JP2012074388A - 放射源 - Google Patents

放射源 Download PDF

Info

Publication number
JP2012074388A
JP2012074388A JP2011249581A JP2011249581A JP2012074388A JP 2012074388 A JP2012074388 A JP 2012074388A JP 2011249581 A JP2011249581 A JP 2011249581A JP 2011249581 A JP2011249581 A JP 2011249581A JP 2012074388 A JP2012074388 A JP 2012074388A
Authority
JP
Japan
Prior art keywords
radiation
collector
radiation source
foil
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011249581A
Other languages
English (en)
Other versions
JP2012074388A5 (ja
JP5506763B2 (ja
Inventor
Empel Tjarko Adriaan Rudolf Van
エンペル,ジャーコ,アドリアーン,ルドルフ ヴァン
Vadim Yevgenyevich Banine
バニエ,バディム,エヴィジェンエビッチ
Erik Roelof Loopstra
ループストラ,エリック,ルーロフ
Wouter Anthon Soer
スール,ワウター,アントン
Van Herpen Maarten Marinus Johannes Wilhelmus
ハーペン,マーテン,マリヌス,ヨハネス,ウィルヘルムス ヴァン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2012074388A publication Critical patent/JP2012074388A/ja
Publication of JP2012074388A5 publication Critical patent/JP2012074388A5/ja
Application granted granted Critical
Publication of JP5506763B2 publication Critical patent/JP5506763B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/064Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements having a curved surface

Landscapes

  • Physics & Mathematics (AREA)
  • Atmospheric Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • X-Ray Techniques (AREA)

Abstract

【課題】コレクタの損傷を低減できる極端紫外線放射装置の実現。
【解決手段】放射源は、放射を放出する放射エミッタ、放射を収集するコレクタ6と、放射源によって放出される汚染物を捕集する汚染物トラップ5とを含む。汚染物トラップは、実質的に放射状に延びる複数のフォイルと、コレクタによって収集される放射の外側円錐軌道外に位置する第1の磁気リングと、コレクタによって収集される放射の軌道内に位置する第2の磁気リングとを含む。これらの磁気リングは、フォイルに平行な成分を含む磁界を提供する。
【選択図】図3

Description

[0001] 本発明は、放射源に関し、そのような放射源を含むリソグラフィ装置に関する。
[0002] リソグラフィ装置は、所望のパターンを基板、普通は基板のターゲット部分に塗布する機械である。リソグラフィ装置は、例えば、集積回路(IC)の製造に用いられる。その場合、マスク又はレチクルとも呼ばれるパターニングデバイスを用いてICの個々のレイヤ上に形成する回路パターンを生成することができる。このパターンは、基板(例えば、シリコンウェーハ)上のターゲット部分(例えば、1つ又は複数のダイの一部を含む)上へ転写することができる。パターンの転写は、通常、基板上に提供された放射感応性材料(レジスト)のレイヤ上への結像によって行われる。一般に、単一の基板は連続的にパターン付けされる隣接するターゲット部分のネットワークを含む。周知のリソグラフィ装置は、パターン全体をターゲット部分に一度に露光することで各ターゲット部分が照射される、いわゆるステッパと、放射ビームによってパターンを所与の方向(「スキャン」方向)にスキャンしながらこれに同期してこの方向に平行又は逆平行に基板をスキャンすることで各ターゲット部分が照射される、いわゆるスキャナとを含む。パターンを基板上にインプリントすることでパターニングデバイスから基板上へパターンを転写することもできる。
[0003] ますますサイズが縮小する構造を基板上に投影するために、10〜20nmの範囲内、例えば、13〜14nmの範囲内の波長を有する極端紫外線の利用が提案されている。さらに、10nm未満、例えば、6.7nm又は6.8nmの波長を有する放射を使用することができるようにするという提案がなされている。リソグラフィの文脈では、10nm未満の波長は"beyond EUV"(超EUV)と時々呼ばれる。
[0004] 極端紫外線及び超EUVは、プラズマを用いて生成することができる。プラズマは、例えば、適当な材料(例えば、スズ)の粒子にレーザを向け、又はXeガス又はLi蒸気などの適切なガス又は蒸気の流れにレーザを向けることで生成することができる。その結果として得られるプラズマは、極端紫外線を受光して放射をビーム内に合焦させるミラー付きかすめ入射コレクタなどのコレクタを用いて収集される極端紫外線(又は超EUV放射)を放出する。
[0005] 極端紫外線に加えて、プラズマは、加熱された原子、イオン、ナノクラスタ、及び/又は微小粒子などの粒子の形の汚染物を生成する。この汚染物は、極端紫外線と共に、コレクタに向けて投影され、かすめ入射コレクタを損傷することがある。
[0006] 従って、汚染物がコレクタに浸入してこれを損傷することを防止し、又はコレクタに浸入してこれを損傷する汚染物の量を低減することが望ましい。
[0007] 汚染物がコレクタに浸入してこれを損傷することを防止し、又はコレクタに浸入してこれを損傷する汚染物の量を低減するために使用することができる装置がフォイルトラップである。フォイルトラップは、放射源の放出ポイントとコレクタとの間に位置する複数のプレーナフォイル部材を備える。プレーナフォイル部材は、放出ポイントに関して放射状に並ぶように整列し、従って、プレーナフォイル部材は、放出ポイントから放出される放射を可能な限り少なく覆い隠す。言い換えれば、プレーナフォイル部材は、放射の移動方向に平行な方向を向いている。フォイルトラップは、プレーナフォイル部材に衝突する、及び/又はこれによって捕集される粒子を捕集するために用いられる。フォイルトラップの機能はフォイルトラップを回転させ、及び/又は隣接するプレーナフォイル部材の近傍(例えば、それらの間)にバッファガスを導入することで向上させることができる。別の方法としては、フォイルトラップが本来粒子の捕集ではなくバッファガスの冷却の働きをする構成でバッファガスをフォイルトラップと併用することができる。例えば、そのような構成では、プレーナフォイル部材間の距離を離してもよい。
[0008] EUV放射源と併用する時のプレーナフォイル部材への熱負荷は大きい。この高い熱負荷は、プレーナフォイル部材の劣化、損傷又は破壊を引き起こすことがある。フォイルトラップの回転に伴う遠心力によってプレーナフォイル部材の劣化、損傷又は破壊が進む可能性がある。バッファガスをフォイルトラップと併用する時にもバッファガスへの熱負荷は大きく、許容できないほど高いこともある。
[0009] 従って、フォイルトラップ及び/又はそのようなフォイルトラップと併用するバッファガスへの熱負荷を低減することが望ましい。
[0010] 本発明の一態様によれば、放射エミッタと、汚染物トラップと、コレクタと備える放射源であって、汚染物トラップが、実質的に放射状に延びる複数のフォイルと、コレクタによって収集される放射の外側円錐軌道外に位置する第1の磁気リングと、コレクタによって収集される放射の軌道内に位置する第2の磁気リングとを備え、これらの磁気リングがフォイルに平行な成分を含む磁界を提供する、放射源が提供される。
[0011] コレクタは、互いの内部に提供された複数の反射シェルを備え、第2の磁気リングは、コレクタの反射シェルに関連する。
[0012] 磁気リングの少なくとも1つを反射シェルに実質的に整列させることができる。
[0013] 反射シェルのうちの1つの反射シェルの終端縁と放射エミッタとの間に磁気リングの少なくとも1つを提供することができる。
[0014] 反射シェルの1つから延びるコレクタの影領域内に磁気リングの少なくとも1つを提供することができる。
[0015] コレクタは、放射エミッタからの放射を受け、その放射を焦点へ向けて反射するコレクタミラーを備えることができる。
[0016] 本発明の一態様によれば、EUV放射源と、EUV放射を調整する照明システムと、放射ビームの断面にパターンを付与するパターニングデバイスを支持する支持構造と、基板を保持する基板テーブルと、パターン付放射ビームを基板のターゲット部分に投影する投影システムとを備えるリソグラフィ装置であって、放射源が放射エミッタと、汚染物トラップと、コレクタとを備え、汚染物トラップが、実質的に放射状に延びる複数のフォイルと、コレクタによって収集される放射の外側円錐軌道外に位置する第1の磁気リングと、コレクタによって収集される放射の軌道内に位置する第2の磁気リングとを備え、これらの磁気リングがフォイルに平行な成分を含む磁界を提供する、リソグラフィ装置が提供される。
[0017] 本発明の一態様によれば、放射を放出する放射エミッタと、放射エミッタによって放出される放射を収集するコレクタと、放射エミッタによって放出される放射に平行に延びるような方向を向いた複数のプレーナ部材とを備え、複数のプレーナ部材の少なくとも1つがコレクタに接触している放射源が提供される。
[0018] 複数のプレーナ部材の大半がコレクタに接触していてもよく、又は複数のプレーナ部材のすべてがコレクタに接触していてもよい。
[0019] コレクタは、コレクタミラーを備えることができる。複数のプレーナ部材の少なくとも1つは、コレクタミラーに取り付けることができる。複数のプレーナ部材の少なくとも1つは、コレクタミラー内に提供された1つ又は複数のスリット内に位置してもよい。コレクタミラーは、1つ又は複数の開口を備えることができる。1つ又は複数の開口にガスを通すように配置することもできる。
[0020] コレクタは、複数の反射シェルを備えることができる。複数のプレーナ部材の少なくとも1つは、複数の反射シェルの1つ以上に取り付けることができる。
[0021] 複数のプレーナ部材の少なくとも2つは、異なる長さを有することができる。
[0022] 複数のプレーナ部材はフォイルでよい。
[0023] 複数のプレーナ部材は、汚染物トラップの少なくとも一部を形成することができる。
[0024] 複数のプレーナ部材及びコレクタは、組み合わせて、例えば、光軸を中心に回転可能であってよい。
[0025] 本発明の一態様によれば、本発明の上記一態様による放射源と、放射を調整する照明システムと、放射ビームの断面にパターンを付与するパターニングデバイスを支持する支持構造と、基板を保持する基板テーブルと、パターン付放射ビームを基板のターゲット部分に投影する投影システムとを備えるリソグラフィ装置が提供される。
[0026] 本発明の一態様によれば、本発明の上記態様による放射源又はリソグラフィ装置を使用する方法であって、光軸を中心にコレクタ及び複数のプレーナ部材を組み合わせて回転させるステップを含む方法が提供される。
[0027] 以下、対応する参照符号が対応する部分を示す添付の概略図を参照しながら、もっぱら例示的な本発明の実施形態について説明する。
[0028] 本発明のある実施形態によるリソグラフィ装置の概略図である。 [0029] 本発明のある実施形態によるリソグラフィ装置の詳細概略図である。 [0030] 本発明のある実施形態による図1のリソグラフィ装置の放射源の一部の概略図である。 [0030] 本発明のある実施形態による図1のリソグラフィ装置の放射源の一部の概略図である。 [0031] 本発明のある実施形態による放射源の一部の概略図である。 [0032] 本発明のある実施形態による放射源の一部の概略図である。 [0033] 本発明のある実施形態による放射源の一部の概略図である。 [0033] 本発明のある実施形態による放射源の一部の概略図である。 [0034] 本発明のある実施形態による放射源の一部の概略図である。 [0034] 本発明のある実施形態による放射源の一部の概略図である。
[0035] 図1は、本発明の一実施形態によるリソグラフィ装置1を概略示す。この装置1は、放射ビームB(例えば、EUV放射)を調整するように構成された照明システム(イルミネータ)ILと、パターニングデバイス(例えば、マスク)MAを支持するように構成され、一定のパラメータに従ってパターニングデバイスを正確に配置するように構成された第1のポジショナPMに接続された支持構造(例えば、マスクテーブル)MTと、基板(例えば、レジストコートウェーハ)Wを保持するように構成され、一定のパラメータに従って基板を正確に配置するように構成された第2のポジショナPWに接続された基板テーブル(例えば、ウェーハテーブル)WTと、基板Wのターゲット部分C(例えば、1つ又は複数のダイを含む)上にパターニングデバイスMAによって放射ビームBへ付与されたパターンを投影するように構成された投影システム(例えば、屈折投影レンズシステム)PSとを備える。
[0036] 照明システムは、放射を方向付け、整形し、制御する屈折、反射、磁気、電磁気、静電気又は他のタイプの光学コンポーネント、又はその任意の組合せなどの種々のタイプの光学コンポーネントを含むことができる。
[0037] 支持構造は、パターニングデバイスを支持する、すなわち、その重量を受ける。支持構造は、パターニングデバイスの向き、リソグラフィ装置1の設計、及びパターニングデバイスが真空環境内で保持されているか否かなどの他の条件に応じた形でパターニングデバイスを保持する。支持構造は、機械的、真空、静電気又は他のクランピング技術を用いてパターニングデバイスを保持することができる。支持構造は、例えば、必要に応じて固定するか可動式のフレーム又はテーブルであってもよい。支持構造によって、例えば、投影システムに対してパターニングデバイスが確実に所望の位置にあるようにすることができる。本明細書に記載する「レチクル」又は「マスク」という用語のいかなる使用も「パターニングデバイス」というより一般的な用語と同義と考えてよい。
[0038] 本明細書で使用する「パターニングデバイス」という用語は、例えば、基板のターゲット部分にパターンを生成するために、放射ビームの断面にパターンを付与するために使用することができる任意のデバイスを指すものと広義に解釈すべきである。放射ビームに付与されたパターンは、基板のターゲット部分の所望のパターンに正確に対応しないこともあることに留意されたい。例えば、パターンが位相シフトフィーチャ又はいわゆるアシストフィーチャを含む場合がこれにあたる。一般に、放射ビームに付与されたパターンは、集積回路などのターゲット部分に作成されるデバイスの特定の機能レイヤに対応する。
[0039] パターニングデバイスの例は、マスク及びプログラマブルミラーアレイを含む。マスクは、リソグラフィ分野で周知であり、通常、EUV放射(又は超EUV放射)リソグラフィ装置では反射型である。プログラマブルミラーアレイの一例は、各々が入射放射ビームを異なる方向に反射するように個別に傾斜を付けることができるマトリクス状に配置した小型ミラーを使用している。傾斜したミラーは、ミラーマトリクスによって反射される放射ビーム内にパターンを付与する。
[0040] 本明細書で使用する「投影システム」という用語は、任意のタイプの投影システムを含むものと広く解釈すべきである。普通、EUV放射(又は超EUV放射)リソグラフィ装置では光学要素は反射型である。しかし、その他のタイプの光学要素を使用してもよい。光学要素は真空内にあってもよい。本明細書での「投影レンズ」という用語のいかなる使用もより一般的な「投影システム」という用語と同義と考えてよい。
[0041] 本明細書に示すように、この装置1は、反射型(例えば、反射マスクを使用する)である。
[0042] リソグラフィ装置は、2つ(デュアルステージ)又はそれ以上の基板テーブル(及び/又は2つ以上のマスクテーブル)を有するタイプであってもよい。そのような「マルチステージ」マシンでは、追加のテーブルを並列に使用することができ、又は1つ又は複数の他のテーブルで準備ステップを実行中に1つ又は複数のテーブルで露光を実行することができる。
[0043] 図1を参照すると、イルミネータILは、放射線源SOから放射ビームを受ける。この線源とリソグラフィ装置は別のエンティティであってもよい。そのような場合、線源は、リソグラフィ装置の一部を形成するとは考えられず、放射ビームは、例えば、適した誘導ミラー及び/又はビームエキスパンダを備えるビームデリバリシステムの助けを借りて線源SOからイルミネータILまで伝送される。他の場合、線源は、リソグラフィ装置の一体化部分であってもよい。線源SO及びイルミネータIL、必要に応じてビームデリバリシステムを放射システムと呼んでもよい。
[0044] イルミネータILは、放射ビームの角強度分布を調整するアジャスタを備えることができる。一般に、少なくともイルミネータの瞳平面内の強度分布の外側及び/又は内側半径範囲(一般にはそれぞれσ−outer及びσ−innerと呼ばれる)を調整することができる。さらに、イルミネータILは、一般に、インテグレータ及びコンデンサのような種々の他のコンポーネントを備えることができる。イルミネータは、放射ビームBが断面で所望の均一性と強度分布とを有するように放射ビームBを調整するために使用することができる。
[0045] 放射ビームBは、支持構造(例えば、マスクテーブルMT)上に保持されたパターニングデバイス(例えば、マスクMA)に入射し、パターニングデバイスによってパターン付けされる。マスクMAに反射してから、放射ビームBは、投影システムPSを通過し、投影システムPSは、このビームを基板Wのターゲット部分C上に合焦する。第2のポジショナPW及び位置センサIF2(例えば、干渉計、線形エンコーダ又は容量センサ)を用いて、基板テーブルWTを、例えば、異なるターゲット部分Cを放射ビームBの経路に配置するように、正確に動かすことができる。同様に、例えば、マスクライブラリから機械的に検索してから、又はスキャン中に、第1のポジショナPM及び別の位置センサIF1を使用して放射ビームBの経路に関してマスクMAを正確に配置することができる。一般に、マスクテーブルMTの移動は、第1のポジショナPMの一部を形成する、ロングストロークモジュール(粗動位置決め)とショートストロークモジュール(微動位置決め)の助けを借りて実現することができる。同様に、基板テーブルWTの移動は、第2のポジショナPWの一部を形成するロングストロークモジュールとショートストロークモジュールとを用いて実現することができる。ステッパの場合(スキャナとは違い)、マスクテーブルMTをショートストロークアクチュエータだけに結合してもよく、又は固定してもよい。マスクMA及び基板Wは、マスクアライメントマークM1、M2及び基板アライメントマークP1、P2を用いて整列してもよい。図示の基板アライメントマークは、専用のターゲット部分を占めるが、ターゲット部分の間の空間内に配置してもよい(スクライブレーンアライメントマークとして知られている)。同様に、複数のダイがマスクMA上に提供されるケースでは、ダイとダイの間にマスクアライメントマークを配置することができる。
[0046] 図示の装置1は、以下のモードのうち少なくとも1つのモードで使用することができる。
[0047] 1.ステップモードでは、マスクテーブルMT及び基板テーブルWTが基本的に静止状態に保たれ、放射ビームに付与されたパターン全体がターゲット部分Cに1回で投影される(すなわち、単一静止露光)。次に、基板テーブルWTがX及び/又はY方向にシフトされ、異なるターゲット部分Cを露光することができる。ステップモードでは、露光フィールドの最大サイズが、単一静止露光で結像するターゲット部分Cのサイズを制限する。
[0048] 2.スキャンモードでは、放射ビームに付与されたパターンがターゲット部分Cに投影されている間、マスクテーブルMT及び基板テーブルWTが同期してスキャンされる(単一動的露光)。マスクテーブルMTに対する基板テーブルWTの速度及び方向は、投影システムPSの倍率(縮小率)及び画像反転特性によって決まる。スキャンモードでは、露光フィールドの最大サイズが、単一動的露光におけるターゲット部分の幅(非スキャン方向の)を制限し、スキャン運動の長さがターゲット部分の高さ(スキャン方向)を決定する。
[0049] 3.別のモードでは、マスクテーブルMTが基本的に静止状態に保たれてプログラマブルパターニングデバイスを保持する。放射ビームに付与されたパターンがターゲット部分Cに投影されている間、基板テーブルWTが移動又はスキャンされる。このモードでは、通常、パルス放射線源が使用される。スキャン中、基板テーブルWTが移動するたびに、又は連続する放射パルスの間に、適宜、プログラマブルパターニングデバイスが更新される。この動作モードは、上で参照したタイプのプログラマブルミラーアレイなどのプログラマブルパターニングデバイスを使用しているマスクレスリソグラフィに容易に適用することができる。
[0050] 上に述べた使用モードの組合せ及び/又はその変形形態、あるいは全く異なる使用モードを使用してもよい。
[0051] 図2は、放射源SO、照明光学ユニットIL,及び投影システム(図2ではPLとして示す)を含む装置1の詳細図を示す。放射源SOは、放電プラズマを備えることができる放射エミッタ2を含む。EUV放射は、超高温のプラズマが生成されて電磁スペクトルのEUV放射範囲内で放射を放出するXeガス又はLi蒸気などのガス又は蒸気によって生成することができる。超高温のプラズマは、電気放電の部分的にイオン化されたプラズマを光軸O上に崩壊させることで生成される。放射の効率的な生成には、分力が、例えば、10PaのXeガス又はLi蒸気又は他の任意の適切なガス又は蒸気が望ましい。いくつかの実施形態では、スズを使用することができる。放射エミッタ2によって放出される放射は、放射源チャンバ3を通過してコレクタチャンバ4に達する。
[0052] コレクタチャンバ4は、汚染物トラップ5とかすめ入射コレクタ6(矩形で概略を示す)を含む。コレクタ6を通過した放射は、格子スペクトルフィルタ7で反射され、コレクタチャンバ4の開口の仮想放射源ポイント8に合焦する。コレクタチャンバ4から、放射ビーム9が照明光学ユニットIL内で第1及び第2の垂直入射レフレクタ10、11を介してレチクル又はマスクテーブルMT上に位置するレチクル又はマスク上に反射される。第1及び第2の反射要素13、14を介して基板テーブルWT上に保持された基板(図示せず)上に投射光学システムPL内に結像されるパターン付ビーム12が形成される。照明光学ユニットIL及び投影システムPLには、普通、図に示す以上の要素を備えることができる。
[0053] 図3は、かすめ入射コレクタ6及びそれに関連する汚染物トラップ5の概略断面図を示す。EUV放射及び荷電粒子が放射する放射エミッタ2も図3に示されている。かすめ入射コレクタ6は、例えば、Ruコーティングを施したNiから形成される6つのシェル15を備える。各シェル15の放射状の内側表面は、EUV放射を反射する。6つのシェル15が示されているが、任意の適した数のシェルを使用することができる。
[0054] 各シェルは、断面が円形で、シェルは、放射エミッタ2(点線20で示される)を通過する軸と同軸に配置されている。シェルは、組み合わさって放射エミッタ2に最も近いかすめ入射コレクタ6の端部の5つの環状の開口16を画定する。放射エミッタ2によって生成されるEUV放射は、開口16に進入しシェルによって画定される導管17を通過することができる(各導管は放射状の外部のシェル15の放射状の内部表面と放射状の内部シェル15の放射状の外部表面によって画定される)。
[0055] 各シェル15は、断面が円形であるが、シェルは円筒形ではない。例えば、各シェルは、通常、実質的に双曲線形状を有し放射エミッタ2の全体の方向に内側へテーパする第1の部分18aと実質的に楕円形の形状を有する第2の部分18bとを含む。各シェル15の第1の部分18aは、全体として放射エミッタ2に向かってテーパしているが、放射エミッタに直接向かわず、放射エミッタを超えたある位置に向かう。図を見やすくするために、シェルの第1及び第2の部分18a、bは、図3では曲線ではなく直線で示されている。
[0056] シェル15の形状の効果として、放射エミッタ2から移動するEUV放射は、所与のシェル15の第1の部分18aの放射状の内部表面に入射する。放射は、シェル15の第1の部分18aの放射状の内部表面から反射し、シェルの第2の部分18bの放射状の内部表面に向かう。放射はこの表面から反射し、それ以上反射することなくこのシェルによって形成された導管17及び隣接するシェルを通過する。次に、EUV放射は、かすめ入射コレクタを抜け、格子スペクトルフィルタ7に入射する(図2を参照)。
[0057] 各シェル15は、有限の厚みを有する。すなわち、放射エミッタ2に最も近い各シェル15の端部で、シェルは、終端縁19を有する。シェルの終端縁19に入射するEUV放射は、かすめ入射コレクタ6には入射しない。従って、このEUV放射は、収集されずリソグラフィ装置によって使用されない。
[0058] かすめ入射コレクタ6は、有限の放射状範囲を有し、特定の角度範囲内に収まる放射エミッタ2からの放射だけを捕集することができる。最も外側のシェル15の終端縁19は、放射エミッタ2と組み合わさって、その外側ではかすめ入射コレクタ(図3に破線21aで示す)によって放射が収集されない外側円錐軌道を画定する。
[0059] 最も内側のシェル15は、放射エミッタ2と組み合わさって、その内部ではかすめ入射コレクタ(図3に破線21bで概略示す)によって放射が収集されない内側円錐軌道を画定する。
[0060] 汚染物トラップ5は、放射エミッタ2とかすめ入射コレクタ6との間に提供される。汚染物トラップ5は、外側円錐軌道21aの外側の実質的に環状の断面の外部磁石22を備える。汚染物トラップ5は、また内側円錐軌道21bの内側の実質的に円形又は環状の断面の内部磁石24を備える。いくつかの例では、内部磁石を含まない汚染物トラップ5を提供することができる。汚染物トラップ5は、実質的に環状の断面の5つの中間磁石23の組をさらに備える。中間磁石23の各々は、かすめ入射コレクタ6の特定のシェル15に関連する。
[0061] 外部磁石22、中間磁石23及び内部磁石24は、組み合わさって汚染物トラップ5内に磁界を確立する。図3で、各磁石22〜24は、暗い側と明るい側とを有する。これらは、磁石の磁化の方向(極)を示すためのものである。暗い側は磁石の北極、明るい側は磁石の南極を表す。磁石は、所与の磁石の北極が隣接する磁石の南極を向くように配置される。磁石によって生成される磁界の磁界線は、磁石から磁石へと通過し、それにより汚染物トラップ5内に磁界を確立する。磁石は、逆の向きに設けることができることを理解されたい(すなわち、暗い側は磁石の南極、明るい側は磁石の北極を表してもよい)。
[0062] 5つの中間磁石が示されているが、任意の適した数の中間磁石を使用することができる。
[0063] 図4は、前方から見た磁石22〜24の概略図を示す。磁石によって確立される磁界の磁界線は、破線25によって概略が示されている。磁界線は、内部磁石24から外部磁石22へ向かって外側に放射状に延びている。
[0064] 汚染物トラップ5内には、複数のプレーナフォイル部材26が提供される。フォイル部材26は、放射エミッタ2からEUV放射の移動方向に平行に、中間磁石23に垂直に配置されている。フォイル部材26は、隣接する中間磁石23の間に延び、中間、内部、及び外部磁石22〜24によって支持される。フォイル部材26は、実質的に放射状に延びることができる。フォイル部材26は、約30mmの軸長を有するが、フォイル部材は、約5mmから約200mmの間の任意の適した長さでよく、より望ましくは、約15mmから約40mmの間でよいことを理解されたい。図4は、放射状に隣接したフォイル部材26を放射状に整列した形で示しているが、それらをこのように整列する必要はない。例えば、放射状に隣接したフォイル部材26を互いに放射方向にオフセットするようにすることもできる。
[0065] 図3を再度参照すると、各中間磁石23は、かすめ入射コレクタ6のシェル15に関連する。各中間磁石は、シェル15に実質的に整列する(これは中間磁石の位置についてであり、向きについてではない−中間磁石がシェルと同じ方向を向いているという意味ではない)。各中間磁石23は、かすめ入射コレクタ6のシェル15の終端縁19に実質的に整列する外縁23aを有する。各中間磁石23は、放射エミッタ2の方向に向け、そのため、中間磁石の内面及び外面は、放射エミッタによって放出される放射の移動方向に実質的に平行になっている。各中間磁石23は実質的に環状で、環状の円錐台形状をしていると言ってもよい。別の方法としては、各中間磁石23の形状と位置は、各中間磁石23が環状の円錐容積内に実質的に収まり、円錐容積のポイントが放射エミッタ2によって画定され、環状の円錐容積の環状の底部がかすめ入射コレクタ6の対応するシェル16の終端縁19によって画定されると表現してもよい。
[0066] 各中間磁石23の形状と位置は、所与の中間磁石23に入射するEUV放射(又はEUV放射のかなりの部分)が中間磁石23がなければ対応するシェル15の終端縁19に入射していたはずの形状と位置である。従って、終端縁19に関連し、これに隣接する中間磁石23を提供することは、かすめ入射コレクタ6によって収集されるEUV放射の量を大幅に低減しない。可能な限り多くのEUV放射をリソグラフィ装置の基板テーブルWT上に向ける(図1を参照)ことが望ましいため、このことは有利であり、基板を迅速に露光することができる。
[0067] 磁石22〜24は、サマリウムコバルト(SmCo)を備えることができる。別の方法としては、磁石22〜24は、任意の適当な材料(例えば、適当なキュリー温度を備え水素損傷への適当な耐性がある材料)を備えることができる。磁石22〜24はコバルト、鉄、又はニッケルなどの強磁性の材料を備えることができる。磁石のすべてが永久磁石であることは必須ではない。例えば、中間磁石23のいくつかは、永久に磁化されてはいない材料を含むことができる。それでも、その材料は、汚染物トラップの他の磁石によって生成される磁界を集中させるのを助けるという点で有利な効果をもたらす。少なくとも磁石の一部は電磁石である。例えば、内部及び外部磁石22、24は電磁石であってもよい。
[0068] 外部磁石22は、任意の適した環状厚さであってもよく、その厚みは、望ましくは、約0.5mm〜約50mm、より望ましくは、約10mm〜約50mmの範囲内である。中間磁石23の環状厚みは、望ましくは、かすめ入射コレクタ6のシェル15の終端縁19の厚みに等しいか又はそれより小さい。例えば、中間磁石23の環状厚みは、約0.5mm〜約5mmの範囲内でよく、より望ましくは、約1mm〜約3mmの範囲内である。内部磁石24の厚みは、望ましくは、約0.5mm〜約50mm、より望ましくは、約10mm〜約50mmの範囲内である。
[0069] かすめ入射コレクタ6に向かって汚染物トラップ5を通過するEUV放射は、その向きが放射の移動方向に平行であるためにフォイル部材26の影響が最小限で済む。磁界がない場合、放射エミッタ2からの荷電粒子もフォイル部材26によって最小限の影響を受ける。これは、汚染物の移動方向がフォイル部材の移動方向と同じであるからである。しかし、汚染物トラップ全体にわたって磁石22〜24によって確立された磁界によって汚染物の各荷電粒子にローレンツ力が作用し、汚染物トラップに進入する荷電粒子の軌道が変更される。荷電粒子の軌道は、荷電粒子の移動方向に垂直で磁界の方向に垂直な方向に曲げられる。荷電粒子の変更された軌道によって粒子はフォイル部材26に向かって移動し、フォイル部材26に入射する。これによって荷電粒子は、汚染物トラップ5によって捕集され、かすめ入射コレクタ6には到達しない。従って、荷電粒子は、かすめ入射コレクタ6を損傷できない。
[0070] 中間磁石23を提供することで汚染物トラップ5内の磁界強度が増大し、荷電粒子を捕集する中間磁石23の能力が増大する(中間磁石23がない場合に提供される磁界と比較して)。中間磁石23は、汚染物トラップ内で内部及び外部磁石24及び22によって生成される磁界を集中させるのを助ける。
[0071] 本発明のある実施形態を図5に示す。図3及び図4の実施形態のフィーチャに対応する図5の実施形態のフィーチャには対応するが、100だけ増えた参照数字が付与されている。
[0072] 図5は、汚染物トラップ105、かすめ入射コレクタ106及び放射エミッタ102の概略断面図を示す。第1の実施形態のようにかすめ入射コレクタ106と放射エミッタ102の間に位置する代わりに、汚染物トラップ105の一部は、かすめ入射コレクタ106のシェル115内に提供される。
[0073] 上記のように、シェル115は、各々放射エミッタ102を超えた位置に向けて内側にテーパする第1の部分118aを含む。この効果として、放射エミッタ102から移動するEUV放射は、各シェル115の第1の部分118aの放射状の内部表面に入射する。この構成の結果として、各シェル115の第1の部分118aからそのシェルの第1の部分118の放射状の外部表面に隣接した領域125内に影が延びる。影になった領域は影領域(shadow area)125と呼ばれる。放射エミッタ102からかすめ入射コレクタ106へ移動するEUV放射は、影領域125を通過しない。従って、中間磁石123などの要素を影領域125内に配置してもコレクタ106によって収集されるEUV放射の量を大幅に減らさずに済む。
[0074] 汚染物トラップ105は、シェル115によって確立される影領域125内に提供される5つの中間磁石123を含む複数の磁石122〜124を備える。各中間磁石は、異なるシェル115の影領域125内に提供される。各中間磁石123は、断面が実質的に環状で、各々が対応するシェル115の第1の部分118aの外部表面に接触しこれによって支持される内部表面を有する。所与の中間磁石123がそれを支持するシェル115に関連すると言ってもよい。各中間磁石123の外部表面は、対応するシェル115によって画定された影領域125の外にはみださない形状と寸法を備える。各中間磁石は、対応するシェルによって画定された影領域125を実質的に占有するような形状と寸法を備えることができる。
[0075] 影領域125内の利用可能な空間の量は、場合によって図3及び図4に示す実施形態の例よりも大きい中間磁石123を使用することができる大きさである。さらに、中間磁石123は、シェル15の終端縁19に整列する必要がないため、磁石のサイズと位置決めの許容差が拡大する。汚染物トラップ105の一部をかすめ入射コレクタ106内に提供することで、トラップ105とかすめ入射コレクタ106との相対位置は確実に一定であるように助けることができる。
[0076] 図5には示していないが、汚染物トラップ105は、汚染物を捕集する役目を果たす実質的に放射状に延びるフォイル部材を含むことができる。
[0077] 図3〜図5では、中間磁石23、123は、最も外側のシェルを除き、かすめ入射コレクタ6、106の各シェル15、115に関連する。しかし、場合によっては、シェルの一部は中間磁石を備えていなくてもよい。例えば、汚染物トラップは、外部磁石22、122と、単一の中間磁石23、123と、内部磁石24、124とを備えることができる。別の方法としては、2つ以上の中間磁石を使用することもできる。一例では、中間磁石23、123を1つおきのシェル15、115に関連付けることができる。場合によっては、内部磁石24、124を提供することは好ましくない。所与のコレクタに関して使用する磁石の配置は、そのコレクタ内に有することが望ましい磁界の強度に依存する。
[0078] 図3〜図5に示すかすめ入射コレクタ6、106は、6つのシェルを有するが、他の任意の適した数のシェルも使用することができる。
[0079] 本発明の実施形態の上記説明では、中間磁石23、123をシェル15、115に関連するものとして説明している。「関連する」という用語は、例えば、シェルに実質的に整列した、又はシェル15から延びる影領域内にある中間磁石を含むことを意図している。
[0080] 本発明のある実施形態を図6に示す。図6は、垂直入射コレクタ206、汚染物トラップ205及び放射エミッタ202の概略断面図を示す。放射エミッタは、例えば、レーザビーム203によって気化されるスズの粒子を含むことができる。垂直入射コレクタ206は、楕円曲線コレクタミラー206aを備える。放射エミッタ202は、曲線の第1の焦点に位置し、コレクタによって収集されるEUV放射の出力ポイント(図示せず)は曲線の第2の焦点に位置する。
[0081] コレクタミラー206aは、有限の放射状範囲を有し、特定の角度範囲内に収まる放射エミッタ202からの放射だけを捕集することができる。コレクタミラー206aの外縁は、放射エミッタ202と組み合わさってその外側ではコレクタミラー(図6に破線212aで概略を示す)によって放射が収集されない外側円錐軌道を画定する。
[0082] コレクタミラー206aは、レーザビーム203が放射エミッタ202に到達するための開口204を中心に備える。開口204は、放射エミッタ202と組み合わさってその内部では、コレクタミラー(図6に破線221bで概略を示す)によって放射が収集されない内側円錐軌道を画定する。
[0083] 汚染物トラップ205は、実質的に放射状に延びる複数のフォイル226と、放射状に延びる磁界を生成するように配置された複数の磁石222〜224とを備える。磁石は、形状が実質的に環状でコレクタミラー206aによって収集される放射の外側円錐軌道外に位置する外部磁石222と、形状が実質的に円筒状でコレクタミラー206aによって収集される放射の内側円錐軌道内に位置する内部磁石224とを備える。形状が実質的に環状の別の磁石223が内部及び外部磁石222、224の間に位置する。以下に中間磁石223と呼ぶこの別の磁石は、コレクタミラー206aによって収集される放射の軌道内に位置する。
[0084] 中間磁石223は、汚染物がコレクタミラー206aまでその中を進まなければならない放射状に延びる磁界を強化できるため、有利である。磁界のこの強化作用によって汚染物が放射状に延びるフォイル226上にそれるのを助ける。従って、中間磁石223は、中間磁石223が存在しなかった場合に捕集されなかったはずの汚染物の捕集を提供する。
[0085] いくつかの実施形態では、内部磁石224を提供することは望ましくない。
[0086] 中間磁石223は、一定のEUV放射を阻止するため、一定のEUV放射は、コレクタミラー206aに到達できない。また中間磁石223は、コレクタミラー206aに入射し垂直入射コレクタの出力に向けて反射した一定のEUV放射を阻止することができる。これによって、リソグラフィ装置の後続部分へ移動するEUV放射の量が低減する。しかし、この潜在的な欠点は、場合によっては、中間磁石223が提供することができる改良型汚染物捕集性能によって補償できる限界を超えていると考えられる。
[0087] 中間磁石223によって阻止されるEUV放射の量を制限することが望ましい。これを達成する1つの方法は、中間磁石223の適切な形状を選択する方法である。例えば、中間磁石を細長くして(すなわち、長辺と短辺とを有して)、それによって、EUV放射に比較的幅の狭い断面を提示することができる。中間磁石は、放射が放射エミッタ202から放出される方向に実質的に平行の向きの、又は放射が放コレクタミラー206aから中間焦点へ反射する方向に実質的に平行な、又はこれらの2つの方向の間の任意の方向に平行な長辺を有することができる。中間磁石223によって阻止されるEUV放射の量を制限できる別の方法は、中間磁石をコレクタミラーの外側よりもコレクタミラー206aの中心の近くに配置する方法である。中心から遠い位置よりもコレクタミラー206aの中心に近い位置の方が収集されるEUV放射の量は少ない。中間磁石は、例えば、コレクタミラーの中心と外側との距離の約50%未満の位置、コレクタミラーの中心と外側との距離の約40%未満の位置、またコレクタミラーの中心と外側との距離の約30%未満の位置にあってよい。
[0088] 放射状に延びるフォイル226の程度は、コレクタミラー206aの程度に対応させて、放射状に延びるフォイルは、中心軸で収束せずコレクタミラーの開口204で収束するようにすることができる。
[0089] 放射状に延びるフォイル226は、軸を中心に回転するように配置することができる(軸はフォイルの放射状の延伸方向に対応させることができる)。この場合、磁界は、望ましくは、回転対称で、フォイル内で発生する電磁誘導を制限する。
[0090] 本発明の実施形態の磁石によって生成される磁界は、望ましくは、荷電粒子汚染物の移動方向に実質的に垂直な実質的に放射状のコンポーネントを備える。しかし、この磁界は、他の方向を向いたコンポーネントを含むことができる。磁界は、荷電粒子を捕集するように意図されたフォイルに向けて荷電粒子を偏向するように配置すべきである。
[0091] 環状又は円筒形の永久磁石は、特に磁化の方向が放射状である時には一体で製造することが困難である。従って、外部磁石22、122、222、中間磁石23、123、223及び/又は内部磁石24、124、224は、共に所望の磁界を生成するさまざまな磁化の方向を有する複数のセグメントを備えることができる。各セグメントは独立した磁石であってもよい。
[0092] 環状磁石という用語は、例えば、環状の磁石によって生成されるはずの磁界に似た磁界を共に生成するさまざまな磁化の方向を有する複数のセグメントを含むためのものである。同様に、円筒形磁石という用語は、例えば、円筒形の磁石によって生成されるはずの磁界に似た磁界を共に生成するさまざまな磁化の方向を有する複数のセグメントを含むためのものである。磁石について使用する環状円錐台形状という用語は、例えば、環状の円錐台形状を有する磁石によって生成されるはずの磁界に似た磁界を共に生成するさまざまな磁化の方向を有する複数のセグメントを含むためのものである。
[0093] 環状の磁石、円筒形の磁石及び環状の円錐台磁石は、磁石リングの例と考えられる。磁石リングは、所望の磁界を共に生成するさまざまな磁化の方向を有するセグメントから製造することができる。磁界は、例えば、環状の磁石、円筒形の磁石又は環状の円錐台磁石によって提供されるはずの磁界に似ていてもよい。各セグメントは、異なる磁石であってもよい。
[0094] 本発明の実施形態によって提供される汚染物の捕集は、バッファガスの使用などを含む他の汚染緩和方法によって補足されてもよい。本明細書に記載する本発明の実施形態に加えて回転式フォイルトラップを使用してもよい。
[0095] 上記のように、フォイルトラップ及び/又はそのようなフォイルトラップと併用されるバッファガスのプレーナフォイル部材への熱負荷は許容できないほど高い場合がある。従って、この熱負荷を低減したいという要望がある。熱負荷を低減するには、フォイルトラップのプレーナフォイル部材を冷却しなければならない。プレーナフォイル部材は薄いため、プレーナフォイル部材内に、例えば、流体を流す流路などの能動的冷却システムを含ませることは困難である場合がある。
[0096] 本発明のある実施形態によれば、コレクタ及びフォイルトラップは、フォイルトラップの1つ又は複数のプレーナフォイル部材がコレクタに接触するように配置される。接触は直接的であってもよい。例えば、フォイルトラップのプレーナフォイル部材をコレクタに直接取り付けてもよい。接触は非直接的であってもよい。例えば、フォイルトラップのプレーナフォイル部材を締結具(ねじ、ボルト、又は接着剤など)を介してコレクタに取り付けてもよい。フォイルトラップのプレーナフォイル部材内の熱は、熱をコレクタに導通させることでより容易に放散する。同様に、プレーナフォイル部材の近くにあるバッファガスもフォイル部材とコレクタとを通して熱を放散する。コレクタは、例えば、流体流路冷却システムを使用して能動的に冷却でき、プレーナフォイル部材からの熱の放散をさらに促進する。本発明の特定の実施形態について以下に説明する。
[0097] 図7aは、図6と同じ垂直入射コレクタ206、汚染物トラップ205(すなわち、フォイルトラップ)及び放射エミッタ202の概略断面図を示す。図6に示し同図に関して説明したフィーチャは、図7aで同じ参照数字を付与されている。しかし、図6とは対照的に、図7aは、コレクタ206が汚染物トラップ205のプレーナフォイル部材226に接触している状態を示す。特に、図7aは、コレクタミラー206aが汚染物トラップ205のプレーナフォイル部材226に接触している状態を示す。プレーナフォイル部材226内の熱は、コレクタミラー206aを通る導通を介して放散でき、これによってプレーナフォイル部材226への熱負荷を低減することができる。
[0098] プレーナフォイル部材226は、放射エミッタ202(すなわち、放射の放出ポイント)に関して放射状に並ぶように整列し、従って、プレーナフォイル部材226は、放射エミッタ202から放出される放射を可能な限り少なく覆い隠す。言い換えれば、プレーナフォイル部材226は、放射の移動方向に平行な方向を向いている。
[0099] フォイル部材226は、任意の適した方法でコレクタ206に結合する(取り付ける)ことができる。一例では、コレクタ206内にスリットが提供される(例えば、コレクタミラー206aを形成するために反射コーティングが提供される前に)。スリットは、例えば、レーザカッティング装置を使用して、又は放電加工によって提供することができる。次に、プレーナフォイル部材226がスリットに挿入され、半田付けなどによってコレクタ206の背面(すなわち、非反射側)に固定される。そのような構成によって、コレクタ206によって収集(又は言い換えれば、反射)可能な放射の量をほとんど又は全く低減させることなく、プレーナフォイル部材226とコレクタ206との良好な熱接触が確保される。これは、スリットが提供されなかったとしても、スリットが提供されるコレクタ206の領域は、プレーナフォイル部材226の存在によって放射を反射することがないためである。
[0100] プレーナフォイル部材226への熱負荷のさらなる低減(又は、言い換えれば、プレーナフォイル部材226のさらなる冷却)は、コレクタ206を能動的に冷却することで達成することができる。例えば、流体を搬送する流路をコレクタ206内又はコレクタ206の背面に形成することができる。コレクタ206から、すなわち、プレーナフォイル部材226から熱を吸収して除去するために、水などの流体を流路に通すことができる。
[0101] 上記のように、バッファガスをプレーナフォイル部材226と併用して汚染物の捕集を改善することができる。図7bは、図7aに示し同図に関して説明した垂直入射コレクタ206の端面図を示す。図7bは、開口206bがコレクタミラー206a内に備えられることを示す。開口206bを介して、バッファガスをコレクタ206の背面側からプレーナフォイル部材226の間に挿入することができる。
[0102] プレーナフォイル部材は、プレーナフォイル部材226の間に大幅な圧力低下を発生させるように適当な位置に置くことができる。大幅な圧力低下によって、ガスを用いて粒子が捕集される、又はフォイルトラップを用いてガスが冷却されるフォイルトラップ内のガスの大部分が保持される。
[0103] プレーナフォイル部材226は、それぞれ長さが違っていてもよい(長さはコレクタミラー206aの中心から外側へ向かって測定される)。例えば、プレーナフォイル部材226がすべてコレクタミラー206aの周囲からコレクタミラーの開口204まで延びている場合、開口204を取り巻く領域内のプレーナフォイル部材226の密度は、その領域から反射する放射の強度が大幅に低減する程度であってよい。従って、フルレングスのフォイル部材の間にハーフレングスのフォイル部材を追加してもよい。長さが異なるプレーナフォイル部材を使用することで、コレクタミラー206aの表面全体により均一で平均的なフォイル空間を達成することができる。例えば、任意の適当な長さ(例えば、フルレングスプレーナフォイル部材226の3分の1又は6分の1)を有するプレーナフォイル部材226を提供してコレクタミラー206aの表面全体に均一で平均的なフォイル空間を確立することができる。
[0104] 図8及び図9は、本発明のある実施形態の概略図を示す。図8は、図3と同じかすめ入射コレクタ6、汚染物トラップ5(すなわち、フォイルトラップ)及び放射エミッタ2の概略断面図を示す。図9は、汚染物トラップ5の端面図を示す。図3及び図4に示し同図に関して説明したフィーチャは、図8及び図9で同じ参照数字を付与されている。しかし、図3及び図4とは対照的に、図8及び図9は、コレクタ6が汚染物トラップ5のプレーナフォイル部材26に接触している状態を示す。特に、図8及び図9は、コレクタ6のシェル15が汚染物トラップ5のプレーナフォイル部材26に接触している状態を示す。プレーナフォイル部材26内の熱(及びプレーナフォイル部材26の近くのバッファガス)は、コレクタシェル15を通る導通を介して放散することができ、これによってプレーナフォイル部材26への熱負荷を低減することができる。
[0105] いくつかの実施形態では、コレクタの表面は、例えば、ガスを用いてクリーニングされる。そのような実施形態では、上記フォイルトラップは、汚染物を捕集する必要がない。そのような実施形態では、このフォイルトラップをトラップと考えなくてもよい。例えば、汚染物の捕集が望まれない実施形態では、フォイルトラップは、冷却部材の働きをしてもよい。プレーナ部材は、フォイル以外の材料、例えば、フォイルと考えるには厚すぎる1つ又は複数の金属レイヤから形成してもよい。従って、一般に、上記プレーナフォイルトラップ部材は、放出ポイントに関して放射状に整列するように並ぶプレーナ部材としてより総称的に記述でき、従って、プレーナ部材は、放出ポイントから放出される放射を可能な限り少なく覆い隠す。言い換えれば、プレーナフォイル部材は、放射の移動方向に平行な方向を向いている。
[0106] コレクタが放出ポイントに関して放射状に整列するプレーナ部材に取り付けられているいくつかの用途では、コレクタ及びプレーナ部材を(組み合わせて)光軸を中心に回転させることが望ましい。これは、プレーナ部材によって引き起こされる影(又は言い換えれば遮断又は不明瞭化)が収集角度全体にわたって平均化されるためである。コレクタ及びプレーナ部材の構成は、例えば、コレクタのクリーニングにガスが使用され、プレーナ部材が汚染物トラップとして稼働していない時に回転させることができる。これは、回転時に引き起こされる遠心力によってプレーナ部材から汚染物が再び放出されるリスクがないためである。
[0107] いくつかの例では、図7及び図9に示し同図に関して説明した磁石のすべて又はいずれかを提供することは望ましくない。図7及び図9に示し同図に関して説明した原理はそのような磁石の組み込みに依存しない。
[0108] いくつかの実施形態では、プレーナ部材のすべてがコレクタに接触しているわけではない。しかし、プレーナ部材への熱負荷を低減するために、プレーナ部材の大部分がコレクタに接触していることが望ましく、さらにプレーナ部材のすべてがコレクタに接触していることが望ましい。
[0109] 従来のかすめ入射コレクタ及び従来の垂直入射コレクタに関連して本発明の実施形態について説明してきたが、本発明はその他の形態のコレクタにも適用することができる。これは、図示されたかすめ入射コレクタと同様の構造を有するが入射角がすべてかすめ入射角ではないコレクタを含む。例えば、場合によって、コレクタは、大きい収集角度(例えば、光軸から70°を超えた角度)で収集を行うことができる。この場合、コレクタの外部シェルの反射角が大きすぎるため、外部シェルを多層反射コーティングで被膜することが有利であろう。そのようなコレクタは、最も厳密な意味ではかすめ入射コレクタとは呼べない。さらに、放射源と放射が1回通過する第1の反射との間に一般にある容積が存在する2つのほぼ垂直入射の反射に基づくコレクタ設計が存在する。上記細長い形状の磁石リングがこの容積内に配置されると、それらは一方向に通過する放射だけを(図6に関する上記実施形態による二方向に通過する放射ではなく)覆い隠す。従って、それらが放射を覆い隠す程度は低減される。
[0110] 本発明の実施形態は、材料の小滴を用いる放射源に限定されない。本発明のある実施形態は、例えば、材料の小滴ではなくガスからプラズマを生成することができる。これらは、両方共にプラズマ生成物質の例であると考えられる。
[0111] 本発明の実施形態についての上記説明はEUV放射を生成する放射源に関するものであるが、本発明は、また、"beyond EUV"(超EUV」放射、すなわち、波長が10nm未満の放射を生成する放射源にも実施することができる。超EUV放射は、例えば、6.7nm又は6.8nmの波長を有することができる。超EUV放射を生成する放射源も上記放射源と同じ方法で動作できる。
[0112] 上記説明は、例示としてのものであって限定するものではない。それ故、添付の請求の範囲から逸脱することなく本発明をさまざまに変更することができることは当業者には明らかであろう。

Claims (15)

  1. 放射を放出する放射エミッタと、
    前記放射を収集するコレクタと、
    前記放射エミッタによって放出される汚染物を捕集する汚染物トラップであって、実質的に放射状に延びる複数のフォイルと、前記コレクタによって収集される放射の外側円錐軌道外に位置する第1の磁気リングと、前記コレクタによって収集される放射の軌道内に位置する第2の磁気リングとを備える汚染物トラップとを備え、前記磁気リングが前記フォイルに平行な成分を含む磁界を提供する、放射源。
  2. 前記コレクタが、互いの内部に提供された複数の反射シェルを備え、前記第2の磁気リングが、前記コレクタの反射シェルに関連する、請求項1に記載の放射源。
  3. 前記汚染物トラップが、前記コレクタの別の反射シェルに関連する第3の磁気リングをさらに備える、請求項2に記載の放射源。
  4. 前記汚染物トラップが、前記コレクタの前記反射シェルの少なくとも半数に関連する磁気リングを備える、請求項3に記載の放射源。
  5. 前記磁気リングの少なくとも1つが、反射シェルに実質的に整列する、請求項2又は3に記載の放射源。
  6. 前記反射シェルのうちの1つの反射シェルの終端縁と前記放射エミッタとの間に前記磁気リングの少なくとも1つが提供される、請求項2から5のいずれか1項に記載の放射源。
  7. 前記磁気リングの内面及び外面が前記放射エミッタによって放出される放射の移動方向に実質的に平行になるように、前記少なくとも1つの磁気リングが放射エミッタの方に向けられる、請求項6に記載の放射源。
  8. 前記磁気リングのうちの少なくとも1つが、前記反射シェルの1つから延びる影領域内の前記コレクタに提供される、請求項2から7のいずれか1項に記載の放射源。
  9. 前記フォイルが、前記コレクタの前記反射シェル間に提供される、請求項2から8のいずれか1項に記載の放射源。
  10. 前記コレクタが、前記放射エミッタの放射を受け、前記放射を焦点へ向けて反射するコレクタミラーを備える、請求項1に記載の放射源。
  11. 前記第2の磁気リングが、前記放射が前記放射エミッタから放出される第1の方向に平行な方向の長さが前記第1の方向に垂直な第2の方向の長さよりも長い、請求項10に記載の放射源。
  12. 前記第2の磁気リングが、前記コレクタミラーの外側よりも前記コレクタミラーの中心の近くにある、請求項10又は11に記載の放射源。
  13. 前記第2の磁気リングが、前記コレクタミラーの中心と外側との距離の約50%未満の位置にある、請求項10又は11に記載の放射源。
  14. 請求項1から13のいずれか1項に記載の放射源と、
    前記放射を放射ビームに調整する照明システムと、
    前記放射ビームの断面にパターンを付与するパターニングデバイスを支持する支持構造と、
    基板を保持する基板テーブルと、
    前記パターン付放射ビームを前記基板のターゲット部分に投影する投影システムと、
    を備えるリソグラフィ装置。
  15. 放射源であって、
    放射を放出する放射エミッタと、
    前記放射を収集するコレクタと、
    前記放射エミッタによって放出される汚染物を捕集する汚染物トラップであって、実質的に放射状に延びる複数のフォイルと、前記コレクタによって収集される放射の外側円錐軌道外に位置する第1の磁気リングと、前記コレクタによって収集される放射の軌道内に位置する第2の磁気リングとを備える汚染物とラップとを備え、前記磁気リングが前記フォイルに平行な成分を含む磁界を提供する、放射源と、
    前記放射を放射ビームに調整する照明システムと、
    前記放射ビームの断面にパターンを付与するパターニングデバイスを支持する支持構造と、
    基板を保持する基板テーブルと、
    前記パターン付放射ビームを前記基板のターゲット部分に投影する投影システムと、
    を備えるリソグラフィ装置。
JP2011249581A 2008-04-29 2011-11-15 放射源、リソグラフィ装置、並びに放射源又はリソグラフィ装置を用いる方法 Expired - Fee Related JP5506763B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US7144108P 2008-04-29 2008-04-29
US61/071,441 2008-04-29
US13613108P 2008-08-14 2008-08-14
US61/136,131 2008-08-14
US13630408P 2008-08-26 2008-08-26
US61/136,304 2008-08-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009103511A Division JP4869380B2 (ja) 2008-04-29 2009-04-22 放射源およびリソグラフィ装置

Publications (3)

Publication Number Publication Date
JP2012074388A true JP2012074388A (ja) 2012-04-12
JP2012074388A5 JP2012074388A5 (ja) 2012-06-07
JP5506763B2 JP5506763B2 (ja) 2014-05-28

Family

ID=41256503

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009103511A Expired - Fee Related JP4869380B2 (ja) 2008-04-29 2009-04-22 放射源およびリソグラフィ装置
JP2011249581A Expired - Fee Related JP5506763B2 (ja) 2008-04-29 2011-11-15 放射源、リソグラフィ装置、並びに放射源又はリソグラフィ装置を用いる方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009103511A Expired - Fee Related JP4869380B2 (ja) 2008-04-29 2009-04-22 放射源およびリソグラフィ装置

Country Status (3)

Country Link
US (1) US8242471B2 (ja)
JP (2) JP4869380B2 (ja)
NL (1) NL1036768A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118862A1 (ja) * 2014-02-06 2015-08-13 ウシオ電機株式会社 ホイルトラップおよび光源装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8519366B2 (en) * 2008-08-06 2013-08-27 Cymer, Inc. Debris protection system having a magnetic field for an EUV light source
JP5559562B2 (ja) 2009-02-12 2014-07-23 ギガフォトン株式会社 極端紫外光光源装置
NL2004706A (nl) * 2009-07-22 2011-01-25 Asml Netherlands Bv Radiation source.
JP5687488B2 (ja) 2010-02-22 2015-03-18 ギガフォトン株式会社 極端紫外光生成装置
JP2012216743A (ja) * 2010-06-16 2012-11-08 Gigaphoton Inc スペクトル純度フィルタ及びそれを備える極端紫外光生成装置
US9989758B2 (en) * 2013-04-10 2018-06-05 Kla-Tencor Corporation Debris protection system for reflective optic utilizing gas flow
JP6135410B2 (ja) * 2013-09-06 2017-05-31 ウシオ電機株式会社 ホイルトラップ及びこのホイルトラップを用いた光源装置
US9429858B2 (en) 2013-09-24 2016-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Rotary EUV collector
KR102346227B1 (ko) 2014-11-19 2021-12-31 삼성전자주식회사 극자외선 광 생성 장치, 시스템 및 극자외선 광 생성 장치의 사용 방법
EP3582009A1 (en) * 2018-06-15 2019-12-18 ASML Netherlands B.V. Reflector and method of manufacturing a reflector
CN115023654A (zh) * 2020-02-07 2022-09-06 Asml荷兰有限公司 工作台系统、工作台系统操作方法、检查工具、光刻设备、校准方法和装置制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520107A (ja) * 2003-03-08 2006-08-31 サイマー インコーポレイテッド 放電生成プラズマeuv光源
JP2006332654A (ja) * 2005-05-20 2006-12-07 Asml Netherlands Bv 放射システム及びリソグラフィ装置
JP2006529057A (ja) * 2003-05-22 2006-12-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 少なくとも一つの光学要素を洗浄する方法および装置
JP2007005542A (ja) * 2005-06-23 2007-01-11 Ushio Inc 極端紫外光光源装置
JP2008108945A (ja) * 2006-10-26 2008-05-08 Ushio Inc 極端紫外光光源装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US114469A (en) * 1871-05-02 Improvement in chills for plow-castings
US192151A (en) * 1877-06-19 Improvement in grain-binders
US199829A (en) * 1878-01-29 Improvement in buggy-tops
US6383A (en) * 1849-04-24 Machine fob
US6815700B2 (en) 1997-05-12 2004-11-09 Cymer, Inc. Plasma focus light source with improved pulse power system
JP2003022950A (ja) 2001-07-05 2003-01-24 Canon Inc X線光源用デブリ除去装置及び、デブリ除去装置を用いた露光装置
WO2003014833A2 (de) * 2001-08-10 2003-02-20 Carl Zeiss Smt Ag Kollektor mit befestigungseinrichtungen zum befestigen von spiegelschalen
SG108933A1 (en) * 2002-08-23 2005-02-28 Asml Netherlands Bv Lithographic projection apparatus and particle barrier for use in said apparatus
US7217941B2 (en) * 2003-04-08 2007-05-15 Cymer, Inc. Systems and methods for deflecting plasma-generated ions to prevent the ions from reaching an internal component of an EUV light source
US7217940B2 (en) 2003-04-08 2007-05-15 Cymer, Inc. Collector for EUV light source
JP2004327213A (ja) * 2003-04-24 2004-11-18 Komatsu Ltd Euv光発生装置におけるデブリ回収装置
SG118268A1 (en) * 2003-06-27 2006-01-27 Asml Netherlands Bv Laser produced plasma radiation system with foil trap
JP3761545B2 (ja) * 2003-07-07 2006-03-29 ファナック株式会社 工作機械の自動工具交換装置
US7230258B2 (en) * 2003-07-24 2007-06-12 Intel Corporation Plasma-based debris mitigation for extreme ultraviolet (EUV) light source
US7087914B2 (en) * 2004-03-17 2006-08-08 Cymer, Inc High repetition rate laser produced plasma EUV light source
US7164144B2 (en) 2004-03-10 2007-01-16 Cymer Inc. EUV light source
US7109503B1 (en) 2005-02-25 2006-09-19 Cymer, Inc. Systems for protecting internal components of an EUV light source from plasma-generated debris
JP4850558B2 (ja) * 2006-03-31 2012-01-11 キヤノン株式会社 光源装置、及びそれを用いた露光装置、デバイス製造方法
US8071963B2 (en) * 2006-12-27 2011-12-06 Asml Netherlands B.V. Debris mitigation system and lithographic apparatus
US8519366B2 (en) * 2008-08-06 2013-08-27 Cymer, Inc. Debris protection system having a magnetic field for an EUV light source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520107A (ja) * 2003-03-08 2006-08-31 サイマー インコーポレイテッド 放電生成プラズマeuv光源
JP2006529057A (ja) * 2003-05-22 2006-12-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 少なくとも一つの光学要素を洗浄する方法および装置
JP2006332654A (ja) * 2005-05-20 2006-12-07 Asml Netherlands Bv 放射システム及びリソグラフィ装置
JP2007005542A (ja) * 2005-06-23 2007-01-11 Ushio Inc 極端紫外光光源装置
JP2008108945A (ja) * 2006-10-26 2008-05-08 Ushio Inc 極端紫外光光源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118862A1 (ja) * 2014-02-06 2015-08-13 ウシオ電機株式会社 ホイルトラップおよび光源装置
JP2015149401A (ja) * 2014-02-06 2015-08-20 ウシオ電機株式会社 ホイルトラップ

Also Published As

Publication number Publication date
JP4869380B2 (ja) 2012-02-08
NL1036768A1 (nl) 2009-10-30
US8242471B2 (en) 2012-08-14
JP2009267407A (ja) 2009-11-12
US20090272917A1 (en) 2009-11-05
JP5506763B2 (ja) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5506763B2 (ja) 放射源、リソグラフィ装置、並びに放射源又はリソグラフィ装置を用いる方法
JP4950086B2 (ja) 汚染バリア、放射システム、リソグラフィ投影装置、及びデバイス製造方法
JP3828889B2 (ja) 伸張可能な薄膜を備える汚染バリヤ
JP4455491B2 (ja) 放射ビームから粒子をフィルタ除去するように動作可能なフィルタ・システムを提供する方法、フィルタ・システム、装置、及びフィルタ・システムを含むリソグラフィ装置
JP4772770B2 (ja) デブリ低減システム及びリソグラフィ装置
KR100674698B1 (ko) 리소그래피 장치, 방사선 시스템 및 필터 시스템
JP4799620B2 (ja) 放射システムおよびリソグラフィ装置
JP5646632B2 (ja) 光学装置及び反射要素を方向付ける方法
JP4440938B2 (ja) デブリ軽減システムを有するリソグラフィ装置、デブリ軽減システムを有するeuv放射線発生源、及びデブリを軽減させる方法
KR20120052386A (ko) 조명 시스템, 리소그래피 장치, 및 조명 모드를 조정하는 방법
KR20120102145A (ko) 조명 시스템, 리소그래피 장치 및 조명 방법
US20110199600A1 (en) Collector assembly, radiation source, lithographic apparatus and device manufacturing method
JP2007517396A (ja) リソグラフィ装置、及びデブリ軽減システムを備える放射源、並びにリソグラフィ装置におけるデブリ粒子を軽減する方法
JP6326126B2 (ja) 放射コレクタ、放射源及びリソグラフィ装置
US20060011864A1 (en) Radiation generating device, lithographic apparatus, device manufacturing method and device manufactured thereby
JP2010518642A (ja) プラズマ放射源を有する装置、放射ビームを形成する方法、およびリソグラフィ装置
NL2008048C2 (en) Illumination optical system, exposure apparatus, and method of manufacturing device.
JP2005005666A (ja) 複数の抑制メッシュを備えたリトグラフ投影装置
JP5016017B2 (ja) 放射源、リソグラフィ装置及びデバイス製造方法
JP4764900B2 (ja) アセンブリ及びリソグラフィ投影装置
JP2011029639A (ja) 放射源

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R150 Certificate of patent or registration of utility model

Ref document number: 5506763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees