JP2005094610A - Surface acoustic wave element and environmental difference detecting apparatus employing the same - Google Patents

Surface acoustic wave element and environmental difference detecting apparatus employing the same Download PDF

Info

Publication number
JP2005094610A
JP2005094610A JP2003327951A JP2003327951A JP2005094610A JP 2005094610 A JP2005094610 A JP 2005094610A JP 2003327951 A JP2003327951 A JP 2003327951A JP 2003327951 A JP2003327951 A JP 2003327951A JP 2005094610 A JP2005094610 A JP 2005094610A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
crystal
dimensional substrate
electroacoustic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003327951A
Other languages
Japanese (ja)
Other versions
JP4426803B2 (en
Inventor
Nobutaka Nakaso
教尊 中曽
Ichiji Yamanaka
一司 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003327951A priority Critical patent/JP4426803B2/en
Priority to EP12165864.5A priority patent/EP2482452B1/en
Priority to PCT/JP2004/013755 priority patent/WO2005029701A1/en
Priority to EP04787938A priority patent/EP1667324B1/en
Publication of JP2005094610A publication Critical patent/JP2005094610A/en
Priority to US11/377,615 priority patent/US7247969B2/en
Priority to US11/812,369 priority patent/US7408285B2/en
Priority to US11/812,373 priority patent/US7368848B2/en
Priority to US11/812,374 priority patent/US7362034B2/en
Priority to US11/812,370 priority patent/US7368847B2/en
Priority to US11/812,367 priority patent/US7423360B2/en
Application granted granted Critical
Publication of JP4426803B2 publication Critical patent/JP4426803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave element suitable for mass production and always stably exhibiting an excellent surface acoustic wave propagating performance, and also to provide an environmental difference detecting apparatus employing such a surface acoustic wave element. <P>SOLUTION: This surface acoustic wave element is provided with a three-dimensional substrate 12 having a surface including at least a part of a circular curved surface having a continuous curved surface through which a surface acoustic wave can propagate; an electroacoustic transducer element 14 capable of exciting a surface acoustic wave on the surface, allowing the surface acoustic wave along the surface and receiving the propagating surface acoustic wave. The three-dimensional substrate is made of LiNbO<SB>3</SB>crystal, LiTaO<SB>3</SB>crystal or a rock crystal. On the surface of the three-dimensional substrate, the electroacoustic transducer element allows the surface acoustic wave along an intersection between crystal faces of these crystals and the surface, and the intersection is the maximum external periphery line. The environmental difference detecting apparatus compares surface acoustic wave reception signals of the electroacoustic transducer elements of a plurality of propagation surface zones of the surface acoustic wave element, and detects the difference between environments of spaces with which respective signals are brought into contact. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置に関係している。   The present invention relates to a surface acoustic wave element and an environmental difference detection apparatus using the surface acoustic wave element.

弾性表面波(SAW:Surface Acoustic Wave)が励起可能であり励起された弾性表面波を伝搬させることが可能な表面を有する基体と、前記基体の表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記伝搬する前記弾性表面波を受信可能な電気音響変換素子と、を備えた弾性表面波素子は従来から良く知られている。   A substrate having a surface capable of exciting a surface acoustic wave (SAW) and capable of propagating the excited surface acoustic wave, and exciting the surface acoustic wave on the surface of the substrate along the surface. BACKGROUND ART A surface acoustic wave element including an electroacoustic transducer that propagates the surface acoustic wave and can receive the surface acoustic wave propagating is well known.

弾性表面波素子は、遅延線,発振素子,共振素子,周波数選択素子,例えば化学センサやバイオセンサや圧力センサを含む種々のセンサ,或いはリモートタグ等として使用されている。   The surface acoustic wave element is used as a delay line, an oscillation element, a resonance element, a frequency selection element, for example, various sensors including a chemical sensor, a biosensor, and a pressure sensor, or a remote tag.

国際公開 WO 01/45255 号公報は、球形状の弾性表面波素子を開示している。この球形状の弾性表面波素子の基体は、弾性表面波が励起可能であり励起された弾性表面波を伝搬させることが可能な球形状の表面を有している。前記球形状の弾性表面波素子の電気音響変換素子は、基体の球形状の表面において円環状に連続している所定の幅を有した帯域に配置されていて、前記表面に励起した弾性表面波を前記帯域が連続している方向に沿い伝搬させ繰り返し周回させるよう構成されている。   International Publication WO 01/45255 discloses a spherical surface acoustic wave element. The substrate of the spherical surface acoustic wave element has a spherical surface that can excite the surface acoustic wave and propagate the excited surface acoustic wave. The electroacoustic transducer of the spherical surface acoustic wave element is arranged in a band having a predetermined width that is continuous in an annular shape on the spherical surface of the base, and the surface acoustic wave excited on the surface Is propagated along the direction in which the bands are continuous and repeatedly circulated.

球形状の弾性表面波素子では、基体の表面の円環状に連続している弾性表面波伝搬帯域に電気音響変換素子により励起された弾性表面波を、弾性表面波伝搬帯域内で実質的に減衰することなく上記表面を繰り返し周回させることが出来る。
国際公開 WO 01/45255 号公報
In the spherical surface acoustic wave element, the surface acoustic wave excited by the electroacoustic transducer is substantially attenuated within the surface acoustic wave propagation band in the annular surface acoustic wave propagation band on the surface of the substrate. The above surface can be repeatedly circulated without doing so.
International Publication WO 01/45255

弾性表面波素子の基体は、その表面に沿い弾性表面波を伝搬させるために、基体の全体が、弾性表面波が励起されることが可能であると共に励起された弾性表面波を伝搬可能な材料で作られているか、或いは、その表面に弾性表面波励起伝搬可能材料により形成された薄膜を付着させることにより作られている。   Since the surface of the surface acoustic wave element propagates the surface acoustic wave along the surface thereof, the entire surface of the substrate can be excited by the surface acoustic wave and can propagate the excited surface acoustic wave. Or by attaching a thin film formed of a surface acoustic wave excitation-propagating material to the surface thereof.

前記薄膜との組み合わせにより形成する前記基体は、現時点では製造コストが高く大量生産に不向きであることが分かっている。弾性表面波励起伝搬可能材料のみにより形成された前記基体では、前記基体の表面において前記弾性表面波を伝搬させようとする方向によって前記弾性表面波を伝搬或いは周回させることが出来ない等の弾性表面波を伝搬する性能に差異が生じることが分かっている。また前記表面において、前記弾性表面波を相互に異なった複数の方向に伝搬させる、或いは周回させる、ことが困難である。   It has been found that the substrate formed by the combination with the thin film has a high manufacturing cost and is not suitable for mass production at the present time. In the base made of only a material capable of propagating the surface acoustic wave, the elastic surface cannot propagate or circulate in the direction in which the surface acoustic wave is to propagate on the surface of the base. It has been found that there is a difference in the ability to propagate waves. Further, it is difficult to propagate or circulate the surface acoustic wave in a plurality of directions different from each other on the surface.

この発明は、上記事情の下で為され、この発明の目的は、大量生産に適していて常に安定して良好な弾性表面波伝搬性能を発揮することが可能な弾性表面波素子、及びこのような弾性表面波素子を用いた環境差異検出装置を提供することである。   The present invention has been made under the above circumstances, and an object of the present invention is a surface acoustic wave element that is suitable for mass production and can always stably exhibit good surface acoustic wave propagation performance. It is an object to provide an environmental difference detection apparatus using a surface acoustic wave element.

上記目的を達成する為に、この発明に従った弾性表面波素子は:
弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部を含む表面を有する3次元基体と;
前記表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記表面に伝搬する前記弾性表面波を受信可能な電気音響変換素子と;
を備えていて、
前記3次元基体がLiNbO結晶であり、
前記3次元基体の前記表面において前記電気音響変換素子は、LiNbO結晶の結晶軸である+Y軸をX軸を回転中心に+Z方向に20°だけ回転させることにより規定された結晶軸を法線とする結晶面と前記表面との交線及びLiNbO結晶の結晶軸である+Y軸をX軸を回転中心に−Z方向に26°だけ回転させることにより規定された結晶軸を法線とする結晶面と前記表面との交線の少なくともいずれか一方の交線に沿い、前記励起した弾性表面波を伝搬させており、前記少なくともいずれか一方の交線は前記表面の最大外周線になっている、
ことを特徴としている。
In order to achieve the above object, a surface acoustic wave device according to the present invention is:
A three-dimensional substrate having a surface including at least a part of an annular curved surface in which curved surfaces capable of propagating surface acoustic waves are continuous;
An electroacoustic transducer capable of exciting the surface acoustic wave on the surface and propagating the surface acoustic wave along the surface and receiving the surface acoustic wave propagating to the surface;
With
The three-dimensional substrate is LiNbO 3 crystal;
On the surface of the three-dimensional substrate, the electroacoustic transducer has a normal crystal axis defined by rotating the + Y axis, which is the crystal axis of the LiNbO 3 crystal, by 20 ° in the + Z direction with the X axis as the rotation center. The normal axis is the crystal axis defined by rotating the + Y axis, which is the intersection of the crystal plane and the surface, and the crystal axis of the LiNbO 3 crystal by 26 ° in the −Z direction with the X axis as the rotation center. The excited surface acoustic wave is propagated along at least one of the intersecting lines between the crystal plane and the surface, and the at least one intersecting line becomes the maximum outer peripheral line of the surface. Yes,
It is characterized by that.

上記目的を達成する為に、この発明に従った別の弾性表面波素子はまた:
弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部を含む表面を有する3次元基体と;
前記表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記表面に伝搬する前記弾性表面波を受信可能な電気音響変換素子と;
を備えていて、
前記3次元基体がLiTaO結晶であり、
前記3次元基体の前記表面において前記電気音響変換素子は、LiTaO結晶の結晶軸である+Y軸をX軸を回転中心に−Z方向に45°だけ回転させることにより規定された結晶軸を法線とする結晶面と前記表面との交線に沿い、前記励起した弾性表面波を伝搬させており、前記交線は前記表面の最大外周線になっている、
ことを特徴としている。
In order to achieve the above object, another surface acoustic wave device according to the present invention is also:
A three-dimensional substrate having a surface including at least a part of an annular curved surface in which curved surfaces capable of propagating surface acoustic waves are continuous;
An electroacoustic transducer capable of exciting the surface acoustic wave on the surface and propagating the surface acoustic wave along the surface and receiving the surface acoustic wave propagating to the surface;
With
The three-dimensional substrate is LiTaO 3 crystal;
On the surface of the three-dimensional substrate, the electroacoustic transducer has a crystal axis defined by rotating the + Y axis, which is the crystal axis of the LiTaO 3 crystal, by 45 ° about the X axis in the −Z direction. Along the intersection line between the crystal plane and the surface as a line, the excited surface acoustic wave is propagated, and the intersection line is the maximum outer peripheral line of the surface,
It is characterized by that.

上記目的を達成する為に、この発明に従ったさらに別の弾性表面波素子はまた:
弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部を含む表面を有する3次元基体と;
前記表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記表面に伝搬する前記弾性表面波を受信可能な電気音響変換素子と;
を備えていて、
前記3次元基体が水晶であり、
前記3次元基体の前記表面において前記電気音響変換素子は、水晶の結晶軸であるY軸を法線とする結晶面と前記表面との交線に沿い、前記励起した弾性表面波を伝搬させており、前記交線は前記表面の最大外周線になっている、
ことを特徴としている。
In order to achieve the above object, yet another surface acoustic wave device according to the present invention also provides:
A three-dimensional substrate having a surface including at least a part of an annular curved surface in which curved surfaces capable of propagating surface acoustic waves are continuous;
An electroacoustic transducer capable of exciting the surface acoustic wave on the surface and propagating the surface acoustic wave along the surface and receiving the surface acoustic wave propagating to the surface;
With
The three-dimensional substrate is quartz;
The electroacoustic transducer on the surface of the three-dimensional substrate propagates the excited surface acoustic wave along an intersection line between the crystal plane and the surface with the Y axis being the crystal axis of quartz as a normal line. And the intersection line is the maximum outer peripheral line of the surface,
It is characterized by that.

上記目的を達成する為に、この発明に従った環境差異検出装置は、この発明の上述した弾性表面波素子の表面において複数の交線に沿い複数の電気音響変換素子に弾性表面波を励起させ伝搬させるとともに伝搬する前記弾性表面波を受信させて受信信号を出力させ、複数の電気音響変換素子から出力される受信信号を比較し、前記表面において複数の弾性表面波が伝搬する複数の部分が接する空間の複数の部分の環境の差異を検出する、ことを特徴としている。   In order to achieve the above object, an environmental difference detection apparatus according to the present invention excites surface acoustic waves to a plurality of electroacoustic transducers along a plurality of intersection lines on the surface of the surface acoustic wave element according to the present invention. Propagating and receiving the surface acoustic wave propagating and outputting a reception signal, comparing reception signals output from a plurality of electroacoustic transducers, a plurality of portions where a plurality of surface acoustic waves propagate on the surface It is characterized by detecting a difference in environment in a plurality of portions of a space that touches.

なおこの発明では、擬似弾性表面波や前記3次元基体を形成している結晶材料の表面の直下に電気音響変換素子により励起され伝搬される例えば回廊波も弾性表面波と称して記述している。さらに、例えば弾性境界波のように表面上に異なる物質が接している3次元基体の前記表面に沿い伝搬する、通常は弾性表面波と称さないような弾性波であっても、ここでは弾性表面波と称して記述している。   In the present invention, pseudo surface acoustic waves and, for example, corridor waves excited and propagated by an electroacoustic transducer just below the surface of the crystal material forming the three-dimensional substrate are also referred to as surface acoustic waves. . Furthermore, even an elastic wave that normally propagates along the surface of a three-dimensional substrate in contact with a different substance on the surface, such as a boundary acoustic wave, that is not usually referred to as a surface acoustic wave is used here. It is described as a wave.

また、3次元基体の表面において弾性表面波が伝搬する部分に何等かの膜を形成したり、或いは前記表面に電気音響変換素子を何等かの膜を介して形成しても、そのような膜が弾性表面波の所望の伝搬を実質的に阻害しなければそのような膜の存在を許容する。   Even if any film is formed on the surface of the three-dimensional substrate where surface acoustic waves propagate, or the electroacoustic transducer is formed on the surface via any film, such a film. The presence of such a film is allowed if it does not substantially interfere with the desired propagation of surface acoustic waves.

さらに、本願の特許請求の範囲や明細書や図面において3次元基体のLiNbOやLiTaOや水晶の結晶軸を、+や−の符号やX,Y,Z軸を使用して表現したが、このような表現は圧電性結晶の結晶軸について従来良く知られている表現方法である。 Furthermore, in the claims, specification and drawings of the present application, the crystal axes of LiNbO 3 , LiTaO 3 and quartz of the three-dimensional substrate are expressed using + and − signs and X, Y and Z axes. Such an expression is a well-known expression method for the crystal axis of the piezoelectric crystal.

この発明に従った前述の弾性表面波素子、及びこの発明に従った前述の弾性表面波素子を使用したこの発明に従った環境差異検出装置においては、弾性表面波を伝搬させる表面を有している3次元基体を、LiNbO結晶,LiTaO結晶,又は水晶により形成し、しかも夫々の結晶の前記表面において夫々の結晶の特定の結晶面と前記表面との交線に沿い電気音響変換素子により前記表面に励起された弾性表面波を伝搬させるようにし、前記交線を前記表面の最大外周線にしていることにより、弾性表面波素子を容易に安価に大量生産することができ、しかも常に安定して良好な弾性表面波伝搬性能を発揮させることが可能になっている。 The surface acoustic wave element according to the present invention and the environmental difference detection device according to the present invention using the surface acoustic wave element according to the present invention have a surface for propagating the surface acoustic wave. The three-dimensional substrate is formed of LiNbO 3 crystal, LiTaO 3 crystal, or quartz crystal, and the electroacoustic transducer is used on the surface of each crystal along an intersection line between a specific crystal plane of each crystal and the surface. The surface acoustic wave excited on the surface is propagated, and the intersecting line is the maximum outer peripheral line of the surface, so that the surface acoustic wave device can be easily mass-produced inexpensively and is always stable. Thus, it is possible to exhibit good surface acoustic wave propagation performance.

なお、3次元基体の表面に弾性表面波を励起しまた受信する為の本発明で記載する「送受信部分」は、「送信部分」と「受信部分」とに機能を分離した2つの相互に独立した部分として構成することも出来る。このように「送信部分」と「受信部分」とを相互に独立した部分として構成するとこれらの為の駆動回路及び検出回路の設計が容易になるが、弾性表面波が上記表面を周回する場合には、1回の周回の度に相互に独立した「送信部分」と「受信部分」を弾性表面波が通過するので弾性表面波の伝搬効率が「送信部分」と「受信部分」とを相互に独立した部分として構成しない場合に比べ幾分低下するが実用上は問題がない。   The “transmission / reception part” described in the present invention for exciting and receiving a surface acoustic wave on the surface of a three-dimensional substrate has two functions that are separated into a “transmission part” and a “reception part”. It can also be configured as a part. If the “transmission part” and the “reception part” are configured as mutually independent parts in this way, the design of the drive circuit and the detection circuit for these becomes easy. Since the surface acoustic wave passes through the “transmission part” and the “reception part” which are independent from each other in each round, the propagation efficiency of the surface acoustic wave is mutually different between the “transmission part” and the “reception part”. Although it is somewhat lower than the case where it is not configured as an independent part, there is no problem in practical use.

[第1の実施の形態]
以下、この発明に従った弾性表面波素子の第1の実施の形態を添付の図面中の図1ないし図4を参照しながら詳細に説明する。
[First Embodiment]
Hereinafter, a first embodiment of a surface acoustic wave device according to the present invention will be described in detail with reference to FIGS. 1 to 4 in the accompanying drawings.

図1には、第1の実施の形態の弾性表面波素子10の外観が示されている。この弾性表面波素子10は:弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部によってなる伝搬表面帯12aを含む表面を有する3次元基体12と;伝搬表面帯12aに前記弾性表面波を励起し伝搬表面帯12aに沿い弾性表面波を伝搬させるとともに伝搬表面帯12aに伝搬する前記弾性表面波を受信可能な電気音響変換素子14と;を備えている。   FIG. 1 shows the appearance of the surface acoustic wave device 10 according to the first embodiment. The surface acoustic wave device 10 includes: a three-dimensional substrate 12 having a surface including a propagation surface band 12a formed by at least a part of an annular curved surface in which curved surfaces capable of propagating surface acoustic waves are continuous; An electroacoustic transducer 14 capable of exciting the surface acoustic wave to propagate the surface acoustic wave along the propagation surface zone 12a and receiving the surface acoustic wave propagating to the propagation surface zone 12a.

なおここで伝搬表面帯12aは図面の簡略化の為に幅方向Wの寸法が伝搬表面帯12aが円環状に連続する方向において一定であるように描かれているが、実際には3次元基体12の表面において伝搬表面帯12aが円環状に連続する方向に弾性表面波が伝搬する間には、弾性表面波は図1に示されているように幅方向Wにおける寸法が一定であることもあるし、幅方向Wにおける寸法が拡散と収縮とを繰り返すこともある。   Here, the propagation surface band 12a is drawn so that the dimension in the width direction W is constant in the direction in which the propagation surface band 12a continues in an annular shape for simplification of the drawing. While the surface acoustic wave propagates in the direction in which the propagation surface band 12a continues in an annular shape on the surface of 12, the surface acoustic wave may have a constant dimension in the width direction W as shown in FIG. In addition, the dimension in the width direction W may repeat diffusion and contraction.

いずれにせよ、伝搬表面帯12aを伝搬する弾性表面波は電気音響変換素子14から所望の距離を、或いは1周回当たり、少なくとも80%以上のエネルギーを保ち伝搬することが実用上望まれている。   In any case, it is practically desired that the surface acoustic wave propagating in the propagation surface band 12a propagates at a desired distance from the electroacoustic transducer 14 or at least 80% of energy per round.

この実施の形態において3次元基体12は、全体が3方晶系のLiNbO結晶により球形状に形成されている。従って、この実施の形態においては、伝搬表面帯12aが3次元基体12の球形状の表面において円環状に連続している。伝搬表面帯12aは3次元基体12の最大外周線12bに沿い連続しており、好ましくは伝搬表面帯12aの範囲内に最大外周線12bが含まれている。 In this embodiment, the three-dimensional substrate 12 is entirely formed in a spherical shape by a trigonal LiNbO 3 crystal. Therefore, in this embodiment, the propagation surface band 12 a is continuous in an annular shape on the spherical surface of the three-dimensional substrate 12. The propagation surface band 12a is continuous along the maximum outer peripheral line 12b of the three-dimensional substrate 12, and preferably includes the maximum outer peripheral line 12b within the range of the propagation surface band 12a.

3次元基体12の外表面において最大外周線12bは、図2の(A)中に示されているように、LiNbO結晶の1つの結晶軸である+Y軸をX軸を回転中心に+Z方向に20°だけ回転させることにより規定された結晶軸CAを法線とする結晶面と3次元基体12の外表面12との交線に一致している。即ち、3次元基体12の外表面において伝搬表面帯12aが沿っている最大外周線12bは、LiNbO結晶の1つの結晶面上を延出している。3次元基体12の外表面において上記結晶面に沿い弾性表面波が伝搬する間には、上記結晶面に対し交差する方向には弾性表面波のエネルギーの大きな拡散が生じないので、3次元基体12の外表面において弾性表面波を最も効率良く伝搬させることが出来る。 As shown in FIG. 2A, the maximum outer peripheral line 12b on the outer surface of the three-dimensional substrate 12 has a + Y axis as one crystal axis of the LiNbO 3 crystal and a + Z direction with the X axis as the rotation center. And the crystal plane with the crystal axis CA defined by being rotated by 20 ° as a normal line and the line of intersection with the outer surface 12 of the three-dimensional substrate 12. That is, the maximum outer peripheral line 12b along the propagation surface band 12a on the outer surface of the three-dimensional substrate 12 extends on one crystal plane of the LiNbO 3 crystal. While surface acoustic waves propagate along the crystal plane on the outer surface of the three-dimensional substrate 12, no large diffusion of surface acoustic wave energy occurs in the direction intersecting the crystal plane. The surface acoustic wave can be propagated most efficiently on the outer surface.

なお、3次元基体12を形成しているLiNbO結晶は3方晶系なので、図2の(B)中に示されている如く、1つの平面内に互いに120°をなす3つの結晶軸+Yを有している。従って、LiNbO結晶により全体が形成されている3次元基体12の球形状の外表面には、これらの3つの結晶軸+YをX軸を回転中心に+Z方向に20°だけ回転させることにより規定された3個の結晶軸CAを法線とする3つの結晶面と3次元基体12の外表面との3つの交線を最大外周線12bとした場合、この3つの最大外周線12bに沿い上述した如く連続する3つの伝搬表面帯12aを規定することが可能である。 Since the LiNbO 3 crystal forming the three-dimensional substrate 12 is a trigonal system, as shown in FIG. 2B, three crystal axes + Y forming 120 ° with respect to each other in one plane. have. Therefore, the spherical outer surface of the three-dimensional substrate 12 formed entirely by LiNbO 3 crystal is defined by rotating these three crystal axes + Y by 20 ° in the + Z direction around the X axis. When three intersecting lines between the three crystal planes having the three crystal axes CA as normals and the outer surface of the three-dimensional substrate 12 are defined as the maximum outer peripheral line 12b, the three outer peripheral lines 12b are referred to above. As described above, it is possible to define three continuous propagation surface bands 12a.

全体が3方晶系のLiNbO結晶により球形状に形成されている前述の第1の実施の形態の3次元基体12の外表面においてはさらに、それに沿い伝搬表面帯12aが連続している最大外周線12bを以下のようしても規定することが出来る。 In the outer surface of the three-dimensional substrate 12 of the first embodiment, which is formed in a spherical shape by the trigonal LiNbO 3 crystal as a whole, the propagation surface zone 12a is continuous along the outer surface. The outer peripheral line 12b can also be defined as follows.

即ち、3次元基体12の外表面において最大外周線12bを、図3の(A)中に示されているように、LiNbO結晶の1つの結晶軸である+Y軸をX軸を回転中心に−Z方向に26°だけ回転させることにより規定された結晶軸CBを法線とする結晶面と3次元基体12の外表面との交線に一致させる。このことは、この場合においても、3次元基体12の外表面において伝搬表面帯12aが沿っている最大外周線12bは、LiNbO結晶における前述の3つの+Y軸をX軸の回りに+Z方向に20°回転した結晶軸CAを法線とする前述の3つの結晶面とは別の1つの結晶面上を延出していることを意味している。3次元基体12の外表面においてこの別の1つの結晶面に沿い弾性表面波が伝搬する間にも、前述の3つの結晶面の場合と同様に、上記別の1つの結晶面に対し交差する方向には弾性表面波のエネルギーの大きな拡散が生じないので、3次元基体12の外表面において弾性表面波を最も効率良く伝搬させることが出来る。 That is, the maximum outer peripheral line 12b on the outer surface of the three-dimensional substrate 12 is centered on the X axis about the + Y axis, which is one crystal axis of the LiNbO 3 crystal, as shown in FIG. By rotating it in the −Z direction by 26 °, it is made to coincide with the intersection line between the crystal plane having the defined crystal axis CB as the normal line and the outer surface of the three-dimensional substrate 12. This also means that in this case, the maximum outer peripheral line 12b along the propagation surface zone 12a on the outer surface of the three-dimensional substrate 12 has the three + Y axes in the LiNbO 3 crystal in the + Z direction around the X axis. It means that the crystal axis CA rotated by 20 ° extends on one crystal plane different from the above-mentioned three crystal planes. While the surface acoustic wave propagates along the other crystal plane on the outer surface of the three-dimensional substrate 12, it intersects with the other crystal plane as in the case of the three crystal planes. Since no large diffusion of surface acoustic wave energy occurs in the direction, the surface acoustic wave can be propagated most efficiently on the outer surface of the three-dimensional substrate 12.

3次元基体12を形成しているLiNbO結晶は3方晶系なので、図3の(B)中に示されている如く、1つの平面内に互いに120°をなす3つの結晶軸+Yを有している。従って、LiNbO結晶により全体が形成されている3次元基体12の球形状の外表面には、これらの3つの結晶軸+YをX軸を回転中心に−Z方向に26°だけ回転させることにより規定された3個の結晶軸CBを法線とする3つの結晶面と3次元基体12の外表面12との3つの交線を最大外周線12bとした場合、この3つの最大外周線12bに沿い上述した如く連続する3つの伝搬表面帯12aを規定することが可能である。 Since the LiNbO 3 crystal forming the three-dimensional substrate 12 is trigonal, it has three crystal axes + Y forming 120 ° with respect to each other as shown in FIG. doing. Therefore, on the spherical outer surface of the three-dimensional substrate 12 formed entirely by LiNbO 3 crystal, these three crystal axes + Y are rotated by 26 ° in the −Z direction around the X axis. When three intersecting lines between the three crystal planes having the three defined crystal axes CB as normals and the outer surface 12 of the three-dimensional substrate 12 are defined as the maximum outer peripheral line 12b, the three maximum outer peripheral lines 12b As described above, it is possible to define three continuous propagation surface bands 12a.

即ち、3次元基体12を形成しているLiNbO結晶は合計6個の結晶面を有しているので、LiNbO結晶により全体が形成されている3次元基体12の外表面には合計6つの最大外周線12bを規定することが出来る。 That is, since the LiNbO 3 crystal forming the three-dimensional substrate 12 has a total of six crystal planes, a total of six crystals are formed on the outer surface of the three-dimensional substrate 12 formed entirely by the LiNbO 3 crystal. A maximum perimeter line 12b can be defined.

また、3次元基体12の表面を伝搬する表面弾性波がその伝搬方向に対し上記表面に沿い直交する方向に実際にどの程度の幅を有しているのかは、例えば上記表面に水滴を付着させ上記表面において水滴が付着した部分では表面弾性波が伝搬しなくなることから視覚的に推測することも出来る。   Also, how much width the surface acoustic wave propagating on the surface of the three-dimensional substrate 12 actually has in the direction orthogonal to the propagation direction along the surface is determined by, for example, attaching water droplets to the surface. It can also be visually inferred from the fact that the surface acoustic wave does not propagate in the portion where water droplets adhere on the surface.

また、一般に、電気音響変換素子としてすだれ状電極を用いて高い周波数の弾性表面波を励起する場合には、すだれ状電極の有効幅(即ち、すだれ状電極において、3次元基体の表面に対しすだれ状電極が弾性表面波を励起させ所望の方向に伝搬させることが出来るとともに上記表面を伝搬した弾性表面波を受信することが出来る部分の、上記表面に沿って上記所望の方向とは直交する方向の寸法)は小さくなるが、上記有効幅は、上記表面において弾性表面波が伝搬する伝搬表面帯(図1では、参照符号12aにより指摘されている)が上記所望の方向となる最大外周線(図1では、参照符号12bにより指摘されている)に対し直交する方向において有している曲率の曲率半径の1.5倍よりも大きくなると、弾性表面波を励起し受信する効率が大きく低下することが分かっている。   In general, when interdigital electrodes are used as electroacoustic transducers to excite high-frequency surface acoustic waves, the effective width of the interdigital electrodes (that is, interdigital transducers with respect to the surface of the three-dimensional substrate). A direction in which the electrode can excite surface acoustic waves and propagate in a desired direction and can receive the surface acoustic waves propagated on the surface, in a direction perpendicular to the desired direction along the surface The effective width is the maximum outer perimeter line (indicated by reference numeral 12a in FIG. 1) where the surface acoustic wave propagates on the surface is the desired direction ( In FIG. 1, the surface acoustic wave is excited and received when the radius of curvature is greater than 1.5 times the radius of curvature of the curvature in the direction orthogonal to (indicated by reference numeral 12b). Efficiency is found to be greatly reduced.

3次元基体12は、その外表面において電気音響変換素子14により励起された弾性表面波が伝搬する伝搬表面帯12a以外の部分が支持腕16を介して支持台18に支持されている。伝搬表面帯12aを伝搬する弾性表面波に対しいかなる影響も与えないようにする為に、伝搬表面帯12aには電気音響変換素子14を除き何も接触させない。従って、この実施の形態においては、伝搬表面帯12aにおいて電気音響変換素子14に弾性表面波を励起させる為や伝搬表面帯12aを伝搬し電気音響変換素子14に受信された弾性表面波を電気音響変換素子14から受け取る為の電気音響変換素子制御ユニット20は、電気音響変換素子14から3次元基体12の外表面において伝搬表面帯12a以外の領域上を延びるリード線により電気音響変換素子14に接続されている。電気音響変換素子制御ユニット20は例えば、図1中に示されている如く、インピーダンスマッチング回路20a,サーキュレータ20,高周波電源を含む発信器20c,アンプ20d,そしてディジタルオシロスコープ20e等を備えている。なお、発信器20cに代わり高周波電波受
信アンテナを使用することも出来る。
The three-dimensional substrate 12 is supported on a support base 18 via a support arm 16 at a portion other than the propagation surface band 12 a on which the surface acoustic wave excited by the electroacoustic transducer 14 propagates on the outer surface. In order not to have any influence on the surface acoustic wave propagating through the propagation surface band 12a, nothing is brought into contact with the propagation surface band 12a except for the electroacoustic transducer 14. Therefore, in this embodiment, in order to excite the surface acoustic wave in the electroacoustic transducer 14 in the propagation surface band 12a, the surface acoustic wave propagated through the propagation surface zone 12a and received by the electroacoustic transducer 14 is electroacoustic. The electroacoustic transducer control unit 20 for receiving from the transducer 14 is connected to the electroacoustic transducer 14 by a lead wire extending from the electroacoustic transducer 14 on a region other than the propagation surface band 12a on the outer surface of the three-dimensional substrate 12. Has been. As shown in FIG. 1, for example, the electroacoustic transducer control unit 20 includes an impedance matching circuit 20a, a circulator 20, a transmitter 20c including a high frequency power supply, an amplifier 20d, a digital oscilloscope 20e, and the like. A high-frequency radio wave receiving antenna can be used instead of the transmitter 20c.

電気音響変換素子14は、図4の(A)中に示されているように、伝搬表面帯12aに励起した弾性表面波のエネルギーの流れる密度が最大となる方位MDが最大外周線12bに対し20°以内になるよう構成されていることが好ましい。なおこの角度はより好ましくは10°以内であり、さらに好ましくは5°以内である。このことは、電気音響変換素子14により伝搬表面帯12aに励起された弾性表面波は、3次元基体12の外表面上で最大外周線12bに沿い例えば周回毎にエネルギーの80%以上を保つような小さな減衰率で周回することが出来るのであれば伝搬するにつれて励起された直後の幅よりも最大外周線12bから拡散する傾向にあっても良いが、上記の角度範囲内にあることが好ましいことを意味している。   As shown in FIG. 4A, the electroacoustic transducer 14 has an azimuth MD at which the density of the surface acoustic wave energy that is excited in the propagation surface band 12a flows to the maximum outer circumferential line 12b. It is preferable to be configured to be within 20 °. This angle is more preferably within 10 °, and further preferably within 5 °. This means that the surface acoustic wave excited on the propagation surface band 12a by the electroacoustic transducer 14 keeps 80% or more of the energy along the maximum outer peripheral line 12b on the outer surface of the three-dimensional substrate 12, for example, every turn. If it can circulate with a small attenuation rate, it may tend to diffuse from the maximum outer peripheral line 12b rather than the width immediately after being excited as it propagates, but it is preferably within the above angle range. Means.

なお本発明において記載される「最大外周線に沿う」は、弾性表面波が周回或いは伝搬経路に亘り伝搬する場合に、弾性表面波のエネルギーの流れる密度が最大となる方向が最大外周線に対し好ましくは20°以内、より好ましくは10°以内、さらに好ましくは5°以内の範囲内である場合をいう。   The term “along the maximum outer circumferential line” described in the present invention refers to the direction in which the density of the surface acoustic wave energy flow is maximum with respect to the maximum outer circumferential line when the surface acoustic wave propagates around the circulation or propagation path. The case is preferably within 20 °, more preferably within 10 °, and still more preferably within 5 °.

この実施の形態において、電気音響変換素子14は3次元基体12の外表面上で伝搬表面帯12aの範囲内に直接形成されている。この実施の形態において電気音響変換素子14は例えば櫛型電極のようなすだれ状電極22であって、例えば蒸着や印刷やスパッタリングやゾル・ゲル法などの種々の公知の方法により上記外表面上に直接形成されることが出来る。   In this embodiment, the electroacoustic transducer 14 is directly formed on the outer surface of the three-dimensional substrate 12 within the range of the propagation surface band 12a. In this embodiment, the electroacoustic transducer 14 is an interdigital electrode 22 such as a comb-shaped electrode, and is formed on the outer surface by various known methods such as vapor deposition, printing, sputtering, sol-gel method, and the like. It can be formed directly.

電気音響変換素子14がすだれ状電極22により形成されている場合、すだれ状電極22は、図4の(B)中に良く示されているように、すだれ状電極22において伝搬表面帯12aに対し弾性表面波を励起するとともに伝搬表面帯12aに伝搬する弾性表面波を受信可能な送受信部分(前述の有効幅の部分)に対し3次元基体12の外表面に沿い直交する線が、伝搬表面帯12aが沿っている対応する最大外周線12bに対し10°以下の範囲に含まれるよう構成されていることが好ましい。より詳細には、すだれ状電極22のパターンの各端子(線要素)22aにおける前記送受信部分(すだれ状電極22の場合には、パターンの各端子(線要素)22aが最大外周線12bに沿った方向において相互に重複する部分)に対し伝搬表面帯12aの外表面に沿って延出する直交線OLが最大外周線12bに対し10°以下の範囲内にあることが好ましいことを意味している。   In the case where the electroacoustic transducer 14 is formed by the interdigital electrode 22, the interdigital electrode 22 is formed with respect to the propagation surface band 12a in the interdigital electrode 22 as well shown in FIG. A line perpendicular to the outer surface of the three-dimensional substrate 12 with respect to a transmitting / receiving portion (a portion having the above-described effective width) capable of exciting a surface acoustic wave and receiving a surface acoustic wave propagating to the propagation surface zone 12a is a propagation surface zone. It is preferable to be configured so as to fall within a range of 10 ° or less with respect to the corresponding maximum outer peripheral line 12b along which 12a extends. More specifically, the transmitting / receiving portion (in the case of the interdigital electrode 22), each terminal (line element) 22 a of the pattern extends along the maximum outer peripheral line 12 b in each terminal (line element) 22 a of the interdigital electrode 22 pattern. This means that the orthogonal line OL extending along the outer surface of the propagation surface band 12a with respect to the portion overlapping each other in the direction is preferably within a range of 10 ° or less with respect to the maximum outer peripheral line 12b. .

その理由は、図4の(A)を参照しながら前述したように、電気音響変換素子14を、伝搬表面帯12aに励起した弾性表面波のエネルギーの流れの密度が最大となる方位MDを最大外周線12bに対し20°以内になるよう構成することが好ましい理由と同じである。   The reason for this is that, as described above with reference to FIG. 4A, the electroacoustic transducer 14 is maximized in the direction MD where the density of the surface acoustic wave energy flow excited in the propagation surface band 12a is maximized. This is the same as the reason why it is preferable to configure the outer peripheral line 12b to be within 20 °.

さらに、最大外周線12bに沿った方向におけるすだれ状電極22のパターンの複数の端子22a(図4の(B)参照)の配列周期Pは、最大外周線12bの曲率半径の1/10以下であることが好ましい。配列周期Pは、すだれ状電極22が励起する弾性表面波の一波長(即ち、振動周期)分の長さに相当している。   Furthermore, the arrangement period P of the plurality of terminals 22a (see FIG. 4B) of the interdigital electrode 22 pattern in the direction along the maximum outer peripheral line 12b is 1/10 or less of the radius of curvature of the maximum outer peripheral line 12b. Preferably there is. The arrangement period P corresponds to the length of one wavelength (ie, vibration period) of the surface acoustic wave excited by the interdigital electrode 22.

弾性表面波の波長(即ち、すだれ状電極22のパターンの複数の端子22aの配列周期P)が弾性表面波が伝搬する伝搬表面帯12aに含まれる最大外周線12bの曲率半径(伝搬表面帯12aがこの実施の形態のように球面の一部により構成されている場合は、上記球面の半径)の1/10よりも大きいと、湾曲した伝搬表面帯12aの幾何学的な特徴が伝搬表面帯12aを伝搬する弾性表面波が拡散しようとするのを抑制する機能が弱くなる。従って、3次元基体12の表面の伝搬表面帯12aに比較的長い波長の弾性表面波を所望の距離だけ伝搬させようとする場合には、伝搬表面体12aに含まれる最大外周線12bの曲率半径を上記波長との上述した関係を充たすよう予め設定しなければならない。   The wavelength of the surface acoustic wave (that is, the arrangement period P of the plurality of terminals 22a of the interdigital electrode 22 pattern) is the radius of curvature of the maximum outer peripheral line 12b included in the propagation surface band 12a through which the surface acoustic wave propagates (the propagation surface band 12a). Is formed by a part of a spherical surface as in this embodiment, if it is larger than 1/10 of the radius of the spherical surface), the geometric feature of the curved propagation surface band 12a is The function of suppressing the surface acoustic wave propagating through 12a from spreading is weakened. Accordingly, when a surface acoustic wave having a relatively long wavelength is to be propagated to the propagation surface band 12a on the surface of the three-dimensional substrate 12 by a desired distance, the radius of curvature of the maximum outer peripheral line 12b included in the propagation surface body 12a. Must be set in advance to satisfy the above-described relationship with the wavelength.

従って、伝搬表面帯12bにおいて効率良く弾性表面波を伝搬させるには前記配列周期にすることが好ましい。   Therefore, in order to propagate the surface acoustic wave efficiently in the propagation surface band 12b, it is preferable to use the arrangement period.

この実施の形態に従い本願の発明者が実際に作成したLiNbO結晶の球形状の3次元基体の直径は25.4mmであり、電気音響変換素子として使用するすだれ状電極を球形状の3次元基体の外表面において3次元基体の中心から見て上記結晶の+X方向に相当する位置に形成した。すだれ状電極は、3次元基体の外表面にクロムの1000オングストロームの蒸着又は金の1000オングストロームの蒸着による膜形成を行なった後に、すだれ状電極のパターンの端子(線要素)が、前述したようにLiNbO結晶の+Y軸をX軸を回転中心に+Z方向に20°回転させた方向を中心として上記球形状の外表面上を周回する方向に対し直交するようフォトリソプロセスされることにより形成された。この時に形成されたすだれ状電極のパターンの端子(線要素)の配列周期Pは0.532mmであり、夫々が0.133mmの幅の複数の端子(線要素)が0.133mmの間隔で配列され、互いに隣り合う端子(線要素)間に所望のパルス電圧が印加される。そして、パルス電圧が印加されることにより、相互間に電界が生じる互いに隣り合う端子(線要素)の夫々の重複する部分の長さは3.1mmである。 The diameter of the spherical three-dimensional substrate of the LiNbO 3 crystal actually produced by the inventors of this application according to this embodiment is 25.4 mm, and the interdigital electrode used as the electroacoustic transducer is used as the spherical three-dimensional substrate. The outer surface of the crystal was formed at a position corresponding to the + X direction of the crystal as viewed from the center of the three-dimensional substrate. After forming a film by vapor deposition of 1000 angstroms of chromium or 1000 angstroms of gold on the outer surface of the three-dimensional substrate, the interdigital electrodes have terminals (line elements) as described above. The LiNbO 3 crystal is formed by being subjected to a photolithography process so as to be orthogonal to the direction of rotation on the outer surface of the spherical shape with the + Y axis rotated about 20 ° in the + Z direction about the X axis as the rotation center. . The arrangement period P of the terminals (line elements) of the interdigital electrode pattern formed at this time is 0.532 mm, and a plurality of terminals (line elements) each having a width of 0.133 mm are arranged at intervals of 0.133 mm. Then, a desired pulse voltage is applied between terminals (line elements) adjacent to each other. And the length of the overlapping part of each adjacent terminal (line element) which an electric field produces mutually by applying a pulse voltage is 3.1 mm.

ここでは本願の発明者がLiNbO結晶の球形状の3次元基体の外表面に実際に作成した電気音響変換素子として使用するすだれ状電極の一例の寸法を記載したが、本願発明の3次元基体の外表面において本願発明の求める機能或いは効果を達成することが出来るのであれば、現在知られている如何なる材料や寸法や形状のすだれ状電極も使用することができる。 Here, the inventor of the present application has described the dimensions of an example of the interdigital electrode used as the electroacoustic transducer produced on the outer surface of the spherical three-dimensional substrate of LiNbO 3 crystal. As long as the functions or effects required by the present invention can be achieved on the outer surface of the electrode, a currently known interdigital electrode of any material, size and shape can be used.

そして、上述した如く構成された球形状の弾性表面波素子のすだれ状電極に100Vの電圧で半値幅2ナノ秒のインパルス信号を印加したところ、その結果として上記すだれ状電極から上記周回する方向に約6.5MHzの中心周波数を有したバースト状のシグナルが21.8μ秒の間隔で少なくとも50回繰り返し出力されたことがデジタルオシロスコープにより確認された。このことは、上述した如く25.4mmの直径を有したLiNbO結晶の球形状の3次元基体の外表面を上記周回する方向に平均して3658m/sの速度で弾性表面波が少なくとも50回以上周回していることを意味している。 Then, when an impulse signal having a half-value width of 2 nanoseconds was applied to the interdigital electrode of the spherical surface acoustic wave element configured as described above at a voltage of 100 V, as a result, in the direction of circulation from the interdigital electrode. It was confirmed by a digital oscilloscope that a bursty signal having a center frequency of about 6.5 MHz was repeatedly output at least 50 times at intervals of 21.8 μsec. This is because, as described above, surface acoustic waves are generated at least 50 times at a speed of 3658 m / s on the average on the outer surface of the spherical three-dimensional substrate of LiNbO 3 crystal having a diameter of 25.4 mm. It means that you have circulated.

本願の発明者はまた、上述したのと同じ直径のLiNbO結晶の球形状の3次元基体の外表面上において上述したのと同じ位置に電気音響変換素子として使用するすだれ状電極を上述したのとは異なる以下のようにしても形成した。即ち、この場合には、すだれ状電極は、3次元基体の外表面にクロムの1000オングストロームの蒸着又は金の1000オングストロームの蒸着による膜形成を行なった後に、すだれ状電極のパターンの端子(線要素)が、前述したようにLiNbO結晶の+Y軸をX軸を回転中心に−Z方向に26°回転させた方向を中心として上記球形状の外表面上を周回する方向に対し直交するようフォトリソプロセスされることにより形成された。この時に形成されたすだれ状電極のパターンの端子(線要素)の種々の寸法は上述したのと同じである。 The inventor of the present application also described the interdigital electrode used as an electroacoustic transducer at the same position as described above on the outer surface of the spherical three-dimensional substrate of LiNbO 3 crystal having the same diameter as described above. Different from the above, it was formed as follows. That is, in this case, the interdigital electrode is formed on the outer surface of the three-dimensional substrate by forming a film by vapor deposition of 1000 angstroms of chromium or 1000 angstroms of gold, and then the terminals of the interdigital electrodes (line elements). ) Is perpendicular to the direction of rotation on the outer surface of the spherical shape with the + Y axis of the LiNbO 3 crystal rotated about 26 ° in the −Z direction around the X axis as described above. It was formed by being processed. The various dimensions of the terminals (line elements) of the interdigital electrode pattern formed at this time are the same as described above.

このように構成された球形状の弾性表面波素子のすだれ状電極に対しても上述したのと同様にインパルス信号を印加したところ、このようなすだれ状電極からは上記周回する方向に約6.5MHzの中心周波数を有したバースト状のシグナルが22.5μ秒の間隔で少なくとも50回繰り返し出力されたことがデジタルオシロスコープにより確認された。このことは、上述した如く25.4mmの直径を有したLiNbO結晶の球形状の3次元基体の外表面を上記周回する方向に平均して3540m/sの速度で弾性表面波が少なくとも50回以上周回していることを意味している。 When an impulse signal is applied to the interdigital electrode of the spherical surface acoustic wave element having the above-described configuration in the same manner as described above, about 6 in the direction of rotation from the interdigital electrode. It was confirmed by a digital oscilloscope that a burst signal having a center frequency of 5 MHz was repeatedly output at least 50 times at intervals of 22.5 μsec. This means that, as described above, surface acoustic waves are generated at least 50 times at a speed of 3540 m / s on the outer surface of the spherical three-dimensional substrate of LiNbO 3 crystal having a diameter of 25.4 mm as described above. It means that you have circulated.

そして本願の発明者により上述した如く構成された2つの種類の球形状の弾性表面波素子の夫々の外表面においてすだれ状電極から上記周回する方向に離れた位置(即ち、弾性表面波の周回経路上)に水を含ませた綿棒を接触させたところ、すだれ状電極に上述した如くインパルス信号を印加してもすだれ状電極からは何も出力を得ることが出来なくなり、弾性表面波の周回が阻害されていることが判った。さらに、上述した如く構成された2つの種類の球形状の弾性表面波素子の夫々の外表面においてすだれ状電極から上記周回する方向に対し直交する方向に5mm以上離れた位置(即ち、弾性表面波の周回経路から外れた位置)に水を含ませた綿棒を接触させたところ、すだれ状電極に上述した如くインパルス信号を印加した時にすだれ状電極から上述した如きバースト状のシグナルが上述した如く繰り返し出力され、上述した如き弾性表面波の周回が阻害されないことが判った。   The position of the outer surface of each of the two types of spherical surface acoustic wave elements configured as described above by the inventor of the present application is separated from the interdigital electrode in the direction in which the circuit circulates (that is, the surface acoustic wave circulation path). When a cotton swab containing water is brought into contact with the top), no output can be obtained from the interdigital electrode even if an impulse signal is applied to the interdigital electrode as described above, and the surface acoustic wave circulates. It turns out that it is obstructed. Further, the two types of spherical surface acoustic wave elements configured as described above are separated from the interdigital electrode by 5 mm or more in the direction perpendicular to the direction of the circumference (that is, the surface acoustic wave). When the impulse signal is applied to the interdigital electrode as described above, the burst signal as described above repeats from the interdigital electrode as described above. It was output and it turned out that the circumference | surroundings of a surface acoustic wave as mentioned above are not inhibited.

[第1の変形例]
次には、図5の(A)及び(B)を参照しながら、この発明に従った弾性表面波素子の第1の変形例について詳細に説明する。
[First Modification]
Next, a first modification of the surface acoustic wave element according to the present invention will be described in detail with reference to FIGS.

この変形例の弾性表面波素子は、前述の第1の実施の形態の3方晶系のLiNbO結晶により形成されている3次元基体12を、同様な3方晶系であるLiTaO結晶により球形状に形成している。これに伴ない、3次元基体12の外表面上に規定する最大外周線12bの規定方法も、前述の第1の実施の形態の3方晶系のLiNbO結晶により形成されている3次元基体12の場合と異なっている。しかしながら、これ以外の構成は、前述の第1の実施の形態の弾性表面波素子の構成と同じである。 In the surface acoustic wave device of this modification, the three-dimensional substrate 12 formed of the trigonal LiNbO 3 crystal of the first embodiment is replaced with the same trigonal LiTaO 3 crystal. It is formed in a spherical shape. Accordingly, the method of defining the maximum outer peripheral line 12b defined on the outer surface of the three-dimensional substrate 12 is also a three-dimensional substrate formed of the trigonal LiNbO 3 crystal of the first embodiment described above. This is different from the case of 12. However, the configuration other than this is the same as the configuration of the surface acoustic wave element of the first embodiment described above.

この第1の変形例の弾性表面波素子では、3方晶系のLiTaO結晶により全体が形成されている3次元基体12の外表面において最大外周線12bを、図5の(A)中に示されているように、LiTaO結晶の1つの結晶軸である+Y軸をX軸を回転中心に−Z方向に45°だけ回転させた結晶軸CCを法線とする1つの結晶面と3次元基体12の外表面との交線に一致させている。3次元基体12の外表面においてこの1つの結晶面に沿い弾性表面波が伝搬する間にも、前述の第1の実施の形態の結晶面の場合と同様に、上記結晶面に対し交差する方向には弾性表面波のエネルギーの大きな拡散が生じないので、3次元基体12の外表面において弾性表面波を最も効率良く伝搬させることが出来る。 In the surface acoustic wave element of the first modification, the maximum outer peripheral line 12b is shown in FIG. 5A on the outer surface of the three-dimensional substrate 12 formed entirely by a trigonal LiTaO 3 crystal. As shown, one crystal plane of the LiTaO 3 crystal, which is a crystal axis obtained by rotating the + Y axis, which is one crystal axis, by 45 ° in the −Z direction about the X axis as a normal, and 3 It is made to correspond to the line of intersection with the outer surface of the dimensional substrate 12. While the surface acoustic wave propagates along the one crystal plane on the outer surface of the three-dimensional substrate 12, the direction intersecting the crystal plane is the same as in the case of the crystal plane of the first embodiment. Therefore, the surface acoustic wave can be propagated most efficiently on the outer surface of the three-dimensional substrate 12.

3次元基体12を形成しているLiTaO結晶は3方晶系なので、図5の(B)中に示されている如く、1つの平面内に互いに120°をなす3つの結晶軸+Yを有している。従って、これらの3つの結晶軸+Yについて上述したように規定される3つの交線を最大外周線12bとした場合、この3つの最大外周線12bに沿い上述した如く連続する3つの伝搬表面帯12aを規定することが可能である。 Since the LiTaO 3 crystal forming the three-dimensional substrate 12 is a trigonal system, as shown in FIG. 5B, it has three crystal axes + Y forming 120 ° with each other in one plane. doing. Therefore, when the three intersecting lines defined as described above for these three crystal axes + Y are defined as the maximum outer peripheral line 12b, the three propagation surface bands 12a continuous as described above along the three maximum outer peripheral lines 12b. Can be defined.

[第2の変形例]
次には、図6の(A)及び(B)を参照しながら、この発明に従った弾性表面波素子の第2の変形例について詳細に説明する。
[Second Modification]
Next, a second modification example of the surface acoustic wave device according to the present invention will be described in detail with reference to FIGS.

この変形例の弾性表面波素子は、前述の第1の実施の形態の3方晶系のLiNbO結晶により形成されている3次元基体12を、同様な3方晶系ではある水晶により球形状に形成している。これに伴ない、3次元基体12の外表面上に規定する最大外周線12bの規定方法も、前述の第1の実施の形態の3方晶系のLiNbO結晶により形成されている3次元基体12の場合と異なっている。しかしながら、これ以外の構成は、前述の第1の実施の形態の弾性表面波素子の構成と同じである。 In the surface acoustic wave device of this modification, the three-dimensional substrate 12 formed of the trigonal system LiNbO 3 crystal of the first embodiment described above is formed into a spherical shape by using a crystal having a similar trigonal system system. Is formed. Accordingly, the method of defining the maximum outer peripheral line 12b defined on the outer surface of the three-dimensional substrate 12 is also a three-dimensional substrate formed of the trigonal LiNbO 3 crystal of the first embodiment described above. This is different from the case of 12. However, the configuration other than this is the same as the configuration of the surface acoustic wave element of the first embodiment described above.

この第2の変形例の弾性表面波素子では、3方晶系の水晶により全体が形成されている3次元基体12の外表面において最大外周線12bを、図6の(A)中に示されているように、水晶の1つの結晶軸CDである+Y軸を法線とする1つの結晶面と3次元基体12の外表面との交線に一致させている。3次元基体12の外表面においてこの1つの結晶面に沿い弾性表面波が伝搬する間にも、前述の第1の実施の形態の結晶面の場合と同様に、上記結晶面に対し交差する方向には弾性表面波のエネルギーの大きな拡散が生じないので、3次元基体12の外表面において弾性表面波を最も効率良く伝搬させることが出来る。   In the surface acoustic wave element of the second modification, the maximum outer peripheral line 12b is shown in FIG. 6A on the outer surface of the three-dimensional substrate 12 formed entirely by trigonal crystal. As shown in the figure, it is made to coincide with the intersection line between one crystal plane having the + Y axis, which is one crystal axis CD of quartz, as a normal line and the outer surface of the three-dimensional substrate 12. While the surface acoustic wave propagates along the one crystal plane on the outer surface of the three-dimensional substrate 12, the direction intersecting the crystal plane is the same as in the case of the crystal plane of the first embodiment. Therefore, the surface acoustic wave can be propagated most efficiently on the outer surface of the three-dimensional substrate 12.

3次元基体12を形成している水晶は3方晶系なので、図6の(B)中に示されている如く、1つの平面内に互いに120°をなす3つの結晶軸+Yを有している。従って、これらの3つの結晶軸+Yについて上述したように規定される3つの交線を最大外周線12bとした場合、この3つの最大外周線12bに沿い上述した如く連続する3つの伝搬表面帯12aを規定することが可能である。   Since the crystal forming the three-dimensional substrate 12 is a trigonal system, it has three crystal axes + Y forming 120 ° with respect to each other in one plane as shown in FIG. Yes. Therefore, when the three intersecting lines defined as described above with respect to these three crystal axes + Y are defined as the maximum outer peripheral line 12b, the three propagation surface bands 12a continuous along the three maximum outer peripheral lines 12b as described above. Can be defined.

前述した第1の実施の形態,第1及び第2の変形例に従った弾性表面波素子10においては、弾性表面波素子10の3次元基体12の外表面上に電気音響変換素子14により励起された弾性表面波が、前記外表面において前述した如くして規定された最大外周線12bに沿い円環状に連続している伝搬表面帯12aの範囲内で伝搬表面帯12aが円環状に連続している方向に沿い1周期当たりエネルギーの実質的に20%以下の消耗率で(即ち、1周回当たりエネルギーの80%以上を保って)円環状に周回するように、3次元基体12の種々の寸法や電気音響変換素子14の種々の寸法が前述した如く設定されている。   In the surface acoustic wave device 10 according to the first embodiment and the first and second modifications, the electroacoustic transducer 14 is excited on the outer surface of the three-dimensional substrate 12 of the surface acoustic wave device 10. The propagation surface band 12a continues in an annular shape within the range of the propagation surface band 12a in which the generated surface acoustic wave continues in an annular shape along the maximum outer peripheral line 12b defined as described above on the outer surface. The various dimensions of the three-dimensional substrate 12 are made to circulate in an annular shape with a consumption rate substantially equal to or less than 20% of the energy per cycle along the direction in which the three-dimensional substrate 12 circulates (ie, keeps 80% or more of the energy per cycle). The dimensions and various dimensions of the electroacoustic transducer 14 are set as described above.

このことは、弾性表面波素子10の3次元基体12は、伝搬表面帯12a以外は、如何なる任意の形状にしても良いことを意味している。例えば、3次元基体12は、外表面に円環状の伝搬表面帯12aを有したリング状のドーナツ形状や樽形状やラグビーボール形状や円盤形状であることが出来る。   This means that the three-dimensional substrate 12 of the surface acoustic wave element 10 may have any arbitrary shape other than the propagation surface band 12a. For example, the three-dimensional substrate 12 can have a ring-shaped donut shape, barrel shape, rugby ball shape, or disk shape having an annular propagation surface band 12a on the outer surface.

前述した第1の実施の形態,第1及び第2の変形例に従った弾性表面波素子10においては、伝搬表面帯12aが接する空間に満たされている流体(気体や流体)に何等かの変化があれば(即ち、伝搬表面帯12aが接する外部環境に何等かの変化があれば)伝搬表面帯12aを伝搬する弾性表面波の伝搬速度や1周期当たりに要する伝搬時間に変化が生じる。即ち、弾性表面波素子10を外部環境の変化や差異を検出する為の環境差異検出装置として使用することが出来る。   In the surface acoustic wave device 10 according to the first embodiment and the first and second modifications described above, there is something in the fluid (gas or fluid) filled in the space in contact with the propagation surface band 12a. If there is a change (that is, if there is any change in the external environment in contact with the propagation surface band 12a), a change occurs in the propagation speed of the surface acoustic wave propagating through the propagation surface band 12a and the propagation time required per cycle. That is, the surface acoustic wave element 10 can be used as an environmental difference detection device for detecting changes and differences in the external environment.

[第2の実施の形態]
つぎに、図7を参照しながら、この発明に従った弾性表面波素子の第2の実施の形態を詳細に説明する。
[Second Embodiment]
Next, a second embodiment of the surface acoustic wave device according to the present invention will be described in detail with reference to FIG.

この実施の形態では、前述した第1の実施の形態,第1及び第2の変形例のいずれかに従った弾性表面波素子10の3次元基体12の外表面上に前述した如く規定することが出来る複数の伝搬表面帯12a(第1の実施の形態では6個であり、第1及び第2の変形例の夫々では3個である)の中の任意の複数の夫々において他の伝搬表面帯12aと交差しない部分に前述した如く電気音響変換素子14を形成し、各電気音響変換素子14は前述の電気音響変換素子制御ユニット20に接続されている。   In this embodiment, it is prescribed as described above on the outer surface of the three-dimensional substrate 12 of the surface acoustic wave device 10 according to any of the first embodiment, the first modification, and the second modification. Other propagation surfaces in any of a plurality of propagation surface bands 12a (six in the first embodiment and three in each of the first and second modifications) As described above, the electroacoustic transducer 14 is formed in a portion that does not intersect with the belt 12a, and each electroacoustic transducer 14 is connected to the electroacoustic transducer control unit 20 described above.

さらにこの実施の形態では、3次元基体12の外表面において電気音響変換素子14を形成した複数の伝搬表面帯12aを除いた位置に、3次元基体12を図示しない何等かの台座に支持する為の支持部材32が固定されている。   Furthermore, in this embodiment, the three-dimensional substrate 12 is supported on some pedestal (not shown) at a position excluding the plurality of propagation surface bands 12a on which the electroacoustic transducer 14 is formed on the outer surface of the three-dimensional substrate 12. The support member 32 is fixed.

このように構成されている第2の実施の形態に従った弾性表面波素子30は、第1の実施の形態,第1及び第2の変形例のいずれかに従った弾性表面波素子10に比べると、環境差異検出装置として使用した時により優れている。その理由は以下の通り。   The surface acoustic wave element 30 according to the second embodiment configured as described above is different from the surface acoustic wave element 10 according to any of the first embodiment, the first and the second modifications. In comparison, it is better when used as an environmental difference detection device. The reason is as follows.

前述の弾性表面波素子10のように、1つの電気音響変換素子14とそれに接続された1つの電気音響変換素子制御ユニット20しか使用しない場合には、前述した外部環境の変化の影響で弾性表面波素子10に何等かの物理的な変化(例えば、外部環境の温度の変化による3次元基体12の膨張或いは収縮)が生じた時に、伝搬表面帯12aを伝搬する弾性表面波の伝搬速度や1周期当たりに要する伝搬時間に微妙な変化が生じる。   When only one electroacoustic transducer 14 and one electroacoustic transducer control unit 20 connected to the electroacoustic transducer 14 are used as in the surface acoustic wave device 10 described above, the elastic surface is affected by the change in the external environment described above. When any physical change occurs in the wave element 10 (for example, expansion or contraction of the three-dimensional substrate 12 due to a change in the temperature of the external environment), the propagation speed of the surface acoustic wave propagating through the propagation surface band 12a or 1 A subtle change occurs in the propagation time required per period.

従って、前述したように伝搬表面帯12aが接する空間に満たされている流体(気体や流体)の変化(即ち、伝搬表面帯12aが接する外部環境の変化)をより精密に検出しようとするならば、前述した外部環境の変化の影響による弾性表面波素子10の物理的な変化を考慮しなければならない。   Therefore, if the change of the fluid (gas or fluid) filled in the space in contact with the propagation surface zone 12a (ie, the change in the external environment in contact with the propagation surface zone 12a) is to be detected more precisely as described above. The physical change of the surface acoustic wave element 10 due to the influence of the change in the external environment described above must be taken into consideration.

図7を参照した第2の実施の形態に従った弾性表面波素子30によれば、3次元基体12の外表面において電気音響変換素子14を形成した複数の伝搬表面帯12aの中の少なくとも1つの伝搬表面帯12aを変化を検出しようと意図している外部環境から隔離するとともに、電気音響変換素子14を形成した複数の伝搬表面帯12aの中の残りの少なくとも1つの伝搬表面帯12aを前記外部環境に接触するよう構成する。   According to the surface acoustic wave device 30 according to the second embodiment with reference to FIG. 7, at least one of the plurality of propagation surface bands 12 a in which the electroacoustic transducer 14 is formed on the outer surface of the three-dimensional substrate 12. The two propagation surface bands 12a are isolated from the external environment intended to detect changes, and at least one remaining propagation surface band 12a among the plurality of propagation surface bands 12a forming the electroacoustic transducer 14 is Configure to contact the external environment.

このような構成であれば、外部環境から隔離されている伝搬表面帯12a上の電気音響変換素子14からそれが対応している前述の電気音響変換素子制御ユニット20が受信した信号は外部環境の変化に伴なう弾性表面波素子10の物理的な変化を示し、前記外部環境に接触した前記残りの少なくとも1つの伝搬表面帯12aの電気音響変換素子14からそれが対応している前述の電気音響変換素子制御ユニット20が受信した信号は外部環境の変化に伴なう弾性表面波素子10の物理的な変化に加えて外部環境の変化を示すことになる。   With such a configuration, the signal received by the electroacoustic transducer control unit 20 corresponding thereto from the electroacoustic transducer 14 on the propagation surface band 12a isolated from the external environment is received from the external environment. A physical change of the surface acoustic wave element 10 accompanying the change, and the electric power corresponding thereto from the electroacoustic transducer 14 of the remaining at least one propagation surface band 12a in contact with the external environment. The signal received by the acoustic conversion element control unit 20 indicates a change in the external environment in addition to a physical change in the surface acoustic wave element 10 accompanying a change in the external environment.

従って、前記外部環境に接触した前記残りの少なくとも1つの伝搬表面帯12aの電気音響変換素子14からそれが対応している前述の電気音響変換素子制御ユニット20が受信した信号から、外部環境から隔離されている伝搬表面帯12a上の電気音響変換素子14からそれが対応している前述の電気音響変換素子制御ユニット20が受信した信号を差し引けば、純粋に外部環境の変化のみを検出することが可能になる。   Therefore, it is isolated from the external environment from the signal received by the electroacoustic transducer control unit 20 to which it corresponds from the electroacoustic transducer 14 of the remaining at least one propagation surface band 12a in contact with the external environment. By subtracting the signal received by the electroacoustic transducing element control unit 20 to which the electroacoustic transducing element 14 corresponding to the electroacoustic transducing element 14 on the propagating surface band 12a corresponds, only a change in the external environment is detected. Is possible.

[変形例]
図8には、図7を参照しながら説明した第2の実施の形態に従った弾性表面波素子30の変形例が示されている。
[Modification]
FIG. 8 shows a modification of the surface acoustic wave element 30 according to the second embodiment described with reference to FIG.

この変形例では、3次元基体12の外表面において複数の伝搬表面帯12aの交差領域に複数の伝搬表面帯12aに共通の共通励起用電気音響変換素子14’が形成されている。共通励起用電気音響変換素子14’は共通励起用電気音響素子制御ユニット20’に接続されていて、共通励起用電気音響素子制御ユニット20’は共通励起用電気音響変換素子14’を複数の伝搬表面帯12aに同時に同じ周波数の弾性表面波を励起させ伝搬させるよう制御する。   In this modification, a common excitation electroacoustic transducer element 14 ′ common to the plurality of propagation surface bands 12 a is formed in the intersecting region of the plurality of propagation surface bands 12 a on the outer surface of the three-dimensional substrate 12. The common excitation electroacoustic transducer 14 'is connected to the common excitation electroacoustic transducer control unit 20', and the common excitation electroacoustic transducer control unit 20 'propagates through the common excitation electroacoustic transducer 14'. Control is performed so that a surface acoustic wave having the same frequency is simultaneously excited and propagated through the surface band 12a.

そして、複数の伝搬表面帯12aの夫々において相互に重複しない位置に受信用電気音響変換素子14’’が形成されている。複数の受信用電気音響変換素子14’’の夫々は受信用電気音響変換素子制御ユニット20’’に接続されているとともに、夫々の受信用電気音響変換素子制御ユニット20’’を介して夫々の受信用電気音響変換素子制御ユニット20’’が受信した信号の差異を検出する信号差異検出手段24に接続されている。   In addition, reception electroacoustic transducers 14 '' are formed at positions that do not overlap each other in each of the plurality of propagation surface bands 12a. Each of the plurality of receiving electroacoustic transducers 14 '' is connected to the receiving electroacoustic transducer element control unit 20 '', and each receiving electroacoustic transducer element control unit 20 '' is connected to each receiving electroacoustic transducer element control unit 20 ''. The receiving electroacoustic transducer control unit 20 ″ is connected to a signal difference detecting means 24 for detecting a difference in received signals.

そして通常は、複数の受信用電気音響変換素子14’’は複数の伝搬表面帯12aから同時に弾性表面波を受信する。しかしながら、例えば、いずれか1つの伝搬表面帯12aに隣接する外部空間の部分の環境の変化により、いずれか1つの伝搬表面帯12aに例えば液体などの異物が接すると、異物が接したいずれか1つの伝搬表面帯12aにおける弾性表面波の伝搬速度と異物に接していない残りの複数の伝搬表面帯12aにおける弾性表面波の伝搬速度との間で差異が生じる。この差異により、複数の受信用電気音響変換素子14’’に複数の受信用電気音響変換素子制御ユニット20’’を介して接続されている信号差異検出手段24は上記外部空間の部分の環境の変化の程度を知ることが出来る。   Usually, the plurality of receiving electroacoustic transducers 14 ″ simultaneously receive surface acoustic waves from the plurality of propagation surface bands 12 a. However, for example, when a foreign substance such as a liquid comes into contact with any one of the propagation surface bands 12a due to a change in the environment of a portion of the external space adjacent to any one of the propagation surface bands 12a, any one of the foreign objects contacted. There is a difference between the propagation speed of surface acoustic waves in one propagation surface band 12a and the propagation speeds of surface acoustic waves in the remaining plurality of propagation surface bands 12a that are not in contact with foreign matter. Due to this difference, the signal difference detecting means 24 connected to the plurality of receiving electroacoustic transducers 14 '' via the plurality of receiving electroacoustic transducer elements 20 '' has an environment in the external space portion. You can know the degree of change.

なお、この変形例では、複数の伝搬表面帯12aに対し1つの共通励起用電気音響変換素子14’が形成されているとともに対応する複数の受信用電気音響変換素子14’’が形成されているので、1つの共通励起用電気音響変換素子14’の為に1つの共通励起用電気音響素子制御ユニット20’が、また複数の受信用電気音響変換素子14’’の為に複数の受信用電気音響変換素子制御ユニット20’’が設けられている。   In this modification, one common excitation electroacoustic transducer 14 'is formed for a plurality of propagation surface bands 12a, and a corresponding plurality of receiving electroacoustic transducers 14' 'are formed. Therefore, one common excitation electroacoustic element control unit 20 ′ for one common excitation electroacoustic transducer 14 ′, and a plurality of receiving electricity for a plurality of receiving electroacoustic transducers 14 ″. An acoustic conversion element control unit 20 ″ is provided.

このような変形例の共通励起用電気音響素子制御ユニット20’や複数の受信用電気音響変換素子制御ユニット20’’の夫々の回路設計は、図7中に示されている第2の実施の形態の複数の伝搬表面帯12aに対し複数の送受信用の電気音響変換素子14に対応して設けられている複数の送受信制御用の電気音響変換素子制御ユニット20の夫々の回路設計に比べ、遥かに容易である。   The circuit designs of the common excitation electroacoustic element control unit 20 ′ and the plurality of receiving electroacoustic transducing element control units 20 ″ of such a modification are the same as those in the second embodiment shown in FIG. Compared to each circuit design of the plurality of electroacoustic transducer control units 20 for transmission / reception control provided corresponding to the plurality of electroacoustic transducers 14 for transmission / reception with respect to the plurality of propagation surface bands 12a of the form Easy to.

[第3の実施の形態]
次に、図9を参照しながら、この発明に従った弾性表面波素子の第3の実施の形態を詳細に説明する。
[Third Embodiment]
Next, a third embodiment of a surface acoustic wave device according to the present invention will be described in detail with reference to FIG.

第3の実施の形態に従った弾性表面波素子40は、3次元基体12が凹所又は中空部を有していて、これら凹所又は中空部の内表面12cが、弾性表面波が伝搬可能な曲面が円環状に連続した伝播表面帯12aを含んでいる。図9には中空部の一種である貫通孔を有した3次元基体12が示されている。   In the surface acoustic wave element 40 according to the third embodiment, the three-dimensional substrate 12 has a recess or a hollow portion, and the surface 12c of the recess or the hollow portion can propagate the surface acoustic wave. The curved surface includes a propagation surface band 12a that is continuous in an annular shape. FIG. 9 shows a three-dimensional substrate 12 having a through hole which is a kind of hollow portion.

3次元基体12は、前述の第1の実施の形態,そして第1又は第2の変形例の3次元基体12と同様に、全体がLiNbO結晶,LiTaO結晶,又は水晶により形成されている。そして、前述の第1の実施の形態,そして第1又は第2の変形例の3次元基体12の外表面に3次元基体12を形成している結晶の種類に特有の複数の結晶面の少なくとも1つと前記外表面との交線に伝搬表面帯12aを沿わせる基準となる最大外周線12bが規定されていたのと同様に、第3の実施の形態に従った弾性表面波素子40の3次元基体12の内表面に3次元基体12を形成している結晶の種類に特有の複数の結晶面の少なくとも1つと前記内表面との交線に伝搬表面帯12aを沿わせる基準となる少なくとも1つの最大外周線12bが規定されている。そして、この内表面上で最大外周線12bに沿い連続して延出するよう伝搬表面帯12aが規定されている。この実施の形態の3次元基体12の内表面における伝搬表面帯12aの規定の仕方は、前述の第1の実施の形態,そして第1又は第2の変形例の3次元基体12の外表面における伝搬表面帯12aの規定の仕方と同じである。従って好ましくは前記内表面上の伝搬表面帯12aの範囲内に最大外周線12bが含まれている。 The three-dimensional substrate 12 is entirely formed of LiNbO 3 crystal, LiTaO 3 crystal, or quartz crystal, as in the three-dimensional substrate 12 of the first embodiment and the first or second modification described above. . At least a plurality of crystal planes peculiar to the type of crystal forming the three-dimensional substrate 12 on the outer surface of the three-dimensional substrate 12 of the first embodiment and the first or second modification described above. The surface acoustic wave device 40 according to the third embodiment is similar to the surface acoustic wave element 40 according to the third embodiment in the same manner that the maximum outer peripheral line 12b serving as a reference for extending the propagation surface band 12a along the intersection line between one and the outer surface is defined. At least one serving as a reference for causing the propagation surface zone 12a to follow the intersection line between the inner surface and at least one of a plurality of crystal planes specific to the type of crystal forming the three-dimensional substrate 12 on the inner surface of the three-dimensional substrate 12 Two maximum perimeter lines 12b are defined. A propagation surface band 12a is defined so as to continuously extend along the maximum outer peripheral line 12b on the inner surface. The method of defining the propagation surface zone 12a on the inner surface of the three-dimensional substrate 12 of this embodiment is the same as that of the first embodiment described above and the outer surface of the three-dimensional substrate 12 of the first or second modification. This is the same as the method of defining the propagation surface band 12a. Therefore, the maximum outer peripheral line 12b is preferably included in the range of the propagation surface band 12a on the inner surface.

そして、この実施の形態の3次元基体12の内表面における伝搬表面帯12aにも、伝搬表面帯12aの範囲内で最大外周線12bに沿い弾性表面波を大きく減衰させることなく伝搬させるよう電気音響変換素子14が形成されていて、電気音響変換素子14には前述の電気音響変換素子制御ユニット20が接続されている。   Then, the electroacoustic acoustic wave is also propagated to the propagation surface band 12a on the inner surface of the three-dimensional substrate 12 of this embodiment along the maximum outer peripheral line 12b within the propagation surface band 12a without being greatly attenuated. A conversion element 14 is formed, and the electroacoustic conversion element control unit 20 is connected to the electroacoustic conversion element 14.

この実施の形態においても、前記内表面は伝搬表面帯12aが前述した所定の方法により規定されていれば、伝搬表面帯12a以外の部位の形状は任意である。   Also in this embodiment, as long as the propagation surface band 12a is defined by the predetermined method described above, the shape of the portion other than the propagation surface band 12a is arbitrary.

この実施の形態の弾性表面波素子40は、電気音響変換素子14により伝搬表面帯12aに励起され伝搬表面帯12a内を例えば1周回当たり80%以上のエネルギーを保って大きく減衰することなく伝搬する弾性表面波が、3次元基体12の内表面における伝搬表面帯12aが接する環境である貫通孔の内部空間を通過する流体(気体又は流体)の種々の変化に対応して、変化するのを電気音響変換素子14を介して電気音響変換素子制御ユニット20により電気信号として受信することにより、前記環境の変化、即ち差異、を検知することが出来る。   The surface acoustic wave element 40 according to this embodiment is excited by the electroacoustic transducer 14 on the propagation surface band 12a and propagates in the propagation surface band 12a without significant attenuation while maintaining energy of, for example, 80% or more per round. The surface acoustic wave changes in response to various changes in the fluid (gas or fluid) passing through the internal space of the through hole, which is the environment in contact with the propagation surface band 12a on the inner surface of the three-dimensional substrate 12. By receiving as an electrical signal by the electroacoustic transducer control unit 20 via the acoustic transducer 14, it is possible to detect the change in the environment, that is, the difference.

さらに、この実施の形態においても、図7を参照しながら前述した第2の実施の形態の弾性表面波素子30と同様に、前記内表面に3次元基体12を形成している結晶の種類に特有の複数の結晶面と前記内表面との複数の交線に一致させた複数の最大外周線12bに沿った複数の伝搬表面帯12aの夫々に、他の伝搬表面帯12aとの交差部位を除き前述の電気音響変換素子制御ユニット20が接続されている電気音響変換素子14を形成することが出来る。そしてこの場合も、図7を参照しながら前述した第2の実施の形態の弾性表面波素子30と同様に、より精密に環境の差異を検出することが出来る環境差異検出装置として使用することが出来る。   Further, in this embodiment, similarly to the surface acoustic wave element 30 of the second embodiment described above with reference to FIG. 7, the type of crystal forming the three-dimensional substrate 12 on the inner surface is used. Each of the plurality of propagation surface bands 12a along the plurality of maximum outer peripheral lines 12b matched with the plurality of lines of intersection between the specific plurality of crystal planes and the inner surface has intersections with the other propagation surface bands 12a. Except for this, the electroacoustic transducer 14 to which the above-described electroacoustic transducer control unit 20 is connected can be formed. In this case as well, like the surface acoustic wave element 30 of the second embodiment described above with reference to FIG. 7, it can be used as an environmental difference detection device that can detect environmental differences more precisely. I can do it.

またさらに、この実施の形態においても、図8を参照しながら前述した第2の実施の形態の変形例の弾性表面波素子30と同様に、前記外表面に3次元基体12を形成している結晶の種類に特有の複数の結晶面と前記外表面との複数の交線に一致させた複数の最大外周線12bに沿った複数の伝搬表面帯12aの交差領域に複数の伝搬表面帯12aに共通の共通励起用電気音響変換素子14’を形成するとともに複数の伝搬表面帯12aの夫々において上記交差領域外に受信用電気音響変換素子14’’を形成することも出来る。そしてこの場合も、図8を参照しながら前述した第2の実施の形態の変形例の弾性表面波素子30と同様に、より精密に環境の差異を検出することが出来る環境差異検出装置として使用することが出来る。   Furthermore, also in this embodiment, the three-dimensional substrate 12 is formed on the outer surface in the same manner as the surface acoustic wave element 30 of the modification of the second embodiment described above with reference to FIG. A plurality of propagation surface belts 12a are formed at intersections of a plurality of propagation surface belts 12a along a plurality of maximum outer peripheral lines 12b that coincide with a plurality of intersection lines between a plurality of crystal planes peculiar to the type of crystal and the outer surface. It is also possible to form a common electroacoustic transducer element 14 ′ for common excitation and a receiving electroacoustic transducer element 14 ″ outside the intersecting region in each of the plurality of propagation surface bands 12a. In this case as well, like the surface acoustic wave element 30 of the modification of the second embodiment described above with reference to FIG. 8, it is used as an environmental difference detection device that can detect environmental differences more precisely. I can do it.

[第4の実施の形態]
次に、図10及び図11を参照しながら、この発明に従った弾性表面波素子の第4の実施の形態を詳細に説明する。
[Fourth Embodiment]
Next, a fourth embodiment of a surface acoustic wave device according to the present invention will be described in detail with reference to FIGS.

第4の実施の形態に従った弾性表面波素子50は、前述の第1の実施の形態,そして第1又は第2の変形例の3次元基体12と同様に、全体がLiNbO結晶,LiTaO結晶,又は水晶により形成されている球形状の3次元基体12を備えている。3次元基体12の外表面には、3次元基体12の材料の複数の結晶面と前記外表面との複数の交線の少なくとも1つを最大外周線12bとし最大外周線12bに沿い円環状に連続する伝搬表面帯12aを規定している。この実施の形態の弾性表面波素子50の3次元基体12の外表面上の伝搬表面帯12aもまた、前述の第1の実施の形態,そして第1又は第2の変形例の3次元基体12の外表面上の伝搬表面帯12aと同様に、好ましくは伝搬表面帯12aの範囲内に最大外周線12bを含んでいる。 The surface acoustic wave device 50 according to the fourth embodiment is entirely composed of LiNbO 3 crystal and LiTaO, similarly to the three-dimensional substrate 12 of the first embodiment and the first or second modification. A spherical three-dimensional substrate 12 made of three crystals or quartz is provided. On the outer surface of the three-dimensional substrate 12, at least one of a plurality of intersecting lines between a plurality of crystal planes of the material of the three-dimensional substrate 12 and the outer surface is a maximum outer peripheral line 12b, and an annular shape is formed along the maximum outer peripheral line 12b. A continuous propagation surface zone 12a is defined. The propagation surface band 12a on the outer surface of the three-dimensional substrate 12 of the surface acoustic wave element 50 of this embodiment is also the three-dimensional substrate 12 of the first embodiment and the first or second modification. Similar to the propagation surface zone 12a on the outer surface of the substrate, it preferably includes a maximum outer peripheral line 12b within the range of the propagation surface zone 12a.

この実施の形態の弾性表面波素子50が、第1の実施の形態や第1及び第2の変形例の弾性表面波素子10と異なっているのは、3次元基体12の外表面上の伝搬表面帯12aに表面弾性波を励起させ、励起させた弾性表面波を伝搬表面帯12aの範囲内で最大外周線12bに沿い伝搬させる電気音響変換素子14が3次元基体12の外表面上の伝搬表面帯12aに直接形成されていないことである。   The surface acoustic wave element 50 of this embodiment is different from the surface acoustic wave elements 10 of the first embodiment and the first and second modifications in that the propagation on the outer surface of the three-dimensional substrate 12 is performed. The electroacoustic transducer 14 for exciting the surface acoustic wave on the surface band 12a and propagating the excited surface acoustic wave along the maximum outer peripheral line 12b within the range of the propagation surface band 12a propagates on the outer surface of the three-dimensional substrate 12. That is, it is not formed directly on the surface band 12a.

この実施の形態では、3次元基体12の外表面上の伝搬表面帯12a以外の部分を支持する台座52が伝搬表面帯12aとの間に所定の隙間Sを介して対面する伝搬表面帯対面領域52aを有していて、台座52の伝搬表面帯対面領域52aに電気音響変換素子14が形成されている。伝搬表面帯12aに対する電気音響変換素子14の寸法や配置は、第1の実施の形態や第1及び第2の変形例の弾性表面波素子10において伝搬表面帯12aに電気音響変換素子14が直接形成されている場合と同様である。   In this embodiment, the propagation surface zone facing region in which the pedestal 52 that supports a portion other than the propagation surface zone 12a on the outer surface of the three-dimensional substrate 12 faces the propagation surface zone 12a with a predetermined gap S therebetween. The electroacoustic transducer 14 is formed in the propagation surface zone facing region 52 a of the pedestal 52. The dimensions and arrangement of the electroacoustic transducer 14 with respect to the propagation surface band 12a are the same as those in the surface acoustic wave device 10 of the first embodiment and the first and second modifications. It is the same as the case where it is formed.

なお所定の隙間Sは、電気音響変換素子14が櫛型電極のようなすだれ状電極22の場合、すだれ状電極22のパターンの複数の線要素(端子)の配列周期P(図4の(B)参照)の4分の1以下であることが好ましい。所定の隙間Sが配列周期P(図4の(B)参照)の4分の1以上であると、電気音響変換素子14は3次元基体12の外表面上の伝搬表面帯12aに所望の弾性表面波を常に確実に励起させることが難しくなる。   When the electroacoustic transducer 14 is a comb-like electrode 22 such as a comb-shaped electrode, the predetermined gap S is an array period P of a plurality of line elements (terminals) of the pattern of the comb-like electrode 22 ((B in FIG. 4). It is preferable that it is 1/4 or less of (see)). When the predetermined gap S is not less than ¼ of the arrangement period P (see FIG. 4B), the electroacoustic transducer 14 has a desired elasticity on the propagation surface band 12a on the outer surface of the three-dimensional substrate 12. It becomes difficult to always reliably excite surface waves.

第4の実施の形態に従った弾性表面波素子50は、前述の第1の実施の形態,そして第1又は第2の変形例の3次元基体12と同様に、使用することができる。しかも、電気音響変換素子14が3次元基体12の外表面上の伝搬表面帯12aに所定の隙間Sを介して対面している場合には、3次元基体12の外表面上の伝搬表面帯12aに電気音響変換素子14が直接形成されている場合と比べると、伝搬表面帯12aに直接形成されている電気音響変換素子14が電気音響変換素子14により伝搬表面帯12aに励起され伝搬表面帯12a中を伝搬する弾性表面波に極僅かに与えるかも知れない影響を排除することが出来、伝搬表面帯12a中を伝搬する弾性表面波の変化をより精密に検知することが出来る。   The surface acoustic wave element 50 according to the fourth embodiment can be used in the same manner as the three-dimensional substrate 12 of the first embodiment and the first or second modification. Moreover, when the electroacoustic transducer 14 faces the propagation surface band 12a on the outer surface of the three-dimensional substrate 12 via a predetermined gap S, the propagation surface band 12a on the outer surface of the three-dimensional substrate 12 Compared with the case where the electroacoustic transducer 14 is directly formed, the electroacoustic transducer 14 formed directly on the propagation surface band 12a is excited by the electroacoustic transducer 14 to the propagation surface zone 12a and the propagation surface zone 12a. It is possible to eliminate the influence that may slightly affect the surface acoustic wave propagating through the inside, and it is possible to detect the change of the surface acoustic wave propagating through the propagating surface band 12a more precisely.

さらに第4の実施の形態に従った弾性表面波素子50においても、図8を参照して前述したこの発明の第2の実施の形態の変形例のように、3次元基体12の外表面上に規定することが出来る複数の最大外周線12bに沿う複数の伝搬表面帯12aの交差領域に、台座52の伝搬表面帯対面領域52aを対面させるとともに、この伝搬表面帯対面領域52aに3次元基体12の外表面上の複数の伝搬表面帯12aの上記交差領域に所定の隙間Sを介して対面する共通励起用電気音響変換素子14’を形成することが出来る。さらに、複数の伝搬表面帯12aの夫々において上記交差領域外に伝搬表面帯対面領域52aを有した台座52と同様な追加の台座の伝搬表面帯対面領域を対面させるとともに、この追加の台座の伝搬表面帯対面領域に3次元基体12の外表面上の複数の伝搬表面帯12aの夫々において上記交差領域外に所定の隙間Sを介して対面する受信用電気音響変換素子14’’を形成することが出来る。そしてこの場合も、図8を参照しながら前述した第2の実施の形態の変形例の弾性表面波素子30と同様に、より精密に環境の差異を検出することが出来る環境差異検出装置として使用することが出来る。   Further, also in the surface acoustic wave element 50 according to the fourth embodiment, as in the modification of the second embodiment of the present invention described above with reference to FIG. The propagation surface band facing region 52a of the pedestal 52 is made to face the intersecting region of the plurality of propagation surface belts 12a along the plurality of maximum outer peripheral lines 12b, and the three-dimensional substrate A common excitation electroacoustic transducer 14 ′ facing each other through a predetermined gap S can be formed in the intersecting region of the plurality of propagation surface bands 12 a on the outer surface of 12. Further, in each of the plurality of propagation surface bands 12a, an additional pedestal propagation surface band facing region similar to the pedestal 52 having the propagation surface band facing region 52a outside the intersecting region is faced, and the propagation of this additional pedestal A receiving electroacoustic transducer 14 '' facing each other through the predetermined gap S outside the intersecting area in each of the plurality of propagation surface bands 12a on the outer surface of the three-dimensional substrate 12 is formed in the surface band facing area. I can do it. In this case as well, like the surface acoustic wave element 30 of the modification of the second embodiment described above with reference to FIG. 8, it is used as an environmental difference detection device that can detect environmental differences more precisely. I can do it.

[第5の実施の形態]
次に、図12を参照しながら、この発明に従った弾性表面波素子の第5の実施の形態を詳細に説明する。
[Fifth Embodiment]
Next, a fifth embodiment of a surface acoustic wave device according to the present invention will be described in detail with reference to FIG.

第5の実施の形態に従った弾性表面波素子60は半球形状を有している3次元基体12’を備えていて、3次元基体12’の外表面に弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部によってなる伝播表面帯12’aを含んでいる。   The surface acoustic wave element 60 according to the fifth embodiment includes a three-dimensional substrate 12 ′ having a hemispherical shape, and a curved surface capable of propagating surface acoustic waves is formed on the outer surface of the three-dimensional substrate 12 ′. It includes a propagation surface band 12′a formed by a part of at least a continuous annular curved surface.

半球形状の3次元基体12’は、前述の第1の実施の形態,そして第1又は第2の変形例の3次元基体12と同様に、全体がLiNbO結晶,LiTaO結晶,又は水晶により形成されている。そして、前述の第1の実施の形態,そして第1又は第2の変形例の3次元基体12の外表面に3次元基体12を形成している結晶の種類に特有の複数の結晶面の少なくとも1つと前記外表面との交線に、伝搬表面体12aを連続して沿わせる基準となる最大外周線12bが規定されていたのと同様に、第5の実施の形態に従った弾性表面波素子60の3次元基体12’の半球形状の外表面に3次元基体12’を形成している結晶の種類に特有の複数の結晶面の少なくとも1つと前記外表面との交線に一致させて、伝搬表面体12’aを連続して沿わせる基準となる少なくとも1つの最大外周線12’bが規定されている。そして、好ましくは伝搬表面帯12’aの範囲内に最大外周線12’bが含まれている。 The hemispherical three-dimensional substrate 12 ′ is entirely made of LiNbO 3 crystal, LiTaO 3 crystal, or quartz crystal, like the three-dimensional substrate 12 of the first embodiment and the first or second modification. Is formed. At least a plurality of crystal planes peculiar to the type of crystal forming the three-dimensional substrate 12 on the outer surface of the three-dimensional substrate 12 of the first embodiment and the first or second modification described above. The surface acoustic wave according to the fifth embodiment is the same as the maximum outer peripheral line 12b serving as a reference for continuously extending the propagation surface body 12a along the line of intersection between one and the outer surface. The at least one of a plurality of crystal planes peculiar to the type of crystal forming the three-dimensional substrate 12 'on the hemispherical outer surface of the three-dimensional substrate 12' of the element 60 is made to coincide with the intersection line of the outer surface. , At least one maximum outer peripheral line 12'b is defined as a reference for continuously extending the propagation surface body 12'a. Preferably, the maximum outer peripheral line 12'b is included in the range of the propagation surface band 12'a.

この実施の形態の3次元基体12’の外表面において伝搬表面帯12’aを沿わせる基準となる最大外周線12’bの規定の仕方は、前述の第1の実施の形態,そして第1又は第2の変形例の3次元基体12の外表面における最大外周線12bの規定の仕方と同じである。   The method of defining the maximum outer peripheral line 12′b, which serves as a reference for the propagation surface band 12′a along the outer surface of the three-dimensional substrate 12 ′ of this embodiment, is the same as that in the first embodiment and the first embodiment. Alternatively, the method is the same as the method of defining the maximum outer peripheral line 12b on the outer surface of the three-dimensional substrate 12 of the second modification.

そして、この実施の形態の3次元基体12’の外表面における伝搬表面帯12’aにも、伝搬表面帯12’aの範囲内で最大外周線12’bに沿い弾性表面波を1周回当たり少なくとも80%以上のエネルギを保ち伝搬させるよう電気音響変換素子14が直接形成されていて、電気音響変換素子14には前述の電気音響変換素子制御ユニット20が接続されている。   Further, the surface acoustic wave per round is also applied to the propagation surface band 12′a on the outer surface of the three-dimensional substrate 12 ′ of this embodiment along the maximum outer peripheral line 12′b within the range of the propagation surface band 12′a. The electroacoustic transducer 14 is directly formed to propagate and maintain at least 80% or more energy, and the electroacoustic transducer control unit 20 is connected to the electroacoustic transducer 14.

この実施の形態においては、電気音響変換素子14により伝搬表面帯12’aの範囲内に励起され伝搬表面帯12’aの範囲内で最大外周線12’bに沿い伝搬する弾性表面波の伝搬方向に電気音響変換素子14から離れた位置に、弾性表面波反射体62が形成されている。弾性表面波反射体62は、電気音響変換素子14から伝搬表面帯12’a中を弾性表面波反射体62に向い伝搬して来た弾性表面波を伝搬表面帯12’aを同じ経路で電気音響変換素子14に向うよう反射する。   In this embodiment, the propagation of the surface acoustic wave that is excited by the electroacoustic transducer 14 within the range of the propagation surface zone 12′a and propagates along the maximum outer peripheral line 12′b within the range of the propagation surface zone 12′a. A surface acoustic wave reflector 62 is formed at a position away from the electroacoustic transducer 14 in the direction. The surface acoustic wave reflector 62 transmits the surface acoustic wave propagated from the electroacoustic transducer 14 through the propagation surface zone 12'a toward the surface acoustic wave reflector 62 through the propagation surface zone 12'a through the same path. Reflected toward the acoustic transducer 14.

この実施の形態においても、前記外表面は伝搬表面帯12’aが前述した所定の方法により規定されていれば、伝搬表面帯12’a以外の部位の形状は任意である。   Also in this embodiment, the shape of the portion other than the propagation surface band 12'a is arbitrary as long as the propagation surface band 12'a is defined by the predetermined method described above.

この実施の形態においても、3次元基体12’は伝搬表面帯12’a以外の部分が図示しない台座に支持されている。   Also in this embodiment, the three-dimensional substrate 12 'is supported by a pedestal (not shown) except for the propagation surface band 12'a.

この実施の形態の弾性表面波素子60は、電気音響変換素子14により少なくとも円環状の曲面の一部によってなる伝搬表面帯12’aに励起され伝搬表面帯12’a内を大きく減衰することなく伝搬する弾性表面波が、3次元基体12の外表面における伝搬表面帯12’aが接する環境である外部空間に含まれている流体(気体又は流体)の種々の変化に対応して、変化するのを電気音響変換素子14を介して電気音響変換素子制御ユニット20により電気信号として受信することにより、前記環境の変化、即ち差異、を検知することが出来る。   The surface acoustic wave device 60 according to this embodiment is excited by the electroacoustic transducer 14 to the propagation surface band 12'a formed of at least a part of an annular curved surface, and does not significantly attenuate the inside of the propagation surface band 12'a. The propagating surface acoustic wave changes in response to various changes in the fluid (gas or fluid) contained in the external space, which is the environment in contact with the propagating surface band 12'a on the outer surface of the three-dimensional substrate 12. Is received as an electrical signal by the electroacoustic transducer control unit 20 via the electroacoustic transducer 14, so that the environmental change, that is, the difference can be detected.

さらに、この実施の形態においても、図7を参照しながら前述した第2の実施の形態の弾性表面波素子30と同様に、前記外表面に3次元基体12’を形成している結晶の種類に特有の複数の結晶面と前記外表面との複数の交線により規定された複数の最大外周線12’bに沿った複数の伝搬表面帯12’aの夫々に、他の伝搬表面帯12’aとの交差部位を除き前述の電気音響変換素子制御ユニット20が接続されている電気音響変換素子14を形成することが出来る。なおこの場合、複数の伝搬表面帯12’aの夫々において他の伝搬表面帯12’aとの交差部位を除き電気音響変換素子14と対向する位置に弾性表面波反射体62が設置される。   Further, also in this embodiment, similar to the surface acoustic wave element 30 of the second embodiment described above with reference to FIG. 7, the kind of crystal forming the three-dimensional substrate 12 ′ on the outer surface Each of the plurality of propagation surface bands 12′a along the plurality of maximum outer peripheral lines 12′b defined by the plurality of intersecting lines between the plurality of crystal planes peculiar to the outer surface and the other outer surface, The electroacoustic transducer 14 to which the above-described electroacoustic transducer control unit 20 is connected can be formed except for the intersection with 'a. In this case, the surface acoustic wave reflector 62 is installed at a position facing the electroacoustic transducer 14 in each of the plurality of propagation surface bands 12'a except for an intersection with the other propagation surface band 12'a.

さらに、図8を参照しながら前述した第2の実施の形態の変形例の弾性表面波素子30と同様に、3次元基体12’の外表面の複数の伝搬表面帯12’aの交差領域に共通励起用電気音響変換素子14’を形成するとともに、複数の伝搬表面帯12’aの夫々において交差領域外に弾性表面波反射体62の代わりに受信用電気音響変換素子14’’を形成しても良い。   Further, in the same manner as the surface acoustic wave element 30 of the modification of the second embodiment described above with reference to FIG. 8, in the intersection region of the plurality of propagation surface bands 12′a on the outer surface of the three-dimensional substrate 12 ′. A common excitation electroacoustic transducer 14 ′ is formed, and a receiving electroacoustic transducer 14 ″ is formed outside the intersecting region in each of the plurality of propagation surface bands 12′a instead of the surface acoustic wave reflector 62. May be.

またさらに、この実施の形態においても、図9を参照しながら前述した第3の実施の形態の弾性表面波素子40と同様に、3次元基体12に形成した例えば半球形状の凹所又は空洞の内表面に中心線12bを伴なった少なくとも円環状の曲面の一部によってなる伝搬表面帯12aを規定し、このような伝搬表面帯12aに中心線12aに沿い相互に離間し相互に対向する電気音響変換素子14及び弾性表面波反射体62を設置するよう変形させることも出来る。   Furthermore, in this embodiment, as in the surface acoustic wave device 40 of the third embodiment described above with reference to FIG. 9, for example, a hemispherical recess or cavity formed in the three-dimensional substrate 12 A propagation surface band 12a formed by at least a part of an annular curved surface with a center line 12b on the inner surface is defined, and such propagation surface bands 12a are separated from each other along the center line 12a and face each other. The acoustic conversion element 14 and the surface acoustic wave reflector 62 can be modified to be installed.

またさらに、この実施の形態においても、図10及び図11を参照しながら前述した第4の実施の形態の弾性表面波素子50と同様に、3次元基体12’の伝搬表面帯12aに直接電気音響変換素子14を形成するのではなく、伝搬表面帯12aに対し所定の隙間Sを介して対向するよう前述の図示しない台座に電気音響変換素子14を形成することも出来るし、3次元基体12’の外表面の複数の伝搬表面帯12’aの交差領域に所定の隙間Sを介して対向するよう前述の図示しない台座に共通励起用電気音響変換素子14’を形成するとともに複数の伝搬表面帯12’aの夫々において交差領域以外に所定の隙間Sを介して対向するよう前述の図示しない台座に受信用電気音響変換素子14’’を形成することも出来る。   Furthermore, in this embodiment as well, as in the surface acoustic wave element 50 of the fourth embodiment described above with reference to FIGS. 10 and 11, electric power is directly applied to the propagation surface band 12a of the three-dimensional substrate 12 ′. Instead of forming the acoustic transducer 14, the electroacoustic transducer 14 can be formed on a pedestal (not shown) so as to face the propagation surface band 12 a via a predetermined gap S, or the three-dimensional substrate 12. A common excitation electroacoustic transducer 14 'is formed on the above-mentioned pedestal (not shown) so as to oppose the intersecting regions of the plurality of propagation surface bands 12'a on the outer surface of the sheet with a predetermined gap S and a plurality of propagation surfaces. The receiving electroacoustic transducer 14 '' can be formed on the above-mentioned pedestal (not shown) so as to face each other through the predetermined gap S other than the intersecting region in each of the bands 12'a.

さらに、弾性表面波反射体62の代わりに前述の電気音響変換素子制御ユニット20が接続されているもう1つの電気音響変換素子14を使用することも出来る。   Furthermore, another electroacoustic transducer 14 to which the above-described electroacoustic transducer control unit 20 is connected can be used instead of the surface acoustic wave reflector 62.

この発明の第1の実施の形態に従った弾性表面波素子の概略図である。1 is a schematic view of a surface acoustic wave device according to a first embodiment of the present invention. (A)は、この発明の第1の実施の形態に従った弾性表面波素子の3次元基体の全体をLiNbO結晶により形成した場合に3次元基体の外表面に弾性表面波を伝搬させる伝搬表面帯の基準となる最大外周線をLiNbO結晶の3つの結晶面の1つに沿い規定する様子を概略的に示す斜視図であり;そして、 (B)は、(A)のようにして3次元基体の外表面に設定される3つの伝搬表面帯の基準となった3つの最大外周線を示す為に3次元基体を+Z方向から−Z方向を見た概略図である。(A) is a propagation that propagates a surface acoustic wave to the outer surface of the three-dimensional substrate when the entire three-dimensional substrate of the surface acoustic wave device according to the first embodiment of the present invention is formed of LiNbO 3 crystal. There how to define along the maximum peripheral line as a reference surface zone into one of three crystal faces of the LiNbO 3 crystal perspective view schematically showing; and, as (B) is, (a) FIG. 3 is a schematic view of a three-dimensional substrate as viewed from a + Z direction to a −Z direction in order to show three maximum outer peripheral lines serving as references for three propagation surface bands set on the outer surface of the three-dimensional substrate. (A)は、この発明の第1の実施の形態に従った弾性表面波素子の3次元基体の全体をLiNbO結晶により形成した場合に3次元基体の外表面に弾性表面波を伝搬させる伝搬表面帯の基準となる最大外周線をLiNbO結晶の別の3つの結晶面の1つに沿い規定する様子を概略的に示す斜視図であり;そして、 (B)は、(A)のようにして3次元基体の外表面に規定される別の3つの伝搬表面帯の基準となった3つの最大外周線を示す為に3次元基体を+Z方向から−Z方向を見た概略図である。(A) is a propagation that propagates a surface acoustic wave to the outer surface of the three-dimensional substrate when the entire three-dimensional substrate of the surface acoustic wave device according to the first embodiment of the present invention is formed of LiNbO 3 crystal. how to define along the maximum peripheral line as a reference surface zone to one another three crystal faces of the LiNbO 3 crystal be a perspective view showing schematically; and, (B) is, as the (a) FIG. 6 is a schematic view of the three-dimensional substrate viewed from the −Z direction to the −Z direction in order to show three maximum outer peripheral lines that are the reference for another three propagation surface bands defined on the outer surface of the three-dimensional substrate. . (A)は、この発明の第1の実施の形態に従った弾性表面波素子の3次元基体の伝搬表面帯中において対応する最大外周線に対し電気音響変換素子が配置される好ましい状態を概略的に示す図であり;そして、 (B)は、この発明の第1の実施の形態に従った弾性表面波素子の3次元基体の伝搬表面帯中において対応する最大外周線に対しすだれ状電極による電気音響変換素子が配置されるさらに好ましい状態を概略的に示す図である。(A) is a schematic view of a preferable state in which the electroacoustic transducer is arranged with respect to the corresponding maximum outer peripheral line in the propagation surface zone of the three-dimensional substrate of the surface acoustic wave device according to the first embodiment of the present invention. And (B) is an interdigital electrode with respect to the corresponding maximum peripheral line in the propagation surface zone of the three-dimensional substrate of the surface acoustic wave device according to the first embodiment of the present invention. It is a figure which shows schematically the further more preferable state by which the electroacoustic conversion element by is arrange | positioned. (A)は、この発明の第1の実施の形態の第1の変形例に従い弾性表面波素子の3次元基体の全体をLiTaO結晶により形成した場合に3次元基体の外表面に弾性表面波を伝搬させる伝搬表面帯の基準となる最大外周線をLiTaO結晶の3つの結晶面の1つに沿い規定する様子を概略的に示す斜視図であり;そして、 (B)は、(A)のようにして3次元基体の外表面に規定される3つの伝搬表面帯の基準となった3つの最大外周線を示す為に3次元基体を+Z方向から−Z方向を見た概略図である。(A) shows the surface acoustic wave on the outer surface of the three-dimensional substrate when the entire three-dimensional substrate of the surface acoustic wave element is formed of LiTaO 3 crystal in accordance with the first modification of the first embodiment of the present invention. FIG. 2 is a perspective view schematically showing a state in which a maximum outer peripheral line serving as a reference of a propagation surface zone for propagating a crystal is defined along one of three crystal faces of a LiTaO 3 crystal; and (B) is (A) FIG. 6 is a schematic view of the three-dimensional substrate viewed from the + Z direction to the −Z direction in order to show the three maximum outer peripheral lines that are the reference for the three propagation surface bands defined on the outer surface of the three-dimensional substrate. . (A)は、この発明の第1の実施の形態の第2の変形例に従い弾性表面波素子の3次元基体の全体を水晶により形成した場合に3次元基体の外表面に弾性表面波を伝搬させる伝搬表面帯の基準となる最大外周線を水晶の3つの結晶面の1つに沿い規定する様子を概略的に示す斜視図であり;そして、 (B)は、(A)のようにして3次元基体の外表面に規定される3つの伝搬表面帯の基準となった3つの最大外周線を示す為に3次元基体を+Z方向から−Z方向を見た概略図である。(A) is a case where a surface acoustic wave is propagated to the outer surface of a three-dimensional substrate when the entire three-dimensional substrate of the surface acoustic wave element is formed of quartz according to the second modification of the first embodiment of the present invention. FIG. 6 is a perspective view schematically showing a state in which a maximum outer peripheral line serving as a reference of a propagation surface band to be formed is defined along one of three crystal planes of quartz; and (B) is as shown in (A). FIG. 3 is a schematic view of a three-dimensional substrate as viewed from a −Z direction to a −Z direction in order to show three maximum outer peripheral lines serving as a reference for three propagation surface bands defined on the outer surface of the three-dimensional substrate. この発明の第2の実施の形態に従った弾性表面波素子を概略的に示す斜視図である。It is a perspective view which shows roughly the surface acoustic wave element according to 2nd Embodiment of this invention. 図7の第2の実施の形態の変形例に従った弾性表面波素子を概略的に示す斜視図である。FIG. 8 is a perspective view schematically showing a surface acoustic wave device according to a modification of the second embodiment in FIG. 7. この発明の第3の実施の形態に従った弾性表面波素子を概略的に示す斜視図である。It is a perspective view which shows roughly the surface acoustic wave element according to 3rd Embodiment of this invention. この発明の第4の実施の形態に従った弾性表面波素子を概略的に示す斜視図である。It is a perspective view which shows roughly the surface acoustic wave element according to 4th Embodiment of this invention. 図10の弾性表面波素子の3次元基体の外表面の伝搬表面帯に対し所定の隙間を介し対向して配置されるよう3次元基体の台座に電気音響変換素子が形成されている様子を概略的に示す部分断面図。10 schematically shows a state in which the electroacoustic transducer is formed on the pedestal of the three-dimensional substrate so as to face the propagation surface band on the outer surface of the three-dimensional substrate of the surface acoustic wave device of FIG. 10 with a predetermined gap. FIG. この発明の第5の実施の形態に従った弾性表面波素子を概略的に示す斜視図である。It is a perspective view which shows roughly the surface acoustic wave element according to 5th Embodiment of this invention.

符号の説明Explanation of symbols

10…弾性表面波素子、12…3次元基体、12a…伝搬表面帯、12b…最大外周線、12c…内表面、14…電気音響変換素子、14’…共通励起用電気音響変換素子、14’’…受信用電気音響変換素子、22…すだれ状電極、22a…線要素(端子)、CA,CB,CC,CD…結晶軸方向、P…配列周期。   DESCRIPTION OF SYMBOLS 10 ... Surface acoustic wave element, 12 ... Three-dimensional base | substrate, 12a ... Propagation surface zone, 12b ... Maximum outer periphery line, 12c ... Inner surface, 14 ... Electroacoustic transducer, 14 '... Electroacoustic transducer for common excitation, 14' '... Receiving electroacoustic transducer, 22 ... Interdigital electrode, 22a ... Line element (terminal), CA, CB, CC, CD ... Crystal axis direction, P ... Arrangement period.

Claims (21)

弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部を含む表面を有する3次元基体と;
前記表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記表面を伝搬する前記弾性表面波を受信可能な電気音響変換素子と;
を備えていて、
前記3次元基体がLiNbO結晶であり、
前記3次元基体の前記表面において前記電気音響変換素子は、LiNbO結晶の結晶軸である+Y軸をX軸を回転中心に+Z方向に20°だけ回転させることにより規定された結晶軸を法線とする結晶面と前記表面との交線及びLiNbO結晶の結晶軸である+Y軸をX軸を回転中心に−Z方向に26°だけ回転させることにより規定された結晶軸を法線とする結晶面と前記表面との交線の少なくともいずれか一方の交線に沿い、前記励起した弾性表面波を伝搬させており、前記少なくともいずれか一方の交線は前記表面の最大外周線になっている、
ことを特徴とする弾性表面波素子。
A three-dimensional substrate having a surface including at least a part of an annular curved surface in which curved surfaces capable of propagating surface acoustic waves are continuous;
An electroacoustic transducer capable of receiving the surface acoustic wave propagating along the surface while exciting the surface acoustic wave on the surface and propagating the surface acoustic wave along the surface;
With
The three-dimensional substrate is LiNbO 3 crystal;
On the surface of the three-dimensional substrate, the electroacoustic transducer has a normal crystal axis defined by rotating the + Y axis, which is the crystal axis of the LiNbO 3 crystal, by 20 ° in the + Z direction with the X axis as the rotation center. The normal axis is the crystal axis defined by rotating the + Y axis, which is the intersection of the crystal plane and the surface, and the crystal axis of the LiNbO 3 crystal by 26 ° in the −Z direction with the X axis as the rotation center. The excited surface acoustic wave is propagated along at least one of the intersecting lines between the crystal plane and the surface, and the at least one intersecting line becomes the maximum outer peripheral line of the surface. Yes,
A surface acoustic wave device.
前記3次元基体の前記表面において前記電気音響変換素子は、LiNbO結晶の結晶軸である+Y軸をX軸を回転中心に+Z方向に20°だけ回転させることにより規定された結晶軸を法線とする結晶面と前記表面との交線及びLiNbO結晶の結晶軸である+Y軸をX軸を回転中心に−Z方向に26°だけ回転させることにより規定された結晶軸を法線とする結晶面と前記表面との交線の両方に沿い、前記励起した弾性表面波を伝搬させており、前記両方の交線の夫々は前記表面の最大外周線になっている、
ことを特徴とする請求項1に記載の弾性表面波素子。
On the surface of the three-dimensional substrate, the electroacoustic transducer has a normal crystal axis defined by rotating the + Y axis, which is the crystal axis of the LiNbO 3 crystal, by 20 ° in the + Z direction with the X axis as the rotation center. The normal axis is the crystal axis defined by rotating the + Y axis, which is the intersection of the crystal plane and the surface, and the crystal axis of the LiNbO 3 crystal by 26 ° in the −Z direction with the X axis as the rotation center. Along the line of intersection between the crystal plane and the surface, the excited surface acoustic wave is propagating, each of the lines of intersection being the maximum perimeter of the surface,
The surface acoustic wave device according to claim 1.
前記3次元基体の前記表面が少なくとも球面の一部を有する、ことを特徴とする請求項1又は2に記載の弾性表面波素子。   3. The surface acoustic wave device according to claim 1, wherein the surface of the three-dimensional substrate has at least a part of a spherical surface. 前記表面は、前記弾性表面波が伝搬可能な曲面が円環状に連続しており、
前記電気音響変換素子は、前記表面に前記弾性表面波を励起し前記交線に沿い前記弾性表面波を伝搬し周回させる、
ことを特徴とする請求項1又は2に記載の弾性表面波素子。
The surface has a curved surface in which the surface acoustic wave can propagate and is continuous in an annular shape,
The electroacoustic transducer is configured to excite the surface acoustic wave on the surface and propagate and circulate the surface acoustic wave along the intersection line.
The surface acoustic wave device according to claim 1, wherein the surface acoustic wave device is provided.
前記3次元基体の前記表面が球面である、ことを特徴とする請求項4に記載の弾性表面波素子。   The surface acoustic wave device according to claim 4, wherein the surface of the three-dimensional substrate is a spherical surface. 弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部を含む表面を有する3次元基体と;
前記表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記表面を伝搬する前記弾性表面波を受信可能な電気音響変換素子と;
を備えていて、
前記3次元基体がLiTaO結晶であり、
前記3次元基体の前記表面において前記電気音響変換素子は、LiTaO結晶の結晶軸である+Y軸をX軸を回転中心に−Z方向に45°だけ回転させることにより規定された結晶軸を法線とする結晶面と前記表面との交線に沿い、前記励起した弾性表面波を伝搬させており、前記交線は前記表面の最大外周線になっている、
ことを特徴とする弾性表面波素子。
A three-dimensional substrate having a surface including at least a part of an annular curved surface in which curved surfaces capable of propagating surface acoustic waves are continuous;
An electroacoustic transducer capable of receiving the surface acoustic wave propagating along the surface while exciting the surface acoustic wave on the surface and propagating the surface acoustic wave along the surface;
With
The three-dimensional substrate is LiTaO 3 crystal;
On the surface of the three-dimensional substrate, the electroacoustic transducer has a crystal axis defined by rotating the + Y axis, which is the crystal axis of the LiTaO 3 crystal, by 45 ° about the X axis in the −Z direction. Along the intersection line between the crystal plane and the surface as a line, the excited surface acoustic wave is propagated, and the intersection line is the maximum outer peripheral line of the surface,
A surface acoustic wave device.
前記3次元基体の前記表面が少なくとも球面の一部を有する、ことを特徴とする請求項6に記載の弾性表面波素子。   The surface acoustic wave device according to claim 6, wherein the surface of the three-dimensional substrate has at least a part of a spherical surface. 前記表面は、前記弾性表面波が伝搬可能な曲面が円環状に連続しており、
前記電気音響変換素子は、前記表面に前記弾性表面波を励起し前記交線に沿い前記弾性表面波を伝搬し周回させる、
ことを特徴とする請求項7に記載の弾性表面波素子。
The surface has a curved surface in which the surface acoustic wave can propagate and is continuous in an annular shape,
The electroacoustic transducer is configured to excite the surface acoustic wave on the surface and propagate and circulate the surface acoustic wave along the intersection line.
The surface acoustic wave device according to claim 7.
前記3次元基体の前記表面が球面である、ことを特徴とする請求項8に記載の弾性表面波素子。   9. The surface acoustic wave device according to claim 8, wherein the surface of the three-dimensional substrate is a spherical surface. 弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部を含む表面を有する3次元基体と;
前記表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記表面を伝搬する前記弾性表面波を受信可能な電気音響変換素子と;
を備えていて、
前記3次元基体が水晶であり、
前記3次元基体の前記表面において前記電気音響変換素子は、水晶の結晶軸であるY軸を法線とする結晶面と前記表面との交線に沿い、前記励起した弾性表面波を伝搬させており、前記交線は前記表面の最大外周線になっている、
ことを特徴とする弾性表面波素子。
A three-dimensional substrate having a surface including at least a part of an annular curved surface in which curved surfaces capable of propagating surface acoustic waves are continuous;
An electroacoustic transducer capable of receiving the surface acoustic wave propagating along the surface while exciting the surface acoustic wave on the surface and propagating the surface acoustic wave along the surface;
With
The three-dimensional substrate is quartz;
The electroacoustic transducer on the surface of the three-dimensional substrate propagates the excited surface acoustic wave along an intersection line between the crystal plane and the surface with the Y axis being the crystal axis of quartz as a normal line. And the intersection line is the maximum outer peripheral line of the surface,
A surface acoustic wave device.
前記3次元基体の前記表面が少なくとも球面の一部を有する、ことを特徴とする請求項10に記載の弾性表面波素子。   The surface acoustic wave device according to claim 10, wherein the surface of the three-dimensional substrate has at least a part of a spherical surface. 前記表面は、前記弾性表面波が伝搬可能な曲面が円環状に連続しており、
前記電気音響変換素子は、前記表面に前記弾性表面波を励起し前記交線に沿い前記弾性表面波を伝搬し周回させる、
ことを特徴とする請求項10に記載の弾性表面波素子。
The surface has a curved surface in which the surface acoustic wave can propagate and is continuous in an annular shape,
The electroacoustic transducer is configured to excite the surface acoustic wave on the surface and propagate and circulate the surface acoustic wave along the intersection line.
The surface acoustic wave device according to claim 10.
前記3次元基体の前記表面が球面である、ことを特徴とする請求項12に記載の弾性表面波素子。   The surface acoustic wave device according to claim 12, wherein the surface of the three-dimensional substrate is a spherical surface. 前記表面に沿い前記交線の延出方向と交差する方向において、前記電気音響変換素子が前記表面に対し弾性表面波を励起し前記交線に沿い前記弾性表面波のエネルギーを1周回当たり80%以上保って伝搬するとともに前記弾性表面波を受信可能な寸法が、前記表面において前記交線と直交する方向に延びる曲面の曲率半径の1.5分の1以下である、
ことを特徴とする請求項1乃至13のいずれか1項に記載の弾性表面波素子。
In the direction intersecting with the extending direction of the intersecting line along the surface, the electroacoustic transducer excites a surface acoustic wave on the surface, and the energy of the surface acoustic wave along the intersecting line is 80% per round. Propagating while maintaining the above, the dimension capable of receiving the surface acoustic wave is 1 / 1.5 or less of the curvature radius of the curved surface extending in the direction perpendicular to the intersecting line on the surface,
The surface acoustic wave device according to any one of claims 1 to 13, wherein the surface acoustic wave device is provided.
前記電気音響変換素子は、前記対応する交線に対し、前記交線に沿い前記電気音響変換素子から出射される弾性表面波のエネルギーの流れる密度が最大になる方位が20°以内になるよう前記表面に配置されている、ことを特徴とする請求項14に記載の弾性表面波素子。   The electroacoustic transducer has a direction in which the energy flow density of the surface acoustic wave emitted from the electroacoustic transducer along the intersecting line is maximum within 20 ° with respect to the corresponding intersecting line. The surface acoustic wave device according to claim 14, wherein the surface acoustic wave device is disposed on a surface. 前記電気音響変換素子が前記伝搬表面帯に形成されている、ことを特徴とする請求項1乃至15のいずれか1項に記載の弾性表面波素子。   The surface acoustic wave device according to any one of claims 1 to 15, wherein the electroacoustic transducer is formed in the propagation surface zone. 前記電気音響変換素子はすだれ状電極を備えていて、前記すだれ状電極は、前記すだれ状電極の複数の端子において前記表面に対し弾性表面波を励起するとともに前記表面に伝搬する前記弾性表面波を受信可能な送受信部分が、対応する交線の一部を含むよう構成されている、ことを特徴とする請求項1乃至16のいずれか1項に記載の弾性表面波素子。   The electroacoustic transducer includes an interdigital electrode, and the interdigital electrode excites a surface acoustic wave to the surface at a plurality of terminals of the interdigital electrode and transmits the surface acoustic wave propagating to the surface. The surface acoustic wave device according to any one of claims 1 to 16, wherein a receivable transmission / reception part includes a part of a corresponding intersection line. 前記交線に沿った方向における前記すだれ状電極の複数の端子の配列周期は、前記交線の曲率半径の1/10以下である、ことを特徴とする請求項17に記載の弾性表面波素子。   18. The surface acoustic wave device according to claim 17, wherein an arrangement period of the plurality of terminals of the interdigital electrode in a direction along the intersecting line is 1/10 or less of a radius of curvature of the intersecting line. . 前記3次元基体の前記表面は、前記3次元基体の外表面である、ことを特徴とする請求項1乃至18のいずれか1項に記載の弾性表面波素子。   The surface acoustic wave device according to claim 1, wherein the surface of the three-dimensional substrate is an outer surface of the three-dimensional substrate. 前記3次元基体は凹所又は中空部を有していて、前記表面は、前記3次元基体の凹所又は中空部の内表面である、ことを特徴とする請求項1乃至18のいずれか1項に記載の弾性表面波素子。   The said three-dimensional base | substrate has a recess or a hollow part, The said surface is an inner surface of the recess or hollow part of the said three-dimensional base | substrate, The any one of Claim 1 thru | or 18 characterized by the above-mentioned. The surface acoustic wave device according to Item. 請求項1乃至20のいずれか1項に記載の弾性表面波素子の表面において複数の交線に沿い複数の電気音響変換素子に弾性表面波を励起させ伝搬させるとともに伝搬する前記弾性表面波を受信させて受信信号を出力させ、複数の電気音響変換素子から出力される受信信号を比較し、前記表面において複数の弾性表面波が伝搬する複数の部分が接する空間の複数の部分の環境の差異を検出する、ことを特徴とする環境差異検出装置。   21. The surface acoustic wave according to claim 1, wherein the surface acoustic wave is excited and propagated to a plurality of electroacoustic transducers along a plurality of intersection lines on the surface of the surface acoustic wave element. The received signals are output, the received signals output from the plurality of electroacoustic transducers are compared, and the difference in the environment of the plurality of portions of the space where the plurality of portions where the plurality of surface acoustic waves propagate on the surface is in contact is determined. An environmental difference detection device characterized by detecting.
JP2003327951A 2003-09-19 2003-09-19 Surface acoustic wave device and environmental difference detection device using surface acoustic wave device Expired - Fee Related JP4426803B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2003327951A JP4426803B2 (en) 2003-09-19 2003-09-19 Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
PCT/JP2004/013755 WO2005029701A1 (en) 2003-09-19 2004-09-21 Surface acoustic wave element and environmental difference sensor using surface acoustic wave element
EP04787938A EP1667324B1 (en) 2003-09-19 2004-09-21 Surface acoustic wave element and environmental difference sensor using surface acoustic wave element
EP12165864.5A EP2482452B1 (en) 2003-09-19 2004-09-21 Surface acoustic wave device and environmental difference detecting apparatus using the surface acoustic wave device
US11/377,615 US7247969B2 (en) 2003-09-19 2006-03-17 Surface acoustic wave device and environmental difference detecting apparatus using the surface acoustic wave device
US11/812,369 US7408285B2 (en) 2003-09-19 2007-06-18 Surface acoustic wave device and environmental difference detecting apparatus using the surface acoustic wave device
US11/812,373 US7368848B2 (en) 2003-09-19 2007-06-18 Surface acoustic wave device and environmental difference detecting apparatus using the surface acoustic wave device
US11/812,374 US7362034B2 (en) 2003-09-19 2007-06-18 Surface acoustic wave device and environmental difference detecting apparatus using the surface acoustic wave device
US11/812,370 US7368847B2 (en) 2003-09-19 2007-06-18 Surface acoustic wave device and environmental difference detecting apparatus using the surface acoustic wave device
US11/812,367 US7423360B2 (en) 2003-09-19 2007-06-18 Surface acoustic wave device and environmental difference detecting apparatus using the surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003327951A JP4426803B2 (en) 2003-09-19 2003-09-19 Surface acoustic wave device and environmental difference detection device using surface acoustic wave device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2009222890A Division JP4700749B2 (en) 2009-09-28 2009-09-28 Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP2009222891A Division JP4700750B2 (en) 2009-09-28 2009-09-28 Surface acoustic wave device and environmental difference detection device using surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2005094610A true JP2005094610A (en) 2005-04-07
JP4426803B2 JP4426803B2 (en) 2010-03-03

Family

ID=34457677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327951A Expired - Fee Related JP4426803B2 (en) 2003-09-19 2003-09-19 Surface acoustic wave device and environmental difference detection device using surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4426803B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150950A (en) * 2003-11-12 2005-06-09 Toppan Printing Co Ltd Surface acoustic wave element array and pressure sensor
JP2005291790A (en) * 2004-03-31 2005-10-20 Toppan Printing Co Ltd Gas pressure measuring apparatus
JP2007101450A (en) * 2005-10-06 2007-04-19 Toppan Printing Co Ltd Current meter using surface acoustic wave element, element thereof, and flow velocity measuring method
JP2007315778A (en) * 2006-05-23 2007-12-06 Tohoku Univ Direction measuring method for anisotropic spherical material, direction measuring device for anisotropic spherical material, and manufacturing method of spherical acoustic surface wave element
JP2011160091A (en) * 2010-01-29 2011-08-18 Toppan Printing Co Ltd Spherical surface acoustic wave element
JP2012075004A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Spherical surface acoustic wave element
US10436757B2 (en) 2014-11-28 2019-10-08 Tohoku University Electrical signal processing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150950A (en) * 2003-11-12 2005-06-09 Toppan Printing Co Ltd Surface acoustic wave element array and pressure sensor
JP4495948B2 (en) * 2003-11-12 2010-07-07 凸版印刷株式会社 Surface acoustic wave element array
JP2005291790A (en) * 2004-03-31 2005-10-20 Toppan Printing Co Ltd Gas pressure measuring apparatus
JP2007101450A (en) * 2005-10-06 2007-04-19 Toppan Printing Co Ltd Current meter using surface acoustic wave element, element thereof, and flow velocity measuring method
JP4634270B2 (en) * 2005-10-06 2011-02-16 凸版印刷株式会社 An anemometer using a surface acoustic wave device, its element, and a method for measuring the velocity
JP2007315778A (en) * 2006-05-23 2007-12-06 Tohoku Univ Direction measuring method for anisotropic spherical material, direction measuring device for anisotropic spherical material, and manufacturing method of spherical acoustic surface wave element
JP2011160091A (en) * 2010-01-29 2011-08-18 Toppan Printing Co Ltd Spherical surface acoustic wave element
JP2012075004A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Spherical surface acoustic wave element
US10436757B2 (en) 2014-11-28 2019-10-08 Tohoku University Electrical signal processing device

Also Published As

Publication number Publication date
JP4426803B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
US7423360B2 (en) Surface acoustic wave device and environmental difference detecting apparatus using the surface acoustic wave device
JP4426803B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4700749B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4426802B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP2005191650A (en) Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element
JP4700750B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4479438B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4700748B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP2007166253A (en) Surface acoustic wave element and environment difference detector employing the same
JP4604335B2 (en) Spherical boundary wave element
JP4556442B2 (en) Surface acoustic wave device
JP2009225104A (en) Spherical surface acoustic wave element
JP2005502287A (en) Cylindrical ultrasonic receiver and transceiver formed of piezoelectric film
JP5135838B2 (en) Surface acoustic wave device
JP4816915B2 (en) Surface cleaning method for surface acoustic wave device
JP5310362B2 (en) Spherical surface acoustic wave device
JP5533509B2 (en) Spherical surface acoustic wave device
JP5533508B2 (en) Spherical surface acoustic wave device
JP5482244B2 (en) Spherical surface acoustic wave device
JP2002039823A (en) Gas measurement device
JPH07322395A (en) Microphone in liquid to irradiate it with ultrasonic wave
JP2005150784A (en) Surface acoustic wave element and environmental difference detecting apparatus
JP2012073170A (en) Spherical elastic surface wave element and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees