JP2012060774A - Rotor of synchronous motor - Google Patents

Rotor of synchronous motor Download PDF

Info

Publication number
JP2012060774A
JP2012060774A JP2010201448A JP2010201448A JP2012060774A JP 2012060774 A JP2012060774 A JP 2012060774A JP 2010201448 A JP2010201448 A JP 2010201448A JP 2010201448 A JP2010201448 A JP 2010201448A JP 2012060774 A JP2012060774 A JP 2012060774A
Authority
JP
Japan
Prior art keywords
rotor
core
rotor core
magnetic
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010201448A
Other languages
Japanese (ja)
Other versions
JP5279780B2 (en
Inventor
Atsushi Matsuoka
篤 松岡
Kazuhiko Baba
和彦 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010201448A priority Critical patent/JP5279780B2/en
Publication of JP2012060774A publication Critical patent/JP2012060774A/en
Application granted granted Critical
Publication of JP5279780B2 publication Critical patent/JP5279780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a rotor of a synchronous motor for achieving the synchronous motor of low noise, high output, high efficiency and a low cost.SOLUTION: In the rotor of the synchronous motor related to this invention, by arranging openings of a first rotor core and a second rotor core at different ends of respective magnetic poles and combining the first rotor core and the second rotor core, the opening of one and the nonmagnetic part of the other or the nonmagnetic part of one and the opening of the other are communicated in an axial direction, and a fixing component comprising a nonmagnetic material is inserted to the communicated nonmagnetic part and opening.

Description

この発明は、永久磁石を用いる同期電動機の回転子に関する。   The present invention relates to a rotor of a synchronous motor using permanent magnets.

空気調和機を含む家庭用電気製品の、例えば、送風機等に用いられる同期電動機(ブラシレスDCモータ)は、効率の高いこと、あるいは小型、軽量であることが求められる場合が多い。これらの要求に応えるために、NdFeBの焼結磁石に代表されるような、磁力の高い永久磁石を採用するものが多い。   For example, a synchronous motor (brushless DC motor) used in a household electrical product including an air conditioner, for example, for a blower or the like is often required to have high efficiency or be small and light. In order to meet these requirements, many employ a permanent magnet having a high magnetic force, such as a NdFeB sintered magnet.

NdFeBは、ネオジム、鉄、ホウ素の化合物であり、代表的なものとして、NdFe14Bが大変強力な永久磁石・ネオジム磁石となることで、いろいろな分野で利用されている。 NdFeB is a compound of neodymium, iron, and boron. As a typical example, Nd 2 Fe 14 B is used in various fields by becoming a very strong permanent magnet / neodymium magnet.

NdFeBのような希土類の焼結磁石の場合、大きな塊から必要な形状の永久磁石を切り出すという製造方法をとることが多い。そのため、加工コストを含めた永久磁石の価格を抑えるために、比較的単純な形状である平板の永久磁石が多く用いられる。   In the case of a rare earth sintered magnet such as NdFeB, a manufacturing method is often employed in which a permanent magnet having a required shape is cut from a large mass. Therefore, in order to suppress the price of the permanent magnet including the processing cost, a flat permanent magnet having a relatively simple shape is often used.

このような平板状の永久磁石を用いる同期電動機では、磁性材料の内部に永久磁石を配置する、磁石埋め込み型(IPM:Interior Permanent Magnet)の回転子を用いることが多い。この場合、隣り合って配置される永久磁石の間には磁性体(回転子鉄心)が存在する。そのため、この磁性体の部分で磁極間の磁束が短絡してしまい、固定子の巻線に鎖交する回転子の磁束が減少してしまう。磁極数が多くなると、この磁束が短絡する場所が増えることになるため、固定子の巻線に鎖交する磁束がさらに減少してしまう。このため、一般的には、磁極間の磁性体を極力薄肉で構成し、部分的に磁気飽和を起こさせて、磁極間で磁束の短絡が生じることを抑えるという方法がとられる。   In such a synchronous motor using a plate-like permanent magnet, an embedded permanent magnet (IPM) rotor in which a permanent magnet is arranged in a magnetic material is often used. In this case, a magnetic body (rotor core) exists between the permanent magnets arranged adjacent to each other. For this reason, the magnetic flux between the magnetic poles is short-circuited in the magnetic material portion, and the magnetic flux of the rotor interlinking with the stator winding is reduced. As the number of magnetic poles increases, the number of places where this magnetic flux is short-circuited increases, so that the magnetic flux linked to the stator windings further decreases. For this reason, generally, a method is adopted in which the magnetic material between the magnetic poles is made as thin as possible and magnetic saturation is partially caused to prevent a magnetic flux from being short-circuited between the magnetic poles.

磁束の短絡をさらに抑える方法として、磁極間の磁性体を取り除いた形態をとる回転子が提案されている。即ち、回転子を構成する磁性体を一体の部品で構成せず、平板状の永久磁石の内周側の磁性体部と永久磁石の外周側の磁性体部を別部品で構成して、軸方向の両側から、それらを貫通して一体化する部材を用いて構成する回転子が提案されている(例えば、特許文献1参照)。   As a method for further suppressing the short circuit of the magnetic flux, a rotor having a form in which a magnetic body between magnetic poles is removed has been proposed. In other words, the magnetic body constituting the rotor is not configured as an integral part, but the magnetic body part on the inner peripheral side of the flat permanent magnet and the magnetic body part on the outer peripheral side of the permanent magnet are configured as separate parts, and the shaft There has been proposed a rotor configured by using a member that penetrates and integrates them from both sides in a direction (see, for example, Patent Document 1).

また、回転子を構成する磁性体での磁束の短絡を抑える効果は少なくなるが、永久磁石の片側の磁極間の磁性体を取り除いた形状の鉄心を積層して構成し、樹脂のモールドによって固定するアウターロータ型の回転子が提案されている(例えば、特許文献2参照)。   In addition, the effect of suppressing the short circuit of the magnetic flux in the magnetic body that constitutes the rotor is reduced, but it is constructed by laminating the iron core in a shape that removes the magnetic body between the magnetic poles on one side of the permanent magnet, and fixed by a resin mold An outer rotor type rotor has been proposed (see, for example, Patent Document 2).

特開平10−164784号公報Japanese Patent Laid-Open No. 10-164784 特開2004−25443号公報JP 2004-25443 A

しかしながら、上記特許文献1記載の回転子は、磁極間の磁束短絡を防止して、固定子巻線により多くの磁束を鎖交させることが可能であるが、回転子の永久磁石内側の磁性体材料と永久磁石外側の磁性体材料が別部品となるため、組立の工程が増えるという課題が生じる。   However, the rotor described in Patent Document 1 can prevent a magnetic flux short circuit between the magnetic poles and link more magnetic flux to the stator winding, but the magnetic body inside the permanent magnet of the rotor. Since the material and the magnetic material outside the permanent magnet are separate parts, there arises a problem that the number of assembly steps increases.

また、回転子の磁極間に磁性体がないため、磁極間付近での磁束の密度の変化が大きく、同期電動機のコギングトルクが増加し、振動・騒音の要因となりやすい。   In addition, since there is no magnetic material between the magnetic poles of the rotor, the change in magnetic flux density near the magnetic poles is large, the cogging torque of the synchronous motor is increased, and this is likely to cause vibration and noise.

また、上記特許文献2記載の回転子は、鉄心および永久磁石を樹脂によってモールドすることで、これらを一体化することが可能であるが、樹脂と鉄心では材料の温度変化に対する線膨張係数が大きく異なるため、ヒートショック等の環境変化の繰り返しの中で、鉄心と樹脂が剥離する可能性がある。特許文献2記載の回転子の場合、アウターロータ型の回転子であるため、仮に鉄心と樹脂に剥離が生じても樹脂が飛散することは無いが、インナーロータ型の回転子で同回転子を製造した場合、遠心力によって剥離した樹脂が飛散したり、永久磁石外周部の鉄心が薄肉部で変形を起こして固定子と接触する可能性もある。   The rotor described in Patent Document 2 can be integrated by molding an iron core and a permanent magnet with a resin. However, the resin and the iron core have a large linear expansion coefficient with respect to temperature changes of the material. Because of differences, the iron core and the resin may peel off during repeated environmental changes such as heat shock. In the case of the rotor described in Patent Document 2, since it is an outer rotor type rotor, the resin does not scatter even if the iron core and the resin are peeled off. However, the inner rotor type rotor does not scatter the rotor. When manufactured, the resin peeled off by the centrifugal force may be scattered, or the iron core of the outer periphery of the permanent magnet may be deformed at the thin wall portion to come into contact with the stator.

この発明は、上記のような課題を解決するためになされたもので、以下に示す同期電動機の回転子を提供する。
(1)回転子の磁束をより多く固定子巻線に鎖交させ、効率の良い同期電動機を実現するための同期電動機の回転子;
(2)組立工程が複雑にならず、加工コストの増加を抑えることができる同期電動機の回転子;
(3)遠心力による鉄心の変形など強度の低下を抑えた同期電動機の回転子;
(4)コギングトルクの増大を抑えて振動、騒音の悪化を抑制することができる同期電動機を実現するための同期電動機の回転子。
The present invention has been made to solve the above-described problems, and provides a rotor for a synchronous motor described below.
(1) A rotor of a synchronous motor for realizing an efficient synchronous motor by interlinking a larger amount of the magnetic flux of the rotor with the stator winding;
(2) A rotor of a synchronous motor that does not complicate the assembly process and can suppress an increase in processing cost;
(3) A rotor of a synchronous motor that suppresses a decrease in strength such as deformation of the iron core due to centrifugal force;
(4) A rotor of a synchronous motor for realizing a synchronous motor that can suppress an increase in cogging torque and suppress deterioration of vibration and noise.

この発明に係る同期電動機の回転子は、所定の形状に打ち抜かれた軟磁性体を所定枚数積層して形成される回転子鉄心の内部に磁極を構成する永久磁石が配置される同期電動機の回転子において、
回転子鉄心は、所定枚数積層して形成される第1の回転子鉄心と、所定枚数積層して形成される第2の回転子鉄心とが組み合わされて形成され、第1の回転子鉄心と第2の回転子鉄心とは、夫々、
第1の回転子鉄心もしくは第2の回転子鉄心の外周縁に沿って形成され、永久磁石が挿入される永久磁石挿入部と、
永久磁石挿入部の内側に形成される内側鉄心部と、
永久磁石挿入部の外側の各磁極に形成される外周鉄心部と、
内側鉄心部と前記外周鉄心部とを、各磁極の端部において連結する連結部並びに外周薄肉部と、
外周薄肉部の内側に形成され、永久磁石挿入部に連通する非磁性部と、
各磁極の連結部並びに外周薄肉部が設けられる端部と反対側の端部に設けられ、永久磁石挿入部に連通する開口部と、を備え、
第1の回転子鉄心と第2の回転子鉄心とは、開口部が各磁極の異なる端部に配置され、第1の回転子鉄心と第2の回転子鉄心とが組み合わされることで、一方の開口部と他方の非磁性部、もしくは一方の非磁性部と他方の開口部とが軸方向に連通し、連通した非磁性部と開口部とに非磁性材料で構成される固定部品が挿入されることを特徴とする。
A rotor of a synchronous motor according to the present invention is a rotation of a synchronous motor in which permanent magnets constituting magnetic poles are arranged inside a rotor core formed by laminating a predetermined number of soft magnetic materials punched into a predetermined shape. In the child
The rotor core is formed by combining a first rotor core formed by stacking a predetermined number of sheets and a second rotor core formed by stacking a predetermined number of sheets, and the first rotor core Each of the second rotor cores is
A permanent magnet insertion portion formed along the outer peripheral edge of the first rotor core or the second rotor core and into which the permanent magnet is inserted;
An inner core part formed inside the permanent magnet insertion part;
An outer peripheral core portion formed on each magnetic pole outside the permanent magnet insertion portion; and
A connecting portion for connecting the inner core portion and the outer peripheral core portion at the end of each magnetic pole, and a thin outer peripheral portion;
A non-magnetic part formed inside the outer peripheral thin part and communicating with the permanent magnet insertion part;
A connecting portion of each magnetic pole as well as an end on the opposite side to the end where the outer peripheral thin portion is provided, and an opening communicating with the permanent magnet insertion portion,
The first rotor core and the second rotor core are arranged such that openings are arranged at different ends of the magnetic poles, and the first rotor core and the second rotor core are combined. And the other non-magnetic part or one non-magnetic part and the other opening communicate with each other in the axial direction, and a fixed part made of a non-magnetic material is inserted into the communicating non-magnetic part and the opening. It is characterized by being.

この発明に係る同期電動機の回転子は、永久磁石の磁束が回転子鉄心の内部で短絡するのが抑えられると共に、回転子の加工コスト、回転子の強度の低下、さらにはコギングトルクの増加が抑えられることで、高効率、低コスト、低騒音の同期電動機の回転子が得られる。   In the rotor of the synchronous motor according to the present invention, the magnetic flux of the permanent magnet can be prevented from being short-circuited inside the rotor core, and the processing cost of the rotor, the strength of the rotor can be reduced, and the cogging torque can be increased. By being suppressed, a rotor of a synchronous motor with high efficiency, low cost, and low noise can be obtained.

実施の形態1を示す図で、回転子200の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor 200. 実施の形態1を示す図で、回転子200の平面図。FIG. 5 shows the first embodiment, and is a plan view of a rotor 200. 実施の形態1を示す図で、回転子200の分解斜視図。FIG. 3 shows the first embodiment, and is an exploded perspective view of a rotor 200. FIG. 実施の形態1を示す図で、回転子組立200−1の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of the rotor assembly 200-1. 実施の形態1を示す図で、回転子組立200−1の平面図。FIG. 5 shows the first embodiment and is a plan view of the rotor assembly 200-1. 実施の形態1を示す図で、固定部品210の斜視図。FIG. 4 is a diagram showing the first embodiment, and is a perspective view of a fixing component 210. 実施の形態1を示す図で、回転子鉄心201の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor core 201. 実施の形態1を示す図で、第1の回転子鉄心201−1の平面図。FIG. 5 shows the first embodiment, and is a plan view of a first rotor core 201-1. 実施の形態1を示す図で、第2の回転子鉄心201−2の平面図。FIG. 5 shows the first embodiment, and is a plan view of a second rotor core 201-2. (a)は図8のA部拡大図、(b)は図9のB部拡大図。(A) is the A section enlarged view of FIG. 8, (b) is the B section enlarged view of FIG. 実施の形態1を示す図で、第1の回転子鉄心201−1と第2の回転子鉄心201−2とを重ねた状態の部分平面図。FIG. 5 shows the first embodiment, and is a partial plan view showing a state in which a first rotor core 201-1 and a second rotor core 201-2 are overlapped. 実施の形態1を示す図で、本実施の形態の回転子を用いた同期電動機と、一般的な回転子を用いた同期電動機の誘起電圧の実効値を比較した図。The figure which shows Embodiment 1 and the figure which compared the effective value of the induced voltage of the synchronous motor using the rotor of this Embodiment, and the synchronous motor using a common rotor. 実施の形態1を示す図で、本実施の形態の回転子を用いた同期電動機と、一般的な回転子を用いた同期電動機の誘起電圧の波形の比較した図。The figure which shows Embodiment 1 and the figure which compared the waveform of the induced voltage of the synchronous motor using the rotor of this Embodiment, and the synchronous motor using a common rotor. 実施の形態1を示す図で、本実施の形態の回転子を用いた同期電動機と、一般的な回転子を用いた同期電動機のコギングトルク振幅を比較した図。The figure which shows Embodiment 1 and the figure which compared the cogging torque amplitude of the synchronous motor using the rotor of this Embodiment, and the synchronous motor using a common rotor. 実施の形態1を示す図で、本実施の形態の回転子を用いた同期電動機と、一般的な回転子を用いた同期電動機のコギングトルクの波形を比較した図。The figure which shows Embodiment 1 and the figure which compared the waveform of the cogging torque of the synchronous motor using the rotor of this Embodiment, and the synchronous motor using a common rotor. 実施の形態1を示す図で、変形例1の回転子300の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor 300 of a first modification. 実施の形態1を示す図で、変形例1の回転子300の平面図。FIG. 5 shows the first embodiment, and is a plan view of a rotor 300 of a first modification. 実施の形態1を示す図で、変形例1の回転子300の分解斜視図。FIG. 5 shows the first embodiment, and is an exploded perspective view of a rotor 300 of a first modification. 実施の形態1を示す図で、変形例1の回転子組立300−1の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor assembly 300-1 of a first modification. 実施の形態1を示す図で、固定部品310の斜視図。FIG. 3 is a diagram illustrating the first embodiment, and is a perspective view of a fixing component 310. 実施の形態1を示す図で、変形例1の回転子鉄心301の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor core 301 according to a first modification. 実施の形態1を示す図で、変形例1の第1の回転子鉄心301−1、第2の回転子鉄心301−2の平面図。FIG. 5 shows the first embodiment, and is a plan view of a first rotor core 301-1 and a second rotor core 301-2 of Modification 1. 比較のために示す図で、一般的な同期電動機の回転子400の横断面図。It is a figure shown for a comparison and is a cross-sectional view of a rotor 400 of a general synchronous motor. 比較のために示す図で、一般的な同期電動機の回転子500の横断面図。The figure shown for a comparison and the cross-sectional view of the rotor 500 of a common synchronous motor.

実施の形態1.   Embodiment 1 FIG.

図1乃至図3は実施の形態1を示す図で、回転子200の斜視図、図2は回転子200の平面図、図3は回転子200の分解斜視図である。同期電動機の回転子を、回転子200と呼ぶことにする。また、回転子200を、単にロータと呼ぶ場合もある。   FIGS. 1 to 3 are views showing the first embodiment, and are perspective views of the rotor 200, FIG. 2 is a plan view of the rotor 200, and FIG. 3 is an exploded perspective view of the rotor 200. The rotor of the synchronous motor is called a rotor 200. Further, the rotor 200 may be simply referred to as a rotor.

同期電動機は、例えば、固定子(図示せず)に三相巻線が施され、インバータにより駆動されるブラシレスDCモータである。   The synchronous motor is, for example, a brushless DC motor in which a three-phase winding is applied to a stator (not shown) and driven by an inverter.

回転子200は、図1乃至図3に示すように、少なくとも略円柱状の回転子鉄心201(第1の回転子鉄心201−1と、第2の回転子鉄心201−2とからなる)と、回転子鉄心201の永久磁石挿入部(後述)に挿入される平板状の永久磁石203と、回転子鉄心201(第1の回転子鉄心201−1と、第2の回転子鉄心201−2とからなる)の夫々の永久磁石挿入部(後述)の端部に形成される開口部(後述)及び非磁性部(後述)に挿入される固定部品210と、回転子鉄心201の略中心に形成される軸孔205に固定される回転軸(図示せず)とを備える。   As shown in FIGS. 1 to 3, the rotor 200 includes at least a substantially cylindrical rotor core 201 (consisting of a first rotor core 201-1 and a second rotor core 201-2). , A flat permanent magnet 203 to be inserted into a permanent magnet insertion portion (described later) of the rotor core 201, and a rotor core 201 (first rotor core 201-1 and second rotor core 201-2). At the end of each permanent magnet insertion portion (described later) and a fixed part 210 inserted into a non-magnetic portion (described later) and the rotor core 201 at the approximate center. A rotation shaft (not shown) fixed to the shaft hole 205 formed.

図1乃至図3に示す回転子200は、周方向に極性が交互に異なるように配置される永久磁石203を8個備える8極のロータである。   The rotor 200 shown in FIGS. 1 to 3 is an 8-pole rotor including eight permanent magnets 203 arranged so that the polarities are alternately different in the circumferential direction.

尚、図示はしないが、回転子200の軸方向両端部に、固定部品210や永久磁石203の軸方向の抜けを止める端板が設けられる。端板は、例えば、回転子鉄心201を貫通するリベット等により固定される。   Although not shown in the drawings, end plates for stopping the fixed component 210 and the permanent magnet 203 from coming off in the axial direction are provided at both axial ends of the rotor 200. The end plate is fixed by, for example, a rivet that penetrates the rotor core 201.

また、図示はしないが、永久磁石203は、例えば、永久磁石挿入部202に位置決め用の突出部を設け、その突出部により周方向の位置決めがなされる。位置決め用の突出部は、例えば、永久磁石挿入部202の内側の面の二箇所に設けられる。   In addition, although not shown, the permanent magnet 203 is provided with, for example, a positioning projection on the permanent magnet insertion portion 202 and is positioned in the circumferential direction by the projection. The protrusions for positioning are provided at two locations on the inner surface of the permanent magnet insertion portion 202, for example.

回転子200の特徴は、後述する回転子鉄心201(第1の回転子鉄心201−1と、第2の回転子鉄心201−2とからなる)の夫々の永久磁石挿入部202の端部に形成される開口部(後述)及び非磁性部(後述)に固定部品210を挿入することにより、内側鉄心部201bと外周薄肉部で連結している比較的強度の弱い外周鉄心部201aが、固定部品210により両側から固定されるので、遠心力による変形を抑制することができる。図1乃至図3に示す符号で、説明を省略している符号については後述する。   The feature of the rotor 200 is that the end of each permanent magnet insertion portion 202 of a rotor core 201 (consisting of a first rotor core 201-1 and a second rotor core 201-2), which will be described later. By inserting the fixing component 210 into the formed opening (described later) and nonmagnetic part (described later), the relatively weak outer peripheral core 201a connected to the inner core 201b is fixed. Since it is fixed from both sides by the component 210, deformation due to centrifugal force can be suppressed. Reference numerals that are not shown in the reference numerals shown in FIGS. 1 to 3 will be described later.

図3に示すように、回転子200は、第1の回転子鉄心201−1の軸方向端面において、開口部(後述)から固定部品210が計8本挿入される。また、回転子200は、第2の回転子鉄心201−2の軸方向端面において、開口部(後述)から固定部品210が計8本挿入される。従って、計16本の固定部品210が使用される。回転子200は、8極のロータであるから、極数(8極)の2倍(ロータコアの段数、ここでは2段)の数の固定部品210が使用されることになる。   As shown in FIG. 3, in the rotor 200, a total of eight fixed parts 210 are inserted from openings (described later) on the axial end surface of the first rotor core 201-1. Further, in the rotor 200, a total of eight fixing parts 210 are inserted from the opening (described later) on the end surface in the axial direction of the second rotor core 201-2. Therefore, a total of 16 fixing parts 210 are used. Since the rotor 200 is an 8-pole rotor, the number of fixed components 210 is twice as many as the number of poles (8 poles) (the number of stages of the rotor core, here 2 stages).

第1の回転子鉄心201−1のコア幅(軸方向の長さ)と、第2の回転子鉄心201−2のコア幅(軸方向の長さ)とが同じ場合は、一種類の固定部品210でよい。図3は第1の回転子鉄心201−1のコア幅(軸方向の長さ)と、第2の回転子鉄心201−2のコア幅(軸方向の長さ)とが同じで、一種類の固定部品210を使用する例である。   When the core width (axial length) of the first rotor core 201-1 and the core width (axial length) of the second rotor core 201-2 are the same, one type of fixing is performed. The component 210 may be used. FIG. 3 shows the same core width (axial length) of the first rotor core 201-1 and the same core width (axial length) of the second rotor core 201-2. This is an example in which the fixed component 210 is used.

本実施の形態では、第1の回転子鉄心201−1のコア幅(軸方向の長さ)と、第2の回転子鉄心201−2のコア幅(軸方向の長さ)とは、同一でもよいし、同一でなくてもよい。第1の回転子鉄心201−1のコア幅(軸方向の長さ)と、第2の回転子鉄心201−2のコア幅(軸方向の長さ)とが異なる場合は、二種類の固定部品210が必要になる。   In the present embodiment, the core width (axial length) of the first rotor core 201-1 and the core width (axial length) of the second rotor core 201-2 are the same. However, it may not be the same. When the core width (axial length) of the first rotor core 201-1 and the core width (axial length) of the second rotor core 201-2 are different, two types of fixing are used. Part 210 is required.

図4、図5は実施の形態1を示す図で、図4は回転子組立200−1の斜視図、図5は回転子組立200−1の平面図である。固定部品210挿入前のものを回転子組立200−1と呼ぶことにする。固定部品210挿入前の回転子組立200−1は、永久磁石挿入部(後述)の端部に形成される開口部208及び非磁性部202a(永久磁石203が存在する状態では軸方向両端を除いて閉じた空間)が、空間になっている。   4 and 5 show the first embodiment. FIG. 4 is a perspective view of the rotor assembly 200-1 and FIG. 5 is a plan view of the rotor assembly 200-1. The one before the fixed component 210 is inserted is called a rotor assembly 200-1. The rotor assembly 200-1 before the fixed component 210 is inserted has an opening 208 formed at an end of a permanent magnet insertion portion (described later) and a non-magnetic portion 202a (except for both axial ends when the permanent magnet 203 is present). Closed space) is a space.

本実施の形態の回転子200並びに回転子鉄心201の特徴を分かりやすくするために、一般的な同期電動機の回転子について説明しておく。   In order to make the features of the rotor 200 and the rotor core 201 of the present embodiment easier to understand, a general synchronous motor rotor will be described.

図23は比較のために示す図で、一般的な同期電動機の回転子400の横断面図である。一般的な同期電動機の回転子400は(以下、回転子400)は、略円柱状の回転子鉄心401と、回転子鉄心401の永久磁石挿入部402に挿入される平板状の永久磁石403と、回転子鉄心401の略中心に回転軸(図示せず)が固定される軸孔405とを備える。   FIG. 23 is a cross-sectional view of a general synchronous motor rotor 400 for comparison. A general synchronous motor rotor 400 (hereinafter referred to as a rotor 400) includes a substantially cylindrical rotor core 401 and a flat permanent magnet 403 inserted into a permanent magnet insertion portion 402 of the rotor core 401. And a shaft hole 405 to which a rotating shaft (not shown) is fixed substantially at the center of the rotor core 401.

回転子鉄心401は、回転子鉄心201と同様、電磁鋼板に代表される軟磁性体(厚さが、0.1〜1.0mm程度)を所定の形状に打ち抜き、所定枚数積層して形成される。所定の形状に打ち抜かれた軟磁性体板は、各軟磁性体板に形成される切り起こし突起を軸方向に隣接する軟磁性体板で嵌合させて固定する一般的なカシメ(カシメ部407)により積層される。   As with the rotor core 201, the rotor core 401 is formed by punching a soft magnetic material (thickness of about 0.1 to 1.0 mm) typified by an electromagnetic steel sheet into a predetermined shape and laminating a predetermined number of sheets. The The soft magnetic plate punched into a predetermined shape is a general caulking (caulking portion 407) in which cut and raised protrusions formed on each soft magnetic plate are fitted and fixed by soft magnetic plates adjacent in the axial direction. ).

回転子鉄心401には、外周部に沿って8個の永久磁石挿入部402(断面が略バスタブ形状、内側に凸)が、略正八角形に形成されている。これらの永久磁石挿入部402を間にして、永久磁石挿入部402よりも外側の鉄心部分を外周鉄心部401a、永久磁石挿入部402よりも内側の鉄心部分を内側鉄心部401bとする。   In the rotor core 401, eight permanent magnet insertion portions 402 (the cross section is substantially bathtub-shaped and convex inward) are formed in a substantially regular octagon along the outer peripheral portion. With the permanent magnet insertion part 402 in between, the outer core part 401a is the outer core part than the permanent magnet insertion part 402, and the inner core part 401b is the inner core part than the permanent magnet insertion part 402.

回転子鉄心401は、全ての極間において、外周鉄心部401aと内側鉄心部401bとが、連結部406並びに外周薄肉部406aで連結している。   In the rotor core 401, between all the poles, the outer peripheral core portion 401a and the inner iron core portion 401b are connected by the connecting portion 406 and the outer peripheral thin portion 406a.

回転子鉄心401は、隣接して配置される永久磁石403の間に磁性体(連結部406並びに外周薄肉部406a)が存在する。そのため、この磁性体の部分で磁極間の磁束が短絡してしまい、固定子の巻線に鎖交する回転子400の磁束が減少する。また、磁極数が多くなると、この磁束が短絡する箇所が増えるため、固定子の巻線に鎖交する磁束がさらに減少する。それにより、回転子400を用いる同期電動機は、永久磁石403の磁束をフルに利用できないためトルクが出ないという課題がある。   The rotor core 401 has a magnetic body (the connecting portion 406 and the outer peripheral thin portion 406a) between the permanent magnets 403 arranged adjacent to each other. For this reason, the magnetic flux between the magnetic poles is short-circuited in the magnetic material portion, and the magnetic flux of the rotor 400 linked to the stator winding is reduced. Further, as the number of magnetic poles increases, the number of places where this magnetic flux is short-circuited increases, so that the magnetic flux linked to the stator windings further decreases. As a result, the synchronous motor using the rotor 400 has a problem that no torque is generated because the magnetic flux of the permanent magnet 403 cannot be fully utilized.

図24は比較のために示す図で、一般的な同期電動機の回転子500の横断面図である。一般的な同期電動機の回転子500は(以下、回転子500)は、回転子鉄心501と、回転子鉄心501の永久磁石挿入部502に挿入される平板状の永久磁石503と、回転子鉄心501の略中心に回転軸(図示せず)が固定される軸孔505とを備える。   FIG. 24 is a cross-sectional view of a general synchronous motor rotor 500 for comparison. A general synchronous motor rotor 500 (hereinafter referred to as a rotor 500) includes a rotor core 501, a flat permanent magnet 503 inserted into a permanent magnet insertion portion 502 of the rotor core 501, and a rotor core. And a shaft hole 505 to which a rotation shaft (not shown) is fixed.

回転子鉄心501が分割された外周鉄心部501a並びに内側鉄心部501bとで構成される。永久磁石503は、外周鉄心部501aと内側鉄心部501bとの間に設けられる。分割された外周鉄心部501a並びに内側鉄心部501bは、図示しないが、軸方向の両側から外周鉄心部501a並びに内側鉄心部501bを貫通して一体化する部材を用いて一体化している。   The rotor core 501 is composed of an outer peripheral core part 501a and an inner iron core part 501b. The permanent magnet 503 is provided between the outer peripheral iron core portion 501a and the inner iron core portion 501b. The divided outer core portion 501a and inner core portion 501b are integrated using a member that penetrates and integrates the outer core portion 501a and the inner core portion 501b from both sides in the axial direction, although not shown.

磁極間に開口部508が形成されているので、磁極間の磁束短絡を防止して、固定子の巻線により多くの磁束をさせることが可能であるが、回転子500の永久磁石503内側の内側鉄心部501bと、永久磁石503外側の外周鉄心部501aが別部品となるため、組立の工程が増えるという課題が生じる。   Since the opening 508 is formed between the magnetic poles, it is possible to prevent a magnetic flux short circuit between the magnetic poles and to cause a larger amount of magnetic flux to be generated by the winding of the stator. Since the inner core portion 501b and the outer peripheral core portion 501a outside the permanent magnet 503 are separate parts, there arises a problem that the number of assembling steps increases.

また、回転子500の磁極間に磁性体がないため、磁極間付近での磁束の密度の変化が大きく、同期電動機のコギングトルクが増加し、振動・騒音の要因となりやすい。   In addition, since there is no magnetic material between the magnetic poles of the rotor 500, the change in magnetic flux density near the magnetic poles is large, the cogging torque of the synchronous motor is increased, and this tends to cause vibration and noise.

本実施の形態の回転子鉄心201(第1の回転子鉄心201−1、第2の回転子鉄心201−2)は、外周鉄心部201aと内側鉄心部201bとが、一磁極において片側の極間で連結部206並びに外周薄肉部206aで連結している。そして、一磁極の他方の極間は、開口部208が形成されていて、外周鉄心部201aと内側鉄心部201bとは分離している。開口部208は外周側が内側よりも幅が広くなっていることを特徴する。   The rotor core 201 (the first rotor core 201-1 and the second rotor core 201-2) of the present embodiment has an outer peripheral core portion 201a and an inner core portion 201b that are on one side of one magnetic pole. It connects with the connection part 206 and the outer periphery thin part 206a between. And the opening part 208 is formed between the other poles of one magnetic pole, and the outer periphery iron core part 201a and the inner core part 201b are isolate | separated. The opening 208 is characterized in that the outer peripheral side is wider than the inner side.

言い換えれば、永久磁石挿入部202は、回転子鉄心201において磁性体で完全に囲まれた空間ではなく、開口部208において回転子鉄心201外周に開口している。   In other words, the permanent magnet insertion part 202 is not a space completely surrounded by the magnetic body in the rotor core 201 but is opened to the outer periphery of the rotor core 201 in the opening 208.

一般的に、永久磁石より生じる磁束は、磁気抵抗の低い磁性体を通過しやすく、固定子鉄心(磁性体)と回転子の外周部に空隙(数百μmの狭い空間である)が存在することもあり、固定子鉄心へ流れるよりも回転子の内部で隣り合う磁極の外周部間を通過しやすい。このため、回転子の隣り合う外周部を通して磁極間で磁束が短絡しやすく、固定子の巻線に鎖交する磁束を減少させている。薄肉連結部(例えば、回転子400の連結部406、外周薄肉部406a)は、磁束が通過しようとする磁性体の断面積を小さくすることで、磁束密度を飽和するまで高くして磁気抵抗を上げて回転子内で短絡する磁束を減らすようになっているが、完全に無くすものではない。   In general, the magnetic flux generated from a permanent magnet easily passes through a magnetic body having a low magnetic resistance, and there is a gap (a narrow space of several hundred μm) in the outer periphery of the stator core (magnetic body) and the rotor. In some cases, it is easier to pass between the outer peripheral portions of adjacent magnetic poles inside the rotor than to flow to the stator core. For this reason, the magnetic flux is easily short-circuited between the magnetic poles through the adjacent outer peripheral portions of the rotor, and the magnetic flux interlinking with the stator winding is reduced. The thin-walled connecting portion (for example, the connecting portion 406 of the rotor 400 and the outer peripheral thin-walled portion 406a) increases the magnetic resistance until the magnetic flux density is saturated by reducing the cross-sectional area of the magnetic material through which the magnetic flux is to pass. The magnetic flux that is raised and short-circuited in the rotor is reduced, but it is not completely eliminated.

図6は実施の形態1を示す図で、固定部品210の斜視図である。図6に示すように、固定部品210は、回転子鉄心201(第1の回転子鉄心201−1、第2の回転子鉄心201−2)の開口部208に挿入される開口部挿入部210a、非磁性部202aに挿入される非磁性部挿入部210bが一体に成形されている。開口部挿入部210a、非磁性部挿入部210bは、開口部208、非磁性部202aとほぼ同形状である。   FIG. 6 shows the first embodiment, and is a perspective view of the fixing component 210. As shown in FIG. 6, the fixed component 210 includes an opening insertion portion 210 a that is inserted into the opening 208 of the rotor core 201 (the first rotor core 201-1 and the second rotor core 201-2). The nonmagnetic portion insertion portion 210b inserted into the nonmagnetic portion 202a is integrally formed. The opening insertion part 210a and the nonmagnetic part insertion part 210b have substantially the same shape as the opening 208 and the nonmagnetic part 202a.

固定部品210は、非磁性材料で構成されれば良く、アルミやステンレスなどの金属(非磁性体金属)であっても、樹脂の材料であっても良い。   The fixed component 210 may be made of a nonmagnetic material, and may be a metal (nonmagnetic metal) such as aluminum or stainless steel or a resin material.

固定部品210は、外周薄肉部206aの内側の非磁性部202aに挿入されるため、外周薄肉部206aによって回転子200の外周側へ外れること無く、外周鉄心部201aを外周薄肉部206aの反対側より固定する。これにより、外周鉄心部201aは、両側から固定されるので、遠心力による変形を抑制することができる。   Since the fixed component 210 is inserted into the non-magnetic portion 202a inside the outer thin portion 206a, the outer peripheral core portion 201a is not moved to the outer peripheral side of the rotor 200 by the outer thin portion 206a, and the outer peripheral core portion 201a is opposite to the outer thin portion 206a. More fixed. Thereby, since the outer periphery iron core part 201a is fixed from both sides, it can suppress the deformation | transformation by centrifugal force.

また、固定部品210の形状を永久磁石203側面に接するように形成することによって、永久磁石203の位置決めができる。このため、永久磁石挿入部202に永久磁石203の位置決めのための突起(図示せず)を設ける必要が無くなる。永久磁石203から生じる磁束は、この突起によっても少なからず短絡を起こすため、突起を無くすことによって、固定子の巻線に鎖交する磁束を増やすこともできる。   Further, the permanent magnet 203 can be positioned by forming the fixed component 210 so as to be in contact with the side surface of the permanent magnet 203. For this reason, it is not necessary to provide a projection (not shown) for positioning the permanent magnet 203 in the permanent magnet insertion portion 202. Since the magnetic flux generated from the permanent magnet 203 causes a short circuit due to the protrusions, the magnetic flux linked to the stator windings can be increased by eliminating the protrusions.

図7乃至図10は実施の形態1を示す図で、図7は回転子鉄心201の斜視図、図8は第1の回転子鉄心201−1の平面図、図9は第2の回転子鉄心201−2の平面図、図10(a)は図8のA部拡大図、図8(b)は図9のB部拡大図である。   7 to 10 show the first embodiment. FIG. 7 is a perspective view of the rotor core 201, FIG. 8 is a plan view of the first rotor core 201-1, and FIG. 9 is a second rotor. FIG. 10A is an enlarged view of a portion A in FIG. 8, and FIG. 8B is an enlarged view of a portion B in FIG. 9.

図7乃至図10を参照しながら回転子鉄心201について説明する。本実施の形態は、回転子鉄心201に特徴があるので、詳細に説明する。回転子鉄心201は、図7に示すように、第1の回転子鉄心201−1と第2の回転子鉄心201−2とを上下に二段に積層している。回転子鉄心201は、軟磁性体板がプレス型の中で所定の形状に打ち抜かれながら、各軟磁性体板に形成される切り起こし突起を軸方向に隣接する軟磁性体板で嵌合させて固定する一般的なカシメ(カシメ部207)により積層される。従って、第1の回転子鉄心201−1と第2の回転子鉄心201−2とは、カシメ部207にて連結している。   The rotor core 201 will be described with reference to FIGS. Since this embodiment has a feature in the rotor core 201, it will be described in detail. As shown in FIG. 7, the rotor core 201 is formed by stacking a first rotor core 201-1 and a second rotor core 201-2 vertically in two stages. The rotor core 201 is formed by fitting the cut and raised protrusions formed on each soft magnetic plate with the adjacent soft magnetic plates in the axial direction while the soft magnetic plate is punched into a predetermined shape in a press die. These are laminated by general caulking (caulking portion 207) to be fixed. Therefore, the first rotor core 201-1 and the second rotor core 201-2 are connected by the caulking portion 207.

第1の回転子鉄心201−1は、外周鉄心部201aと内側鉄心部201bとが、一磁極において片側の極間(図8において、一磁極において時計方向側の極間)で連結部206並びに外周薄肉部206aで連結している。そして、一磁極の他方の極間(図8において、一磁極において反時計方向側の極間)は、開口部208が形成されていて、外周鉄心部201aと内側鉄心部201bとは分離している。   In the first rotor core 201-1, the outer peripheral core portion 201a and the inner core portion 201b are connected between one pole at one magnetic pole (between the poles on the clockwise side at one magnetic pole in FIG. 8), The outer peripheral thin portion 206a is connected. An opening 208 is formed between the other pole of one magnetic pole (between the poles on the counterclockwise side of one magnetic pole in FIG. 8), and the outer peripheral iron core 201a and the inner iron core 201b are separated from each other. Yes.

図8に示すように、第1の回転子鉄心201−1には、 外周部に沿って8個の永久磁石挿入部202(断面が略バスタブ形状、内側に凸)が、略正八角形に形成されている。これらの永久磁石挿入部202を間にして、永久磁石挿入部202よりも外側の鉄心部分を外周鉄心部201a、永久磁石挿入部202よりも内側の鉄心部分を内側鉄心部201bとする。第1の回転子鉄心201−1の中心部に回転軸(図示せず)が嵌合する軸孔205が形成されている。   As shown in FIG. 8, the first rotor core 201-1 is formed with eight permanent magnet insertion portions 202 (the cross section is substantially bathtub-shaped and convex inward) along the outer peripheral portion in a substantially regular octagon. Has been. With these permanent magnet insertion portions 202 in between, the outer core portion 201a is the outer core portion than the permanent magnet insertion portion 202, and the inner core portion 201b is the inner core portion than the permanent magnet insertion portion 202. A shaft hole 205 into which a rotation shaft (not shown) is fitted is formed at the center of the first rotor core 201-1.

図8に示すように、磁極間の薄肉連結部(連結部206、外周薄肉部206a)を各磁極において片側だけにすることで、隣り合う磁極間の磁束の短絡を抑制することができる。即ち、各磁極の一方の端部(極間)に、永久磁石挿入部202に連通する開口部208を設ける。   As shown in FIG. 8, short-circuiting of magnetic flux between adjacent magnetic poles can be suppressed by providing only one side of each magnetic pole with thin connection parts (connection part 206, outer peripheral thin part 206a) between the magnetic poles. That is, an opening 208 communicating with the permanent magnet insertion portion 202 is provided at one end (between the poles) of each magnetic pole.

この場合でも、永久磁石203の磁束の一部は、外周薄肉部206a、連結部206、内側鉄心部201bを通って、磁極自身で短絡する部分が生じる。そのため、完全に永久磁石203の磁束の短絡を防止することはできないが、回転子200内部で短絡する磁束は従来の半分にすることができる。それにより、より多くの磁束を固定子の巻線に鎖交することができ、同期電動機の誘起電圧の向上、トルクアップが図れ、同期電動機の高効率化を可能にする。   Even in this case, a part of the magnetic flux of the permanent magnet 203 is short-circuited by the magnetic pole itself through the outer peripheral thin portion 206a, the connecting portion 206, and the inner iron core portion 201b. For this reason, short-circuiting of the magnetic flux of the permanent magnet 203 cannot be completely prevented, but the magnetic flux that is short-circuited inside the rotor 200 can be halved compared to the conventional case. As a result, more magnetic flux can be linked to the stator windings, the induction voltage of the synchronous motor can be improved, the torque can be increased, and the efficiency of the synchronous motor can be increased.

また、第1の回転子鉄心201−1の内側鉄心部201bと外周鉄心部201aとが、少なくとも一箇所の外周薄肉部206aで結合されているため、回転子200の磁性体の部品数は増えることがない。このため、組立コストの増加を抑えることができる。   Further, since the inner core portion 201b and the outer peripheral core portion 201a of the first rotor core 201-1 are joined by at least one outer peripheral thin portion 206a, the number of magnetic parts of the rotor 200 increases. There is nothing. For this reason, an increase in assembly cost can be suppressed.

例えば、回転子鉄心201を第1の回転子鉄心201−1のみで構成すると、内側鉄心部201bと外周鉄心部201aとを一箇所の外周薄肉部206aで連結することになり、回転子200の回転で生じる遠心力(主に、永久磁石203による遠心力)が外周薄肉部206aに加わり、外周薄肉部206aに応力が集中して変形する可能性がある。このため、本実施の形態においては、開口部208の位置が異なる第1の回転子鉄心201−1と第2の回転子鉄心201−2とを組合せることで、遠心力により生じる回転子鉄心201の変形を抑制する。   For example, if the rotor core 201 is configured only by the first rotor core 201-1, the inner core portion 201b and the outer peripheral core portion 201a are connected by one outer peripheral thin portion 206a. There is a possibility that centrifugal force generated by rotation (mainly centrifugal force by the permanent magnet 203) is applied to the outer thin portion 206a, and stress concentrates on the outer thin portion 206a and deforms. For this reason, in this Embodiment, the rotor core produced by a centrifugal force is combined by combining the 1st rotor core 201-1 and the 2nd rotor core 201-2 from which the position of the opening part 208 differs. The deformation of 201 is suppressed.

一方、第2の回転子鉄心201−2は、図9に示すように、外周鉄心部201aと内側鉄心部201bとを連結する連結部206並びに外周薄肉部206aが、一磁極において反時計方向側の極間に設けられる。また、一磁極において時計方向側の極間に開口部208が形成されていて、外周鉄心部201aと内側鉄心部201bとは分離している。その他は、第1の回転子鉄心201−1と同じ形状である。尚、第1の回転子鉄心201−1と第2の回転子鉄心201−2との比較は、図10の拡大図も参照。   On the other hand, as shown in FIG. 9, the second rotor core 201-2 includes a connecting portion 206 that connects the outer core portion 201a and the inner core portion 201b and a thin outer peripheral portion 206a in the counterclockwise direction in one magnetic pole. It is provided between the poles. Moreover, the opening part 208 is formed between the poles of the clockwise direction in one magnetic pole, and the outer periphery iron core part 201a and the inner iron core part 201b are isolate | separated. Others are the same shape as the 1st rotor iron core 201-1. For comparison between the first rotor core 201-1 and the second rotor core 201-2, see also the enlarged view of FIG.

図11は実施の形態1を示す図で、第1の回転子鉄心201−1と第2の回転子鉄心201−2とを重ねた状態の部分平面図である。第1の回転子鉄心201−1と並びに第2の回転子鉄心201−2とを重ねて上側から見ると、一方(第1の回転子鉄心201−1)の開口部208と、他方(第2の回転子鉄心201−2)の外周薄肉部206a内側の非磁性部202aとが同じ位置に重なるように存在している。言い換えれば、開口部208と非磁性部202aとは積層された回転子鉄心201において上下に連通している。図11に示す非磁性部202a(ハッチング部)は、開口部208と完全に重なる。   FIG. 11 is a diagram showing the first embodiment, and is a partial plan view showing a state in which the first rotor core 201-1 and the second rotor core 201-2 are overlapped. When the first rotor core 201-1 and the second rotor core 201-2 are overlapped and viewed from above, the opening 208 of one (first rotor core 201-1) and the other (first The non-magnetic portion 202a inside the outer thin portion 206a of the second rotor core 201-2) is present so as to overlap at the same position. In other words, the opening 208 and the nonmagnetic portion 202a communicate with each other vertically in the laminated rotor core 201. The nonmagnetic portion 202a (hatched portion) shown in FIG.

本実施の形態の回転子200では、第1の回転子鉄心201−1と第2の回転子鉄心201−2とを積層した回転子鉄心201に永久磁石203を挿入した後、この開口部208と非磁性部202aに非磁性材料の固定部品210を挿入して、固定する。固定部品210を開口部208と非磁性部202aに挿入することにより、内側鉄心部201bと外周薄肉部で連結している比較的強度の弱い外周鉄心部201aが、固定部品210により両側から固定されるので、遠心力による変形を抑制することができる。   In the rotor 200 of the present embodiment, the permanent magnet 203 is inserted into the rotor core 201 in which the first rotor core 201-1 and the second rotor core 201-2 are stacked, and then the opening 208 is inserted. Then, a non-magnetic material fixing part 210 is inserted into the non-magnetic portion 202a and fixed. By inserting the fixing component 210 into the opening 208 and the nonmagnetic portion 202a, the relatively weak outer peripheral core portion 201a connected to the inner core portion 201b and the outer peripheral thin portion is fixed from both sides by the fixing component 210. Therefore, deformation due to centrifugal force can be suppressed.

第1の回転子鉄心201−1、第2の回転子鉄心201−2は、裏返しにすれば同じ形状になるが、プレス金型の中では一連の動作において裏返すことは困難である。従って、第1の回転子鉄心201−1と第2の回転子鉄心201−2とは、形状の異なるものとなる。   The first rotor core 201-1 and the second rotor core 201-2 have the same shape if they are turned upside down, but it is difficult to turn them upside down in a series of operations in a press mold. Therefore, the first rotor core 201-1 and the second rotor core 201-2 have different shapes.

図12は実施の形態1を示す図で、本実施の形態の回転子を用いた同期電動機と、一般的な回転子を用いた同期電動機の誘起電圧の実効値を比較した図である。縦軸は誘起電圧を示すが、一般的な開口部無の回転子400を用いた同期電動機の誘起電圧を基準(100[%])とする。   FIG. 12 is a diagram showing the first embodiment, and is a diagram comparing effective values of induced voltages of the synchronous motor using the rotor of the present embodiment and the synchronous motor using a general rotor. The vertical axis represents the induced voltage, and the induced voltage of a synchronous motor using a general rotor 400 having no opening is used as a reference (100 [%]).

図12に示すグラフは、左より外周部の両側を薄肉連結部で結合した開口部の無い一般的な回転子400、外周鉄心部を別部品で構成し、外周鉄心部の両側に開口部を設けた一般的な回転子500、外周鉄心部を片方のみ外周薄肉部並びに連結部で結合した、片側に開口部を有する本実施の形態の回転子(但し、例えば、第1の回転子鉄心201−1もしくは第2の回転子鉄心201−2いずれかで構成されるもの)を並べて示している。   The graph shown in FIG. 12 includes a general rotor 400 having no opening portion in which both sides of the outer peripheral portion are joined from the left with thin-walled connecting portions, and the outer peripheral core portion is constituted by separate parts, and the opening portions are formed on both sides of the outer peripheral core portion. The general rotor 500 provided, and the rotor of the present embodiment in which the outer peripheral core portion is joined at only one outer peripheral thin portion and the connecting portion and has an opening on one side (for example, the first rotor core 201 -1 or the second rotor iron core 201-2).

開口部の無い回転子400に対して、両側に開口部を設けた回転子500は、誘起電圧が10%以上高くなっており、ロータ内部で短絡しない磁束が固定子の巻線に鎖交していることがわかる。   The rotor 500 having openings on both sides of the rotor 400 having no opening has an induced voltage higher by 10% or more, and the magnetic flux not short-circuited inside the rotor is linked to the stator windings. You can see that

本実施の形態の回転子は、片側に開口部を設けてロータ内の磁束の短絡を抑えているため、両側に開口部がある回転子500よりは効果が少ないが、開口部の無い一般的な回転子400より大きな誘起電圧が得られている。   The rotor of the present embodiment is provided with an opening on one side to suppress a short circuit of magnetic flux in the rotor, and thus is less effective than the rotor 500 having openings on both sides. An induced voltage larger than that of the rotor 400 is obtained.

図13は実施の形態1を示す図で、本実施の形態の回転子を用いた同期電動機と、一般的な回転子を用いた同期電動機の誘起電圧の波形の比較した図である。図13において、実線が開口部の無い一般的な回転子400、三角(黒ぬり)が両側に開口部を設けた一般的な回転子500、白ぬき丸が本実施の形態の片側に開口部を有する回転子(但し、例えば、第1の回転子鉄心201−1もしくは第2の回転子鉄心201−2いずれかで構成されるもの)の波形である。   FIG. 13 is a diagram showing the first embodiment, and is a diagram comparing the waveforms of induced voltages of the synchronous motor using the rotor of the present embodiment and the synchronous motor using a general rotor. In FIG. 13, a solid rotor is a general rotor 400 having no opening, a triangle (blackening) is a general rotor 500 having openings on both sides, and a white circle is an opening on one side of the present embodiment. (For example, one constituted by either the first rotor core 201-1 or the second rotor core 201-2).

図13に示すように、開口部の無い回転子400の場合、台形波に近い波形である。また、両側に開口部を設けた回転子500は、波形のピーク付近に二カ所のピークを持った歪みの大きい波形であり、次数の高い高調波成分を含んだ波形である。これらに対して、本実施の形態の回転子は、一般的な回転子400,500の誘起電圧に比べると歪みの少ない波形が得られている。   As shown in FIG. 13, in the case of the rotor 400 without an opening, the waveform is close to a trapezoidal wave. The rotor 500 having openings on both sides is a highly distorted waveform having two peaks in the vicinity of the peak of the waveform, and includes a high-order harmonic component. On the other hand, the rotor of the present embodiment has a waveform with less distortion compared to the induced voltages of the general rotors 400 and 500.

図14は実施の形態1を示す図で、本実施の形態の回転子を用いた同期電動機と、一般的な回転子を用いた同期電動機のコギングトルク振幅を比較した図である。   FIG. 14 is a diagram showing the first embodiment, and is a diagram comparing cogging torque amplitudes of the synchronous motor using the rotor of the present embodiment and the synchronous motor using a general rotor.

図14のグラフは、同期電動機で生じるコギングトルクを電磁界解析によって求め、実施の形態1の回転子を用いた同期電動機で生じるコギングトルクと、一般的な回転子を用いた同期電動機で生じるコギングトルクとを比較したものである。   In the graph of FIG. 14, the cogging torque generated in the synchronous motor is obtained by electromagnetic field analysis, and the cogging torque generated in the synchronous motor using the rotor of the first embodiment and the cogging generated in the synchronous motor using a general rotor. This is a comparison with torque.

図14のグラフは、左より外周部の両側を外周薄肉部で結合した開口部の無い一般的な回転子400、外周鉄心部を別部品で構成し、外周鉄心部の両側に開口部を設けた一般的な回転子500、外周鉄心部を片側のみ外周薄肉部で結合し、片側に開口部を設けた本実施の形態の回転子(但し、例えば、第1の回転子鉄心201−1もしくは第2の回転子鉄心201−2いずれかで構成されるもの)、例えば図1に示した2種類の形状のコアを積層した回転子200を並べている。縦軸は従来の開口部無しの回転子を基準(100[%])にした比率[%]を示している。   The graph of FIG. 14 shows a general rotor 400 having no opening portion in which both sides of the outer peripheral portion are joined by a thin outer peripheral portion from the left, and the outer peripheral core portion is configured as a separate part, and openings are provided on both sides of the outer peripheral core portion. The general rotor 500, the rotor of the present embodiment in which the outer peripheral core portion is coupled with the outer peripheral thin portion only on one side and an opening is provided on one side (for example, the first rotor core 201-1 or For example, a rotor 200 in which two types of cores shown in FIG. 1 are stacked is arranged. The vertical axis shows the ratio [%] based on the conventional rotor without opening (100 [%]).

図15は実施の形態1を示す図で、本実施の形態の回転子を用いた同期電動機と、一般的な回転子を用いた同期電動機のコギングトルクの波形を比較した図である。太線が開口部の無い一般的な回転子400、三角(黒ぬり)が外周鉄心部を別部品で構成し、外周鉄心部の両側に開口部を設けた一般的な回転子500、細線が開口部を磁極の片側のみに設置した本実施の形態の回転子(但し、例えば、第1の回転子鉄心201−1もしくは第2の回転子鉄心201−2いずれかで構成されるもの)、片側白ぬき丸が、図1に示す本実施の形態の、開口部の位置が異なる二つのロータコア(第1の回転子鉄心201−1、第2の回転子鉄心201−2)を組合せた回転子200の波形である。   FIG. 15 is a diagram showing the first embodiment, and is a diagram comparing the cogging torque waveforms of the synchronous motor using the rotor of the present embodiment and the synchronous motor using a general rotor. A thick rotor is a general rotor 400 having no opening, a triangle (blackening) is a general rotor 500 in which an outer peripheral iron core is formed of a separate part, and openings are provided on both sides of the outer peripheral iron core, and a thin wire is an opening. The rotor of this embodiment in which the part is installed only on one side of the magnetic pole (however, for example, one constituted by either the first rotor core 201-1 or the second rotor core 201-2), one side A rotor that combines two rotor cores (first rotor core 201-1 and second rotor core 201-2) having different opening positions in the present embodiment shown in FIG. 200 waveforms.

開口部の無い一般的な回転子400に対して、外周鉄心部を別部品で構成し、外周鉄心部の両側に開口部を設けた一般的な回転子500は、固定子に対して外周鉄心部と開口部で空隙間の磁束密度の変化が大きくなり、外周に開口部を持たない回転子400に対して2倍以上の大きなコギングトルクが発生している。   The general rotor 500 in which the outer peripheral core portion is configured as a separate part from the general rotor 400 having no opening portion and the opening portions are provided on both sides of the outer peripheral core portion. The change in the magnetic flux density between the gaps is large between the gap and the opening, and a large cogging torque more than twice that of the rotor 400 having no opening on the outer periphery is generated.

細線が開口部を磁極の片側のみに設置した本実施の形態の回転子では、影響が少なく60%程度の増加に抑えられている。   In the rotor of the present embodiment in which the thin line has the opening provided only on one side of the magnetic pole, the influence is small and the increase is reduced to about 60%.

図1に示す回転子200の場合、軸方向上下のロータコアで開口部208の位置が異なり、それぞれで発生するコギングトルクの位相がずれるために、これらが打ち消し合うことでコギングトルクは20%程度の増加に抑えられる。   In the case of the rotor 200 shown in FIG. 1, the position of the opening 208 differs between the upper and lower rotor cores in the axial direction, and the phases of the cogging torque generated by each of them are shifted. It can be suppressed to increase.

図16乃至図22は実施の形態1を示す図で、図16は変形例1の回転子300の斜視図、図17は変形例1の回転子300の平面図、図18は変形例1の回転子300の分解斜視図、図19は変形例1の回転子組立300−1の斜視図、図20は固定部品310の斜視図、図21は変形例1の回転子鉄心301の斜視図、図22は変形例1の第1の回転子鉄心301−1、第2の回転子鉄心301−2の平面図である。   16 to 22 show the first embodiment. FIG. 16 is a perspective view of a rotor 300 according to the first modification, FIG. 17 is a plan view of the rotor 300 according to the first modification, and FIG. 19 is an exploded perspective view of the rotor 300, FIG. 19 is a perspective view of the rotor assembly 300-1 of Modification 1, FIG. 20 is a perspective view of the fixed component 310, and FIG. 21 is a perspective view of the rotor core 301 of Modification 1. FIG. 22 is a plan view of the first rotor core 301-1 and the second rotor core 301-2 of the first modification.

図16乃至図22を参照しながら、変形例1の回転子300について説明する。変形例1の回転子300が、回転子200と異なるのは、第1の回転子鉄心301−1、第2の回転子鉄心301−2の夫々の永久磁石挿入部302の開口部308の位置が隣り合う磁極で異なっている点である。隣り合う磁極で、開口部308もしくは連結部306(外周薄肉部306aを含む)が、極間に集めて配置されている。   A rotor 300 according to the first modification will be described with reference to FIGS. 16 to 22. The rotor 300 of Modification 1 is different from the rotor 200 in that the position of the opening 308 of the permanent magnet insertion portion 302 of each of the first rotor core 301-1 and the second rotor core 301-2. Is different between adjacent magnetic poles. At adjacent magnetic poles, the opening 308 or the connecting portion 306 (including the outer peripheral thin portion 306a) is collected and disposed between the poles.

変形例1の回転子鉄心301は、第1の回転子鉄心301−1と第2の回転子鉄心301−2とを一磁極分回転させてずらして積層される。ロータコアの形状は一種類である。ロータコアを金型で打ち抜いて積層する場合には、最終段階で打ち抜いてカシメを行う際に、ロータコアを一磁極分、図16の場合でいえば、8極であるため45°回転させて積層すれば、回転子300を製造することが可能である。   The rotor core 301 of the first modification is laminated by rotating the first rotor core 301-1 and the second rotor core 301-2 by one magnetic pole and shifting them. There is one type of rotor core shape. When the rotor core is punched with a mold and laminated, the rotor core is rotated by 45 ° because it has eight poles in the case of FIG. In this case, the rotor 300 can be manufactured.

このような構成でも、回転子300の磁性体内部で短絡する磁束の量を減らすことができるため、回転子200と同様の効果を得ることができる。   Even with such a configuration, since the amount of magnetic flux that is short-circuited inside the magnetic body of the rotor 300 can be reduced, the same effect as the rotor 200 can be obtained.

変形例1の回転子300も8極のモータであるから、第1の回転子鉄心301−1と第2の回転子鉄心301−2とは、夫々四箇所に開口部308及び非磁性部302aが形成される。   Since the rotor 300 of Modification 1 is also an eight-pole motor, the first rotor core 301-1 and the second rotor core 301-2 are each provided with four openings 308 and a non-magnetic portion 302a. Is formed.

そのため、回転子200では、計16本の固定部品210が必要であったが、変形例1の回転子300では、半分の計8本の固定部品310に減る。   Therefore, in the rotor 200, a total of 16 fixed parts 210 are necessary, but in the rotor 300 of the first modification, the number is reduced to a total of 8 fixed parts 310.

図18に示すように、回転子300は、第1の回転子鉄心301−1の軸方向端面において、開口部308から固定部品310が計4本挿入される。また、回転子300は、第2の回転子鉄心301−2の軸方向端面において、開口部(後述)から固定部品310が計4本挿入される。従って、計8本の固定部品310が使用される。回転子300は、8極のロータであるから、極数(8極)の2倍(ロータコアの段数、ここでは2段)の数の固定部品310が使用されることになる。   As shown in FIG. 18, in the rotor 300, a total of four fixed components 310 are inserted from the opening 308 on the axial end surface of the first rotor core 301-1. Further, in the rotor 300, a total of four fixing parts 310 are inserted from the opening (described later) on the axial end surface of the second rotor core 301-2. Accordingly, a total of eight fixed parts 310 are used. Since the rotor 300 is an 8-pole rotor, the number of fixed parts 310 is twice as many as the number of poles (8 poles) (the number of stages of the rotor core, here 2 stages).

第1の回転子鉄心301−1のコア幅(軸方向の長さ)と、第2の回転子鉄心301−2のコア幅(軸方向の長さ)とが同じ場合は、一種類の固定部品310でよい。図18は第1の回転子鉄心301−1のコア幅(軸方向の長さ)と、第2の回転子鉄心301−2のコア幅(軸方向の長さ)とが同じで、一種類の固定部品310を使用する例である。   When the core width (axial length) of the first rotor core 301-1 and the core width (axial length) of the second rotor core 301-2 are the same, one type of fixing is performed. The part 310 may be sufficient. In FIG. 18, the core width (axial length) of the first rotor core 301-1 is the same as the core width (axial length) of the second rotor core 301-2. This is an example in which the fixed component 310 is used.

本実施の形態では、第1の回転子鉄心301−1のコア幅(軸方向の長さ)と、第2の回転子鉄心301−2のコア幅(軸方向の長さ)とは、同一でもよいし、同一でなくてもよい。第1の回転子鉄心301−1のコア幅(軸方向の長さ)と、第2の回転子鉄心301−2のコア幅(軸方向の長さ)とが異なる場合は、二種類の固定部品310が必要になる。   In the present embodiment, the core width (axial length) of the first rotor core 301-1 and the core width (axial length) of the second rotor core 301-2 are the same. However, it may not be the same. When the core width (axial length) of the first rotor core 301-1 and the core width (axial length) of the second rotor core 301-2 are different, two types of fixing are used. A part 310 is required.

図20に示すように、固定部品310は、極間に相当する中心線に対して、左右対称な形状となる。固定部品310も、開口部挿入部310aと非磁性部挿入部310bとから構成される。   As shown in FIG. 20, the fixed component 310 has a symmetrical shape with respect to a center line corresponding to the gap. The fixed component 310 also includes an opening portion insertion portion 310a and a nonmagnetic portion insertion portion 310b.

図16乃至図22において、その他の符号は、図1乃至図9に示す符号に対して、一桁目を「2」から「3」に変えているが、その他の桁の数字もしくはアルファベットが同じものは、同じ箇所を指す。例えば、軸孔305は、軸孔205と同じものである。   In FIG. 16 to FIG. 22, the other numerals are changed from “2” to “3” in the first digit with respect to the numerals shown in FIG. 1 to FIG. Things refer to the same part. For example, the shaft hole 305 is the same as the shaft hole 205.

回転子300は、永久磁石303の磁束の一部が、外周薄肉部306a、連結部306が集まる極間において、磁極自身並びに磁極間で短絡する。但し、開口部308が形成された極間では、永久磁石303の磁束の短絡は無いので、全体的にみると回転子300内部で短絡する磁束は従来の半分にすることができる。それにより、より多くの磁束を固定子の巻線に鎖交することができる。   In the rotor 300, a part of the magnetic flux of the permanent magnet 303 is short-circuited between the magnetic pole itself and the magnetic pole between the poles where the outer peripheral thin portion 306a and the connecting portion 306 gather. However, since the magnetic flux of the permanent magnet 303 is not short-circuited between the poles in which the opening 308 is formed, the magnetic flux that is short-circuited inside the rotor 300 can be halved compared to the conventional case. As a result, more magnetic flux can be linked to the stator windings.

本発明の活用例として、比較的運転回転数の低い送風機に用いられる同期電動機への適用が可能である。   As an application example of the present invention, the present invention can be applied to a synchronous motor used for a blower having a relatively low operation speed.

200 回転子、200−1 回転子組立、201 回転子鉄心、201a 外周鉄心部、201b 内側鉄心部、201−1 第1の回転子鉄心、201−2 第2の回転子鉄心、202 永久磁石挿入部、202a 非磁性部、203 永久磁石、205 軸孔、206 連結部、206a 外周薄肉部、207 カシメ部、208 開口部、210 固定部品、210a 開口部挿入部、210b 非磁性部挿入部、300 回転子、301 回転子鉄心、301−1 第1の回転子鉄心、301−2 第2の回転子鉄心、310 固定部品、310a 開口部挿入部、310b 非磁性部挿入部、400 回転子、401 回転子鉄心、401a 外周鉄心部、401b 内側鉄心部、402 永久磁石挿入部、403 永久磁石、405 軸孔、406 連結部、406a 外周薄肉部、407 カシメ部、500 回転子、501 回転子鉄心、501a 外周鉄心部、501b 内側鉄心部、502 永久磁石挿入部、503 永久磁石、505 軸孔、508 開口部。   200 Rotor, 200-1 Rotor assembly, 201 Rotor core, 201a Outer core, 201b Inner core, 201-1 First rotor core, 201-2 Second rotor core, 202 Permanent magnet insertion Part, 202a Non-magnetic part, 203 Permanent magnet, 205 Shaft hole, 206 Connecting part, 206a Thin outer peripheral part, 207 Caulking part, 208 Opening part, 210 Fixed part, 210a Opening insertion part, 210b Non-magnetic part insertion part, 300 Rotor, 301 rotor core, 301-1 first rotor core, 301-2 second rotor core, 310 fixed part, 310a opening insertion portion, 310b non-magnetic portion insertion portion, 400 rotor, 401 Rotor core, 401a outer core, 401b inner core, 402 permanent magnet insert, 403 permanent magnet, 405 shaft hole, 406 Binding portion, 406a outer peripheral thin portion 407 caulked portion, 500 rotor, 501 rotor core, 501a outer peripheral core portion, 501b inner core portion, 502 permanent magnet insertion portion, 503 permanent magnet, 505 shaft hole 508 opening.

Claims (3)

所定の形状に打ち抜かれた軟磁性体を所定枚数積層して形成される回転子鉄心の内部に磁極を構成する永久磁石が配置される同期電動機の回転子において、
前記回転子鉄心は、前記軟磁性体を所定枚数積層して形成される第1の回転子鉄心と、前記軟磁性体を所定枚数積層して形成される第2の回転子鉄心とが組み合わされて形成され、前記第1の回転子鉄心と前記第2の回転子鉄心とは、夫々、
前記第1の回転子鉄心もしくは前記第2の回転子鉄心の外周縁に沿って形成され、前記永久磁石が挿入される永久磁石挿入部と、
前記永久磁石挿入部の内側に形成される内側鉄心部と、
前記永久磁石挿入部の外側の各磁極に形成される外周鉄心部と、
前記内側鉄心部と前記外周鉄心部とを、各磁極の端部において連結する連結部並びに外周薄肉部と、
前記外周薄肉部の内側に形成され、前記永久磁石挿入部に連通する非磁性部と、
各磁極の前記連結部並びに前記外周薄肉部が設けられる端部と反対側の端部に設けられ、前記永久磁石挿入部に連通する開口部と、を備え、
前記第1の回転子鉄心と前記第2の回転子鉄心とは、前記開口部が各磁極の異なる端部に配置され、前記第1の回転子鉄心と前記第2の回転子鉄心とが組み合わされることで、一方の前記開口部と他方の前記非磁性部、もしくは一方の前記非磁性部と他方の前記開口部とが軸方向に連通し、連通した前記非磁性部と前記開口部とに非磁性材料で構成される固定部品が挿入されることを特徴とする同期電動機の回転子。
In the rotor of a synchronous motor in which permanent magnets constituting magnetic poles are arranged inside a rotor core formed by laminating a predetermined number of soft magnetic materials punched into a predetermined shape,
The rotor core is a combination of a first rotor core formed by laminating a predetermined number of soft magnetic bodies and a second rotor core formed by laminating a predetermined number of soft magnetic bodies. The first rotor core and the second rotor core are each formed as follows:
A permanent magnet insertion portion formed along an outer peripheral edge of the first rotor core or the second rotor core, into which the permanent magnet is inserted;
An inner iron core portion formed inside the permanent magnet insertion portion;
An outer peripheral iron core portion formed on each magnetic pole outside the permanent magnet insertion portion;
A connecting portion for connecting the inner core portion and the outer peripheral core portion at the end of each magnetic pole, and a thin outer peripheral portion;
A non-magnetic portion that is formed inside the outer peripheral thin portion and communicates with the permanent magnet insertion portion;
An opening that is provided at an end opposite to the end where the connecting portion of each magnetic pole and the outer peripheral thin portion are provided, and communicates with the permanent magnet insertion portion;
In the first rotor core and the second rotor core, the openings are arranged at different ends of the magnetic poles, and the first rotor core and the second rotor core are combined. Thus, the one opening and the other non-magnetic part, or the one non-magnetic part and the other opening are communicated in the axial direction, and the communicated non-magnetic part and the opening are connected to each other. A rotor of a synchronous motor, wherein a stationary part made of a nonmagnetic material is inserted.
前記開口部は外周側が内側よりも幅が広くなっていることを特徴する請求項1記載の同期電動機の回転子。   The rotor of a synchronous motor according to claim 1, wherein the opening is wider on the outer peripheral side than on the inner side. 前記固定部品は、非磁性体金属もしくは樹脂で構成されることを特徴とする請求項1又は請求項2記載の同期電動機の回転子。   The synchronous motor rotor according to claim 1, wherein the fixed component is made of a non-magnetic metal or resin.
JP2010201448A 2010-09-08 2010-09-08 Synchronous motor rotor Active JP5279780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010201448A JP5279780B2 (en) 2010-09-08 2010-09-08 Synchronous motor rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010201448A JP5279780B2 (en) 2010-09-08 2010-09-08 Synchronous motor rotor

Publications (2)

Publication Number Publication Date
JP2012060774A true JP2012060774A (en) 2012-03-22
JP5279780B2 JP5279780B2 (en) 2013-09-04

Family

ID=46057215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010201448A Active JP5279780B2 (en) 2010-09-08 2010-09-08 Synchronous motor rotor

Country Status (1)

Country Link
JP (1) JP5279780B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080355A (en) * 2013-10-18 2015-04-23 株式会社一宮電機 Brushless motor
WO2019123949A1 (en) * 2017-12-18 2019-06-27 日本電産株式会社 Electromagnetic steel sheet, rotor core, rotor and motor
CN112689939A (en) * 2018-11-09 2021-04-20 爱信艾达株式会社 Rotor core for rotating electrical machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104643A (en) * 1996-06-13 1998-01-06 Aichi Emerson Electric Co Ltd Magnet rotor
JPH10146031A (en) * 1996-09-13 1998-05-29 Hitachi Ltd Permanent magnet rotating electric machine and electric vehicle
JP2000116042A (en) * 1998-09-30 2000-04-21 Toshiba Corp Permanent magnet motor
JP2000134841A (en) * 1998-10-20 2000-05-12 Hitachi Ltd Electrical rotating machine
JP2001238380A (en) * 2000-02-24 2001-08-31 Isuzu Motors Ltd Rotor of rotating machine and manufacturing thereof
JP2004096978A (en) * 2002-09-04 2004-03-25 Daikin Ind Ltd Permanent magnet embedded motor and rotary compressor
JP2005354798A (en) * 2004-06-10 2005-12-22 Fujitsu General Ltd Electric motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104643A (en) * 1996-06-13 1998-01-06 Aichi Emerson Electric Co Ltd Magnet rotor
JPH10146031A (en) * 1996-09-13 1998-05-29 Hitachi Ltd Permanent magnet rotating electric machine and electric vehicle
JP2000116042A (en) * 1998-09-30 2000-04-21 Toshiba Corp Permanent magnet motor
JP2000134841A (en) * 1998-10-20 2000-05-12 Hitachi Ltd Electrical rotating machine
JP2001238380A (en) * 2000-02-24 2001-08-31 Isuzu Motors Ltd Rotor of rotating machine and manufacturing thereof
JP2004096978A (en) * 2002-09-04 2004-03-25 Daikin Ind Ltd Permanent magnet embedded motor and rotary compressor
JP2005354798A (en) * 2004-06-10 2005-12-22 Fujitsu General Ltd Electric motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080355A (en) * 2013-10-18 2015-04-23 株式会社一宮電機 Brushless motor
CN104578664A (en) * 2013-10-18 2015-04-29 株式会社一宫电机 Brushless motor
WO2019123949A1 (en) * 2017-12-18 2019-06-27 日本電産株式会社 Electromagnetic steel sheet, rotor core, rotor and motor
CN112689939A (en) * 2018-11-09 2021-04-20 爱信艾达株式会社 Rotor core for rotating electrical machine

Also Published As

Publication number Publication date
JP5279780B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5279777B2 (en) Synchronous motor rotor
JP5546413B2 (en) Synchronous motor rotor
JP5350342B2 (en) Synchronous motor rotor
JP5269032B2 (en) Synchronous motor rotor
JP5933743B2 (en) Permanent magnet embedded motor, compressor, and refrigeration air conditioner
EP2378632B1 (en) Permanent magnet type rotary electric machine
JP5084770B2 (en) Electric motor, compressor and air conditioner
JP5752260B2 (en) Rotor of embedded permanent magnet electric motor, electric motor using this rotor, compressor using this electric motor, and air conditioner using this compressor
WO2011096094A1 (en) Rotor of permanent magnet embedded motor, blower, and compressor
US20150084468A1 (en) Rotor for permanent-magnet-embedded electric motor, electric motor including the rotor, compressor including the electric motor, and air conditioner including the compressor
JP6597184B2 (en) Permanent magnet type motor
JP4673825B2 (en) Embedded magnet rotor and manufacturing method of embedded magnet rotor
JP2013059262A (en) Stator core and stator and motor and compressor
KR20140147592A (en) rotor for electric motor and electric motor using the same
JP4602958B2 (en) Permanent magnet motor, hermetic compressor and fan motor
JP2011120392A (en) Stator core, stator, motor, and compressor
JP5279780B2 (en) Synchronous motor rotor
JP5042184B2 (en) Synchronous motor rotor and method of manufacturing synchronous motor rotor
JP4299391B2 (en) Permanent magnet rotor
JP2001086673A (en) Permanent magnet motor
JP5264551B2 (en) Electric motor, blower and compressor
JP5691451B2 (en) Rotor for rotating electrical machines
CN110620452A (en) Rotor, motor and compressor
WO2019242218A1 (en) Rotor, motor and compressor
CN111130240A (en) Rotor and IPM motor using same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5279780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250