JP2012071464A - 微細加工装置 - Google Patents
微細加工装置 Download PDFInfo
- Publication number
- JP2012071464A JP2012071464A JP2010217157A JP2010217157A JP2012071464A JP 2012071464 A JP2012071464 A JP 2012071464A JP 2010217157 A JP2010217157 A JP 2010217157A JP 2010217157 A JP2010217157 A JP 2010217157A JP 2012071464 A JP2012071464 A JP 2012071464A
- Authority
- JP
- Japan
- Prior art keywords
- light
- substrate
- ribbons
- movable
- ribbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
Abstract
【課題】対象物に対する高精度な微細加工を迅速に行う。
【解決手段】微細加工装置の加工ヘッド4は、基板411上に交互に配列された複数の可動リボン413aおよび固定リボンを有する回折格子型の空間光変調デバイス41、および、空間光変調デバイス41の複数の可動リボン413aから保持部3に向けて突出する複数の切削刃42を備える。加工ヘッド4では、複数の可動リボン413aの昇降により、複数の切削刃42が対象物9の被切削面91に対して個別に接触および離間し、切削刃42が被切削面91に接触した状態で、対象物9が移動されることにより微細切削加工が行われる。微細加工装置では、可動リボン413aの昇降を高精度に制御することにより、対象物9に対する微細切削加工を迅速かつ高精度に行うことができる。
【選択図】図2
【解決手段】微細加工装置の加工ヘッド4は、基板411上に交互に配列された複数の可動リボン413aおよび固定リボンを有する回折格子型の空間光変調デバイス41、および、空間光変調デバイス41の複数の可動リボン413aから保持部3に向けて突出する複数の切削刃42を備える。加工ヘッド4では、複数の可動リボン413aの昇降により、複数の切削刃42が対象物9の被切削面91に対して個別に接触および離間し、切削刃42が被切削面91に接触した状態で、対象物9が移動されることにより微細切削加工が行われる。微細加工装置では、可動リボン413aの昇降を高精度に制御することにより、対象物9に対する微細切削加工を迅速かつ高精度に行うことができる。
【選択図】図2
Description
本発明は、微細加工装置に関する。
近年、半導体製造等において、表面に微細凹凸パターンを有するモールドを対象物に向けて押圧することにより、対象物上に微細凹凸パターンを転写するナノインプリント技術が注目されている。
ナノインプリント用のモールドを製造する方法の1つとして、従来のフォトリソグラフィ法が考えられるが、露光用のマスクが非常に高価であり、また、マスク製造や露光、現像、エッチング等、多数の工程を必要とするため、モールドの製造コストを低減することが困難である。さらに、露光時の高解像度化に限界があるため、ナノスケールのパターンを形成することは難しい。
露光時の高解像度化を実現するための方法として、シンクロトロン放射光装置から発生するX線により、X線マスクを介してパターンを転写するLIGA(Lithographie,Galvanoformung,Abformung)プロセスが知られているが、シンクロトロン放射光装置は日本国内に数台しか存在せず、装置の使用料も非常に高価である。また、従来のフォトリソグラフィ法と同様に、マスク製造や露光、現像、エッチング等、多数の工程を必要とするため、モールドの製造コストを低減することが困難である。
ナノインプリント用のモールドを製造する他の方法としては、特許文献1のように、先端にダイヤモンド砥粒が設けられた加工用のカンチレバーを利用し、ダイヤモンド砥粒により対象物の表面を摩擦することにより、対象物の表面に微細な切削加工を行う技術が知られている。特許文献1の装置では、カンチレバーの先端裏面にレーザダイオードからレーザ光を照射してフォトディテクタにより反射光を受光することにより、カンチレバーの撓みや捩れの状態が光てこ方式により検出され、対象物を保持するスキャナの動きが当該検出結果に基づいて制御される。また、特許文献1では、カンチレバーによる切削加工をエッチング液中にて行うことにより、切削加工とエッチングとを同時に行う技術が提案されている。
一方、特許文献2では、基板上に2層のレジスト層を積層し、微細パターンを有するシリコンモールドを上側のレジスト層に押圧した後、上側のレジスト層に形成された凹部の下側のレジスト層を除去することにより、高アスペクト比のエッチングパターンが形成される。そして、当該エッチングパターンにニッケル電鋳した後に、基板および残留レジスト層を除去することにより、ニッケル製のプラスチック成型用スタンパが形成される。
ところで、特許文献1の加工装置では、1つのカンチレバーにより加工を行うため、大きい加工領域に高分解能にて加工を行おうとすると多大な時間が必要となる。そこで、複数のカンチレバーによる加工により加工時間を短縮することが考えられるが、多数のカンチレバーを高密度に配置することは困難である。仮に、複数のカンチレバーを設けたとしても、各カンチレバーの撓みや捩れの状態を取得するための複数のレーザダイオードや複数のフォトディテクタ等を配置することはさらに困難である。
本発明は、上記課題に鑑みなされたものであり、対象物に対する高精度な微細加工を迅速に行うことを目的としている。
請求項1に記載の発明は、微細加工装置であって、対象物を保持する保持部と、加工ヘッドと、前記保持部を前記加工ヘッドに対して相対的に移動する移動機構と、前記加工ヘッドを制御する制御部とを備え、前記加工ヘッドが、基板と、前記基板の主面に平行な所定の配列方向に配列され、それぞれが前記配列方向に垂直な方向に伸びる帯状であり、静電気力により前記主面に対して昇降する複数の可動リボンと、前記複数の可動リボンのそれぞれの前記基板とは反対側の面から前記保持部に向けて突出する、または、前記複数の可動リボンのそれぞれの前記基板側の面から前記基板を貫通して前記保持部に向けて突出する複数のスタイラスとを備え、前記複数の可動リボンの昇降により、前記複数のスタイラスが前記対象物の被加工面に対して個別に接触および離間する。
請求項2に記載の発明は、請求項1に記載の微細加工装置であって、前記加工ヘッドが、カバー部をさらに備え、前記基板および前記カバー部により形成される空間内に前記複数の可動リボンが収容される。
請求項3に記載の発明は、請求項1または2に記載の微細加工装置であって、前記加工ヘッドと前記対象物との間の距離を測定する測定部をさらに備え、前記制御部が、前記測定部からの出力に基づいて、前記複数の可動リボンのそれぞれとと前記基板との間の距離を制御する。
請求項4に記載の発明は、請求項1ないし3のいずれかに記載の微細加工装置であって、前記加工ヘッドが、前記配列方向において前記複数の可動リボンと交互に配置される複数の固定リボンと、前記複数の可動リボンおよび前記複数の固定リボンに光を照射する光照射部と、前記複数の可動リボンおよび前記複数の固定リボンからの光を受光する受光部とをさらに備え、前記制御部が、前記受光部からの出力に基づいて、それぞれが互いに隣接する1つの可撓リボンと1つの固定リボンとの対である複数のリボン対からの光の強度を求め、前記複数のリボン対からの光の強度に基づいて、前記複数の可動リボンのそれぞれと前記基板との間の距離を制御する。
請求項5に記載の発明は、請求項4に記載の微細加工装置であって、前記光照射部が、光源と、前記光源からの光の前記複数のリボン対上における照射位置を前記配列方向に走査する走査機構とを備え、前記受光部が、前記複数のリボン対からの光を順次受光する。
請求項6に記載の発明は、請求項1ないし5のいずれかに記載の微細加工装置であって、前記複数のスタイラスに個別に光を照射して加熱するスタイラス加熱部をさらに備える。
請求項7に記載の発明は、請求項1ないし6のいずれかに記載の微細加工装置であって、前記対象物が、ナノインプリント用のモールドである。
請求項8に記載の発明は、請求項1ないし7のいずれかに記載の微細加工装置であって、前記複数のスタイラスのそれぞれが、前記対象物の前記被加工面を切削する切削刃である。
本発明では、対象物に対する高精度な微細加工を迅速に行うことができる。また、リボン構造物を利用して複数のスタイラスを容易に配列することができる。
図1は、本発明の第1の実施の形態に係る微細加工装置1を示す側面図である。本実施の形態に係る微細加工装置1は、対象物9の被加工面である(+Z)側の主面91(以下、「被切削面91」という。)に微細切削加工を行う装置である。本実施の形態では、ナノインプリント用のモールドとなる平板状の対象物9(例えば、石英やシリコン(Si)、あるいは、ニッケル(Ni)等の金属により形成された基板)上に微細な凹凸パターンが形成される。
図1に示すように、微細加工装置1は、対象物9を保持するステージ状の保持部3、保持部3の(+Z)側(すなわち、上方)に配置される加工ヘッド4、保持部3を加工ヘッド4に対して相対的に移動する移動機構2、対象物9と加工ヘッド4との間のZ方向の距離を測定する測定部5、および、これらの構成を制御する制御部7を備える。加工ヘッド4および測定部5は、保持部3を跨いで基台11上に設けられたフレーム12に固定される。
移動機構2は、保持部3を水平方向にて回転する回転機構21、回転機構21を介して保持部3を支持する支持プレート22、保持部3を支持プレート22と共に水平方向であるX方向(以下、「副走査方向」という。)に移動する副走査機構23、副走査機構23を介して保持部3を支持するベースプレート24、および、保持部3をベースプレート24と共にX方向に垂直かつ水平なY方向(以下、「主走査方向」という。)に移動する主走査機構25を備える。微細加工装置1では、移動機構2により、対象物9の被切削面91に平行な主走査方向および副走査方向に保持部3が移動される。
副走査機構23は、ピエゾアクチュエータ26を介してベースプレート24に固定され、主走査機構25は、ピエゾアクチュエータ27を介して基台11に固定される。対象物9の被切削面91のうねりや移動機構2の傾き等により被切削面91が所定の高さからずれた場合には、ピエゾアクチュエータ26およびピエゾアクチュエータ27により、対象物9の被切削面91が所定の高さに位置するように保持部3の高さや傾きが調整される。
副走査機構23は、保持部3の下側(すなわち、(−Z)側)において、副走査方向に伸びるリニアモータ231、並びに、リニアモータ231の(+Y)側および(−Y)側において副走査方向に伸びる一対のリニアガイド232を備える。主走査機構25は、ベースプレート24の下側において、主走査方向に伸びるリニアモータ251、並びに、リニアモータ251の(+X)側および(−X)側において主走査方向に伸びる一対のエアスライダ252を備える。
図2および図3はそれぞれ、加工ヘッド4の内部構造を示す側面図および平面図である。図2および図3では、加工ヘッド4のヘッド本体40を破線にて示し、ヘッド本体40の内部を実線にて示す。加工ヘッド4は、回折格子型の空間光変調デバイス41を備え、空間光変調デバイス41は、シリコンで形成された基板411、基板411の(−Z)側の主面412(以下、「基板下面412」という。)上に設けられた複数の可動リボン413aおよび複数の固定リボン413bを備える。空間光変調デバイス41は、半導体装置製造技術を利用して製造され、複数の可動リボン413aおよび複数の固定リボン413bは、基板下面412に平行な所定の配列方向であるX方向に交互に配列される。各可動リボン413aおよび各固定リボン413bは、配列方向に垂直なY方向に伸びる帯状であり、窒化ケイ素(シリコンナイトライド:Si3N4)の表面にアルミニウムをコーティングしたものである。
各可動リボン413aおよび各固定リボン413bは、基板下面412から所定の距離だけ(−Z)側に配置され、(+Y)側および(−Y)側の両端にて基板411に接続される。空間光変調デバイス41では、基板下面412に設けられた電極414と各可動リボン413aとの間に電圧が付与されて静電気力が発生することにより、複数の可動リボン413aが個別に撓んで基板下面412に近づく。すなわち、複数の可動リボン413aは、静電気力により基板下面412に対して個別に昇降する。図3では、図の理解を容易にするために電極414の図示を省略している。また、複数の固定リボン413bは、基板下面412に対して固定される。空間光変調デバイス41としては、例えば、GLV(Grating Light Valve:グレーチング・ライト・バルブ)(シリコン・ライト・マシーンズ(サニーベール、カリフォルニア)の登録商標)が利用される。
加工ヘッド4は、複数の可動リボン413aのそれぞれの(−Z)側の面(すなわち、基板411とは反対側の面)から対象物9および保持部3(図1参照)に向けて突出する複数のスタイラス42、および、空間光変調デバイス41の基板下面412上に設けられたカバー部43をさらに備える。複数のスタイラス42はそれぞれ、被切削面91を切削する刃であり、以下の説明では、「切削刃42」という。加工ヘッド4では、カバー部43および空間光変調デバイス41の基板411により形成される空間内に複数の可動リボン413aおよび複数の固定リボン413bが収容される。カバー部43の(−Z)側の面には、切削刃42用の貫通孔が形成されており、複数の切削刃42は当該貫通孔を介してカバー部43の(−Z)側の面よりも下方に突出している。
加工ヘッド4では、制御部7(図1参照)からの切削信号に基づく複数の可動リボン413aの昇降により、複数の切削刃42が対象物9の被切削面91に対して個別に接触および離間する。また、可動リボン413aの基板下面412からの高さが制御されることにより、切削刃42の被切削面91への接触の程度が制御される。具体的には、可動リボン413aが撓んでいない状態(すなわち、固定リボン413bと同じ高さに位置する状態)では、切削刃42が被切削面91に接触しており、可動リボン413aが撓んで基板411に近づくに従って切削刃42の被切削面91への接触の程度が低減されて切削刃42が被切削面91から離間する。そして、可動リボン413aが基板411に最も近接した状態では、切削刃42は被切削面91から離間している。
本実施の形態では、切削刃42はダイヤモンドにより形成され、可動リボン413aの(−Z)側の面に接着される。切削刃42の高さは、約5μm〜10μmである。可動リボン413aおよび固定リボン413bのY方向の長さは約500μmであり、X方向の幅は約20μmである。また、可動リボン413aおよび固定リボン413bのZ方向の厚さは約1μm〜2μmであり、可動リボン413aのZ方向の可動量は約2μm〜3μmである。なお、実際の可動リボン413aおよび固定リボン413bの個数は、図3に示すものよりも多く、例えば、数千個である。
微細加工装置1では、切削刃42が対象物9の被切削面91に接触した状態で、移動機構2(図1参照)により対象物9が保持部3とともに主走査方向であるY方向に移動されることにより、対象物9の微細切削加工が行われる。
加工ヘッド4は、複数の可動リボン413aおよび複数の固定リボン413bに光を照射する光照射部44、および、複数の可動リボン413aおよび複数の固定リボン413bからの光を受光する受光部45をさらに備える。光照射部44は、波長1.55μmのレーザ光を出射する光源441、光源441からの光を反射して走査する走査機構であるポリゴンミラー443、光源441とポリゴンミラー443との間に配置されるコリメータレンズ442、および、ポリゴンミラー443と空間光変調デバイス41との間に配置されるfθレンズ444を備える。光照射部44からの光は、空間光変調デバイス41の基板411を介して、可動リボン413aおよび固定リボン413bの(+Z)側の面(すなわち、基板411側の面)に照射され、可動リボン413aおよび固定リボン413bからの光も、基板411を介して受光部45へと入射する。
受光部45は、空間光変調デバイス41からの光を受光するフォトダイオード452、および、空間光変調デバイス41とフォトダイオード452との間に配置される集光レンズ451を備える。制御部7(図1参照)では、ポリゴンミラー443が図3中における反時計回りに回転することにより、光源441からの光の空間光変調デバイス41上における照射位置が(−X)方向(すなわち、複数の可動リボン413aおよび複数の固定リボン413bの配列方向)に走査される。加工ヘッド4では、電極414が透明電極であり、空間光変調デバイス41への光の入出射を妨げることがないため、必要に応じて容易に電極414の面積を大きくすることができる。
図4.Aおよび図4.Bは、可動リボン413aおよび固定リボン413bに対して垂直な面における空間光変調デバイス41の断面を示す図である。図4.Aに示すように可動リボン413aおよび固定リボン413bが基準面である基板下面412に対して同じ高さに位置する(すなわち、可動リボン413aが撓まない)場合には、可動リボン413aおよび固定リボン413bの表面は面一となり、入射光L1の反射光が0次光L2として導出される。一方、図4.Bに示すように可動リボン413aが固定リボン413bよりも基板下面412側に撓む場合には、固定リボン413bが回折格子の溝の底面となり、1次回折光L3(さらには、高次回折光)が空間光変調デバイス41から導出され、0次光L2は消滅する。このように、空間光変調デバイス41は回折格子を利用した光変調を行う。
光照射部44から出射された光は、空間光変調デバイス41において互いに隣接する1つの可動リボン413aと1つの固定リボン413bとの対であるリボン対上に点状に照射される。上述のように、空間光変調デバイス41では、制御部7からの切削信号に基づいて複数の可動リボン413aがそれぞれ制御されて昇降する。これにより、複数のリボン対が0次光(正反射光)を出射する状態と、非0次回折光(主として1次回折光((+1)次回折光および(−1)次回折光))を出射する状態との間で遷移される。空間光変調デバイス41から出射される1次回折光は、図2および図3に示すように、集光レンズ451を介してフォトダイオード452により受光される。また、0次光は、迷光となることを防止するために図示省略の遮光部により遮光される。
空間光変調デバイス41では、図4.Aに示すように、可動リボン413aと固定リボン413bとの基板下面412からの高さが等しい場合、フォトダイオード452には光は入射しない。また、図4.Bに示すように、可動リボン413aが基板下面412に最も近接した状態では、1次回折光がフォトダイオード452により受光される。以下の説明では、図4.Bに示す可動リボン413aの位置を「最近接位置」といい、図4.Aに示す可動リボン413aの位置を「最離間位置」という。また、可動リボン413aが、最近接位置と最離間位置との間に位置する場合、可動リボン413aは「中間位置」に位置すると説明する。可動リボン413aが中間位置に位置する状態では、フォトダイオード452にて受光される1次回折光の強度は、可動リボン413aが最近接位置から離れるに従って(すなわち、可動リボン413aと基板411との間の距離が大きくなるに従って)低下する。
加工ヘッド4では、光源441からの光の複数のリボン対上における照射位置が、ポリゴンミラー443によりX方向(すなわち、リボン対の配列方向)に走査され、受光部45のフォトダイオード452により、複数のリボン対からの1次回折光(以下、「信号光」ともいう。)が順次受光される。制御部7では、フォトダイオード452からの出力に基づいて、空間光変調デバイス41の複数のリボン対からの信号光の強度がそれぞれ求められ、複数のリボン対からの信号光の強度に基づいて、各可動リボン413aと基板411との間の距離が求められる。そして、当該距離が制御部7から可動リボン413aに送られた切削信号に基づく目標距離と異なっている場合には、制御部7により切削信号が補正されて当該距離が制御される。微細加工装置1では、対象物9に対する切削加工が行われている間、ポリゴンミラー443による光の走査、受光部45による信号光の受光、および、切削信号の補正(すなわち、各可動リボン413aと基板411との間の距離の制御)が繰り返される。
図1に示す測定部5は、対象物9の(+Z)側に配置され、非接触にて測定部5と対象物9の被切削面91との間の距離を測定する。測定部5としては、レーザセンサや静電容量センサ、トンネル電流を利用したSTM(Scanning Tunneling Microscopy)等が利用される。測定部5は、加工ヘッド4の(−Y)側に加工ヘッド4と共にフレーム12に固定されており、保持部3が(+Y)側に移動して切削加工が行われる際に、被切削面91の切削加工が行われる予定の領域と測定部5との間のZ方向の距離を測定する。制御部7では、測定部5からの出力に基づいて、被切削面91上の各領域において加工ヘッド4と被切削面91との間の距離が求められ、当該距離と所定の距離との間に差がある場合は、各領域の切削加工が行われる際に、当該差を相殺するように切削信号が補正されて各可動リボン413aと基板411との間の距離が制御される。
以上に説明したように、微細加工装置1では、半導体装置製造技術により形成された空間光変調デバイス41の複数の可動リボン413a上に複数の切削刃42を設けることにより、個別に昇降する複数の切削刃42を容易に緻密に配列することができる。そして、これらの切削刃42により対象物9に対する切削を行うことにより、精密な微細切削加工を迅速に行うことができる。さらに、可動リボン413aの昇降を高精度に制御することにより、対象物9に対する微細切削加工を高精度に行うことができる。
また、微細加工装置1では、従来のフォトリソグラフィ法のように高価なマスクやLIGAプロセスのように高価なシンクロトロン放射光装置を使用することなく、低コストにて微細加工を行うことができる。さらに、マスク製造や露光、現像等の工程も不要となるため、微細加工を迅速かつより低コストにて行うことができる。このように、高精度な微細切削加工を迅速かつ低コストにて行うことが可能な微細加工装置1は、ナノインプリント用のモールドの加工に特に適している。
加工ヘッド4では、複数の可動リボン413aおよび複数の固定リボン413bが、基板411およびカバー部43により形成される空間に収容されることにより、対象物9の切削により生じた切りくず等が可動リボン413aや固定リボン413bに付着することが防止される。このため、切りくず等により可動リボン413aの動作が妨げられることが防止され、微細加工装置1の誤作動が防止される。
微細加工装置1では、加工ヘッド4と対象物9との間の距離を測定する測定部5が設けられ、測定部5からの出力に基づいて可動リボン413aと基板411との間の距離が制御される。これにより、被切削面91のうねりや変形等の形状変化や移動機構2の傾き等の影響を抑制し、より高精度な微細切削加工を実現することができる。
微細加工装置1では、回折型の空間光変調デバイス41の各可動リボン413aに切削刃42が設けられ、空間光変調デバイス41からの信号光に基づいて各可動リボン413aと基板411との間の距離が求められて当該距離が制御される。これにより、切削刃42と被切削面91との接触の程度が高精度に制御され、その結果、さらに高精度な微細切削加工を実現することができる。また、空間光変調デバイス41からの信号光として、可動リボン413aと基板411との間の距離により強度が大きく変化する1次回折光を利用することにより、可動リボン413aと基板411との間の距離をより高精度に求めることができる。その結果、さらに高精度な微細切削加工を実現することができる。
加工ヘッド4では、光源441からの光の複数のリボン対上における照射位置が配列方向に走査され、受光部45にて複数のリボン対からの信号光が順次受光される。これにより、複数のリボン対に線状光を照射して複数のリボン対からの信号光を同時に受光する場合に比べて、各可動リボン413aの基板411からの距離をさらに高精度に求めることができる。その結果、より一層高精度な微細切削加工を実現することができる。
図5に示すように、微細加工装置1では、複数のスタイラスである切削刃42に個別に光を照射して加熱するスタイラス加熱部6が設けられてもよい。スタイラス加熱部6は、複数のレーザダイオード61を有し、各レーザダイオード61からミラー62を介して切削刃42に光が照射されることにより、各切削刃42が加熱される。これにより、対象物9に対する微細切削加工を、より迅速に行うことができる。スタイラス加熱部6による各切削刃42の加熱は、好ましくは、各切削刃42の対象物9への接触時のみ(あるいは、各切削刃42が対象物9に接触する直前から離間するまでの間のみ)行われる。これにより、切削刃42の不要な加熱を防止することができる。なお、図5では、切削刃42への光の照射は側方から行われるが、例えば、切削刃42が可動リボン413aを貫通するように可動リボン413aに取り付けられている場合、切削刃42の上端部にスタイラス加熱部6から光が照射されてもよい。
ところで、切削刃42は通常、刃先から根本に向かうに従って断面積が大きくなる。このため、深いパターンを形成しようとするとパターン幅が大きくなる。そこで、図6.Aに示すように、ナノインプリンタのモールドとなる予定のベース基板92の表面にレジスト膜93が形成された対象物9aに対して微細切削加工を行い、レジスト膜93およびベース基板92に細いパターン94aを形成した上で、異方性エッチングを行うことにより、図6.Bに示すように、高アスペクト比のパターン94b(すなわち、幅が細く、かつ、深いパターン)を対象物9aに形成することができる。
次に、本発明の第2の実施の形態に係る微細加工装置について説明する。図7は、第2の実施の形態に係る微細加工装置の加工ヘッド4aの内部構造を示す側面図である。第2の実施の形態に係る微細加工装置は、加工ヘッドの構造が異なる点を除き、図1に示す微細加工装置1と同様の構成を備え、以下の説明では、対応する構成に同符号を付す。
図7に示すように、加工ヘッド4aは、第1の実施の形態と同様の空間光変調デバイス41、光照射部44および受光部45を備える。加工ヘッド4aでは、空間光変調デバイス41の複数の可動リボン413a、複数の固定リボン413b(図3参照)および電極414が、基板411の(+Z)側の主面415(以下、「基板上面415」という。)上に設けられる。複数の切削刃42aは、複数の可動リボン413aのそれぞれの(−Z)側の面(すなわち、基板411側の面)から、電極414および基板411を貫通して対象物9および保持部3(図1参照)に向けて突出する。
加工ヘッド4aでは、基板411の基板上面415を覆うカバー部43aが設けられ、複数の可動リボン413aおよび複数の固定リボン413bは、カバー部43aおよび基板411により形成される空間内に収容される。カバー部43aの(+Z)側の面にはカバーガラス431が設けられ、光照射部44からの光はカバーガラス431を介して、複数の可動リボン413aおよび固定リボン413bの(+Z)側の面(すなわち、基板411とは反対側の面)に照射され、複数の可動リボン413aおよび複数の固定リボン413bからの1次回折光もカバーガラス431を介して受光部45へと入射する。
加工ヘッド4aでは、加工ヘッド4と同様に、制御部7(図1参照)からの切削信号に基づく複数の可動リボン413aの昇降により、複数の切削刃42が対象物9の被切削面91に対して個別に接触および離間する。また、可動リボン413aの基板上面415からの高さが制御されることにより、切削刃切削刃切削刃切削刃切削刃切削刃42aの被切削面91への接触の程度が制御される。具体的には、可動リボン413aが撓んでいない状態(すなわち、固定リボン413bと同じ高さに位置する状態)では、切削刃42aが被切削面91から離間しており、可動リボン413aが撓んで基板411に近づくに従って切削刃42aが被切削面91に近づいて接触する。そして、切削刃42aが基板411に接触した後は、可動リボン413aが基板411に近づくに従って、切削刃42aの被切削面91との接触の程度が増大する。
第2の実施の形態に係る微細加工装置では、第1の実施の形態と同様に、空間光変調デバイス41の複数の可動リボン413a上に複数の切削刃42aを設けることにより、個別に昇降する複数の切削刃42aを容易に緻密に配列することができる。そして、これらの切削刃42aにより対象物9に対する切削を行うことにより、精密な微細切削加工を迅速に行うことができる。さらに、可動リボン413aの昇降を高精度に制御することにより、対象物9に対する微細切削加工を高精度に行うことができる。
加工ヘッド4aでは、特に、可動リボン413aおよび固定リボン413bの基板411とは反対側の面に向けて光照射部44から光が照射されるため、空間光変調デバイス41の基板411を、光照射部44からの光が透過する材料で形成する必要がない。このため、基板411の材料選択の自由度を向上することができる。また、基板411上の電極414が、光照射部44から受光部45へと至る光路上に位置しないため、電極414の大きさや材料の選択の自由度も向上される。
一方、第1の実施の形態に係る加工ヘッド4では、切削刃42aが可動リボン413aの基板411とは反対側の面に設けられることにより、切削刃42aの可動リボン413aからの高さを低くすることができる。これにより、切削刃42aの製造に係るコストを低減することができる。
以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく、様々な変更が可能である。
例えば、切削刃42,42aは、可動リボン413a上にダイヤモンド粉末を載置して焼結加工することにより形成されてもよい。また、切削刃42,42aは、対象物9よりも硬い材料であれば、ダイヤモンド以外の材料により形成されてもよい。例えば、切削刃42,42aは、超硬合金やカーボン等により形成されてもよく、可動リボン413a上にてカーボンナノチューブを成長させることにより形成されてもよい。さらには、可動リボン413aが窒化ケイ素のように硬い材料にて形成されている場合、可動リボン413aの表面をエッチング等により加工することにより切削刃42が形成されてもよい。
上記実施の形態に係る微細加工装置では、各可動リボン413aと基板411との間の距離が十分に精度良く取得できるのであれば、受光部45にて受光される信号光として空間光変調デバイス41からの0次光が利用されてもよい。また、空間光変調デバイス41の複数の可動リボン413aおよび複数の固定リボン413bに、配列方向に伸びる線状光が光照射部44から照射され、空間光変調デバイス41からの線状光が、受光部45に設けられた1次元CCD等により受光されることにより、複数の可動リボン413aのそれぞれと基板411との間の距離がほぼ同時に取得されてもよい。
測定部5による測定は、対象物9の切削加工と必ずしも並行して行われる必要はない。例えば、測定部5と加工ヘッド4,4aとが個別に移動可能とされ、切削加工が行われるよりも前に、加工ヘッド4,4aが対象物9上から退避した状態で、測定部5による測定が被切削面91の全面に亘って行われてもよい。
上記実施の形態では、ナノインプリント用のモールドとなる予定の対象物9の被切削面91に対して切削刃42,42aを用いて切削加工を行う微細加工装置について説明したが、当該微細加工装置では、切削刃42,42aに代えて他の種類のスタイラスを用いて対象物の被加工面に対する様々な微細加工が行われてもよい。例えば、スタイラスにレーザを照射して対象物の融点や沸点以上に加熱し、当該スタイラスを対象物の被加工面に接触させることにより、被加工面を切削することなく、被加工面に対する除去加工が行われてもよい。
微細加工措置では、対象物の被加工面の除去を伴わない微細加工が行われてもよく、例えば、上記実施の形態と同様の切削刃42,42aを用い、対象物の被加工面に切削刃42,42aの先端を接触させつつ上滑りさせ(すなわち、切削刃42,42aの先端を被加工面に切り込ませることなく移動し)、被加工面の表層部に一定の深さでアモルファス層を形成する表面改質が行われてもよい。また、先端を半球形に成形したスタイラスにより対象物の被加工面を押圧して塑性変形させることにより、ナノレンズのモールドが形成されてもよい。いずれの場合も、上記と同様に、対象物に対する高精度な微細加工を迅速に行うことができる。
上記実施の形態に係る微細加工装置は、ナノインプリント用のモールドの製造以外にも、例えば、半導体やフラットパネルディスプレイ用の基板、MEMS(Micro Electro Mechanical Systems)の製造に利用されてもよく、マイクロ電子部品の印刷や対象物のエンボス加工に利用されてもよい。
上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わせられてよい。
1 微細加工装置
2 移動機構
3 保持部
4,4a 加工ヘッド
5 測定部
6 スタイラス加熱部
7 制御部
9,9a 対象物
42,42a 切削刃
43,43a カバー部
44 光照射部
45 受光部
91 被切削面
411 基板
413a 可動リボン
413b 固定リボン
441 光源
443 ポリゴンミラー
2 移動機構
3 保持部
4,4a 加工ヘッド
5 測定部
6 スタイラス加熱部
7 制御部
9,9a 対象物
42,42a 切削刃
43,43a カバー部
44 光照射部
45 受光部
91 被切削面
411 基板
413a 可動リボン
413b 固定リボン
441 光源
443 ポリゴンミラー
Claims (8)
- 微細加工装置であって、
対象物を保持する保持部と、
加工ヘッドと、
前記保持部を前記加工ヘッドに対して相対的に移動する移動機構と、
前記加工ヘッドを制御する制御部と、
を備え、
前記加工ヘッドが、
基板と、
前記基板の主面に平行な所定の配列方向に配列され、それぞれが前記配列方向に垂直な方向に伸びる帯状であり、静電気力により前記主面に対して昇降する複数の可動リボンと、
前記複数の可動リボンのそれぞれの前記基板とは反対側の面から前記保持部に向けて突出する、または、前記複数の可動リボンのそれぞれの前記基板側の面から前記基板を貫通して前記保持部に向けて突出する複数のスタイラスと、
を備え、
前記複数の可動リボンの昇降により、前記複数のスタイラスが前記対象物の被加工面に対して個別に接触および離間することを特徴とする微細加工装置。 - 請求項1に記載の微細加工装置であって、
前記加工ヘッドが、カバー部をさらに備え、
前記基板および前記カバー部により形成される空間内に前記複数の可動リボンが収容されることを特徴とする微細加工装置。 - 請求項1または2に記載の微細加工装置であって、
前記加工ヘッドと前記対象物との間の距離を測定する測定部をさらに備え、
前記制御部が、前記測定部からの出力に基づいて、前記複数の可動リボンのそれぞれとと前記基板との間の距離を制御することを特徴とする微細加工装置。 - 請求項1ないし3のいずれかに記載の微細加工装置であって、
前記加工ヘッドが、
前記配列方向において前記複数の可動リボンと交互に配置される複数の固定リボンと、
前記複数の可動リボンおよび前記複数の固定リボンに光を照射する光照射部と、
前記複数の可動リボンおよび前記複数の固定リボンからの光を受光する受光部と、
をさらに備え、
前記制御部が、
前記受光部からの出力に基づいて、それぞれが互いに隣接する1つの可撓リボンと1つの固定リボンとの対である複数のリボン対からの光の強度を求め、
前記複数のリボン対からの光の強度に基づいて、前記複数の可動リボンのそれぞれと前記基板との間の距離を制御することを特徴とする微細加工装置。 - 請求項4に記載の微細加工装置であって、
前記光照射部が、
光源と、
前記光源からの光の前記複数のリボン対上における照射位置を前記配列方向に走査する走査機構と、
を備え、
前記受光部が、前記複数のリボン対からの光を順次受光することを特徴とする微細加工装置。 - 請求項1ないし5のいずれかに記載の微細加工装置であって、
前記複数のスタイラスに個別に光を照射して加熱するスタイラス加熱部をさらに備えることを特徴とする微細加工装置。 - 請求項1ないし6のいずれかに記載の微細加工装置であって、
前記対象物が、ナノインプリント用のモールドであることを特徴とする微細加工装置。 - 請求項1ないし7のいずれかに記載の微細加工装置であって、
前記複数のスタイラスのそれぞれが、前記対象物の前記被加工面を切削する切削刃であることを特徴とする微細加工装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010217157A JP2012071464A (ja) | 2010-09-28 | 2010-09-28 | 微細加工装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010217157A JP2012071464A (ja) | 2010-09-28 | 2010-09-28 | 微細加工装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012071464A true JP2012071464A (ja) | 2012-04-12 |
Family
ID=46167814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010217157A Pending JP2012071464A (ja) | 2010-09-28 | 2010-09-28 | 微細加工装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012071464A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015115471A1 (ja) * | 2014-01-28 | 2015-08-06 | 国立大学法人大阪大学 | 観察装置、デバイス、デバイス製造方法、粒径測定方法、耐性観察方法、化学的反応方法、粒子保存方法、及び自動観察装置 |
-
2010
- 2010-09-28 JP JP2010217157A patent/JP2012071464A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015115471A1 (ja) * | 2014-01-28 | 2015-08-06 | 国立大学法人大阪大学 | 観察装置、デバイス、デバイス製造方法、粒径測定方法、耐性観察方法、化学的反応方法、粒子保存方法、及び自動観察装置 |
JPWO2015115471A1 (ja) * | 2014-01-28 | 2017-03-23 | 国立大学法人大阪大学 | 観察装置、デバイス、デバイス製造方法、粒径測定方法、耐性観察方法、化学的反応方法、粒子保存方法、及び自動観察装置 |
JP2018049019A (ja) * | 2014-01-28 | 2018-03-29 | 国立大学法人大阪大学 | デバイス、デバイス製造方法、粒径測定方法、耐性観察方法、化学的反応方法、粒子保存方法、及び自動観察装置 |
US10429287B2 (en) | 2014-01-28 | 2019-10-01 | Osaka University | Interferometric method for measuring a size of particle in the presence of a gap |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5591173B2 (ja) | インプリント方法およびインプリント装置 | |
JP5268239B2 (ja) | パターン形成装置、パターン形成方法 | |
JP4958614B2 (ja) | パターン転写装置、インプリント装置、パターン転写方法および位置合わせ装置 | |
JP2007296783A (ja) | 加工装置及び方法、並びに、デバイス製造方法 | |
JP7347554B2 (ja) | 加工装置及び加工方法 | |
JP5284212B2 (ja) | 半導体装置の製造方法 | |
KR100753380B1 (ko) | 다중 노광빔에 대한 이미지 강화 | |
CN103983205B (zh) | 微阵列型复杂曲面光学元件的复合测量系统与测量方法 | |
US20070229788A1 (en) | Exposure apparatus and device manufacturing method | |
EP1526411A1 (en) | Apparatus and method for aligning surface | |
JP2008536331A (ja) | 複数の露光ビームによるリソグラフィ・ツールのための方法 | |
JP5247777B2 (ja) | インプリント装置およびデバイス製造方法 | |
JP2006165371A (ja) | 転写装置およびデバイス製造方法 | |
JP5379564B2 (ja) | インプリント装置、および物品の製造方法 | |
TWI703412B (zh) | 修改一支撐表面之工具 | |
JP5989897B2 (ja) | パターニングデバイスの表面からの位置及び曲率情報の直接的な判定 | |
JP2007299994A (ja) | 加工装置及び方法、並びに、デバイス製造方法 | |
JP2007163333A (ja) | 走査型プローブ顕微鏡 | |
JP2012071464A (ja) | 微細加工装置 | |
JP4522166B2 (ja) | 露光方法 | |
JP5449263B2 (ja) | 製造工程装置 | |
JP5034294B2 (ja) | 圧電体薄膜評価装置及び圧電体薄膜の評価方法 | |
JP5548914B2 (ja) | 加工用カンチレバー | |
US20240178042A1 (en) | Systems, devices, and methods for registering a superstrate of an imprint tool | |
JP4811027B2 (ja) | 研摩装置 |