JP2011160091A - Spherical surface acoustic wave element - Google Patents

Spherical surface acoustic wave element Download PDF

Info

Publication number
JP2011160091A
JP2011160091A JP2010018718A JP2010018718A JP2011160091A JP 2011160091 A JP2011160091 A JP 2011160091A JP 2010018718 A JP2010018718 A JP 2010018718A JP 2010018718 A JP2010018718 A JP 2010018718A JP 2011160091 A JP2011160091 A JP 2011160091A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
surface region
electroacoustic transducer
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010018718A
Other languages
Japanese (ja)
Other versions
JP5482244B2 (en
Inventor
Nobutaka Nakaso
教尊 中曽
Yasuyuki Yanagisawa
恭行 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010018718A priority Critical patent/JP5482244B2/en
Publication of JP2011160091A publication Critical patent/JP2011160091A/en
Application granted granted Critical
Publication of JP5482244B2 publication Critical patent/JP5482244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To further improve operation precision of a spherical surface acoustic wave element, and further improve the operation precision of various devices using the spherical surface acoustic wave element as a result. <P>SOLUTION: In the spherical surface acoustic wave element 10, a center C of an electroacoustic transducer 22 is in a range of 15 degree or less with respect to a linearly extending direction of an outer circle line 14 of the maximum diameter from a cross point with +Y crystal axis in a surface area 16, further, when crystal or langasite is dextrorotatory, the center C of the electroacoustic transducer 22 is in a position rotated by an angle of 1 degree or more and 3 degree or less in +Z direction with respect to the outer circle line 14 of the maximum diameter from the cross point with the +Y crystal axis in the surface area 16, on the other hand, when the crystal or the langasite is levorotatory, the center C of the electroacoustic transducer 22 is in a position rotated by an angle of 1 degree or more and 3 degree or less in -Z direction with respect to the outer circle line 14 of the maximum diameter from the cross point with the +Y crystal axis in the surface area 16. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、球状弾性表面波素子に関する。   The present invention relates to a spherical surface acoustic wave device.

従来、圧電材料で形成されている平坦な表面を有する基材の上記表面上の相互に離れた2つの位置に電気音響変換素子を設けた弾性表面波素子が知られている。電気音響変換素子は通常、例えばすだれ状電極の如き高周波励起/高周波受信・手段である。   Conventionally, a surface acoustic wave element in which electroacoustic transducers are provided at two positions apart from each other on the surface of a substrate having a flat surface made of a piezoelectric material is known. The electroacoustic transducer is usually a high-frequency excitation / high-frequency receiving means such as an interdigital electrode.

この従来の弾性表面波素子においては、一方の電気音響変換素子に高周波電流を供給するとこの一方の電気音響変換素子が弾性表面波(SAW: Surface Acoustic Wave)を基材の表面に発生させ所定の方向に伝搬させることが出来る。そして、他方の電気音響変換素子は上記表面上で一方の電気音響変換素子からの弾性表面波を受信し受信した弾性表面波に対応した高周波電流を生じさせることが出来る。電気音響変換素子がすだれ状電極の場合には、すだれ状電極の複数の電極枝が並んでいる方向がすだれ状電極により発生された弾性表面波が伝搬する方向となり、また上記弾性表面波を効率よく受信する方向となる。   In this conventional surface acoustic wave device, when a high frequency current is supplied to one electroacoustic transducer, the one electroacoustic transducer generates a surface acoustic wave (SAW) on the surface of the substrate. Can propagate in the direction. The other electroacoustic transducer can receive a surface acoustic wave from one electroacoustic transducer on the surface and generate a high-frequency current corresponding to the received surface acoustic wave. When the electroacoustic transducer is an interdigital electrode, the direction in which multiple electrode branches of the interdigital electrode are aligned is the direction in which the surface acoustic wave generated by the interdigital electrode propagates, and the surface acoustic wave is efficiently used. It becomes the direction to receive well.

なお、弾性表面波とは、通常のバルク波と呼ばれる縦波や横波と異なり、物質表面にそのエネルギーの多くを集中して伝搬する弾性波である。弾性表面波としては、レーリー波,セザワ波,擬セザワ波,ラブ波等を例示することが出来、異方性材料の表面にも存在しえる。   A surface acoustic wave is a surface acoustic wave that propagates while concentrating much of its energy on a material surface, unlike a longitudinal wave or a transverse wave called a normal bulk wave. Examples of surface acoustic waves include Rayleigh waves, Sezawa waves, pseudo Sezawa waves, Love waves, and the like, and can also exist on the surface of anisotropic materials.

このような従来の弾性表面波素子は、遅延線,発信機の為の発振素子及び共振素子,周波数を選択する為のフィルター,化学センサー,バイオセンサー,またはリモートタグ等に使用されている。   Such conventional surface acoustic wave devices are used for delay lines, oscillation and resonance devices for transmitters, filters for selecting frequencies, chemical sensors, biosensors, remote tags, and the like.

すだれ状電極が励起させた直後の弾性表面波の幅(弾性表面波の伝搬方向に対し直交する方向の寸法)は、すだれ状電極の複数の電極枝において隣接する2つの電極枝が相互に対面している長さ(重なり幅という)に等しい。   The width of the surface acoustic wave immediately after the interdigital transducer is excited (the dimension in the direction orthogonal to the propagation direction of the surface acoustic wave) is such that two adjacent electrode branches face each other in the interdigital electrodes. It is equal to the length (referred to as overlap width).

しかしながら、弾性表面波が伝搬する基板の表面が平坦である上述した如き従来の弾性表面波素子では、一方の電気音響変換素子により励起され一方の電気音響変換素子から伝搬された弾性表面波は、一方の電気音響変換素子から遠ざかるにつれてその幅方向に拡散し続けそれが有しているエネルギーを弱めている。従って、弾性表面波励起用の電気音響変換素子と弾性表面波受信用の電気音響変換素子とを離して配置することが出来る距離には限界があり、この結果として、上述した如き従来の弾性表面波素子を利用した上述した如き種々の装置の動作精度の向上には限界があった。   However, in the conventional surface acoustic wave device as described above in which the surface of the substrate on which the surface acoustic wave propagates is flat, the surface acoustic wave excited by one electroacoustic transducer and propagated from one electroacoustic transducer is As it moves away from one electroacoustic transducer, it continues to diffuse in the width direction and weakens the energy it has. Accordingly, there is a limit to the distance that the electroacoustic transducer for surface acoustic wave excitation and the electroacoustic transducer for receiving surface acoustic waves can be placed apart from each other. As a result, the conventional surface acoustic wave as described above is limited. There has been a limit to the improvement of the operation accuracy of various devices as described above using wave elements.

このような従来の弾性表面波素子に対し、非特許文献1では、弾性表面波を励起させ伝搬させることが可能な球状表面を有した基材の上記球状表面において所定の条件で弾性表面波を励起させ伝搬させることで、励起された弾性表面波を伝搬方向と交差する方向に拡散させ続けることなく上記球状表面の最大径の外周線に沿い多数回周回させることが出来ることを開示している。   In contrast to such a conventional surface acoustic wave element, in Non-Patent Document 1, surface acoustic waves are generated under predetermined conditions on the spherical surface of a substrate having a spherical surface capable of exciting and propagating surface acoustic waves. It is disclosed that by exciting and propagating, the excited surface acoustic wave can be circulated many times along the outermost line of the maximum diameter of the spherical surface without continuing to diffuse in the direction intersecting the propagation direction. .

また、特許文献1は、実用可能な球状弾性表面波素子を開示している。この実用可能な球状弾性表面波素子では、弾性表面波を励起させ伝搬方向と交差する方向に無限に拡散することなく伝搬させ周回させることが可能な最大径の外周線を含む球状表面の一部で構成された円環形状の表面領域を外表面に備えた球形状又は円盤形状の基材の上記表面領域に、電気音響変換素子としてすだれ状電極が設置され、また上記基材の外表面において上記表面領域以外(即ち、弾性表面波が全く伝搬されない領域)が支持部材により支持されている。そして、このような球状弾性表面波素子をボールSAWデバイスとも称している。   Patent Document 1 discloses a spherical surface acoustic wave element that can be used practically. In this practical spherical surface acoustic wave device, a part of the spherical surface including the outermost line of the maximum diameter that can excite the surface acoustic wave and propagate and circulate without infinite diffusion in the direction intersecting the propagation direction. An interdigital electrode is installed as an electroacoustic transducer on the surface region of a spherical or disk-shaped substrate having an annular surface region formed on the outer surface, and on the outer surface of the substrate A region other than the surface region (that is, a region where no surface acoustic wave is propagated) is supported by the support member. Such a spherical surface acoustic wave element is also referred to as a ball SAW device.

球状弾性表面波素子では、基材の外表面において最大径の外周線を含む球状表面の一部で構成された円環形状の表面領域を弾性表面波がその伝搬方向と交差する方向に拡散し続けることなく(即ち、エネルギーを損失させ続けることなく)多数回周回可能である。そしてそのような条件は、W=√(2aλ)であって、aは上記表面領域の上記球の一部の半径であり、λは上記弾性表面波の波長であり、そしてWは上記弾性表面波の幅である。   In a spherical surface acoustic wave element, the surface acoustic wave is diffused in a direction intersecting the propagation direction of an annular surface region composed of a part of the spherical surface including the outermost line of the maximum diameter on the outer surface of the substrate. Many rounds are possible without continuing (ie, without continuing to lose energy). And such conditions are W = √ (2aλ), where a is the radius of a part of the sphere of the surface region, λ is the wavelength of the surface acoustic wave, and W is the elastic surface The width of the wave.

従って、上述した如き従来の弾性表面波素子を利用した上述した如き種々の装置に比べ、上述した如き従来の弾性表面波素子に代わり球状弾性表面波素子を利用した上述した如き種々の装置は、さらに飛躍的に動作精度を向上させることが可能である。   Therefore, in comparison with the various devices as described above using the conventional surface acoustic wave device as described above, the various devices as described above using the spherical surface acoustic wave device instead of the conventional surface acoustic wave device as described above, Furthermore, it is possible to dramatically improve the operation accuracy.

国際公開WO01/45255号パンフレットInternational Publication WO01 / 45255 Pamphlet

電子情報通信学会技術研究報告(Technical Report of Institute of Electronics, Information and Communication Engineers)US2000巻14号(2000)Technical Report of Institute of Electronics, Information and Communication Engineers, US2000, Volume 14 (2000), Technical Report of Institute of Electronics, Information and Communication Engineers

球状弾性表面波素子の基材として最も安価に大量に調達可能な例えば水晶を含む圧電性単結晶を使用する場合には、圧電性単結晶を、そのY軸を含みZ軸と直交する平面(Z軸結晶面)がZ軸と交差する位置を中心とした球形状に加工し、上記球形状基材の外表面において上記平面が交差する線の円(上記球形状基材の外表面における最大外周円となる)に沿い前述した如き条件で弾性表面波を励起し伝搬させることにより、励起された弾性表面波を多数回周回させることが出来ることが分かっている。
尚、本発明では、右手系のXYZ座標軸を前提としている。また、水晶ランガサイト結晶についてその結晶方位は圧電材料や結晶学上定義されており、特に+X軸は結晶の対象性から3方向に等価な方位が明確に存在して定義され、それを採用する。
In the case of using a piezoelectric single crystal including quartz, for example, which can be procured most inexpensively as the base material of the spherical surface acoustic wave element, the piezoelectric single crystal is a plane including the Y axis and perpendicular to the Z axis ( Z-axis crystal plane) is processed into a spherical shape centered on the position where it intersects the Z-axis, and the circle of the line where the plane intersects on the outer surface of the spherical substrate (maximum on the outer surface of the spherical substrate) It is known that the excited surface acoustic wave can be rotated many times by exciting and propagating the surface acoustic wave under the conditions described above along the outer circumferential circle.
In the present invention, a right-handed XYZ coordinate axis is assumed. The crystal orientation of crystal langasite crystal is defined in terms of piezoelectric material and crystallography, and in particular, the + X axis is defined by the existence of an equivalent orientation clearly in three directions because of the crystal's objectivity, and it is adopted. .

さらに、上記球形状基材の外表面において上記最大外周円に沿い前述した如き条件で励起された弾性表面波は、上記外表面上の位置より異なる電気機械的結合定数のおかげで上記最大外周円を中心とした円環形状の表面領域において上記最大外周円に沿い伝播する間に上記最大外周円の両側に所定の周期で波を打つように蛇行することが判った。これは、圧電性単結晶の異方性に起因している。   Furthermore, the surface acoustic wave excited on the outer surface of the spherical base material along the maximum outer peripheral circle under the above-described conditions is caused by the electromechanical coupling constant different from the position on the outer surface, so that the maximum outer peripheral circle is It has been found that meandering so as to wave at predetermined intervals on both sides of the maximum outer circumference circle while propagating along the maximum outer circumference circle in a ring-shaped surface region centered on. This is due to the anisotropy of the piezoelectric single crystal.

しかも上記蛇行した弾性表面波伝搬経路は基材の材料に特有であって、上記円環形状の表面領域において上記蛇行した弾性表面波伝搬経路から離れた位置に弾性表面波が励起されると、そのような弾性表面波は周回中の強度の減衰が早くなったり周回中の強度の減衰が等比級数的ではなく波が生じながらの減衰となることがわかった。   Moreover, the meandering surface acoustic wave propagation path is peculiar to the material of the base material, and when the surface acoustic wave is excited at a position away from the meandering surface acoustic wave propagation path in the annular surface region, It has been found that such surface acoustic waves have a faster attenuation of the intensity during the circulation, and the attenuation of the intensity during the rotation is not a geometric series but is an attenuation while generating a wave.

このような状況は、球状弾性表面波素子の動作精度を低下させ、ひいては球状弾性表面波素子を利用した種々の装置の動作精度を低下させている。   Such a situation lowers the operation accuracy of the spherical surface acoustic wave element, and consequently reduces the operation accuracy of various devices using the spherical surface acoustic wave element.

本発明は上記事情の下でなされ、この発明の目的は、球状弾性表面波素子の動作精度をより向上させ、ひいては球状弾性表面波素子を利用した種々の装置の動作精度をより向上させることである。   The present invention has been made under the above circumstances, and an object of the present invention is to further improve the operation accuracy of the spherical surface acoustic wave element, and further improve the operation accuracy of various devices using the spherical surface acoustic wave element. is there.

本発明の一実施形態は、水晶またはランガサイトにより形成され、+Y結晶軸を含み+Z結晶軸と直交する平面がZ結晶軸と交差する点を中心とした球面の一部で形成され上記直交する平面が上記球面の一部と交差している最大径の外周線を含み円環上に延出している表面領域を含んでおり、上記表面領域に上記表面領域の円環状の延出方向に沿い励起された弾性表面波が上記外周線に沿い所定の周期で蛇行しながら周回する基材と:上記基材の上記表面領域に上記表面領域の円環状の延出方向に沿い弾性表面波を励起させる電気音響変換素子と:を備えていて、電気音響変換素子の中心が、上記表面領域において上記+Y結晶軸との交点から前記最大径の外周線の延出方向に15度以内の範囲内にあり、さらに、前記水晶またはランガサイトが、右旋性である場合は、前記音響変換素子の中心が、前記表面領域において前記+Y結晶軸との交点から前記最大径の外周線に対し+Z方向に1度以上3度以内の角度で回転した位置にあり、一方、前記水晶またはランガサイトが、左旋性である場合は、前記音響変換素子の中心が、前記表面領域において前記+Y結晶軸との交点から前記最大径の外周線に対し−Z方向に1度以上3度以内の角度で回転した位置にあることを特徴とする球状弾性表面波素子である。   One embodiment of the present invention is formed of quartz or langasite, and is formed of a part of a spherical surface centered on a point that includes a + Y crystal axis and is perpendicular to the + Z crystal axis and intersects the Z crystal axis. The surface includes a surface area extending on an annulus including the outermost line of the maximum diameter intersecting a part of the spherical surface, and the surface area is along an annular extending direction of the surface area. A substrate in which the excited surface acoustic wave circulates while meandering along the outer peripheral line at a predetermined cycle: exciting the surface acoustic wave along the annular extending direction of the surface region on the surface region of the substrate And the center of the electroacoustic transducer is within a range of 15 degrees or less from the intersection with the + Y crystal axis in the surface region in the extending direction of the outermost line of the maximum diameter. In addition, the crystal or the Rangasai However, when it is dextrorotatory, the center of the acoustic transducer is at an angle of not less than 1 degree and not more than 3 degrees in the + Z direction with respect to the outermost line of the maximum diameter from the intersection with the + Y crystal axis in the surface region. When the crystal or the langasite is levorotatory in the rotated position, the center of the acoustic transducer is from the intersection with the + Y crystal axis in the surface region to the outermost line of the maximum diameter. A spherical surface acoustic wave device characterized by being in a position rotated at an angle of not less than 1 degree and not more than 3 degrees in the -Z direction.

また、上記球状弾性表面波素子にあって、電気音響変換素子の中心が、上記表面領域において上記+Y結晶軸あるいは−Y結晶軸方向に一致していてもよい。   In the spherical surface acoustic wave element, the center of the electroacoustic transducer may coincide with the + Y crystal axis direction or the −Y crystal axis direction in the surface region.

上述した如く構成されたことを特徴とするこの発明に従った球状弾性表面波素子によれば、圧電性単結晶の基材上の所定の円環形状の表面領域に励起され伝搬され周回中の弾性表面波の強度を等比級数的に減少させることが出来て、且つ、その減衰率を抑制することでより多重な周回を可能にすることをもって、球状弾性表面波素子の動作精度をより向上させ、ひいては球状弾性表面波素子を利用した種々の装置の動作精度をより向上させることが出来る。   According to the spherical surface acoustic wave device according to the present invention, characterized in that it is configured as described above, it is excited and propagated to the surface region of a predetermined annular shape on the piezoelectric single crystal substrate. It is possible to reduce the surface acoustic wave intensity in a geometric series and to improve the operation accuracy of the spherical surface acoustic wave element by enabling multiple wraparound by suppressing the attenuation rate. As a result, the operation accuracy of various devices using the spherical surface acoustic wave element can be further improved.

本発明の一実施の形態に従った球状弾性表面波素子を概略的に示す図である。1 is a diagram schematically showing a spherical surface acoustic wave device according to an embodiment of the present invention. FIG. 図1の球状弾性表面波素子における基材上の所定の円環形状の表面領域において上記表面領域の中心となる最大外周線に沿い励起され伝搬された弾性表面波が最も良好に伝搬する所定の周期で蛇行した弾性表面波伝搬経路を平面状に展開して概略的に示す図である。In the spherical surface acoustic wave element shown in FIG. 1, the surface acoustic wave excited and propagated along the maximum outer peripheral line at the center of the surface region in the surface region of the predetermined annular shape on the base material propagates best. FIG. 3 is a diagram schematically showing a surface acoustic wave propagation path meandering with a period in a flat shape. (A)は、図1の所定の円環形状の表面領域において上記表面領域の中心となる最大外周線上の図2のP点(図1の球状弾性表面波素子における基材の−Y結晶軸の交点)から上記最大外周線上で+30度ずれ図2の所定の周期で蛇行した弾性表面波伝搬経路が上記最大外周線と交差する位置であるK点を中心に所定の強度及び所定の周波数で上記最大外周線に沿い励起され伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図であり;(B)は、図1の所定の円環形状の表面領域において上記最大外周線上で図2の所定の周期で蛇行した弾性表面波伝搬経路から最も離れている図2のP点を中心に所定の強度及び所定の周波数で上記最大外周線に沿い励起され伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図であり;(C)は、図1の所定の円環形状の表面領域において上記最大外周線上の図2のP点から上記最大外周線に対し直交する方向に−2度ずれ図2の所定の周期で蛇行した弾性表面波伝搬経路上に位置したH点を中心に所定の強度及び所定の周波数で上記最大外周線に沿い励起され伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図である。(A) is a point P in FIG. 2 on the maximum outer peripheral line that is the center of the surface area in the surface area of the predetermined annular shape in FIG. 1 (the −Y crystal axis of the base material in the spherical surface acoustic wave device in FIG. 1). 2) on the maximum outer perimeter line at a predetermined intensity and a predetermined frequency centering on the point K where the surface acoustic wave propagation path meandering at a predetermined period in FIG. 2 intersects the maximum outer perimeter line. FIG. 2 is a diagram schematically showing a change in amplitude (intensity) accompanying an increase in the number of rounds of a predetermined surface acoustic wave excited and propagated along the maximum outer peripheral line; FIG. 2 at a predetermined intensity and a predetermined frequency centering on the point P of FIG. 2 that is farthest from the surface acoustic wave propagation path meandering with the predetermined period of FIG. Increase in the number of rounds of a given surface acoustic wave excited and propagated along It is a figure which shows schematically the change of the amplitude (intensity) which accompanies; (C) is with respect to the said largest outer periphery line from the P point of FIG. It was excited and propagated along the maximum perimeter line at a predetermined intensity and a predetermined frequency around a point H located on the surface acoustic wave propagation path meandering at a predetermined cycle in FIG. It is a figure which shows roughly the change of the amplitude (intensity) accompanying the increase in the frequency | count of a predetermined surface acoustic wave. (A)は、図1の所定の円環形状の表面領域において上記表面領域の延出方向に沿い励起され伝搬された弾性表面波が最も良好に伝搬する弾性表面波周回経路が上記表面領域の中心となる最大外周線から上記最大外周線に対し直交する方向に−1.5度ずれた位置に最大振幅を有して蛇行している場合において、上記最大外周線から上記弾性表面波周回経路の最大振幅位置と同じ上記直交する方向に+3.0度ずれ上記弾性表面波周回経路の最大振幅位置から離れた位置を中心に所定の強度及び所定の周波数で上記最大外周線に沿い励起され伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図であり;(B)は、図1の所定の円環形状の表面領域において上記表面領域の延出方向に沿い励起され伝搬された弾性表面波が最も良好に伝搬する弾性表面波周回経路が上記表面領域の中心となる最大外周線から上記最大外周線に対し直交する方向に−1.5度ずれた位置に最大振幅を有して蛇行している場合において、上記最大外周線から上記弾性表面波周回経路の最大振幅位置と同じ上記直交する方向に+1.5度ずれ上記弾性表面波周回経路の最大振幅位置から離れた位置を中心に所定の強度及び所定の周波数で励起され上記最大外周線に沿い伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図であり;(C)は、図1の所定の円環形状の表面領域において上記表面領域の延出方向に沿い励起され伝搬された弾性表面波が最も良好に伝搬する弾性表面波周回経路が上記表面領域の中心となる最大外周線から上記最大外周線に対し直交する方向に−1.5度ずれた位置に最大振幅を有して蛇行している場合において、上記最大外周線から上記弾性表面波周回経路の最大振幅位置と同じ上記直交する方向にずれず上記弾性表面波周回経路の最大振幅位置から離れた位置を中心に所定の強度及び所定の周波数で励起され上記最大外周線に沿い伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図であり;(D)は、図1の所定の円環形状の表面領域において上記表面領域の延出方向に沿い励起され伝搬された弾性表面波が最も良好に伝搬する弾性表面波周回経路が上記表面領域の中心となる最大外周線から上記最大外周線に対し直交する方向に−1.5度ずれた位置に最大振幅を有して蛇行している場合において、上記最大外周線から上記弾性表面波周回経路の最大振幅位置と同じ上記直交する方向に−1.5度ずれて上記弾性表面波周回経路の最大振幅位置上にある位置を中心に所定の強度及び所定の周波数で励起され上記最大外周線に沿い伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図であり;(E)は、図1の所定の円環形状の表面領域において上記表面領域の延出方向に沿い励起され伝搬された弾性表面波が最も良好に伝搬する弾性表面波周回経路が上記表面領域の中心となる最大外周線から上記最大外周線に対し直交する方向に−1.5度ずれた位置に最大振幅を有して蛇行している場合において、上記最大外周線から上記弾性表面波周回経路の最大振幅位置と同じ上記直交する方向に−3.0度ずれ上記弾性表面波周回経路の最大振幅位置から離れた位置を中心に所定の強度及び所定の周波数で励起され上記最大外周線に沿い伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図である。(A) shows that the surface acoustic wave circulation path through which the surface acoustic wave excited and propagated along the extending direction of the surface region in the predetermined annular surface region of FIG. In the case of meandering with the maximum amplitude at a position deviated by −1.5 degrees in the direction orthogonal to the maximum outer peripheral line from the central maximum outer peripheral line, the surface acoustic wave circulation path from the maximum outer peripheral line. The same as the maximum amplitude position of the wave is shifted by +3.0 degrees in the orthogonal direction, and is excited and propagated along the maximum outer periphery line at a predetermined intensity and a predetermined frequency around a position away from the maximum amplitude position of the surface acoustic wave circulation path. FIG. 2 is a diagram schematically showing a change in amplitude (intensity) accompanying an increase in the number of rounds of a predetermined surface acoustic wave generated; (B) is a diagram of the surface region in the surface region of the predetermined annular shape in FIG. 1; Excited and propagated along the extension direction The surface acoustic wave circulation path through which the surface acoustic wave propagates best has a maximum amplitude at a position deviated by −1.5 degrees in the direction perpendicular to the maximum outer peripheral line from the maximum outer peripheral line which is the center of the surface region. The meandering position is shifted by +1.5 degrees in the same orthogonal direction as the maximum amplitude position of the surface acoustic wave circulation path from the maximum outer circumference line, and a position away from the maximum amplitude position of the surface acoustic wave circulation path. FIG. 6 is a diagram schematically showing a change in amplitude (intensity) accompanying an increase in the number of rounds of a predetermined surface acoustic wave excited at a predetermined intensity and a predetermined frequency in the center and propagated along the maximum outer peripheral line; ) Indicates that the surface acoustic wave circulation path through which the surface acoustic wave excited and propagated along the extending direction of the surface region in the predetermined annular surface region of FIG. 1 propagates best is the center of the surface region. Above the maximum perimeter line The same orthogonality as the maximum amplitude position of the surface acoustic wave circulation path from the maximum outer periphery line when meandering with the maximum amplitude at a position shifted by -1.5 degrees in the direction orthogonal to the maximum outer periphery line The number of rounds of a predetermined surface acoustic wave that is excited at a predetermined intensity and a predetermined frequency around a position away from the maximum amplitude position of the surface acoustic wave circulation path without being displaced It is a figure which shows schematically the change of the amplitude (intensity) accompanying an increase; (D) is the elasticity which was excited and propagated along the extension direction of the said surface region in the surface region of the predetermined annular shape of FIG. The surface acoustic wave circulation path through which the surface wave propagates best has a maximum amplitude at a position deviated by −1.5 degrees in the direction orthogonal to the maximum outer peripheral line from the maximum outer peripheral line which is the center of the surface region. If meandering, Predetermined intensity and predetermined centering on a position on the maximum amplitude position of the surface acoustic wave orbital path shifted by -1.5 degrees in the same orthogonal direction as the maximum amplitude position of the surface acoustic wave orbital path from the large outer circumference line FIG. 2 is a diagram schematically showing a change in amplitude (intensity) accompanying an increase in the number of rounds of a predetermined surface acoustic wave excited at a frequency of and propagated along the maximum outer peripheral line; FIG. The surface acoustic wave circulation path through which the surface acoustic wave excited and propagated along the extending direction of the surface region in the ring-shaped surface region of the surface is the best from the maximum outer peripheral line at the center of the surface region. In the case of meandering with the maximum amplitude at a position shifted by -1.5 degrees in the direction orthogonal to the outer circumferential line, the orthogonality is the same as the maximum amplitude position of the surface acoustic wave circulation path from the maximum outer circumferential line. -3.0 degree offset in the direction above Amplitude (intensity) associated with an increase in the number of rounds of a predetermined surface acoustic wave excited at a predetermined intensity and a predetermined frequency around a position away from the maximum amplitude position of the surface wave circulation path and propagated along the maximum outer peripheral line. FIG.

図1を参照しながら本発明の一実施の形態に従った球状弾性表面波素子の全体の構成を概略的に説明する。   An overall configuration of a spherical surface acoustic wave device according to an embodiment of the present invention will be schematically described with reference to FIG.

球状弾性表面波素子10は、例えば水晶又はランガサイトのような三方晶系圧電性単結晶の基材12を備えている。この実施例では、右旋性の水晶を使用した。左旋性の水晶やランガサイトでは、SAWの蛇行の位相がZ軸周りに60度ずれて、蛇行が南北(Z方向)に反転することから、Z軸方向(以後方向の回転方向)に電気音響変換素子22(すだれ状電極)をずらす(回転させる)向きが逆になることが異なる。基材12は、Y結晶軸を含みZ結晶軸と直交する平面(Z軸周りの結晶面)が+Z結晶軸と交差する点を中心Cとした球面の一部で形成され上記直交する平面が上記球面の一部と交差している最大径の外周線14を含み円環状に延出している表面領域16を含んでいる。基材12は、円環状の表面領域16を除いた領域に固定された支柱18を介して図示しない台座に支持されている。この実施の形態では基材12は球形状であるが、円環状の表面領域16を除いた部分を削除した円盤形状とすることも出来る。   The spherical surface acoustic wave element 10 includes a base material 12 of a trigonal piezoelectric single crystal such as quartz or langasite. In this example, dextrorotatory quartz was used. In left-handed quartz and langasite, the SAW meandering phase is shifted 60 degrees around the Z axis and the meandering is reversed north-south (Z direction). The difference is that the direction of shifting (rotating) the conversion element 22 (interdigital electrode) is reversed. The substrate 12 is formed of a part of a spherical surface having a center C at a point where a plane including the Y crystal axis and perpendicular to the Z crystal axis (crystal plane around the Z axis) intersects the + Z crystal axis. A surface region 16 including an outer peripheral line 14 having a maximum diameter intersecting a part of the spherical surface and extending in an annular shape is included. The base material 12 is supported by a pedestal (not shown) via a support column 18 fixed to a region excluding the annular surface region 16. In this embodiment, the base material 12 has a spherical shape, but may be a disk shape in which a portion excluding the annular surface region 16 is deleted.

なお、三方晶系圧電性単結晶はその結晶面の3回対称性の故に+・−合わせて6本のY結晶軸を有するが図面の煩雑を避ける為のその中の1本の−Y結晶軸のみが図示されていて、これら6本のY結晶軸は最大径の外周線14と中心Cの周りの60度毎に交差している。   The trigonal piezoelectric single crystal has six Y crystal axes in total because of the three-fold symmetry of the crystal plane, but one -Y crystal in order to avoid complication of the drawing. Only the axes are shown, and these six Y crystal axes intersect with the outermost perimeter line 14 of the maximum diameter every 60 degrees around the center C.

表面領域16には最大径の外周線14に沿い弾性表面波20を励起させ伝搬させることが可能である。この明細書の「背景技術」の項目において前述した如く、表面領域16の上記球面の一部の半径に基づいて弾性表面波20の波長及び幅を前述した条件に合致するよう設定することにより、表面領域16において最大径の外周線14に沿い励起され伝搬された弾性表面波20をその伝搬方向と交差する方向に拡散し続けることなく(即ち、エネルギーを損失させ続けることなく)多数回周回させることが可能である。   It is possible to excite and propagate the surface acoustic wave 20 along the outer peripheral line 14 having the maximum diameter in the surface region 16. As described above in the “Background Art” section of this specification, by setting the wavelength and width of the surface acoustic wave 20 to meet the above-described conditions based on the radius of a part of the spherical surface of the surface region 16, The surface acoustic wave 20 excited and propagated along the outer circumferential line 14 having the maximum diameter in the surface region 16 is circulated many times without continuing to diffuse in a direction intersecting the propagation direction (that is, without continuing to lose energy). It is possible.

球状弾性表面波素子10はさらに、基材12の円環状の表面領域16に円環状の表面領域16の延出方向(最大径の外周線14)に沿い弾性表面波20を励起させ伝搬させる為の電気音響変換素子22を備えている。この実施の形態において電気音響変換素子22は、高周波励起/高周波受信・手段の一種であるすだれ状電極といわれているオルターニット・フェーズアレイを含んでおり、複数の電極枝22aを最大径の外周線14に対し直交する方向に延出させた状態で表面領域16上の所定の範囲に後述する如く設けられている。   The spherical surface acoustic wave element 10 further excites and propagates the surface acoustic wave 20 along the extending direction of the annular surface region 16 (maximum outer peripheral line 14) to the annular surface region 16 of the substrate 12. The electroacoustic transducer 22 is provided. In this embodiment, the electroacoustic transducer 22 includes an alternite phase array, which is a so-called interdigital electrode, which is a kind of high-frequency excitation / high-frequency reception / means. It is provided in a predetermined range on the surface region 16 in a state of extending in a direction orthogonal to the line 14 as described later.

すだれ状電極は基材12の円環状の表面領域16の所望の位置に公知のフォトエッチング技術により容易に形成することが出来、この実施の形態では金とクロムの2層構造である。   The interdigital electrode can be easily formed at a desired position of the annular surface region 16 of the substrate 12 by a known photoetching technique, and in this embodiment, has a two-layer structure of gold and chromium.

この実施の形態では、基材12の円環状の表面領域16の外周線14の直径が3.3mmであり、円環状の表面領域16に円環状の表面領域16の延出方向に沿い150MHzの弾性表面波20を励起させるために、すだれ状電極の寸法は:基材12がランガサイトの場合には、複数の電極枝の配列周期は約15.88ミクロンに、複数の電極枝の夫々において相互に対向している長さ(重なり幅)は約228.9ミクロンに、そして複数の電極枝において上記延出方向に沿った両側間の長さは約167ミクロンに設定されていて;基材12が水晶の場合には、複数の電極枝の配列周期は約21.38ミクロンに、複数の電極枝の夫々において相互に対向している長さ(重なり幅)は約265.6ミクロンに、そして複数の電極枝において上記延出方向に沿った両側間の長さは約225ミクロンに設定されている。   In this embodiment, the diameter of the outer circumferential line 14 of the annular surface region 16 of the base material 12 is 3.3 mm, and the annular surface region 16 is 150 MHz along the extending direction of the annular surface region 16. In order to excite the surface acoustic wave 20, the dimensions of the interdigital electrode are: When the substrate 12 is a langasite, the array period of the plurality of electrode branches is about 15.88 microns, and each of the plurality of electrode branches is The length (overlap width) facing each other is set to about 228.9 microns, and the length between both sides along the extending direction in the plurality of electrode branches is set to about 167 microns; When 12 is quartz, the arrangement period of the plurality of electrode branches is about 21.38 microns, and the length (overlap width) facing each other in the plurality of electrode branches is about 265.6 microns, And in the multiple electrode branches The length between the extending two sides along the direction is set to about 225 microns.

電気音響変換素子22には、切り替え部24を介して、高周波信号発生部26、そしてアンプ28及び検出・出力部30の組み合わせが電気的に接続されている。高周波信号発生部26は、切り替え部24を介して電気音響変換素子22に高周波信号を極短時間投入することにより、三方晶系圧電性単結晶の基材12の円環状の表面領域16に円環状の表面領域16の延出方向に沿い弾性表面波20を励起して伝搬させることが出来る。その後、切り替え部24は、電気音響変換素子22が円環状の表面領域16の延出方向に沿い伝搬し周回してきた弾性表面波20を受信するよりも早く、アンプ28及び検出・出力部30の組み合わせの側に切り替えられ、電気音響変換素子22が円環状の表面領域16に沿い伝搬し周回してきて受信した弾性表面波20に対応する高周波信号が切り替え部24を介してアンプ28及び検出・出力部30の組み合わせに送られる。   The electroacoustic transducer 22 is electrically connected to a combination of a high-frequency signal generator 26, an amplifier 28, and a detection / output unit 30 via a switching unit 24. The high-frequency signal generator 26 applies a high-frequency signal to the electroacoustic transducer 22 via the switching unit 24 for a very short time, so that the circular surface region 16 of the base material 12 of the trigonal piezoelectric single crystal 12 has a circular shape. The surface acoustic wave 20 can be excited and propagated along the extending direction of the annular surface region 16. Thereafter, the switching unit 24 receives the surface acoustic wave 20 that has propagated and circulated along the extending direction of the annular surface region 16 before the electroacoustic conversion element 22 receives the amplifier 28 and the detection / output unit 30. The high-frequency signal corresponding to the surface acoustic wave 20 received by the electroacoustic transducer 22 being propagated along the annular surface region 16 and circulated is received via the switching unit 24 and detected / output. Sent to the combination of parts 30.

なお、基材12に用いることのできる圧電性結晶として水晶やランガサイトのほかにニオブ酸リチウム(LiNbO3)やタンタル酸リチウム(LiTa O3)等を例示することができる。水晶やランガサイト以外の圧電性結晶により基材12を形成した場合でも、基材12の外表面において弾性表面波20を周回させることが出来る所定の円環形状の表面領域16は、基材12の結晶面が基材12の球形状の外表面と交差する円環形状の最大径の外周線に沿った基材12の外表面の表面領域となる。   Examples of piezoelectric crystals that can be used for the substrate 12 include lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) in addition to quartz and langasite. Even when the substrate 12 is formed of a piezoelectric crystal other than quartz or langasite, the predetermined ring-shaped surface region 16 that can circulate the surface acoustic wave 20 on the outer surface of the substrate 12 is the substrate 12. Is the surface region of the outer surface of the base material 12 along the outer circumferential line of the maximum diameter of the annular shape intersecting with the spherical outer surface of the base material 12.

なお、切り替え部24に代わり、高周波信号発生部26から電気音響変換素子22へのみ一方向に高周波信号を送信する、及び電気音響変換素子22において受信した弾性表面波20から変換された高周波信号をアンプ28及び検出・出力部30の組み合わせへのみ送信する、公知の方向性結合回路等を使用することも出来る。   Instead of the switching unit 24, the high-frequency signal is transmitted from the high-frequency signal generating unit 26 only to the electroacoustic transducer 22 in one direction, and the high-frequency signal converted from the surface acoustic wave 20 received by the electroacoustic transducer 22 is A known directional coupling circuit that transmits only to the combination of the amplifier 28 and the detection / output unit 30 can also be used.

球状弾性表面波素子10を、ガスセンサとして用いる場合、特定のガスに感応する感応膜32を円環状の表面領域16に設ける。感応膜32は、例えば、特定のガスをその表面に吸着させることにより増加したその質量の量に応じて、円環状の表面領域16に沿い伝搬する弾性表面波20の伝搬速度を遅くさせても良いし、或いは、特定のガスを感応膜32内に吸蔵し、その吸蔵量に応じてその感応膜32の機械的堅さを変化させることにより、円環状の表面領域16を伝搬する弾性表面波20の伝搬速度や減衰率を変化させても良い。更には、特定のガスと反応することにより反応した特定のガスの量に応じて吸熱或いは発熱反応を起こし、吸熱或いは発熱反応の量に応じて、円環状の表面領域16を伝搬する弾性表面波20の伝搬速度を変化させても良い。そして感応膜32は、可逆反応を起こす材料であることが望ましい。   When the spherical surface acoustic wave element 10 is used as a gas sensor, a sensitive film 32 sensitive to a specific gas is provided in the annular surface region 16. The sensitive film 32 may reduce the propagation speed of the surface acoustic wave 20 propagating along the annular surface region 16 according to the amount of mass increased by adsorbing a specific gas on the surface, for example. The surface acoustic wave propagating through the annular surface region 16 can be obtained by storing a specific gas in the sensitive film 32 and changing the mechanical rigidity of the sensitive film 32 in accordance with the amount of occlusion. The propagation speed and attenuation rate of 20 may be changed. Furthermore, an endothermic or exothermic reaction is caused according to the amount of the specific gas reacted by reacting with the specific gas, and the surface acoustic wave propagating through the annular surface region 16 according to the amount of the endothermic or exothermic reaction. The propagation speed of 20 may be changed. The sensitive film 32 is desirably a material that causes a reversible reaction.

例えば、この様な感応膜32として、水素(H2)を吸蔵し水素化物を形成して機械的性質が変化するパラジウム(Pd)、アンモニア(NH3)に対する吸着性が高いプラチナ(Pt)、水素化物を吸着する酸化タングステン(WO3)、一酸化炭素(CO),二酸化炭素(CO2),二酸化硫黄(SO2),二酸化窒素(NO2)等を選択的に吸着するフタロシアニン(Phthalocyanine)等が知られている。   For example, as such a sensitive film 32, palladium (Pd), which absorbs hydrogen (H2) to form a hydride to change mechanical properties, platinum (Pt) having high adsorptivity to ammonia (NH3), hydride Oxidized tungsten oxide (WO3), carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen dioxide (NO2), etc. are selectively adsorbed, such as phthalocyanine. .

基材12に用いる圧電性結晶の多くは異方性をもち、それを原因として円環状の表面領域16内の位置によって電気機械結合定数が異なる。従って、円環状の表面領域16内において電気音響変換素子22により円環状の表面領域16の延出方向(最大径の外周線14)に沿い弾性表面波20を励起させた場合、弾性表面波20は上記延出方向に沿い伝搬する間にその音速やパワーフローアングルを異ならせる。そして、弾性表面波20が最も良好に伝搬する(即ち、電気音響変換素子22により弾性表面波20が励起されてから多数回周回して感知できなくなるまでの間にその強度をきれいな等比級数的に減衰させる)周回経路CTは最大径の外周線14の両側に所定の周期で波を打つように蛇行することがわかっている。   Many of the piezoelectric crystals used for the substrate 12 have anisotropy, and due to this, the electromechanical coupling constant varies depending on the position in the annular surface region 16. Therefore, in the case where the surface acoustic wave 20 is excited along the extending direction of the annular surface region 16 (maximum outer peripheral line 14) by the electroacoustic transducer 22 in the annular surface region 16, the surface acoustic wave 20 is excited. The sound velocity and the power flow angle are varied while propagating along the extending direction. Then, the surface acoustic wave 20 propagates best (that is, the surface acoustic wave 20 is excited by the electroacoustic transducer 22, and the intensity of the surface acoustic wave 20 is clean and smooth until it becomes undetectable after many rounds. It is known that the circuit path CT meanders in such a way that waves are struck at predetermined intervals on both sides of the outer diameter line 14 of the maximum diameter.

逆にいうと、基材12の円環状の表面領域16内に電気音響変換素子22により円環状の表面領域16の延出方向(最大径の外周線14)に沿い弾性表面波20を励起させる場合には、弾性表面波20の中心をそのような周回経路CT上に位置させるとともに弾性表面波20を伝搬させる方向を周回経路CTの向かう方向に一致させるようにすれば弾性表面波20を最も良好に伝搬させることが出来ることになる。   In other words, the surface acoustic wave 20 is excited in the annular surface region 16 of the substrate 12 by the electroacoustic transducer 22 along the extending direction of the annular surface region 16 (maximum diameter outer peripheral line 14). In this case, if the center of the surface acoustic wave 20 is positioned on such a circular path CT and the direction in which the surface acoustic wave 20 propagates is made to coincide with the direction of the circular path CT, the surface acoustic wave 20 is the most. It can be propagated well.

この実施の形態のように基材12が例えば水晶やランガサイトの如き三方晶系圧電性単結晶の場合には、円環状の表面領域16の延出方向(最大径の外周線14)に沿い弾性表面波20が最も良好に伝搬する周回経路CTは、球形状の基材12を地球に見立て、Z結晶軸を地軸と仮想した場合に赤道と仮想できる最大径の外周線14に沿い120度周期で最大径の外周線14の両側に正弦波の如く波をうち蛇行している。そして周回経路CTの6つの最大振幅位置は、最大径の外周線14に沿った方向において最大径の外周線14上で前述した+・−合わせて6つのY結晶軸(図1に1つだけ図示されている)が交差する位置に対し最大径の外周線14と直交する方向に対応している。   When the substrate 12 is a trigonal piezoelectric single crystal such as quartz or langasite as in this embodiment, it extends along the extending direction of the annular surface region 16 (maximum diameter outer peripheral line 14). The circular path CT through which the surface acoustic wave 20 propagates best is 120 degrees along the outer circumferential line 14 of the maximum diameter that can be virtually assumed as the equator when the spherical base material 12 is regarded as the earth and the Z crystal axis is assumed as the earth axis. Waves meander like a sine wave on both sides of the outer circumferential line 14 having the maximum diameter in a cycle. The six maximum amplitude positions of the circular path CT have six Y crystal axes (only one in FIG. 1) in the direction along the maximum diameter outer peripheral line 14 and the above-mentioned + · − on the maximum diameter outer peripheral line 14. This corresponds to the direction perpendicular to the outermost peripheral line 14 with respect to the position where the cross section (shown) intersects.

なお、圧電性結晶の結晶軸は、例えばX線回折法により知ることが出来る。また、前述した周回経路CTは基材12の円環状の表面領域16の予め設定した多数の位置の夫々に外部の独立した電気音響変換素子22を接近させて円環状の表面領域16の延出方向に沿い実際に所定の強さの弾性表面波を励起させ伝搬させ周回させ、さらに所定の回数周回した後の弾性表面波の減衰状況を観測することにより実験的に知ることが出来る。   The crystal axis of the piezoelectric crystal can be known by, for example, the X-ray diffraction method. Further, the above-described circulation path CT extends the annular surface region 16 by bringing the external independent electroacoustic transducer 22 close to each of a plurality of preset positions of the annular surface region 16 of the base 12. It is possible to know experimentally by actually exciting, propagating and circulating a surface acoustic wave of a predetermined strength along the direction, and observing the attenuation state of the surface acoustic wave after having rotated a predetermined number of times.

図2は、円環状の表面領域16の最大径の外周線14上における1つの+Y結晶軸(図1参照)との交点Pを0度とした場合の、弾性表面波20が最も良好に伝搬する周回経路CTを図示しており、周回経路CTの波が最大径の外周線14から最も離れた位置(最大振幅位置)におけるパワーフローアングルはゼロになる。なお、当業者であれば、パワーフローアングルは基材12を構成する材料の弾性定数を用いて公知の弾性理論により容易に求めることが出来る。そのような弾性理論の一例は、B. A. Auld. “Acoustic Fields and Waves in solids” vol. 1 and 2, 2nd edition, Krieger Publishing Company (1990)Page 135−161に詳細に記載されている。   FIG. 2 shows that the surface acoustic wave 20 propagates best when the intersection P with one + Y crystal axis (see FIG. 1) on the outermost circumferential line 14 of the annular surface region 16 is 0 degree. The circular path CT is illustrated, and the power flow angle at the position (maximum amplitude position) where the wave of the circular path CT is farthest from the outer circumferential line 14 having the maximum diameter is zero. A person skilled in the art can easily obtain the power flow angle by a known elasticity theory using the elastic constant of the material constituting the substrate 12. An example of such a theory of elasticity is A. Auld. “Acoustic Fields and Waves in solids” vol. 1 and 2, 2nd edition, Krieger Publishing Company (1990) Page 135-161.

図3の(A)には、この実施の形態において複数の電極枝22aを円環状の表面領域16の最大径の外周線14に対し直交する方向に向けられている電気音響変換素子22の中心が図2において最大径の外周線14上のP点から最大径の外周線14上で+30度ずれたK点に配置されていて1マイクロ秒だけ150MHzの高周波信号を投入した後に円環状の表面領域16上を表面領域16の延出方向(最大径の外周線14)に沿い励起され伝搬し周回する弾性表面波20が周回数の増加に従い強度(デシベル)を変化させる様子が示されている。ここで上記強度は対数表示されている。   FIG. 3A shows the center of the electroacoustic transducer 22 in which the plurality of electrode branches 22a are oriented in a direction perpendicular to the outermost peripheral line 14 of the annular surface region 16 in this embodiment. 2 is arranged at a point K deviated by +30 degrees on the outermost circumferential line 14 from the point P on the outermost circumferential line 14 in FIG. 2, and after the high frequency signal of 150 MHz is input for 1 microsecond, the annular surface It is shown that the surface acoustic wave 20 that is excited along the extending direction of the surface region 16 along the extending direction of the surface region 16 (the outermost circumference line 14), propagates, and circulates changes the intensity (decibel) as the number of turns increases. . Here, the intensity is displayed logarithmically.

上記K点は弾性表面波20が最も良好に伝搬する周回経路CT上ではあるが、K点に配置されている電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向(即ち、電気音響変換素子22で発生された弾性表面波20が電気音響変換素子22から最初に離れる方向)は、K点における周回経路CTの方向とは一致していない。   The point K is on the circular path CT through which the surface acoustic wave 20 propagates best, but the arrangement direction of the plurality of electrode branches 22a of the interdigital electrodes of the electroacoustic transducer 22 arranged at the point K (that is, the point K) The direction in which the surface acoustic wave 20 generated by the electroacoustic transducer 22 is first separated from the electroacoustic transducer 22) does not coincide with the direction of the circular path CT at the point K.

図3の(A)からは、弾性表面波20の強度は38周で1/10になり,その後60周まではきれいに等比級数的に減衰しているが、60周を超えると強度の減衰には波が生じることが判る。このことは、図2のK点に電気音響変換素子22の中心が配置された場合には、60周を超えた弾性表面波20は弾性表面波20を基にした種々の計測結果の精度を低下させることが分かる。   From (A) of FIG. 3, the intensity of the surface acoustic wave 20 becomes 1/10 at 38 laps, and after that, it is attenuated cleanly in a geometric series until 60 laps. It can be seen that there is a wave. This means that when the center of the electroacoustic transducer 22 is arranged at the point K in FIG. 2, the surface acoustic wave 20 exceeding 60 laps increases the accuracy of various measurement results based on the surface acoustic wave 20. It turns out to reduce.

図3の(B)には、この実施の形態において複数の電極枝22aを円環状の表面領域16の最大径の外周線14に対し直交する方向に向けられている電気音響変換素子22の中心が図2において最大径の外周線14上のP点に配置されていて1マイクロ秒だけ150MHzの高周波信号を投入した後に円環状の表面領域16上を表面領域16の延出方向(最大径の外周線14)に沿い励起され伝搬し周回する弾性表面波20が周回数の増加に従い強度(デシベル)を変化させる様子が示されている。ここで上記強度は対数表示されている。   FIG. 3B shows the center of the electroacoustic transducer 22 in which the plurality of electrode branches 22a are oriented in a direction perpendicular to the outermost line 14 having the maximum diameter of the annular surface region 16 in this embodiment. 2 is arranged at the point P on the outer peripheral line 14 with the maximum diameter in FIG. 2, and after the high frequency signal of 150 MHz is input for 1 microsecond, the extending direction of the surface area 16 (the maximum diameter It is shown that the surface acoustic wave 20 that is excited along the outer circumferential line 14), propagates, and circulates changes the intensity (decibel) as the number of laps increases. Here, the intensity is displayed logarithmically.

上記P点は円環状の表面領域16の最大径の外周線14上ではあるが、球形状の基材12を地球に見立て最大径の外周線14を赤道に見立てた時に、弾性表面波20が最も良好に伝搬する周回経路CTは上記P点と同じ経度では上記P点から緯度にして略−2度離れている。したがって、P点に配置されている電気音響変換素子22のすだれ状電極の複数の電極枝22aは、弾性表面波20が最も良好に伝搬する周回経路CT上から外れている。   Although the point P is on the outermost line 14 having the maximum diameter of the annular surface region 16, the surface acoustic wave 20 is generated when the outermost line 14 having the maximum diameter is viewed on the equator with the spherical base material 12 viewed on the earth. The circular path CT that propagates best is approximately -2 degrees away from the P point in latitude at the same longitude as the P point. Therefore, the plurality of interdigital electrodes 22a of the interdigital electrode of the electroacoustic transducer 22 arranged at the point P is out of the circulation path CT through which the surface acoustic wave 20 propagates best.

図3の(B)からは、円環状の表面領域16において弾性表面波20が最も良好に伝搬する周回経路CT上から外れているP点に配置されている電気音響変換素子22により円環状の表面領域16の延出方向に沿い励起された弾性表面波20は、図3の(A)中に図示されている如く弾性表面波20が最も良好に伝搬する周回経路CT上のK点に配置されている電気音響変換素子22により円環状の表面領域16の延出方向に沿い励起された弾性表面波20に比べると強度が小さく、しかも周回数の全体に亘り波を生じながら減衰していることがわかる。このことは、図2のP点に電気音響変換素子22の中心が配置された場合には、周回数の全体に亘り弾性表面波20を基にした種々の計測結果の精度を低下させることが分かる。   From FIG. 3B, an annular shape is obtained by the electroacoustic transducer 22 arranged at the point P deviated from the circular path CT in which the surface acoustic wave 20 propagates best in the annular surface region 16. The surface acoustic wave 20 excited along the extending direction of the surface region 16 is arranged at a point K on the circular path CT where the surface acoustic wave 20 propagates best as shown in FIG. Compared with the surface acoustic wave 20 excited along the extending direction of the annular surface region 16 by the electroacoustic conversion element 22, the intensity is small, and further, the sound is attenuated while generating a wave over the entire number of turns. I understand that. This means that, when the center of the electroacoustic transducer 22 is arranged at the point P in FIG. 2, the accuracy of various measurement results based on the surface acoustic wave 20 is reduced over the entire number of turns. I understand.

図3の(C)には、この実施の形態において複数の電極枝22aを円環状の表面領域16の最大径の外周線14に対し直交する方向に向けられている電気音響変換素子22の中心が図2において最大径の外周線14上のP点と同じ経度ではあるが上記P点から緯度にして略−2度離れH点に配置されていて1マイクロ秒だけ150MHzの高周波信号を投入した後に円環状の表面領域16上を表面領域16の延出方向(最大径の外周線14)に沿い励起され伝搬し周回する弾性表面波20が周回数の増加に従い強度(デシベル)を変化させる様子が示されている。ここで上記強度は対数表示されている。   FIG. 3C shows the center of the electroacoustic transducer 22 in which the plurality of electrode branches 22a are oriented in a direction orthogonal to the outermost circumferential line 14 of the annular surface region 16 in this embodiment. 2 is the same longitude as the point P on the outermost line 14 having the maximum diameter in FIG. 2, but is placed at the point H approximately -2 degrees apart from the point P, and a high frequency signal of 150 MHz is input for 1 microsecond. A state in which the surface acoustic wave 20 that is excited, propagated, and circulated on the annular surface region 16 along the extending direction of the surface region 16 (the outermost line 14 of the maximum diameter) changes the intensity (decibel) as the number of turns increases. It is shown. Here, the intensity is displayed logarithmically.

上記H点には弾性表面波20が最も良好に伝搬する周回経路CTの最大振幅位置が交差しており、しかも上記H点において周回経路CTのパワーフローアングルはゼロであり周回経路CTの接線は円環状の表面領域16の最大径の外周線14と同じ方向を向いている。即ち、上記H点における周回経路CTの接線の延出方向は、上記H点に中心が配置された電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向と同じ方向であり、ひいては複数の電極枝22aにより励起され複数の電極枝22aから離れる時の弾性表面波20の伝搬方向と同じである。   At point H, the maximum amplitude position of the circular path CT through which the surface acoustic wave 20 propagates best intersects, and at the point H, the power flow angle of the circular path CT is zero, and the tangent of the circular path CT is It faces the same direction as the outer circumferential line 14 of the maximum diameter of the annular surface region 16. That is, the extending direction of the tangent line of the circulation path CT at the H point is the same direction as the arrangement direction of the plurality of electrode branches 22a of the interdigital electrode of the electroacoustic transducer 22 centered at the H point. As a result, it is the same as the propagation direction of the surface acoustic wave 20 when it is excited by the plurality of electrode branches 22a and leaves the plurality of electrode branches 22a.

図3の(C)からは、円環状の表面領域16において弾性表面波20が最も良好に伝搬する周回経路CT上のH点に配置されているとともに上記H点における周回経路CTの接線の延出方向と同じ方向にすだれ状電極の複数の電極枝22aの配列方向を一致させている電気音響変換素子22により励起され円環状の表面領域16の延出方向に沿い励起された弾性表面波20は、図3の(A)中に図示されている如く弾性表面波20が最も良好に伝搬する周回経路CT上のK点に配置されている電気音響変換素子22により円環状の表面領域16の延出方向に沿い励起された弾性表面波20に比べると最初の強度は同じであるがより長い周回数の全体に亘り波を生じることなくきれいに等比級数的に減衰していることが判る。このことは、図2のH点に電気音響変換素子22の中心が配置された場合には、弾性表面波20は弾性表面波20を基にした種々の計測結果の精度を向上させることが分かる。   From FIG. 3C, the annular surface region 16 is arranged at the point H on the circular path CT where the surface acoustic wave 20 propagates best, and the tangent of the circular path CT at the point H is extended. The surface acoustic wave 20 excited by the electroacoustic transducer 22 having the arrangement direction of the plurality of interdigital branches 22a in the same direction as the outgoing direction and excited along the extending direction of the annular surface region 16 is excited. As shown in FIG. 3A, the ring-shaped surface region 16 is formed by the electroacoustic transducer 22 arranged at the point K on the circulation path CT through which the surface acoustic wave 20 propagates best. Compared to the surface acoustic wave 20 excited along the extending direction, it can be seen that the initial intensity is the same, but it is attenuated cleanly and exponentially without generating a wave over a longer number of rounds. This shows that the surface acoustic wave 20 improves the accuracy of various measurement results based on the surface acoustic wave 20 when the center of the electroacoustic transducer 22 is arranged at the point H in FIG. .

図3の(A)乃至(C)からは、複数の電極枝22aを円環状の表面領域16の最大径の外周線14に対し直交する方向に向けられているすだれ状電極の電気音響変換素子22の中心が、例えば水晶やランガサイトの如き三方晶系圧電性単結晶の球形状の基材12の円環状の表面領域16において最大径の外周線14上のY結晶軸との交点Pから最大径の外周線14の延出方向に15度以内の範囲内にあれば、電気音響変換素子22により円環状の表面領域16の延出方向に沿い励起され伝搬され周回される弾性表面波20は周回数の全体に亘り全体として大きな波を生じることなく等比級数的に減衰することがわかる。この結果として、このような弾性表面波20を基にして種々の動作を行なう種々の装置の動作精度をより向上させることが出来る。   From (A) to (C) of FIG. 3, an electroacoustic transducer of interdigital electrodes in which a plurality of electrode branches 22 a are oriented in a direction orthogonal to the outer peripheral line 14 having the maximum diameter of the annular surface region 16. The center of 22 is from the intersection P with the Y crystal axis on the outermost line 14 of the maximum diameter in the annular surface region 16 of the spherical base material 12 of a trigonal piezoelectric single crystal such as quartz or langasite. If within the range of 15 degrees or less in the extending direction of the outermost line 14 having the maximum diameter, the surface acoustic wave 20 is excited, propagated and circulated by the electroacoustic transducer 22 along the extending direction of the annular surface region 16. It can be seen that it attenuates geometrically without producing a large wave as a whole over the entire number of laps. As a result, the operation accuracy of various devices that perform various operations based on the surface acoustic wave 20 can be further improved.

さらに、電気音響変換素子22の中心が、基材12の円環状の表面領域16において最大径の外周線14上の−Y結晶軸との交点Pから最大径の外周線14に対し直交する方向の−Z方向に1度以上3度以内の位置にあれば、また1.5度以上3度以内であればさらに確実に、電気音響変換素子22により円環状の表面領域16の延出方向に沿い励起され伝搬され周回される弾性表面波20は周回数の全体亘り全体として大きな波を生じることなく等比級数的に減衰することがわかる。この結果として、このような弾性表面波20を基にして種々の動作を行なう種々の装置の動作精度をより向上させることが出来る。図示はしないが、このような減衰が小さくなる現象は、+Y方位に電気音響変換素子がある場合には、+Z方向に一度以上3度以内であればよく、1.5以上3度以内であればさらに確実に効果が期待できる。水晶やランガサイト結晶の結晶系は、その対象性から、−Y方位について電気音響変換素子の位置を定義すれば+Y方位について電気音響変換素子の位置を特定する事に等しく、逆に、+Y方位について電気音響変換素子の位置を定義すれば−Y方位について電気音響変換素子の位置を特定する事に等しいことが結晶学上公知であるために、本発明ではそのいずれかの説明を行い両方の場合の説明をおこなったものとし、その説明の記載を省くものとする。   Further, the direction in which the center of the electroacoustic transducer 22 is orthogonal to the maximum diameter outer peripheral line 14 from the intersection P with the −Y crystal axis on the maximum outer peripheral line 14 in the annular surface region 16 of the substrate 12. If the position is within the range of 1 degree or more and 3 degrees or less in the -Z direction, and if it is within the range of 1.5 degree or more and 3 degrees or less, the electroacoustic transducer 22 can more reliably extend the annular surface region 16 in the extending direction. It can be seen that the surface acoustic wave 20 excited along, propagated and circulated attenuates geometrically without producing a large wave as a whole over the entire number of laps. As a result, the operation accuracy of various devices that perform various operations based on the surface acoustic wave 20 can be further improved. Although not shown in the drawing, such a phenomenon that the attenuation is reduced may be within a range of not less than 3 degrees and not less than 1.5 degrees and 3 degrees in the + Z direction when there is an electroacoustic transducer in the + Y direction. If it is, the effect can be expected more reliably. The crystal system of crystal or langasite crystal is equivalent to specifying the position of the electroacoustic transducer with respect to the + Y direction, if the position of the electroacoustic transducer is defined with respect to the −Y direction, and conversely, the + Y direction. If the position of the electroacoustic transducer is defined with respect to the -Y direction, it is known in crystallography that it is equivalent to specifying the location of the electroacoustic transducer with respect to the -Y direction. It is assumed that the explanation of the case has been made and the description of the explanation is omitted.

また、電気音響変換素子22の中心が、基材12の円環状の表面領域16において最大径の外周線14上のY結晶軸との交点Pから最大径の外周線14に対し直交する方向に+2度(Y結晶軸に対応した周回経路CTの最大振幅位置が緯度方向の+側にある場合:図2の経度方向の+・−60度位置及び+・−180度位置)、または−2度(Y結晶軸に対応した周回経路CTの最大振幅位置が緯度方向の−側にある場合:図2の経度方向の0度位置及び+・−120度位置)にあれば、図3の(C)に示されたのと同じになり、電気音響変換素子22により円環状の表面領域16の延出方向に沿い励起され伝搬され周回される弾性表面波20は周回数の全体に亘りきれいに等比級数的に減衰することがわかる。この結果として、このような弾性表面波20を基にして種々の動作を行なう種々の装置の動作精度を最も向上させることが出来る。   Further, the center of the electroacoustic transducer 22 extends in a direction orthogonal to the outermost line 14 having the maximum diameter from the intersection P with the Y crystal axis on the outermost line 14 having the maximum diameter in the annular surface region 16 of the substrate 12. +2 degrees (when the maximum amplitude position of the circular path CT corresponding to the Y crystal axis is on the + side in the latitude direction: +/− 60 degrees position and +/− 180 degrees position in the longitude direction in FIG. 2), or −2 3 degrees (when the maximum amplitude position of the circular path CT corresponding to the Y crystal axis is on the minus side in the latitude direction: 0 degree position and +/- 120 degree position in the longitude direction in FIG. 2) ( The surface acoustic wave 20 excited, propagated and circulated along the extending direction of the annular surface region 16 by the electroacoustic transducer 22 is the same as that shown in FIG. It turns out that it attenuates in a series. As a result, the operation accuracy of various devices that perform various operations based on the surface acoustic wave 20 can be most improved.

図4の(A)乃至(E)には、円環状の表面領域16において弾性表面波20が最も良好に伝搬する図2中に図示されている蛇行した周回経路CTのパワーフローアングルがゼロになり接線の延出方向を電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向と一致させている位置(即ち、円環状の表面領域16の最大径の外周線14から最大径の外周線14に対し直交する方向に最も離れている最大振幅位置)の1つが、最大径の外周線14に沿った経度0度の位置から緯度−1.5度離れた位置を通過している場合に、経度0度の経線上で、緯度+3度,+1.5度,0度,−1.5度,そして−3度離れた位置に電気音響変換素子22のすだれ状電極の複数の電極枝22aの中心を配置し相互に同じ条件で弾性表面波20を励起させ伝搬させ周回させた時に得られる、経過時間に対する弾性表面波20の強度の減衰の様子を概略的に示している。   4A to 4E, the power flow angle of the meandering path CT shown in FIG. 2 in which the surface acoustic wave 20 propagates best in the annular surface region 16 is zero. The position in which the extending direction of the tangent line coincides with the arrangement direction of the plurality of electrode branches 22a of the interdigital electrode of the electroacoustic transducer 22 (that is, the maximum diameter from the outer peripheral line 14 having the maximum diameter of the annular surface region 16). One of the largest amplitude positions farthest in the direction orthogonal to the outer circumferential line 14 passes through a position at a latitude of −1.5 degrees from a position of 0 degrees longitude along the outermost circumferential line 14 of the maximum diameter. A plurality of interdigital electrodes of the electroacoustic transducer 22 at positions of latitude +3 degrees, +1.5 degrees, 0 degrees, −1.5 degrees, and −3 degrees on a longitude line of 0 degrees longitude. The surface of the surface of the electrode branch 22a is arranged under the same conditions with the center of the electrode branch 22a. Schematically shows a state of attenuation of the intensity of the surface acoustic wave 20 for the resulting elapsed time when allowed to orbit is propagated to excite.

図4の(D)中では、電気音響変換素子22のすだれ状電極の複数の電極枝22aの中心が、円環状の表面領域16において弾性表面波20が最も良好に伝搬する図2中に図示されている蛇行した周回経路CTの最大振幅位置上にあり、そしてその位置の周回経路CT上のパワーフローアングルがゼロであり接線の延出方向が円環状の表面領域16の最大径の外周線14の延出方向と、即ち電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向と、一致している。   4D, the center of the plurality of electrode branches 22a of the interdigital electrode of the electroacoustic transducer 22 is illustrated in FIG. 2 where the surface acoustic wave 20 propagates best in the annular surface region 16. The outer peripheral line of the maximum diameter of the surface region 16 is located on the maximum amplitude position of the meandering circular path CT and the power flow angle on the circular path CT at that position is zero and the tangential extension direction is the annular surface region 16 14, that is, the arrangement direction of the plurality of electrode branches 22 a of the interdigital electrode of the electroacoustic transducer 22.

ここにおいては、電気音響変換素子22のすだれ状電極により円環状の表面領域16において円環状の表面領域16の延出方向に沿い所定の条件で励起された弾性表面波20は、円環状の表面領域16において弾性表面波20が最も良好に伝搬する図2中に図示されている蛇行した周回経路CTに沿い伝播され周回するので、周回を開始してからの経過時間(周回数)の増加に伴いその強度をきれいに等比級数的に減少させていることがわかる。   Here, the surface acoustic wave 20 excited in a predetermined condition along the extending direction of the annular surface region 16 in the annular surface region 16 by the interdigital electrode of the electroacoustic transducer 22 is formed into an annular surface. In the region 16, the surface acoustic wave 20 propagates best and propagates along the meandering circulation path CT shown in FIG. 2, so that the elapsed time (number of revolutions) from the start of the circulation increases. As a result, it can be seen that the strength is reduced cleanly in a geometric series.

図4の(C)及び(E)中では、電気音響変換素子22のすだれ状電極の複数の電極枝22aの中心が、円環状の表面領域16において弾性表面波20が最も良好に伝搬する図2中に図示されている蛇行した周回経路CT上のパワーフローアングルがゼロであり接線の延出方向が円環状の表面領域16の最大径の外周線14の延出方向と、即ち電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向と、一致している経度0度の経線上で緯度−1.5度の最大振幅位置から、同じ経度の経線上で夫々+1.5度及び−1.5度の緯度だけ離れて配置(即ち、緯度0度及び緯度−3度に配置)されている。   4C and 4E, the surface acoustic wave 20 propagates best in the annular surface region 16 at the center of the plurality of electrode branches 22a of the interdigital electrode of the electroacoustic transducer 22. The power flow angle on the meandering circular path CT illustrated in FIG. 2 is zero, and the tangential extension direction is the extension direction of the outermost peripheral line 14 of the annular surface region 16, that is, electroacoustic conversion. The arrangement direction of the plurality of electrode branches 22a of the interdigital electrodes of the element 22 and the maximum amplitude position of −1.5 degrees latitude on the longitude line that coincides with the longitude line of 0 degrees, respectively +1.5 on the longitude line of the same longitude And latitudes of -1.5 degrees apart (i.e., 0 degrees latitude and -3 degrees latitude).

ここにおいては、電気音響変換素子22のすだれ状電極により円環状の表面領域16において円環状の表面領域16の延出方向に沿い所定の条件で励起された弾性表面波20は、円環状の表面領域16において円環状の表面領域16の延出方向に伝播され周回する間に、周回を開始してからの経過時間(周回数)の増加に伴いその強度を多少の波を伴ってはいるが全体の傾向としては等比級数的に減少させていることがわかる。   Here, the surface acoustic wave 20 excited in a predetermined condition along the extending direction of the annular surface region 16 in the annular surface region 16 by the interdigital electrode of the electroacoustic transducer 22 is formed into an annular surface. While the region 16 propagates in the extending direction of the annular surface region 16 and circulates, its strength is accompanied by some wave with an increase in elapsed time (number of laps) after starting the lap. It can be seen that the overall trend is to reduce geometrically.

図4の(A)及び(B)中では、電気音響変換素子22のすだれ状電極の複数の電極枝22aの中心が、円環状の表面領域16において弾性表面波20が最も良好に伝搬する図2中に図示されている蛇行した周回経路CT上のパワーフローアングルがゼロであり接線の延出方向が円環状の表面領域16の最大径の外周線14の延出方向と、即ち電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向と、一致している経度0度の経線上で緯度−1.5度の最大振幅位置から、同じ経度の経線上で夫々+3.0度及び+4.5度の緯度だけ離れて配置(即ち、緯度+1.5度及び緯度+3.0度に配置)されている。   4A and 4B, the surface acoustic wave 20 propagates best in the annular surface region 16 at the center of the plurality of electrode branches 22a of the interdigital electrode of the electroacoustic transducer 22. The power flow angle on the meandering circular path CT illustrated in FIG. 2 is zero, and the tangential extension direction is the extension direction of the outermost peripheral line 14 of the annular surface region 16, that is, electroacoustic conversion. The alignment direction of the plurality of electrode branches 22a of the interdigital electrodes of the element 22 and the maximum amplitude position of latitude -1.5 degrees on the longitude line that coincides with the longitude line of 0 degrees, respectively +3.0 on the longitude line of the same longitude And latitudes of +4.5 degrees apart (i.e., latitude +1.5 degrees and latitude +3.0 degrees).

ここにおいては、電気音響変換素子22のすだれ状電極により円環状の表面領域16において円環状の表面領域16の延出方向に沿い所定の条件で励起された弾性表面波20は、円環状の表面領域16において円環状の表面領域16の延出方向に伝播され周回する間に、周回を開始してからの経過時間(周回数)の増加に伴いその強度を大きな波を伴って全体の傾向としては等比級数的に減少させていることがわかる。   Here, the surface acoustic wave 20 excited in a predetermined condition along the extending direction of the annular surface region 16 in the annular surface region 16 by the interdigital electrode of the electroacoustic transducer 22 is formed into an annular surface. In the region 16, it propagates in the extending direction of the annular surface region 16 and circulates. As the elapsed time (number of laps) after starting the lap increases, its strength is increased as a whole tendency with a large wave. It can be seen that is reduced geometrically.

図4の(A)乃至(E)からは、電気音響変換素子22のすだれ状電極の複数の電極枝22aの中心が、円環状の表面領域16において弾性表面波20が最も良好に伝搬する図2中に図示されている蛇行した周回経路CT上のパワーフローアングルがゼロであり接線の延出方向が円環状の表面領域16の最大径の外周線14の延出方向と、即ち電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向と、一致している経度0度の経線上で緯度−1.5度のと−3.0度との範囲内にあれば電気音響変換素子22のすだれ状電極により円環状の表面領域16において円環状の表面領域16の延出方向に沿い所定の条件で励起された弾性表面波20は、円環状の表面領域16において円環状の表面領域16の延出方向に伝播され周回する間に、周回を開始してからの経過時間(周回数)の増加に伴いその強度を多少の波を伴ってはいるが全体の傾向としては等比級数的に減少させていることがわかる。   4A to 4E, the surface acoustic wave 20 propagates best in the annular surface region 16 from the center of the plurality of electrode branches 22a of the interdigital electrode of the electroacoustic transducer 22. The power flow angle on the meandering circular path CT illustrated in FIG. 2 is zero, and the tangential extension direction is the extension direction of the outermost peripheral line 14 of the annular surface region 16, that is, electroacoustic conversion. Electroacoustics within the range of −1.5 degrees latitude and −3.0 degrees latitude on the meridian of the longitude 0 degrees coincident with the arrangement direction of the plurality of electrode branches 22a of the interdigital electrodes of the element 22 The surface acoustic wave 20 excited in a predetermined condition along the extending direction of the annular surface region 16 in the annular surface region 16 by the interdigital electrode of the conversion element 22 is formed in the annular surface region 16 in an annular shape. Propagated in the extending direction of the surface region 16 In the meantime, it can be seen that as the elapsed time (number of laps) from the start of the lap increases, the intensity is accompanied by some waves but the overall trend is reduced geometrically. .

図本信号をさらに周波数解析して150MHz成分を取り出し、150MHz成分の弾性表面波の周回に伴う減衰率からQ値(減衰の小ささを表す値で、振動デバイスの評価パラメータとして公知であり説明を要しない)を求めたところ、(A),(B),(C)の場合について、約32,000程度であったのに比較し、(D),(E)では約36,000あり、より減衰が小さい事を確認した。   This signal is further subjected to frequency analysis to extract a 150 MHz component, and the Q value (a value representing the magnitude of attenuation, which is known as an evaluation parameter of the vibration device, is described based on the attenuation rate associated with the circulation of the 150 MHz surface acoustic wave. (Don't need), the case of (A), (B), (C) was about 32,000 compared to about 32,000, compared to about 36,000 in (D), (E), It was confirmed that the attenuation was smaller.

10…球状弾性表面波素子、
12…基材、
C…中心、
14…最大径の外周線、
16…表面領域、
18…支柱、
20…弾性表面波、
22…電気音響変換素子、
22a…電極枝、
24…切り替え部、
26…高周波信号発生部、
28…アンプ、
30…検出・出力部、
32…感応膜、
CT…周回経路、
P…Y結晶軸交差位置。
10 ... Spherical surface acoustic wave element,
12 ... base material,
C ... Center,
14 ... the maximum diameter outer circumference,
16 ... surface area,
18 ... posts,
20 ... surface acoustic wave,
22 ... electroacoustic transducer,
22a ... electrode branch,
24 ... switching part,
26 ... high frequency signal generator,
28 ... Amplifier,
30: Detection / output unit,
32 ... Sensitive membrane,
CT ... Circumference route,
P: Y crystal axis crossing position.

Claims (2)

水晶またはランガサイトにより形成され、+Y結晶軸を含み+Z結晶軸と直交する平面がZ結晶軸と交差する点を中心とした球面の一部で形成され上記直交する平面が上記球面の一部と交差している最大径の外周線を含み円環上に延出している表面領域を含んでおり、上記表面領域に上記表面領域の円環状の延出方向に沿い励起された弾性表面波が上記外周線に沿い所定の周期で蛇行しながら周回する基材と:
上記基材の上記表面領域に上記表面領域の円環状の延出方向に沿い弾性表面波を励起させる電気音響変換素子と:
を備えていて、
電気音響変換素子の中心が、上記表面領域において上記+Y結晶軸との交点から前記最大径の外周線の延出方向に15度以内の範囲内にあり、
さらに、前記水晶またはランガサイトが、右旋性である場合は、前記音響変換素子の中心が、前記表面領域において前記+Y結晶軸との交点から前記最大径の外周線に対し+Z方向に1度以上3度以内の角度で回転した位置にあり、
一方、前記水晶またはランガサイトが、左旋性である場合は、前記音響変換素子の中心が、前記表面領域において前記+Y結晶軸との交点から前記最大径の外周線に対し−Z方向に1度以上3度以内の角度で回転した位置にあることを特徴とする球状弾性表面波素子。
A plane formed of quartz or langasite, including a + Y crystal axis and perpendicular to the + Z crystal axis is formed as a part of a spherical surface centered on a point intersecting the Z crystal axis, and the orthogonal plane is defined as a part of the spherical surface. A surface region including an outer circumferential line of the maximum diameter intersecting and extending on a ring, and the surface acoustic wave excited along the ring-shaped extending direction of the surface region is formed on the surface region. A base material that circulates while meandering along a peripheral line at a predetermined cycle:
An electroacoustic transducer that excites a surface acoustic wave along the annular extending direction of the surface region on the surface region of the substrate;
With
The center of the electroacoustic transducer is within a range of 15 degrees or less in the extending direction of the outermost line of the maximum diameter from the intersection with the + Y crystal axis in the surface region,
Furthermore, when the crystal or langasite is dextrorotatory, the center of the acoustic transducer is once in the + Z direction with respect to the outermost line of the maximum diameter from the intersection with the + Y crystal axis in the surface region. At a position rotated at an angle within 3 degrees,
On the other hand, when the crystal or langasite is levorotatory, the center of the acoustic transducer is once in the −Z direction with respect to the outermost line of the maximum diameter from the intersection with the + Y crystal axis in the surface region. A spherical surface acoustic wave device characterized by being in a position rotated at an angle of 3 degrees or more.
電気音響変換素子の中心が、上記表面領域において上記+Y結晶軸あるいは−Y結晶軸方向に一致していること
を特徴とする請求項1記載の球状弾性表面波素子。
2. The spherical surface acoustic wave device according to claim 1, wherein the center of the electroacoustic transducer is coincident with the + Y crystal axis direction or the -Y crystal axis direction in the surface region.
JP2010018718A 2010-01-29 2010-01-29 Spherical surface acoustic wave device Expired - Fee Related JP5482244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010018718A JP5482244B2 (en) 2010-01-29 2010-01-29 Spherical surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010018718A JP5482244B2 (en) 2010-01-29 2010-01-29 Spherical surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2011160091A true JP2011160091A (en) 2011-08-18
JP5482244B2 JP5482244B2 (en) 2014-05-07

Family

ID=44591700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018718A Expired - Fee Related JP5482244B2 (en) 2010-01-29 2010-01-29 Spherical surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP5482244B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045255A1 (en) * 1999-12-17 2001-06-21 Toppan Printing Co., Ltd. Saw device
JP2005094610A (en) * 2003-09-19 2005-04-07 Toppan Printing Co Ltd Surface acoustic wave element and environmental difference detecting apparatus employing the same
JP2005191650A (en) * 2003-12-24 2005-07-14 Toppan Printing Co Ltd Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element
JP2009225105A (en) * 2008-03-17 2009-10-01 Toppan Printing Co Ltd Spherical surface acoustic wave element
JP2010004567A (en) * 2009-09-28 2010-01-07 Toppan Printing Co Ltd Surface acoustic wave element and environmental difference detection apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045255A1 (en) * 1999-12-17 2001-06-21 Toppan Printing Co., Ltd. Saw device
JP2005094610A (en) * 2003-09-19 2005-04-07 Toppan Printing Co Ltd Surface acoustic wave element and environmental difference detecting apparatus employing the same
JP2005191650A (en) * 2003-12-24 2005-07-14 Toppan Printing Co Ltd Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element
JP2009225105A (en) * 2008-03-17 2009-10-01 Toppan Printing Co Ltd Spherical surface acoustic wave element
JP2010004567A (en) * 2009-09-28 2010-01-07 Toppan Printing Co Ltd Surface acoustic wave element and environmental difference detection apparatus using the same

Also Published As

Publication number Publication date
JP5482244B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP4807632B2 (en) Detection sensor
JP5093593B2 (en) Spherical surface acoustic wave device
JP5310975B2 (en) Spherical surface acoustic wave sensor
JP5141318B2 (en) Spherical surface acoustic wave device
JP5482244B2 (en) Spherical surface acoustic wave device
JP5310362B2 (en) Spherical surface acoustic wave device
JP4899743B2 (en) Spherical surface acoustic wave sensor
JP3974766B2 (en) Surface acoustic wave device
JP6805418B2 (en) Gas concentration measurement system, gas concentration measurement method and computer program for gas concentration measurement
JP2007271577A (en) Sensor head and gas sensor
JP4426802B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4426803B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
WO2005029701A1 (en) Surface acoustic wave element and environmental difference sensor using surface acoustic wave element
JP5157828B2 (en) Surface acoustic wave device
JP2005191650A (en) Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element
JP4556442B2 (en) Surface acoustic wave device
JP5309900B2 (en) Surface acoustic wave device
JP4700749B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4700748B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP2007166253A (en) Surface acoustic wave element and environment difference detector employing the same
JP4479438B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4399314B2 (en) Method and apparatus for driving measurement of surface acoustic wave device
JP4700750B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP2010278863A (en) Spherical surface acoustic wave module
JP4389552B2 (en) Acoustic wave element and environmental difference detection device using acoustic wave element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5482244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees