認して下さい。トッププレートはまだ高温で、手を触れると危険です」というメッセージが流れる。なお、通常操作モードでは単に、吹き零れが発生して火力を下げた、というだけが音声で報知される。
このまま調理を終了する場合、スイッチ91を押さなくとも所定時間後に自動的に主電源スイッチ63は開放される。また通常操作モードの場合、吹き零れが発生しても小火力で加熱継続しているので、この状態を停止するにはスイッチ91を押せばば良い。吹き零れが発生して緊急停止した場合、トッププレート21の温度が例えば50℃以下に下がるまで、あるいは緊急停止から20分間経過するまで、前記した1つの広域発光部277は赤色点滅状態のまま、また他の3つの広域発光部277は全て黄色の連続点灯のままの状態を維持することでトッププレート21が高温であることを報知し、不用意に使用者が触れないように注意喚起する。スイッチ91を押して任意に加熱終了した場合も同様に所定温度以下にまで自然に冷えるまで、あるいは十分冷えるまでの時間経過するまで広域発光部277は高温報知する(統合表示手段100で同時に高温報知しても良い)。
以上のように、この実施の形態4の誘導加熱調理器は、被調理物を入れる鍋などの被加熱物を載置するトッププレート21と、前記トッププレートの下方に配置された加熱コイルMC、SC1〜SC4と、これら加熱コイルに誘導加熱電力を供給するインバーター回路と、前記トッププレート21に配置した電極92、93、94、95における静電容量変化を捉えて吹き零れを検知する吹き零れ検知部50と、被加熱物の温度を検知する温度検出部と、この温度検出手段の検知情報が入力されるとともに前記インバーター回路の出力を制御する通電制御回路200と、この通電制御回路に調理動作を指示する上面操作部61と、使用者に操作を音声で案内する報知部と、前記上面操作部61に設けられ、発光部によって照らされる加熱停止スイッチ91と、を設け、前記発光部は、前記温度検出部が所定の温度を検出する前は、前記停止スイッチ91を第1の状態に表示し、所定の温度を検出したあとは、前記停止スイッチ91を第2の状態に表示する構成を具備したものである。
また、4つの副加熱コイルSC1〜SC4に隣接して設けた広域発光部277と、4つの電極92、93、94、95が一対一に対応しているので、吹き零れを検知した電極に対応する広域発光部を利用して、吹き零れの発生場所を使用者に知らせることができる。しかも、実施の形態2の広域発光部277のように、円環状に連続して設けるのではなく、4箇所に点在状態で広域発光部277を設ければ良いので、光を案内する導光板などのような導光体も小型化でき、また光源の数や発光能力をより小さなもので実現できるという利点がある。
また簡単操作モードで使用すると、吹き零れの発生が想定される場面になると、自動的に停止・開始スイッチ91の存在や機能が音声で強調される。例えば黄色の発光でスイッチ91の位置が使用者に表示され、また吹き零れを回避するために緊急停止のときに操作すれば良いという音声案内もされるので、使用に不慣れな使用者や初心者でも安心感を持って使用できる。
上述した実施の形態1〜4においては、副加熱コイル群SC1〜SC4を構成する副加熱コイルの総数と、それらに対して高周波電流を供給する副インバーター回路SIV1〜SIV4の総数は共に4個で、同数であったが、本発明はこれに限定されたものではない。例えば、実施の形態2を示した図16の例のように中心点X1を境にして、その手前側に第1の加熱コイルSC1と第2の副加熱コイル群SC2を配置し、これと前後対称的位置である後方側には、第3の加熱コイルSC3と第4の副加熱コイル群SC4を配置したものでも良い。つまり4つの副加熱コイルSC1〜SC4を、それぞれ斜め45度の角度に配置するという変形である。この変形例において、第1の副インバーター回路SIV1は、第1の加熱コイルSC1と第4の副加熱コイルSC4を駆動するようにし、また第2の副インバーター回路SIV2は、第3の加熱コイルSC3と第2の副加熱コイルSC2を駆動するようにしても良い。
この場合、第1の副インバーター回路SIV1は、第1の加熱コイルSC1と第4の副加熱コイルSC4を同時に駆動するのではなく、どちらか一方のみを駆動するようにし、また第2の副インバーター回路SIV2も、第3の加熱コイルSC3と第2の副加熱コイルSC2を同時に駆動するのではなく、どちらか一方のみを駆動するようにすることが不要な磁気漏洩を減らし、加熱効率を高める観点で好ましい。
このような構成によれば高価なインバーター回路の数を減らせることからコストを低減でき、また回路基板設置容積を小さくできるという効果がある。実際に図15の例のように4個の副加熱コイルSC1〜SC4を配置した場合、使用者が長円形や楕円形などの非円形鍋を使用して調理する場合には、手前に横長に置けば中心点X1を境にして、その前方側にある第1の加熱コイルSC1と第2の副加熱コイルSC2を駆動することで対応でき、また中心点X1から左側に前後方向に長くなるように置かれた場合は、第2の加熱コイルSC2と後方の第4の副加熱コイルSC4を駆動することで対応でき、中心点X1から右側に前後方向に長くなるように置かれた場合は、第1の加熱コイルSC1と第3の副加熱コイルSC3を駆動することで対応できるから、これら3つのパターンの何れでも一つの副インバーター回路を切り替え、1組(2個)の副加熱コイルの内、何れか一方だけを選択して使用することで何ら支障はない。
このように一つの共通の副インバーター回路で二つの副加熱コイルを切り替えて使用する場合、一つの共通の副インバーター回路を時間的条件、例えば短時間間隔で一つの副加熱コイルと他方の副加熱コイルに交互に接続を切り替えれば、結果的に二つの副加熱コイルを駆動することができる。従って4個を超える数の副加熱コイルを設ける場合もこの考え方で副インバーター回路の数を最小限度に抑制できる。
このように一つの共通の副インバーター回路で二つの副加熱コイルを同時に兼用して使用する場合、例えばフル・ブリッジ回路では図21に示したように、副加熱コイルSC1と共振コンデンサー110Bとの直列共振回路内に、副加熱コイルSC3を(SC1と直列又は並列に)接続すれば良い。こうすれば、SC1とSC3とが同時に駆動されても、駆動周波数には実質的な差が発生しないので、うなり音が発生しない。
また前記第1の副加熱コイルや第2副の加熱コイルに対する通電を順次切替えたり、間欠的に駆動したりするという制御を実施した場合、使用者にはどのような誘導加熱が行われているのか分からず、使用時に不安感を抱く可能性もあるので、上記したような対流促進や吹き零れ抑止のための副加熱コイル群の通電切換えを、前記したような統合表示手段100や液晶表示画面45R、45Lなどに文字や記号、又は動くアニメーション等によってリアルタイムで表示すると更に良い。
以上の説明では、前記制御部は、前記インバーター回路から前記第1副加熱コイルと、第2副加熱コイルに対して誘導加熱電力を交互に供給していたが、所定の時間差で供給するようにしても良い。すなわち、交互に供給することは、鍋等の加熱部分を時間的に離れた位置に変化させるという効果を発揮させ、対流促進効果を高めることが目的であるので、この効果を発揮させるためには、オン・オフ期間が全く正反対である必要はない。例えば第1副加熱コイル又は第1組の副加熱コイルの通電を停止する前の数秒前から、第2副加熱コイル又は第2組の副加熱コイルの通電を開始するという方法に変更しても良い。あるいは第1副加熱コイル又は第1組の副加熱コイルの通電を停止する前に徐々に火力を低下させてから停止させ、一方、第2副加熱コイル又は第2組の副加熱コイルの通電は、そのような火力低下期間に合わせて、逆に徐々に火力を上げながら、又は最初から大きな火力で駆動を開始するという方法に変更しても良い。
なお、以上の説明の中で、吹き零れ検知部50のことを静電容量検知手段と呼んでいる部分があるが、静電容量検知手段は、必ずしも電極40,41等の静電容量がデジタル値でどのくらいあるかどうかを検知する必要はない。調理開始前の段階と、沸騰状態に近い段階では吹き零れがなくとも電極の静電容量がIH加熱部の磁気の影響で常に一定で、同じであるという保証がないので、このような変化も見込み、所定の時点、例えば沸騰温度に近い95度で静電容量を検知して、それを所定の基準値とし、その値からどの程度増加又は減少したかどうかを検知し、急激な静電容量の変化(増加又は減少)を検知することで吹き零れと判断する方法でも良い。従って、その増減量は勿論、増減の率や増減の速度(単位時間あたりの増加や減少)等を指数化し、その指数の大小で吹き零れが発生したかどうかを判断するものであっても良い。また電極は実施の形態のように所定の長さに亘って連続的に設ければ、その電極のどの部分に調理液が吹き零れても検知できるという利点があるが、吹き零れの方向を見て、IH加熱コイルの前後左右方向など何箇所かに亘って短い電極を点在させる形態でも良い。その場合、個々の電極は実施の形態1〜3で示したように、IH加熱コイルの外形形状に沿った湾曲形状にすると良い。これは例えば外形形状が環状の主加熱コイルMCの場合、その中心点X1、X2と同心円の上に、電極の長手方向を一致させる形態で実現できる。この場合、副加熱コイルの外形形状にも沿った湾曲形状の電極にすると、副加熱コイルに流れる高周波電流で発生する磁界の影響も受けにくく、更に好適である。
さらに、上記実施の形態1〜2においては高速加熱用の選択キーE1A、湯沸し用選択キーE1B等、7つの調理メニューキーを設けたが、それら調理メニューキーを選択しても、適当なタイミングで自動的に対流促進制御が実施されるとは限らない場合が想定される。そこで対流促進制御が必要となる調理レシピの選択キーを用意しておき、そのキーを使用者に選択してもらうことが良い。例えば、調理レシピの一つとしてカレーのキーでは、とろみのある液体のため対流が起こりにくく、鍋底で焦げ付きやすかった。そしてカレーのルーは野菜が十分に煮えてから加えるようにし、カレールーを入れた後は誘導加熱を止めるか、誘導加熱コイルを最小火力で駆動して煮込むという方法で従来は調理されていた。
そこで「カレー」という選択キーを使用者が調理の開始前や開始直後、あるいは途中で操作した場合、カレーのルーを入れる時に前述した対流促進制御を実施するように、使用者に報知することが望ましい。具体的には実施の形態2の統合表示手段100を利用し、対流促進制御選択スイッチを押すように促す表示をしたり、音声合成装置315でアナウンスしたりするという方法が考えられる。対流促進制御選択スイッチ350が操作されれば、副加熱コイルSCや主加熱コイルMCに対する通電条件の変更などが通電制御回路200で自動的に行われ、沸騰後などの適当なタイミングであるかどうかの判断が通電制御回路200で自動的に行われ、適当なタイミングである場合、引き続き対流促進の加熱が行われる。