JP2012075004A - Spherical surface acoustic wave element - Google Patents

Spherical surface acoustic wave element Download PDF

Info

Publication number
JP2012075004A
JP2012075004A JP2010219289A JP2010219289A JP2012075004A JP 2012075004 A JP2012075004 A JP 2012075004A JP 2010219289 A JP2010219289 A JP 2010219289A JP 2010219289 A JP2010219289 A JP 2010219289A JP 2012075004 A JP2012075004 A JP 2012075004A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
spherical
spherical surface
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010219289A
Other languages
Japanese (ja)
Other versions
JP5533509B2 (en
Inventor
Tsunero Oki
恒郎 大木
Nobutaka Nakaso
教尊 中曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010219289A priority Critical patent/JP5533509B2/en
Publication of JP2012075004A publication Critical patent/JP2012075004A/en
Application granted granted Critical
Publication of JP5533509B2 publication Critical patent/JP5533509B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spherical surface acoustic wave element that suppresses a reduction in measuring accuracy due to a positional gap between a heated portion and a circuit region for a surface acoustic wave for temperature measurement, in an application for measuring a degree of heat radiation while heating the spherical surface acoustic wave element to measure a state of gas.SOLUTION: A spherical surface acoustic wave element 10 includes a barrel-shaped piezoelectric crystal substrate 11, and an interdigital electrode 13 and a heating wiring pattern 14 formed on a surface acoustic wave circuit path 12 of the substrate 11.

Description

本発明は、抵抗加熱による加熱機能を有する球状弾性表面波素子に関する。   The present invention relates to a spherical surface acoustic wave device having a heating function by resistance heating.

従来、圧電材料で形成されている平坦な表面を有する基材において同基材の表面上の相互に離れた2つの位置に電気音響変換素子を設けた弾性表面波素子が知られている。電気音響変換素子は通常、例えばすだれ状電極の如き高周波励起/高周波受信手段である。   2. Description of the Related Art Conventionally, a surface acoustic wave element in which electroacoustic transducers are provided at two positions apart from each other on a surface of a base material having a flat surface made of a piezoelectric material is known. The electroacoustic transducer is usually a high-frequency excitation / high-frequency receiving means such as an interdigital electrode.

この従来の弾性表面波素子においては、一方の電気音響変換素子に高周波電流を供給すると、この一方の電気音響変換素子が弾性表面波(SAW:Surface Acoustic Wave)を基材の表面に発生させ、所定の方向に伝搬させることができる。そして、他方の電気音響変換素子は上記表面上で一方の電気音響変換素子からの弾性表面波を受信し、受信した弾性表面波に対応した高周波電流を生じさせることができる。電気音響変換素子がすだれ状電極の場合には、すだれ状電極の複数の電極枝が並んでいる方向がすだれ状電極により発生された弾性表面波が伝搬する方向となり、また上記弾性表面波を効率よく受信する方向となる。   In this conventional surface acoustic wave element, when a high frequency current is supplied to one electroacoustic transducer, the one electroacoustic transducer generates a surface acoustic wave (SAW) on the surface of the substrate, It can be propagated in a predetermined direction. The other electroacoustic transducer can receive the surface acoustic wave from the one electroacoustic transducer on the surface and generate a high-frequency current corresponding to the received surface acoustic wave. When the electroacoustic transducer is an interdigital electrode, the direction in which the multiple electrode branches of the interdigital electrode are aligned is the direction in which the surface acoustic wave generated by the interdigital electrode propagates, and the surface acoustic wave is efficiently used. It becomes the direction to receive well.

なお弾性表面波とは、通常のバルク波と呼ばれる縦波や横波と異なり、物質表面にそのエネルギーの多くを集中して伝搬する弾性波である。弾性表面波としては、レーリー波、セザワ波、擬セザワ波、ラブ波等を例示することができ、異方性材料の表面にも存在し得る。   The surface acoustic wave is a surface acoustic wave that propagates while concentrating much of its energy on the surface of the material, unlike a longitudinal wave or a transverse wave called a normal bulk wave. Examples of the surface acoustic wave include a Rayleigh wave, a Sezawa wave, a pseudo Sezawa wave, a Love wave, and the like, and may also exist on the surface of an anisotropic material.

この球状弾性表面波素子の周回経路を伝搬する弾性表面波の周回速度や周回に要する時間は、一般には温度依存性を持つことから、その変化を計測することで高精度の温度計として使用できる。この弾性表面波の伝搬状態の変化から温度計測する方法は現在様々な用途で使用されており、ここではその説明を省略する。   The surface velocity of the surface acoustic wave propagating through the circular path of this spherical surface acoustic wave element and the time required for the rotation generally have temperature dependence, so it can be used as a highly accurate thermometer by measuring the change. . The method of measuring the temperature from the change in the propagation state of the surface acoustic wave is currently used in various applications, and the description thereof is omitted here.

従来の板状の弾性表面波素子は、遅延線,発振器のための発振素子及び共振素子,周波数選択フィルター,化学センサー,バイオセンサー,そしてリモートタグ等に使用されている。そして、圧電体の上面の弾性表面波励起手段と弾性表面波検知手段との間の距離を長くとればとるほど、弾性表面波素子を利用したこれら種々の装置の精度は高まる。   Conventional plate-like surface acoustic wave devices are used for delay lines, oscillation and resonance devices for oscillators, frequency selective filters, chemical sensors, biosensors, remote tags, and the like. The longer the distance between the surface acoustic wave excitation means and the surface acoustic wave detection means on the upper surface of the piezoelectric body, the higher the accuracy of these various devices using surface acoustic wave elements.

しかしながら、このような従来の板状の弾性表面波素子においては、平坦な基体上に配置された圧電体が平坦であるために、弾性表面波励起手段が圧電体の上面に励起した弾性表面波は平坦な圧電体の上面に沿い弾性表面波検知手段に向かい伝搬される間に、その伝搬方向に対し直交する方向に拡散してしまい、そのエネルギーを失う。従って、平坦な圧電体の上面において設定可能な弾性表面波励起手段と弾性表面波検知手段との間の距離は自ずと限界がある。   However, in such a conventional plate-shaped surface acoustic wave element, since the piezoelectric body disposed on the flat substrate is flat, the surface acoustic wave excited by the surface acoustic wave excitation means on the upper surface of the piezoelectric body is provided. While propagating along the upper surface of the flat piezoelectric body toward the surface acoustic wave detecting means, it diffuses in a direction perpendicular to the propagation direction and loses its energy. Therefore, the distance between the surface acoustic wave excitation means and the surface acoustic wave detection means that can be set on the upper surface of the flat piezoelectric body is naturally limited.

球状弾性表面波素子は、弾性表面波を励起させ伝搬させることができる球形状の基体の表面に、弾性表面波励起検知手段としてのすだれ状電極を載置し、基体の半径とすだれ状電極により基体の表面に励起させる弾性表面波の周波数および幅(基体の表面を弾性表面波が伝搬する方向に対し基体の表面に沿い直交する方向における弾性表面波の寸法)とを所定の条件に設定することにより、すだれ状電極により基体の表面に励起された弾性表面波を、基体の表面に沿い伝搬する方向に対し基体の表面に沿い直交する方向に無限に拡散させることなく、伝搬させることができ、繰り返し周回させることができることが明らかにされている。   A spherical surface acoustic wave element has a interdigital electrode as a surface acoustic wave excitation detecting means placed on the surface of a spherical base body capable of exciting and propagating surface acoustic waves. The frequency and width of the surface acoustic wave excited on the surface of the substrate (the size of the surface acoustic wave in the direction orthogonal to the direction of propagation of the surface acoustic wave on the surface of the substrate) are set to predetermined conditions. Therefore, the surface acoustic wave excited on the surface of the substrate by the interdigital electrode can be propagated without infinitely diffusing in the direction orthogonal to the direction of propagation along the surface of the substrate. It has been clarified that it can be repeatedly circulated.

球形状の基体の表面を弾性表面波が周回する軌跡は、球形状の基体の表面において球形状の基体の最大外周線を含んでいる球面の一部が円環状に連続している領域内にあり、この領域を弾性表面波周回路と呼んでいる。このような球形状の基体を使用した球状弾性表面波素子は、弾性表面波周回路に沿い弾性表面波周回路の延出方向と交差する方向に拡散することなく弾性表面波を多数回周回させることができる(すなわち、すだれ状電極が弾性表面波を励起させてから弾性表面波周回路を周回する弾性表面波をすだれ状電極が正確に検知することができなくなるまでに弾性表面が周回する回数が多い)ので、周回数の増大に伴う弾性表面波の伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度を精密に測定することができる。   The trajectory of the surface acoustic wave that circulates on the surface of the spherical substrate is within a region where a part of the spherical surface including the maximum outer circumference of the spherical substrate is continuous in an annular shape on the surface of the spherical substrate. This area is called a surface acoustic wave circuit. A spherical surface acoustic wave device using such a spherical substrate circulates a surface acoustic wave many times without diffusing in the direction intersecting the extending direction of the surface acoustic wave circuit along the surface acoustic wave circuit. (That is, the number of times the elastic surface circulates until the interdigital electrode cannot accurately detect the surface acoustic wave that circulates the surface acoustic wave circuit after the interdigital electrode excites the surface acoustic wave. Therefore, it is possible to precisely measure the degree of deceleration of the surface acoustic wave propagation speed, the degree of phase delay of the surface acoustic wave, and the degree of reduction of the intensity of the surface acoustic wave as the number of turns increases.

伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度は、球状弾性表面波素子の弾性表面波周回路が接している環境の変化(例えば、ガス濃度の増加)の程度に対応する。従って、上述した種々の程度を測定することは球状弾性表面波素子の弾性表面波周回路が接している環境の変化を測定することを意味する。   The degree of deceleration of the propagation velocity, the degree of phase lag of the surface acoustic wave, and the degree of decrease in the intensity of the surface acoustic wave depend on the change in the environment in which the surface acoustic wave circuit of the spherical surface acoustic wave element is in contact (for example, gas Corresponding to the degree of increase in density). Therefore, measuring the various degrees described above means measuring changes in the environment in which the surface acoustic wave circuit of the spherical surface acoustic wave element is in contact.

そのひとつの応用例が、流速計への応用として提案されている。   One such application is proposed as an application to an anemometer.

特許文献1には、球状弾性表面波素子の球形基材の表面、あるいはそれに接触させて加熱するヒーターが説明されている。とくに、この特許文献では、弾性表面波の周回経路の両側に抵抗加熱のための配線を実装している。球形基材を加熱しながら、周囲のガスの流れに伴って熱が奪われる現象を計測してガスの流速を計測する。この計測に用いる計測アルゴリズムは、弾性表面波素子を周回する弾性表面波の周回速度をその位相速度が一定になる温度調節をするためのヒーターの電流値を計測する方法がある。あるいはさらに単純に、一定の電流を流すことで同じ熱量が球状弾性表面波素子に印加される状態を作り、弾性表面波の周回速度の変化から素子温度を計測することで間接的に周囲のガスによって熱が奪われる量を計測するものである。   Patent Document 1 describes a heater that is heated in contact with the surface of a spherical substrate of a spherical surface acoustic wave element or in contact therewith. In particular, in this patent document, wiring for resistance heating is mounted on both sides of a surface acoustic wave circulation path. While the spherical base material is heated, a phenomenon in which heat is taken away with the flow of the surrounding gas is measured to measure the gas flow velocity. As a measurement algorithm used for this measurement, there is a method of measuring the current value of the heater for adjusting the temperature at which the phase velocity of the rotation speed of the surface acoustic wave circulating around the surface acoustic wave element becomes constant. Or, more simply, a constant current is applied to create a state in which the same amount of heat is applied to the spherical surface acoustic wave device, and the ambient temperature is indirectly measured by measuring the device temperature from the change in the surface acoustic wave's circulation speed. It measures the amount of heat taken away by.

これらの加熱配線付球状弾性表面波素子は、球状弾性表面波素子が高精度の温度計になることが期待されているが、球形基材が大きな熱容量を有しているために高速の応答を得ることが難しかった。   These spherical surface acoustic wave elements with heating wiring are expected to be a thermometer with high accuracy, but since the spherical base material has a large heat capacity, it has a high speed response. It was difficult to get.

さらに、従来の加熱配線付球状弾性表面波素子は、温度計測の対象である弾性表面波素子の周回経路とは異なる位置に加熱配線が形成されているために温度計測位置と加熱位置が異なり、最も放熱が大きくなる領域の温度が正確に計測できない可能性がある。   Furthermore, since the conventional spherical surface acoustic wave element with a heating wiring has a heating wiring formed at a position different from the circulation path of the surface acoustic wave element that is the target of temperature measurement, the temperature measurement position and the heating position are different, There is a possibility that the temperature in the region where the heat radiation is greatest cannot be measured accurately.

また、特許文献2には、弾性表面波素子の弾性表面波の位相速度から温度を計測するのではなく、弾性表面波の周回する伝搬路上に直接抵抗測温体を形成することが示されている。   Patent Document 2 shows that a resistance temperature sensor is directly formed on a propagation path around a surface acoustic wave rather than measuring the temperature from the phase velocity of the surface acoustic wave of the surface acoustic wave element. Yes.

特開2007−101450号公報JP 2007-101450 A 特開2008−082984号公報JP 2008-082884 A

上述したように、表面に加熱用配線を有した球状弾性表面波素子は、周囲のガスの流れ等を計測する用途において、その使用が期待されているに関わらず、球形基材の大きな熱容量や、加熱用配線が弾性表面波の伝搬位置と位置的に離れていることから、応答が遅く正確な計測ができないという問題があった。   As described above, the spherical surface acoustic wave element having the heating wiring on the surface is used for measuring the flow of the surrounding gas, etc. Since the heating wiring is positioned apart from the surface acoustic wave propagation position, there is a problem that the response is slow and accurate measurement cannot be performed.

本発明は上記実情に鑑みなされたもので、球状弾性表面波素子を加熱しながらその熱を周囲に放出する程度を計測することによって、ガスの状態の計測を行う用途において、加熱部分と温度計測を行う弾性表面波の周回領域の位置的なズレによる計測精度の低下を抑制した球状弾性表面波素子を提供することを目的とする。   The present invention has been made in view of the above circumstances. In an application for measuring the state of a gas by measuring the degree to which the surface acoustic wave element is released while heating the spherical surface acoustic wave element, the heating portion and the temperature measurement are performed. It is an object of the present invention to provide a spherical surface acoustic wave element that suppresses a decrease in measurement accuracy due to positional deviation of the circumferential region of the surface acoustic wave that performs the above-described measurement.

本発明で使用する球形基材は、弾性表面波の周回経路に、抵抗加熱用の配線を形成することで、加熱領域と弾性表面波の伝搬領域(周回経路)とが一致した加熱配線付球状弾性表面波素子を提供する。   The spherical base material used in the present invention is a spherical with heating wiring in which the heating area and the propagation area (circulation path) of the surface acoustic wave coincide with each other by forming a resistance heating wiring in the circulation path of the surface acoustic wave. A surface acoustic wave device is provided.

本発明の実施形態は、球面の一部で形成され上記球面の最大径の外周線を含み円環上に延出している表面領域を有して形成され、上記表面領域に上記表面領域の円環状の延出方向に沿い励起された弾性表面波が上記外周線に沿い周回する基材と、上記基材の上記表面領域に形成され上記表面領域の円環状の延出方向に沿い弾性表面波を励起させる電気音響変換素子と、上記基材の上記表面領域に形成され外部から供給された動作用電圧により加熱制御される抵抗加熱用の配線パターンと、を具備した球状弾性表面波素子を特徴とする。   An embodiment of the present invention is formed by having a surface region that is formed of a part of a spherical surface and includes an outer peripheral line having a maximum diameter of the spherical surface and extending on a ring, and the surface region has a circle of the surface region. A surface acoustic wave excited along the annular extending direction circulates along the outer circumferential line, and a surface acoustic wave formed along the annular extending direction of the surface region formed in the surface region of the substrate. Characterized by a spherical surface acoustic wave device comprising: an electroacoustic transducer that excites a substrate; and a resistance heating wiring pattern that is formed on the surface region of the substrate and controlled by an operation voltage supplied from the outside. And

本発明によれば、球状弾性表面波素子が抵抗加熱用配線を有して自身を加熱しながら、周囲のガスの流速などの熱の漏出の程度を弾性表面波の周回速度の変化に基づく温度計測を高速かつ正確に行うことができる。   According to the present invention, while the spherical surface acoustic wave element has a resistance heating wiring and heats itself, the degree of heat leakage such as the flow rate of the surrounding gas is determined based on the change in the circumferential speed of the surface acoustic wave. Measurement can be performed quickly and accurately.

本発明の第1実施形態に係る球状弾性表面波素子の要部の構成を概略的に示す斜視図。1 is a perspective view schematically showing a configuration of a main part of a spherical surface acoustic wave element according to a first embodiment of the present invention. 本発明の第2実施形態に係る球状弾性表面波素子の要部の構成を概略的に示す斜視図。The perspective view which shows schematically the structure of the principal part of the spherical surface acoustic wave element which concerns on 2nd Embodiment of this invention. 上記第2実施形態に係る球状弾性表面波素子に対して結線を行う状況を概略的に示す図。The figure which shows schematically the condition which connects with respect to the spherical surface acoustic wave element which concerns on the said 2nd Embodiment.

以下図面を参照して本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず図1を参照して本発明の第1実施形態に係る球状弾性表面波素子の構成を説明する。なお、この実施形態では電気音響変換素子として、すだれ状電極を使用するが、すだれ状電極は球形基材の表面に実装することを前提に説明する。しかし、結晶球とは別個の基材の上にすだれ状電極を形成して、すだれ状電極を結晶球の表面に接近することでも球状弾性表面波素子として機能する。本発明においては、この構成を含めて「球形結晶球の表面にすだれ状電極を形成する」と表現するものとする。この球状弾性表面波素子の周回経路を伝搬する弾性表面波の周回速度や周回に要する時間は、一般には温度依存性を持つことから、その変化を計測することで高精度の温度計として使用できる。この弾性表面波の伝搬状態の変化から温度計測する方法は現在様々な用途で使用されており、この実施形態ではその説明を省略する。   First, the configuration of the spherical surface acoustic wave device according to the first embodiment of the present invention will be described with reference to FIG. In this embodiment, an interdigital electrode is used as the electroacoustic transducer, but the description will be made on the assumption that the interdigital electrode is mounted on the surface of a spherical substrate. However, a comb electrode is formed on a base material separate from the crystal sphere, and the comb electrode approaches the surface of the crystal sphere to function as a spherical surface acoustic wave element. In the present invention, including this configuration, it is expressed as “forms an interdigital electrode on the surface of a spherical crystal sphere”. The surface velocity of the surface acoustic wave propagating through the circular path of this spherical surface acoustic wave element and the time required for the rotation generally have temperature dependence, so it can be used as a highly accurate thermometer by measuring the change. . The method of measuring the temperature from the change in the propagation state of the surface acoustic wave is currently used in various applications, and the description thereof is omitted in this embodiment.

本発明の第1実施形態に係る球状弾性表面波素子10は、球形状の両極に平坦面を形成した樽型形状の基材(圧電性結晶基材)11と、この基材11の周回径路(弾性表面波の周回径路)12上に形成されたすだれ状電極13および加熱用配線パターン14と、上記基材11の周回径路12を挟む両極の平坦面に形成された弾性表面波励起検出用電極取り出し部15とを具備して構成される。基材11の周回径路12上に形成された加熱用配線パターン14にはその両端間に加熱用電源16から動作用電圧が印加される。周回径路12は球面の一部で、且つ球面の最大径の外周線を含み円環状に延出している表面領域により形成される。   A spherical surface acoustic wave element 10 according to the first embodiment of the present invention includes a barrel-shaped base material (piezoelectric crystal base material) 11 in which flat surfaces are formed on both spherical poles, and a circular path of the base material 11. (Surrounding path of surface acoustic wave) For detecting the surface acoustic wave excitation formed on the flat surfaces of the interdigital electrodes 13 and the heating wiring pattern 14 formed on 12 and the poles sandwiching the circumferential path 12 of the substrate 11. An electrode take-out unit 15 is provided. An operating voltage is applied to the heating wiring pattern 14 formed on the circuit path 12 of the substrate 11 from the heating power supply 16 between both ends thereof. The circular path 12 is formed by a surface region which is a part of a spherical surface and includes an outer peripheral line having the maximum diameter of the spherical surface and extends in an annular shape.

上記球状弾性表面波素子10は、例えば水晶又はランガサイトのような三方晶系圧電性単結晶の基材11により構成されている。この実施形態では、直径3.3mmのランガサイト結晶球を使用した。球形に加工されたランガサイト材により構成された基材11は、Z軸を地軸として赤道近傍を弾性表面波の周回経路12としている。   The spherical surface acoustic wave element 10 includes a base material 11 made of a trigonal piezoelectric single crystal such as quartz or langasite. In this embodiment, a Langasite crystal sphere having a diameter of 3.3 mm was used. A base material 11 made of a langasite material processed into a spherical shape has a surface around the equator as a circumferential path 12 of surface acoustic waves with the Z axis as the ground axis.

本発明に使用する結晶球は、加熱によって圧電特性が変わり難い圧電性結晶材の使用が望まれる。ランガサイト材は1000度以上の高温でも圧電性を失うことがなく弾性表面波を励起できる。水晶は300度以上になると相変化を起して圧電性を失うために、温度が上がり過ぎないようにする配慮が必要である。   For the crystal sphere used in the present invention, it is desired to use a piezoelectric crystal material whose piezoelectric characteristics are hardly changed by heating. The langasite material can excite surface acoustic waves without losing its piezoelectricity even at a high temperature of 1000 ° C. or higher. In order to cause a phase change at a temperature of 300 degrees or more and lose the piezoelectricity, it is necessary to consider that the temperature does not rise too much.

本発明の実施形態に使用する圧電性結晶基材11は、温度が変わると、弾性表面波の周回速度が変わる、温度依存性を持った圧電性結晶基材であることが求められる。たとえば水晶球を用いた球状弾性表面波素子の温度依存性は室温付近で25ppm/度であり、ランガサイト結晶球を使用した場合は40ppm/度である。温度依存性が高いほど正確に弾性表面波の周回速度から温度を計測できる。   The piezoelectric crystal base material 11 used in the embodiment of the present invention is required to be a temperature-dependent piezoelectric crystal base material in which the circumferential velocity of the surface acoustic wave changes when the temperature changes. For example, the temperature dependence of a spherical surface acoustic wave element using a crystal sphere is 25 ppm / degree near room temperature, and 40 ppm / degree when a langasite crystal sphere is used. The higher the temperature dependency, the more accurately the temperature can be measured from the circumferential velocity of the surface acoustic wave.

基材11の赤道に沿って弾性表面波が周回するように、すだれ状電極13の電極枝が赤道に垂直になる方向に形成される。すだれ状電極13の周期は励起或いは検出する弾性表面波の周波数を決定するが、この実施例では150MHzの弾性表面波を励起する為に15ミクロンの周期にすだれ状電極を形成する。   The electrode branches of the interdigital electrode 13 are formed in a direction perpendicular to the equator so that the surface acoustic wave circulates along the equator of the substrate 11. The period of the interdigital electrode 13 determines the frequency of the surface acoustic wave to be excited or detected. In this embodiment, the interdigital electrode is formed at a period of 15 microns in order to excite the surface acoustic wave of 150 MHz.

なお、三方晶系の圧電性単結晶を用いて球形基材を作る場合にはZ軸結晶方位を地軸とする赤道に沿って(Z軸シリンダー経路と呼称される)弾性表面波の周回経路を形成できるが、例えばニオブ酸リチウムやタンタル酸リチウムなど多くの圧電結晶でZ軸シリンダー経路以外の経路で弾性表面波が周回することが知られており、本発明に使用する圧電性結晶基材は弾性表面波の多重周回が可能でその周回速度が温度依存性を有していればよく、赤道に沿った経路以外を除外するものではない。   When a spherical base material is made using a trigonal piezoelectric single crystal, a surface acoustic wave orbital path (called a Z-axis cylinder path) is formed along the equator with the Z-axis crystal orientation as the ground axis. It is known that surface acoustic waves circulate in paths other than the Z-axis cylinder path in many piezoelectric crystals such as lithium niobate and lithium tantalate, and the piezoelectric crystal base material used in the present invention is It is only necessary to allow multiple rounds of surface acoustic waves and the speed of the rounds to be temperature-dependent, and this does not exclude other than the path along the equator.

機材11は球形基材のZ軸を地軸として両極を切削、研磨して樽型形状とすることにより作製される。Z軸シリンダー領域(弾性表面波の周回経路)は幅0.8mmにわたって球形表面を残している。加工方法は、製作した球形の水晶球を樹脂に埋め込み、樹脂ごと研磨を北極と南極側の両面について行って、その後に樹脂を溶解除去して樽型とする。   The equipment 11 is manufactured by cutting and polishing both poles with the Z axis of the spherical base material as the ground axis to form a barrel shape. The Z-axis cylinder region (circular path of the surface acoustic wave) leaves a spherical surface over a width of 0.8 mm. In the processing method, the manufactured spherical crystal sphere is embedded in a resin, the resin is polished on both sides of the north pole and the south pole, and then the resin is dissolved and removed to form a barrel shape.

次に、すだれ状電極13と加熱用配線パターン14を周回経路12となる予定の経路上に形成する。ここではZ軸を中心に球形のランガサイト球を回転させながら、その周回経路に対してクロム(1000Å)と金(500Å)の積層薄膜を真空成膜によって形成する。   Next, the interdigital electrode 13 and the heating wiring pattern 14 are formed on a route that is to be the circulation route 12. Here, while rotating a spherical Langasite sphere around the Z-axis, a laminated thin film of chromium (1000 Å) and gold (500 Å) is formed by vacuum film formation on the circulation path.

成膜後にフォトリソグラフィー方法に従って、すだれ状電極13と加熱用配線パターン13を形成する。すだれ状電極13および加熱用配線パターン14はそれぞれ2つの電極取り出し部を有している。しかし、両者いずれかの配線を例えばアース線として一本の電極取り出しにしても構わない。   After the film formation, the interdigital electrode 13 and the heating wiring pattern 13 are formed according to a photolithography method. Each of the interdigital electrodes 13 and the heating wiring pattern 14 has two electrode extraction portions. However, one of the wires may be taken out as a ground wire, for example.

すだれ状電極部分は、金とクロムのエッチング液を使用してパターン形成されたレジストパターンの上から両金属薄膜のエッチングを行ってすだれ状電極パターンを形成する。一方、上記加熱用配線パターンについては、抵抗加熱を行うために高い抵抗値をもたせることが必要であり、金膜層のエッチングを行ってクロム膜のみの抵抗加熱用配線とすることができる。   The interdigital electrode portion forms an interdigital electrode pattern by etching both metal thin films from a resist pattern patterned using an etching solution of gold and chromium. On the other hand, the heating wiring pattern needs to have a high resistance value in order to perform resistance heating, and a gold film layer can be etched to form a resistance heating wiring only of a chromium film.

この実施形態においては、すだれ状電極の形成と加熱用配線パターン(抵抗加熱方式)の形成を一度の金属膜形成によって実施することが可能で素子製造が安価に効率よくできるメリットを有している。この実施形態では、すだれ状電極を単一に形成して弾性表面波の励起と検出を行っているが、弾性表面波の励起(送信)用と受信用に別個に製作することもできる。   In this embodiment, the formation of the interdigital electrode and the formation of the heating wiring pattern (resistance heating method) can be carried out by forming the metal film once, and there is an advantage that the element can be manufactured at low cost and efficiently. . In this embodiment, a single interdigital electrode is formed to excite and detect surface acoustic waves. However, surface acoustic waves can be separately produced for excitation (transmission) and reception.

このように、弾性表面波の周回経路と加熱配線を同一領域に形成する加熱配線付球状弾性表面波素子は容易に作製が可能で、且つ、弾性表面波の伝搬経路と、加熱部分が同じ領域に存在するために、周回経路が加熱されるタイミングと加熱された周回経路から熱が周囲のガスに奪われるタイミングは一致することから、周囲のガスに熱を奪われる速度など周囲のガスの状態の変化を正確且つ高速に計測することが可能である。   Thus, the surface acoustic wave circulation path and the heating surface forming the spherical surface acoustic wave element with the heating wiring in the same region can be easily manufactured, and the surface acoustic wave propagation path and the heating portion are the same region. Therefore, the timing at which the circulation path is heated matches the timing at which heat is taken away from the heated circulation path by the surrounding gas, so the surrounding gas conditions such as the speed at which the surrounding gas is deprived of heat Can be measured accurately and at high speed.

この実施形態では、円環状の弾性表面波周回経路以外の領域を研磨や削除によって取り除いているために、圧電性結晶球の比熱も小さく、より高速に加熱や冷却が行われ、もって周囲のガスとの熱の送受が圧電性結晶基材の温度に正確に反映する。圧電性結晶基材11の温度は弾性表面波の周回速度が温度に従って変更することから計測できる。つまり、周囲のガスの状況をより正確且つ高速に計測できる。   In this embodiment, since the region other than the annular surface acoustic wave circulation path is removed by polishing or deletion, the specific heat of the piezoelectric crystal sphere is small, and the surrounding gas is heated and cooled faster. The heat transmission and reception accurately reflects the temperature of the piezoelectric crystal substrate. The temperature of the piezoelectric crystal substrate 11 can be measured because the circumferential speed of the surface acoustic wave changes according to the temperature. That is, the surrounding gas condition can be measured more accurately and at high speed.

また、円環状の弾性表面波周回経路以外の領域を研磨や削除により取り除いて形成した円環状の表面領域に、加熱用配線パターン14を形成することで、加熱用配線パターン14と弾性表面波の周回経路12が一致し、切削により形成された平坦面上で加熱用電源の配線(結線)を行うことで、加熱用電源16の加熱用配線パターン14への結線も容易に行える等の加工上のメリットを有している。   Further, by forming the heating wiring pattern 14 on the annular surface region formed by removing the region other than the annular surface acoustic wave circulation path by polishing or deletion, the heating wiring pattern 14 and the surface acoustic wave For processing such that the circulation path 12 is matched and wiring of the heating power supply (connection) is performed on a flat surface formed by cutting, so that the heating power supply 16 can be easily connected to the heating wiring pattern 14. It has the merit of

なお、加熱用配線パターン14は、図1に示すような単純な形状でもよいし、波形等の模様形状であってもよい。上述した特許文献1の図2に展開されているように蛇行形状に形成することで抵抗値の増大と発熱分布の均一化やその分布の制御を可能にすることもできる。しかし、加熱用配線パターンが厚いと、場合によっては弾性表面波の伝搬減衰が大きくなり、大きな周回数を得ることが難しく、また、膜厚が変化していると伝搬減衰が大きくなる。さらに、パターン化することで弾性表面波はパターンのある領域とない領域で反射し伝搬減衰を起すことから複雑なパターンを形成することには困難が伴う。   The heating wiring pattern 14 may have a simple shape as shown in FIG. 1 or a pattern shape such as a waveform. As shown in FIG. 2 of Patent Document 1 described above, by forming a meandering shape, the resistance value can be increased, the heat generation distribution can be made uniform, and the distribution can be controlled. However, if the heating wiring pattern is thick, the propagation attenuation of the surface acoustic wave increases in some cases, making it difficult to obtain a large number of turns, and if the film thickness changes, the propagation attenuation increases. Furthermore, it is difficult to form a complex pattern because surface acoustic waves are reflected in a region with a pattern and a region without a pattern to cause propagation attenuation.

本発明は上記加熱用配線の膜厚について特に制限はしない。圧電性結晶の表面に導体膜、あるいは半導体膜が形成されている場合の、弾性表面波の伝搬現象については現在の弾性学によって解明されており、適宜設計すればよい。   The present invention does not particularly limit the film thickness of the heating wiring. The propagation phenomenon of surface acoustic waves in the case where a conductor film or a semiconductor film is formed on the surface of the piezoelectric crystal has been elucidated by current elasticity, and may be designed as appropriate.

本発明は、加熱した球状弾性表面波素子の熱放射の応答を高める効果があることは明らかで、その効果は、熱放射の速度を利用する他の用途についても同様の応答速度の向上が得られることが期待される。   It is clear that the present invention has an effect of enhancing the thermal radiation response of the heated spherical surface acoustic wave element, and the effect is similar to the improvement of the response speed for other applications using the thermal radiation speed. Expected to be.

次に図2を参照して本発明の第2実施形態に係る球状弾性表面波素子の構成を説明する。この第2実施例では、第1の実施例で示した球状弾性表面波素子よりもさらに熱容量を小さくした加熱配線付球状弾性表面波素子について説明する。貫通孔Hがあることを除けは第1の実施形態と同じである。   Next, the configuration of the spherical surface acoustic wave device according to the second embodiment of the present invention will be described with reference to FIG. In the second embodiment, a spherical surface acoustic wave element with a heating wiring having a smaller heat capacity than the spherical surface acoustic wave element shown in the first embodiment will be described. Except for the presence of the through hole H, it is the same as in the first embodiment.

この第2実施形態に係る球状弾性表面波素子は、上記第1実施形態で示した球状弾性表面波素子よりもさらに熱容量を小さくした加熱機能付球状弾性表面波素子を実現できる。   The spherical surface acoustic wave device according to the second embodiment can realize a spherical surface acoustic wave device with a heating function having a smaller heat capacity than the spherical surface acoustic wave device shown in the first embodiment.

本発明の第2実施形態に係る球状弾性表面波素子20は、貫通孔Hを有する樽型形状の基材(圧電性結晶基材)21と、この基材21の周回径路(弾性表面波の周回径路)22上に形成されたすだれ状電極23、および加熱用配線パターン24と、基材21の平坦面に形成された弾性表面波励起検出用電極取り出し部25、および一対の加熱配線結線部26,26とを具備して構成される。一対の加熱配線結線部26,26には上記平坦面上で加熱用配線パターン24の両端電極が回路結合されるとともに加熱用電源27から動作用電圧が印加される。   A spherical surface acoustic wave element 20 according to the second embodiment of the present invention includes a barrel-shaped base material (piezoelectric crystal base material) 21 having a through hole H, and a circular path (surface acoustic wave wave) of the base material 21. (Circular path) 22 interdigital electrode 23 and heating wiring pattern 24, surface acoustic wave excitation detection electrode take-out portion 25 formed on the flat surface of substrate 21, and a pair of heating wiring connection portions 26, 26. Both ends of the heating wiring pattern 24 are circuit-coupled to the pair of heating wiring connection portions 26, 26 on the flat surface, and an operating voltage is applied from the heating power supply 27.

球状弾性表面波素子20を構成する結晶球は直径3.3mmのランガサイト球であって、Z軸シリンダー経路近傍を0.7mmの厚さを残して平面部を両極に形成し、さらに、地軸に沿って貫通させている。貫通孔Hの直径Dは2mmである。   The crystal sphere constituting the spherical surface acoustic wave element 20 is a Langasite sphere having a diameter of 3.3 mm, the plane portion is formed in both poles with a thickness of 0.7 mm in the vicinity of the Z-axis cylinder path, and the ground axis It penetrates along. The diameter D of the through hole H is 2 mm.

貫通させる孔の大きさ(貫通孔Hの孔径D)は大きい方が、より結晶基材の熱容量を小さくすることができるが、孔径を大きくすると結晶基材そのものの剛性が弱くなり、加熱用の電力供給用の結線プロセスや、すだれ状電極23との結線プロセスで結晶基材に圧力が掛かる方法であると結晶基材そのものの破壊に繋がる。さらに、弾性表面波の波長に比較して、例えば20倍以上の厚さが弾性表面波の周回経路幅に亘ってないと、弾性表面波の伝搬自体を阻害することから問題が生じる。   The larger the size of the hole to be penetrated (the hole diameter D of the through hole H), the heat capacity of the crystal substrate can be further reduced. However, if the hole diameter is increased, the rigidity of the crystal substrate itself becomes weaker, If the pressure is applied to the crystal base material in the connection process for power supply or the connection process with the interdigital electrode 23, the crystal base material itself is destroyed. Furthermore, if the thickness of the surface acoustic wave is 20 times greater than the wavelength of the surface acoustic wave, for example, does not extend over the circumference path width of the surface acoustic wave, a problem arises because the propagation of the surface acoustic wave itself is inhibited.

本実施形態では、150MHzの結晶中の代表的な波長は約15ミクロンであり、300ミクロンの幅を残すために、3300マイクロメートル−(300マイクロメートル×2)=2600マイクロメートル、により、2600マイクロメートル以上の直径を持った貫通孔を空けることは、弾性表面波素子として動作しなくなる。周回経路12の肉厚を薄くする限度については、弾性表面波の周波数や伝搬モード、結晶材料についても考慮して弾性表面波が伝搬可能な大きさに選べばよい。   In this embodiment, a typical wavelength in a 150 MHz crystal is about 15 microns, and 3300 micrometers-(300 micrometers x 2) = 2600 micrometers to leave a width of 300 microns, 2600 micrometers. Opening a through hole having a diameter of at least a meter does not work as a surface acoustic wave element. The limit for reducing the thickness of the circulation path 12 may be selected so that the surface acoustic wave can propagate in consideration of the surface acoustic wave frequency, propagation mode, and crystal material.

平坦面部に電極取り出し部分を位置させることは次のような利点がある。つまり、図3に示すように、プリント配線板への実装や、超音波結線器を用いて結線する際に、平面のテーブルに基材を設置して上方から圧力や超音波振動を印加でき、これにより基材にかかる圧力や超音波振動が結晶材を破壊する不具合を回避して歩留まりを向上できる。   Positioning the electrode lead-out portion on the flat surface portion has the following advantages. In other words, as shown in FIG. 3, when mounting on a printed wiring board or connecting with an ultrasonic connector, a substrate can be placed on a flat table and pressure or ultrasonic vibration can be applied from above, As a result, the yield and the yield can be improved by avoiding the problem that the pressure and ultrasonic vibration applied to the base material destroy the crystal material.

なお実施形態では、加熱用配線パターン24を円環状に延出している表面領域(弾性表面波の周回径路22上)に形成した例を示したが、上記表面領域を挟んで形成された平坦面領域に形成してもよい。   In the embodiment, an example in which the heating wiring pattern 24 is formed in a surface region (on the circumferential path 22 of the surface acoustic wave) extending in an annular shape is shown, but a flat surface formed with the surface region interposed therebetween. It may be formed in a region.

10,20…球状弾性表面波素子、11,21…基材(圧電性結晶基材)、12,22…周回径路(弾性表面波の周回径路)、13,23…すだれ状電極、14,24…加熱用配線パターン、15,25…弾性表面波励起検出用電極取り出し部、16,27…加熱用電源、27…加熱配線結線部、H…貫通孔。   DESCRIPTION OF SYMBOLS 10,20 ... Spherical surface acoustic wave element, 11, 21 ... Base material (piezoelectric crystal base material), 12, 22 ... Circumferential path (circular path of surface acoustic wave), 13, 23 ... Interdigital electrode, 14, 24 ... Heating wiring pattern, 15 and 25... Electrode extraction part for surface acoustic wave excitation detection, 16 and 27... Heating power supply, 27.

Claims (3)

球面の一部で形成され上記球面の最大径の外周線を含み円環状に延出している表面領域を有して形成され、上記表面領域に上記表面領域の円環状の延出方向に沿い励起された弾性表面波が上記外周線に沿い周回する基材と、
上記基材の上記表面領域に形成され上記表面領域の円環状の延出方向に沿い弾性表面波を励起させる電気音響変換素子と、
上記基材の上記表面領域に形成され外部から供給された動作用電圧により加熱制御される抵抗加熱用の配線パターンと、
を具備したことを特徴とする球状弾性表面波素子。
Formed with a surface region formed of a part of a spherical surface and extending in an annular shape including an outer peripheral line of the maximum diameter of the spherical surface, and excited along the annular extending direction of the surface region in the surface region A substrate on which the generated surface acoustic wave circulates along the outer circumferential line,
An electroacoustic transducer that is formed in the surface region of the substrate and excites a surface acoustic wave along an annular extending direction of the surface region;
A wiring pattern for resistance heating, which is formed in the surface region of the base material and is controlled by an operation voltage supplied from the outside;
A spherical surface acoustic wave device comprising:
上記基材は、上記表面領域を挟む上記球面の両極に平坦面領域を有し、上記平坦面領域に弾性表面波励起検出用電極取り出し部を形成していることを特徴とする請求項1に記載の球状弾性表面波素子。   2. The substrate according to claim 1, wherein the base material has flat surface regions on both sides of the spherical surface sandwiching the surface region, and a surface acoustic wave excitation detection electrode extraction portion is formed in the flat surface region. The spherical surface acoustic wave device described. 上記基材は、上記表面領域を挟む上記球面の両極間に貫通された貫通孔を有することを特徴とする請求項1または2に記載の球状弾性表面波素子。   The spherical surface acoustic wave element according to claim 1, wherein the base material has a through-hole penetrating between the spherical electrodes sandwiching the surface region.
JP2010219289A 2010-09-29 2010-09-29 Spherical surface acoustic wave device Expired - Fee Related JP5533509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010219289A JP5533509B2 (en) 2010-09-29 2010-09-29 Spherical surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010219289A JP5533509B2 (en) 2010-09-29 2010-09-29 Spherical surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2012075004A true JP2012075004A (en) 2012-04-12
JP5533509B2 JP5533509B2 (en) 2014-06-25

Family

ID=46170742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010219289A Expired - Fee Related JP5533509B2 (en) 2010-09-29 2010-09-29 Spherical surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP5533509B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094610A (en) * 2003-09-19 2005-04-07 Toppan Printing Co Ltd Surface acoustic wave element and environmental difference detecting apparatus employing the same
JP2005147736A (en) * 2003-11-12 2005-06-09 Toppan Printing Co Ltd Liquid measuring method by surface acoustic wave
JP2007101450A (en) * 2005-10-06 2007-04-19 Toppan Printing Co Ltd Current meter using surface acoustic wave element, element thereof, and flow velocity measuring method
JP2008042498A (en) * 2006-08-04 2008-02-21 Toppan Printing Co Ltd Surface acoustic wave element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094610A (en) * 2003-09-19 2005-04-07 Toppan Printing Co Ltd Surface acoustic wave element and environmental difference detecting apparatus employing the same
JP2005147736A (en) * 2003-11-12 2005-06-09 Toppan Printing Co Ltd Liquid measuring method by surface acoustic wave
JP2007101450A (en) * 2005-10-06 2007-04-19 Toppan Printing Co Ltd Current meter using surface acoustic wave element, element thereof, and flow velocity measuring method
JP2008042498A (en) * 2006-08-04 2008-02-21 Toppan Printing Co Ltd Surface acoustic wave element

Also Published As

Publication number Publication date
JP5533509B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
US7302864B2 (en) Torque sensor
US7247969B2 (en) Surface acoustic wave device and environmental difference detecting apparatus using the surface acoustic wave device
JP4561251B2 (en) Method of analyzing propagation surface of multi-circular surface acoustic wave element and element
JP5533509B2 (en) Spherical surface acoustic wave device
JP5533508B2 (en) Spherical surface acoustic wave device
JP4426803B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4426802B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP2007225509A (en) Dew point recorder
JP2012075003A (en) Spherical surface acoustic wave element
JP2012073170A (en) Spherical elastic surface wave element and manufacturing method thereof
JP2005191650A (en) Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element
JP4556442B2 (en) Surface acoustic wave device
JP4798544B2 (en) Dew point meter
JP2010004567A (en) Surface acoustic wave element and environmental difference detection apparatus using the same
JP4816915B2 (en) Surface cleaning method for surface acoustic wave device
JP4700748B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4700750B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4696550B2 (en) Usage of surface acoustic wave device
JP5594692B2 (en) Sensor
JP5000473B2 (en) Spherical surface acoustic wave device
JPH07198428A (en) Surface acoustic wave sensor
JP4389552B2 (en) Acoustic wave element and environmental difference detection device using acoustic wave element
JPH0540126A (en) Flow sensor
JP2007166253A (en) Surface acoustic wave element and environment difference detector employing the same
JP4479438B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5533509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

LAPS Cancellation because of no payment of annual fees