JP5546413B2 - Synchronous motor rotor - Google Patents

Synchronous motor rotor Download PDF

Info

Publication number
JP5546413B2
JP5546413B2 JP2010229270A JP2010229270A JP5546413B2 JP 5546413 B2 JP5546413 B2 JP 5546413B2 JP 2010229270 A JP2010229270 A JP 2010229270A JP 2010229270 A JP2010229270 A JP 2010229270A JP 5546413 B2 JP5546413 B2 JP 5546413B2
Authority
JP
Japan
Prior art keywords
rotor
core
magnetic
outer peripheral
rotor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010229270A
Other languages
Japanese (ja)
Other versions
JP2012085433A (en
Inventor
篤 松岡
和彦 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010229270A priority Critical patent/JP5546413B2/en
Publication of JP2012085433A publication Critical patent/JP2012085433A/en
Application granted granted Critical
Publication of JP5546413B2 publication Critical patent/JP5546413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

この発明は、永久磁石を用いる同期電動機の回転子に関する。   The present invention relates to a rotor of a synchronous motor using permanent magnets.

空気調和機を含む家庭用電気製品の、例えば、送風機等に用いられる同期電動機(ブラシレスDCモータ)は、効率の高いこと、あるいは小型、軽量であることが求められる場合が多い。これらの要求に応えるために、NdFeBの焼結磁石に代表されるような、磁力の高い永久磁石を採用するものが多い。   For example, a synchronous motor (brushless DC motor) used in a household electrical product including an air conditioner, for example, for a blower or the like is often required to have high efficiency or be small and light. In order to meet these requirements, many employ a permanent magnet having a high magnetic force, such as a NdFeB sintered magnet.

NdFeBは、ネオジム、鉄、ホウ素の化合物であり、代表的なものとして、NdFe14Bが大変強力な永久磁石・ネオジム磁石となることで、いろいろな分野で利用されている。 NdFeB is a compound of neodymium, iron, and boron. As a typical example, Nd 2 Fe 14 B is used in various fields by becoming a very strong permanent magnet / neodymium magnet.

NdFeBのような希土類の焼結磁石の場合、大きな塊から必要な形状の永久磁石を切り出すという製造方法をとることが多い。そのため、加工コストを含めた永久磁石の価格を抑えるために、比較的単純な形状である平板の永久磁石が多く用いられる。   In the case of a rare earth sintered magnet such as NdFeB, a manufacturing method is often employed in which a permanent magnet having a required shape is cut from a large mass. Therefore, in order to suppress the price of the permanent magnet including the processing cost, a flat permanent magnet having a relatively simple shape is often used.

このような平板状の永久磁石を用いる同期電動機では、磁性材料の内部に永久磁石を配置する、磁石埋め込み型(IPM:Interior Permanent Magnet)の回転子を用いることが多い。この場合、隣り合って配置される永久磁石の間には磁性体(回転子鉄心)が存在する。そのため、この磁性体の部分で磁極間の磁束が短絡してしまい、固定子の巻線に鎖交する回転子の磁束が減少してしまう。磁極数が多くなると、この磁束が短絡する場所が増えることになるため、固定子の巻線に鎖交する磁束がさらに減少してしまう。このため、一般的には、磁極間の磁性体を極力薄肉で構成し、部分的に磁気飽和を起こさせて、磁極間で磁束の短絡が生じることを抑えるという方法がとられる。   In such a synchronous motor using a plate-like permanent magnet, an embedded permanent magnet (IPM) rotor in which a permanent magnet is arranged in a magnetic material is often used. In this case, a magnetic body (rotor core) exists between the permanent magnets arranged adjacent to each other. For this reason, the magnetic flux between the magnetic poles is short-circuited in the magnetic material portion, and the magnetic flux of the rotor interlinking with the stator winding is reduced. As the number of magnetic poles increases, the number of places where this magnetic flux is short-circuited increases, so that the magnetic flux linked to the stator windings further decreases. For this reason, generally, a method is adopted in which the magnetic material between the magnetic poles is made as thin as possible and magnetic saturation is partially caused to prevent a magnetic flux from being short-circuited between the magnetic poles.

磁束の短絡をさらに抑える方法として、磁極間の磁性体を取り除いた形態をとる回転子が提案されている。即ち、回転子を構成する磁性体を一体の部品で構成せず、平板状の永久磁石の内周側の磁性体部と永久磁石の外周側の磁性体部を別部品で構成して、軸方向の両側から、それらを貫通して一体化する部材を用いて構成する回転子が提案されている(例えば、特許文献1参照)。   As a method for further suppressing the short circuit of the magnetic flux, a rotor having a form in which a magnetic body between magnetic poles is removed has been proposed. In other words, the magnetic body constituting the rotor is not configured as an integral part, but the magnetic body part on the inner peripheral side of the flat permanent magnet and the magnetic body part on the outer peripheral side of the permanent magnet are configured as separate parts, and the shaft There has been proposed a rotor configured by using a member that penetrates and integrates them from both sides in a direction (see, for example, Patent Document 1).

また、回転子を構成する磁性体での磁束の短絡を抑える効果は少なくなるが、永久磁石の片側の磁極間の磁性体を取り除いた形状の鉄心を積層して構成し、樹脂のモールドによって固定するアウターロータ型の回転子が提案されている(例えば、特許文献2参照)。   In addition, the effect of suppressing the short circuit of the magnetic flux in the magnetic body that constitutes the rotor is reduced, but it is constructed by laminating the iron core in a shape that removes the magnetic body between the magnetic poles on one side of the permanent magnet, and fixed by a resin mold An outer rotor type rotor has been proposed (see, for example, Patent Document 2).

特開平10−164784号公報Japanese Patent Laid-Open No. 10-164784 特開2004−25443号公報JP 2004-25443 A

しかしながら、上記特許文献1記載の回転子は、磁極間の磁束短絡を防止して、固定子巻線により多くの磁束を鎖交させることが可能であるが、回転子の永久磁石内側の磁性体材料と永久磁石外側の磁性体材料が別部品となるため、組立の工程が増えるという課題が生じる。   However, the rotor described in Patent Document 1 can prevent a magnetic flux short circuit between the magnetic poles and link more magnetic flux to the stator winding, but the magnetic body inside the permanent magnet of the rotor. Since the material and the magnetic material outside the permanent magnet are separate parts, there arises a problem that the number of assembly steps increases.

また、回転子の磁極間に磁性体がないため、磁極間付近での磁束の密度の変化が大きく、同期電動機のコギングトルクが増加し、振動・騒音の要因となりやすい。   In addition, since there is no magnetic material between the magnetic poles of the rotor, the change in magnetic flux density near the magnetic poles is large, the cogging torque of the synchronous motor is increased, and this is likely to cause vibration and noise.

また、上記特許文献2記載の回転子は、鉄心および永久磁石を樹脂によってモールドすることで、これらを一体化することが可能であるが、樹脂と鉄心では材料の温度変化に対する線膨張係数が大きく異なるため、ヒートショック等の環境変化の繰り返しの中で、鉄心と樹脂が剥離する可能性がある。特許文献2記載の回転子の場合、アウターロータ型の回転子であるため、仮に鉄心と樹脂に剥離が生じても樹脂が飛散することは無いが、インナーロータ型の回転子で同回転子を製造した場合、遠心力によって剥離した樹脂が飛散したり、永久磁石外周部の鉄心が薄肉部で変形を起こして固定子と接触する可能性もある。   The rotor described in Patent Document 2 can be integrated by molding an iron core and a permanent magnet with a resin. However, the resin and the iron core have a large linear expansion coefficient with respect to temperature changes of the material. Because of differences, the iron core and the resin may peel off during repeated environmental changes such as heat shock. In the case of the rotor described in Patent Document 2, since it is an outer rotor type rotor, the resin does not scatter even if the iron core and the resin are peeled off. However, the inner rotor type rotor does not scatter the rotor. When manufactured, the resin peeled off by the centrifugal force may be scattered, or the iron core of the outer periphery of the permanent magnet may be deformed at the thin wall portion to come into contact with the stator.

この発明は、上記のような課題を解決するためになされたもので、以下に示す同期電動機の回転子を提供する。
(1)回転子の磁束をより多く固定子巻線に鎖交させ、効率の良い同期電動機を実現するための同期電動機の回転子;
(2)組立工程が複雑にならず、加工コストの増加を抑えることができる同期電動機の回転子;
(3)遠心力による鉄心の変形など強度の低下を抑えた同期電動機の回転子;
(4)コギングトルクの増大を抑えて振動、騒音の悪化を抑制することができる同期電動機を実現するための同期電動機の回転子。
The present invention has been made to solve the above-described problems, and provides a rotor for a synchronous motor described below.
(1) A rotor of a synchronous motor for realizing an efficient synchronous motor by interlinking a larger amount of the magnetic flux of the rotor with the stator winding;
(2) A rotor of a synchronous motor that does not complicate the assembly process and can suppress an increase in processing cost;
(3) A rotor of a synchronous motor that suppresses a decrease in strength such as deformation of the iron core due to centrifugal force;
(4) A rotor of a synchronous motor for realizing a synchronous motor that can suppress an increase in cogging torque and suppress deterioration of vibration and noise.

この発明に係る同期電動機の回転子は、所定の形状に打ち抜かれた軟磁性体を所定枚数積層して形成される回転子鉄心の内部に磁極を構成する永久磁石が配置される同期電動機の回転子において、
回転子鉄心は、第1の回転子鉄心と第2の回転子鉄心とを一磁極分回転させてずらして夫々所定枚数適宜積層して形成され、第1の回転子鉄心と第2の回転子鉄心とは、夫々、
第1の回転子鉄心もしくは第2の回転子鉄心の外周縁に沿って形成され、永久磁石が挿入される永久磁石挿入部と、
永久磁石挿入部の内側に形成される内側鉄心部と、
永久磁石挿入部の外側の各磁極に形成される外周鉄心部と、
内側鉄心部と前記外周鉄心部とを、各磁極の端部において連結する連結部並びに外周薄肉部と、
外周薄肉部の内側に形成され、永久磁石挿入部に連通する非磁性部と、
各磁極の連結部並びに外周薄肉部が設けられる端部と反対側の端部に設けられ、永久磁石挿入部に連通する開口部と、を備え、
開口部、連結部並びに外周薄肉部は、隣り合う磁極でそれぞれ同じ磁極間にまとめて配置され、第1の回転子鉄心と第2の回転子鉄心とを一磁極分回転させてずらして積層されることで、一方の開口部と他方の非磁性部、もしくは一方の非磁性部と他方の開口部とが軸方向に連通し、連通した非磁性部と開口部とに非磁性材料が充填されることを特徴とする。
A rotor of a synchronous motor according to the present invention is a rotation of a synchronous motor in which permanent magnets constituting magnetic poles are arranged inside a rotor core formed by laminating a predetermined number of soft magnetic materials punched into a predetermined shape. In the child
The rotor core is formed by rotating the first rotor core and the second rotor core by one magnetic pole and shifting them so that a predetermined number of layers are appropriately stacked, and the first rotor core and the second rotor are formed. With iron core,
A permanent magnet insertion portion formed along the outer peripheral edge of the first rotor core or the second rotor core and into which the permanent magnet is inserted;
An inner core part formed inside the permanent magnet insertion part;
An outer peripheral core portion formed on each magnetic pole outside the permanent magnet insertion portion; and
A connecting portion for connecting the inner core portion and the outer peripheral core portion at the end of each magnetic pole, and a thin outer peripheral portion;
A non-magnetic part formed inside the outer peripheral thin part and communicating with the permanent magnet insertion part;
A connecting portion of each magnetic pole as well as an end on the opposite side to the end where the outer peripheral thin portion is provided, and an opening communicating with the permanent magnet insertion portion,
The opening portion, the connecting portion, and the thin outer peripheral portion are arranged together between the same magnetic poles in adjacent magnetic poles, and are laminated by rotating the first rotor core and the second rotor core by one magnetic pole and shifting them. Thus, one opening and the other non-magnetic part, or one non-magnetic part and the other opening communicate in the axial direction, and the communicating non-magnetic part and opening are filled with a non-magnetic material. It is characterized by that.

この発明に係る同期電動機の回転子は、永久磁石の磁束が回転子鉄心の内部で短絡するのが抑えられると共に、回転子の加工コスト、回転子の強度の低下、さらにはコギングトルクの増加が抑えられることで、高効率、低コスト、低騒音の同期電動機の回転子が得られる。   In the rotor of the synchronous motor according to the present invention, the magnetic flux of the permanent magnet can be prevented from being short-circuited inside the rotor core, and the processing cost of the rotor, the strength of the rotor can be reduced, and the cogging torque can be increased. By being suppressed, a rotor of a synchronous motor with high efficiency, low cost, and low noise can be obtained.

実施の形態1を示す図で、回転子200の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor 200. 実施の形態1を示す図で、回転子200の平面図。FIG. 5 shows the first embodiment and is a plan view of a rotor 200. FIG. 実施の形態1を示す図で、回転子組立200−1(樹脂成形前)の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of the rotor assembly 200-1 (before resin molding). 実施の形態1を示す図で、回転子組立200−1(樹脂成形前)の平面図。FIG. 5 shows the first embodiment, and is a plan view of the rotor assembly 200-1 (before resin molding). 実施の形態1を示す図で、回転子鉄心201の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor core 201. 実施の形態1を示す図で、第1の回転子鉄心201−1の平面図。FIG. 5 shows the first embodiment, and is a plan view of a first rotor core 201-1. 実施の形態1を示す図で、第2の回転子鉄心201−2の平面図。FIG. 5 shows the first embodiment, and is a plan view of a second rotor core 201-2. (a)は図6のA部拡大図、(b)は図7のB部拡大図。(A) is the A section enlarged view of FIG. 6, (b) is the B section enlarged view of FIG. 実施の形態1を示す図で、第1の回転子鉄心201−1と第2の回転子鉄心201−2とを重ねた状態の部分平面図。FIG. 5 shows the first embodiment, and is a partial plan view showing a state in which a first rotor core 201-1 and a second rotor core 201-2 are overlapped. 実施の形態1を示す図で、変形例1の回転子300の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor 300 of a first modification. 実施の形態1を示す図で、変形例2の回転子600の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor 600 of a second modification. 実施の形態1を示す図で、本実施の形態の回転子(回転子200)を用いた同期電動機と、一般的な回転子を用いた同期電動機の誘起電圧の実効値を比較した図。The figure which shows Embodiment 1 and the figure which compared the effective value of the induced voltage of the synchronous motor using the rotor (rotor 200) of this Embodiment, and the synchronous motor using a common rotor. 実施の形態1を示す図で、本実施の形態の回転子(回転子200)を用いた同期電動機と、一般的な回転子を用いた同期電動機の誘起電圧の波形を比較した図。The figure which shows Embodiment 1 and the figure which compared the waveform of the induced voltage of the synchronous motor using the rotor (rotor 200) of this Embodiment, and the synchronous motor using a common rotor. 実施の形態1を示す図で、本実施の形態の回転子(回転子200)を用いた同期電動機と、一般的な回転子を用いた同期電動機のコギングトルク振幅を比較した図。The figure which shows Embodiment 1 and the figure which compared the cogging torque amplitude of the synchronous motor using the rotor (rotor 200) of this Embodiment, and the synchronous motor using a common rotor. 実施の形態1を示す図で、本実施の形態の回転子(回転子200)を用いた同期電動機と、一般的な回転子を用いた同期電動機のコギングトルクの波形を比較した図。The figure which shows Embodiment 1 and the figure which compared the waveform of the cogging torque of the synchronous motor using the rotor (rotor 200) of this Embodiment, and the synchronous motor using a common rotor. 実施の形態1を示す図で、変形例3の回転子700の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor 700 of a third modification. 実施の形態1を示す図で、変形例3の回転子700の平面図。FIG. 5 shows the first embodiment and is a plan view of a rotor 700 of a third modification. 実施の形態1を示す図で、変形例3の回転子組立700−1(樹脂成形前)の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor assembly 700-1 (before resin molding) of Modification 3. 実施の形態1を示す図で、変形例3の回転子組立700−1(樹脂成形前)の平面図。FIG. 5 shows the first embodiment, and is a plan view of a rotor assembly 700-1 (before resin molding) of Modification 3. 実施の形態1を示す図で、変形例3の回転子鉄心701の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor core 701 of a third modification. 実施の形態1を示す図で、変形例3の第1の回転子鉄心701−1、第2の回転子鉄心701−2の平面図。FIG. 5 shows the first embodiment, and is a plan view of a first rotor core 701-1 and a second rotor core 701-2 of Modification 3. 実施の形態1を示す図で、変形例4の回転子800の斜視図。FIG. 9 shows the first embodiment, and is a perspective view of a rotor 800 of a fourth modification. 実施の形態1を示す図で、変形例5の回転子900の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a rotor 900 of a fifth modification. 比較のために示す図で、一般的な同期電動機の回転子400の横断面図。It is a figure shown for a comparison and is a cross-sectional view of a rotor 400 of a general synchronous motor. 比較のために示す図で、一般的な同期電動機の回転子500の横断面図。The figure shown for a comparison and the cross-sectional view of the rotor 500 of a common synchronous motor. 実施の形態1を示す図で、本実施の形態の回転子(回転子700)を用いた同期電動機と、一般的な回転子を用いた同期電動機のコギングトルクの波形を比較した図。The figure which shows Embodiment 1 and the figure which compared the waveform of the cogging torque of the synchronous motor using the rotor (rotor 700) of this Embodiment, and the synchronous motor using a common rotor.

実施の形態1.   Embodiment 1 FIG.

図1、図2は実施の形態1を示す図で、回転子200の斜視図、図2は回転子200の平面図である。同期電動機の回転子を、回転子200と呼ぶことにする。また、回転子200を、単にロータと呼ぶ場合もある。   FIGS. 1 and 2 are views showing the first embodiment, and are perspective views of a rotor 200. FIG. 2 is a plan view of the rotor 200. FIG. The rotor of the synchronous motor is called a rotor 200. Further, the rotor 200 may be simply referred to as a rotor.

同期電動機は、例えば、固定子(図示せず)に三相巻線が施され、インバータにより駆動されるブラシレスDCモータである。   The synchronous motor is, for example, a brushless DC motor in which a three-phase winding is applied to a stator (not shown) and driven by an inverter.

回転子200は、図1、図2に示すように、少なくとも略円柱状の回転子鉄心201(第1の回転子鉄心201−1と、第2の回転子鉄心201−2とからなる)と、回転子鉄心201の永久磁石挿入部(後述)に挿入される平板状の永久磁石203と、回転子鉄心201(第1の回転子鉄心201−1と、第2の回転子鉄心201−2とからなる)の夫々の永久磁石挿入部(後述)の端部に形成される開口部(後述)及び非磁性部(後述)に充填される非磁性材料210(樹脂)と、回転子鉄心201の略中心に形成される軸孔205に固定される回転軸(図示せず)とを備える。   As shown in FIGS. 1 and 2, the rotor 200 includes at least a substantially cylindrical rotor core 201 (consisting of a first rotor core 201-1 and a second rotor core 201-2). , A flat permanent magnet 203 to be inserted into a permanent magnet insertion portion (described later) of the rotor core 201, and a rotor core 201 (first rotor core 201-1 and second rotor core 201-2). And a non-magnetic material 210 (resin) filled in a non-magnetic portion (described later) formed in an end portion of each permanent magnet insertion portion (described later) and a rotor core 201. And a rotating shaft (not shown) fixed to a shaft hole 205 formed at the approximate center of the shaft.

図1、図2に示す回転子200は、周方向に極性が交互に異なるように配置される永久磁石203を8個備える8極のロータである。   The rotor 200 shown in FIGS. 1 and 2 is an 8-pole rotor including eight permanent magnets 203 arranged so that the polarities are alternately different in the circumferential direction.

尚、図示はしないが、回転子200の軸方向両端部に、永久磁石203の軸方向の抜けを止める端板が設けられる。端板は、例えば、回転子鉄心201を貫通するリベット等により固定される。   Although not shown in the drawing, end plates for stopping the permanent magnet 203 from coming off in the axial direction are provided at both axial ends of the rotor 200. The end plate is fixed by, for example, a rivet that penetrates the rotor core 201.

また、図示はしないが、永久磁石203は、例えば、永久磁石挿入部202に位置決め用の突出部を設け、その突出部により周方向の位置決めがなされる。位置決め用の突出部は、例えば、永久磁石挿入部202の内側の面の二箇所に設けられる。   In addition, although not shown, the permanent magnet 203 is provided with, for example, a positioning projection on the permanent magnet insertion portion 202 and is positioned in the circumferential direction by the projection. The protrusions for positioning are provided at two locations on the inner surface of the permanent magnet insertion portion 202, for example.

回転子200の特徴は、後述する回転子鉄心201(第1の回転子鉄心201−1と、第2の回転子鉄心201−2とからなる)の夫々の永久磁石挿入部202の端部に形成される開口部(後述)及び非磁性部(後述)に非磁性材料210(樹脂)を充填して、内側鉄心部201bと外周薄肉部で連結している比較的強度の弱い外周鉄心部201aを補強して、遠心力により生じる回転子鉄心201の変形を抑制する点にある。図1、図2に示す符号で、説明を省略している符号については後述する。   The feature of the rotor 200 is that the end of each permanent magnet insertion portion 202 of a rotor core 201 (consisting of a first rotor core 201-1 and a second rotor core 201-2), which will be described later. The formed opening (described later) and nonmagnetic portion (described later) are filled with a nonmagnetic material 210 (resin), and are connected to the inner core 201b by the outer peripheral thin portion, and the relatively weak outer peripheral core 201a. Is to suppress the deformation of the rotor core 201 caused by centrifugal force. Reference numerals that are not shown in the reference numerals shown in FIGS. 1 and 2 will be described later.

図3、図4は実施の形態1を示す図で、図3は回転子組立200−1(樹脂成形前)の斜視図、図4は回転子組立200−1(樹脂成形前)の平面図である。樹脂充填前の状態のものを回転子組立200−1と呼ぶことにする。樹脂充填前の回転子組立200−1は、永久磁石挿入部202(後述)の端部に形成される開口部208及び非磁性部202a(永久磁石203が存在する状態では軸方向両端を除いて閉じた空間)が、空間になっている。   3 and 4 show the first embodiment. FIG. 3 is a perspective view of the rotor assembly 200-1 (before resin molding), and FIG. 4 is a plan view of the rotor assembly 200-1 (before resin molding). It is. The state before the resin filling is referred to as a rotor assembly 200-1. The rotor assembly 200-1 before resin filling has an opening 208 formed at an end portion of a permanent magnet insertion portion 202 (described later) and a nonmagnetic portion 202a (excluding both axial ends in the state where the permanent magnet 203 exists). A closed space is a space.

本実施の形態の回転子200並びに回転子鉄心201の特徴を分かりやすくするために、一般的な同期電動機の回転子について説明しておく。   In order to make the features of the rotor 200 and the rotor core 201 of the present embodiment easier to understand, a general synchronous motor rotor will be described.

図24は比較のために示す図で、一般的な同期電動機の回転子400の横断面図である。一般的な同期電動機の回転子400は(以下、回転子400)は、略円柱状の回転子鉄心401と、回転子鉄心401の永久磁石挿入部402に挿入される平板状の永久磁石403と、回転子鉄心401の略中心に回転軸(図示せず)固定される軸孔405とを備える。   FIG. 24 is a view for comparison, and is a cross-sectional view of a rotor 400 of a general synchronous motor. A general synchronous motor rotor 400 (hereinafter referred to as a rotor 400) includes a substantially cylindrical rotor core 401 and a flat permanent magnet 403 inserted into a permanent magnet insertion portion 402 of the rotor core 401. The rotor core 401 includes a shaft hole 405 that is fixed to a rotational shaft (not shown).

回転子鉄心401は、回転子鉄心201と同様、電磁鋼板に代表される軟磁性体(厚さが、0.1〜1.0mm程度)を所定の形状に打ち抜き、所定枚数積層して形成される。所定の形状に打ち抜かれた軟磁性体板は、各軟磁性体板に形成される切り起こし突起を軸方向に隣接する軟磁性体板で嵌合させて固定する一般的なカシメ(カシメ部407)により積層される。   As with the rotor core 201, the rotor core 401 is formed by punching a soft magnetic material (thickness of about 0.1 to 1.0 mm) typified by an electromagnetic steel sheet into a predetermined shape and laminating a predetermined number of sheets. The The soft magnetic plate punched into a predetermined shape is a general caulking (caulking portion 407) in which cut and raised protrusions formed on each soft magnetic plate are fitted and fixed by soft magnetic plates adjacent in the axial direction. ).

回転子鉄心401には、外周部に沿って8個の永久磁石挿入部402(断面が略バスタブ形状、内側に凸)が、略正八角形に形成されている。これらの永久磁石挿入部402を間にして、永久磁石挿入部402よりも外側の鉄心部分を外周鉄心部401a、永久磁石挿入部402よりも内側の鉄心部分を内側鉄心部401bとする。   In the rotor core 401, eight permanent magnet insertion portions 402 (the cross section is substantially bathtub-shaped and convex inward) are formed in a substantially regular octagon along the outer peripheral portion. With the permanent magnet insertion part 402 in between, the outer core part 401a is the outer core part than the permanent magnet insertion part 402, and the inner core part 401b is the inner core part than the permanent magnet insertion part 402.

回転子鉄心401は、全ての極間において、外周鉄心部401aと内側鉄心部401bとが、連結部406並びに外周薄肉部406aで連結している。   In the rotor core 401, between all the poles, the outer peripheral core portion 401a and the inner iron core portion 401b are connected by the connecting portion 406 and the outer peripheral thin portion 406a.

回転子鉄心401は、隣接して配置される永久磁石403の間に磁性体(連結部406並びに外周薄肉部406a)が存在する。そのため、この磁性体の部分で磁極間の磁束が短絡してしまい、固定子の巻線に鎖交する回転子400の磁束が減少する。また、磁極数が多くなると、この磁束が短絡する箇所が増えるため、固定子の巻線に鎖交する磁束がさらに減少する。それにより、回転子400を用いる同期電動機は、永久磁石403の磁束をフルに利用できないためトルクが出ないという課題がある。   The rotor core 401 has a magnetic body (the connecting portion 406 and the outer peripheral thin portion 406a) between the permanent magnets 403 arranged adjacent to each other. For this reason, the magnetic flux between the magnetic poles is short-circuited in the magnetic material portion, and the magnetic flux of the rotor 400 linked to the stator winding is reduced. Further, as the number of magnetic poles increases, the number of places where this magnetic flux is short-circuited increases, so that the magnetic flux linked to the stator windings further decreases. As a result, the synchronous motor using the rotor 400 has a problem that no torque is generated because the magnetic flux of the permanent magnet 403 cannot be fully utilized.

図25は比較のために示す図で、一般的な同期電動機の回転子500の横断面図である。一般的な同期電動機の回転子500は(以下、回転子500)は、回転子鉄心501と、回転子鉄心501の永久磁石挿入部502に挿入される平板状の永久磁石503と、回転子鉄心501の略中心に回転軸(図示せず)が固定される軸孔505とを備える。   FIG. 25 is a view for comparison, and is a cross-sectional view of a rotor 500 of a general synchronous motor. A general synchronous motor rotor 500 (hereinafter referred to as a rotor 500) includes a rotor core 501, a flat permanent magnet 503 inserted into a permanent magnet insertion portion 502 of the rotor core 501, and a rotor core. And a shaft hole 505 to which a rotation shaft (not shown) is fixed.

回転子鉄心501は、分割された外周鉄心部501a並びに内側鉄心部501bとで構成される。永久磁石503は、外周鉄心部501aと内側鉄心部501bとの間に設けられる。分割された外周鉄心部501a並びに内側鉄心部501bは、図示しないが、軸方向の両側から外周鉄心部501a並びに内側鉄心部501bを貫通して一体化する部材を用いて一体化している。外周鉄心部501a並びに内側鉄心部501bは、軟磁性体板に形成される切り起こし突起を軸方向に隣接する軟磁性体板で嵌合させて固定する一般的なカシメ(カシメ部507)により積層される。   The rotor core 501 is composed of a divided outer core portion 501a and inner core portion 501b. The permanent magnet 503 is provided between the outer peripheral iron core portion 501a and the inner iron core portion 501b. The divided outer core portion 501a and inner core portion 501b are integrated using a member that penetrates and integrates the outer core portion 501a and the inner core portion 501b from both sides in the axial direction, although not shown. The outer peripheral core portion 501a and the inner iron core portion 501b are laminated by a general caulking (caulking portion 507) in which the cut and raised protrusions formed on the soft magnetic plate are fitted and fixed by the soft magnetic plates adjacent in the axial direction. Is done.

磁極間に開口部508が形成されているので、磁極間の磁束短絡を防止して、固定子の巻線により多くの磁束をさせることが可能であるが、回転子500の永久磁石503内側の内側鉄心部501bと、永久磁石503外側の外周鉄心部501aが別部品となるため、組立の工程が増えるという課題が生じる。   Since the opening 508 is formed between the magnetic poles, it is possible to prevent a magnetic flux short circuit between the magnetic poles and to cause a larger amount of magnetic flux to be generated by the winding of the stator. Since the inner core portion 501b and the outer peripheral core portion 501a outside the permanent magnet 503 are separate parts, there arises a problem that the number of assembling steps increases.

また、回転子500の磁極間に磁性体がないため、磁極間付近での磁束の密度の変化が大きく、同期電動機のコギングトルクが増加し、振動・騒音の要因となりやすい。   In addition, since there is no magnetic material between the magnetic poles of the rotor 500, the change in magnetic flux density near the magnetic poles is large, the cogging torque of the synchronous motor is increased, and this tends to cause vibration and noise.

本実施の形態の回転子鉄心201は、外周鉄心部201aと内側鉄心部201bとが、一磁極において片側の極間で連結部206並びに外周薄肉部206aで連結している。そして、一磁極の他方の極間は、開口部208が形成されていて、外周鉄心部201aと内側鉄心部201bとは分離している。開口部208は外周側が内側よりも幅が広くなっていることを特徴する。   In the rotor core 201 of the present embodiment, the outer peripheral core part 201a and the inner iron core part 201b are connected by the connecting part 206 and the outer peripheral thin part 206a between the poles on one side in one magnetic pole. And the opening part 208 is formed between the other poles of one magnetic pole, and the outer periphery iron core part 201a and the inner core part 201b are isolate | separated. The opening 208 is characterized in that the outer peripheral side is wider than the inner side.

言い換えれば、永久磁石挿入部202(後述)は、回転子鉄心201において磁性体で完全に囲まれた空間ではなく、開口部208において回転子鉄心201外周に開口している。   In other words, the permanent magnet insertion portion 202 (described later) is not a space completely surrounded by the magnetic body in the rotor core 201 but opens to the outer periphery of the rotor core 201 at the opening 208.

一般的に、永久磁石より生じる磁束は、磁気抵抗の低い磁性体を通過しやすく、固定子鉄心(磁性体)と回転子の外周部に空隙(数百μmの狭い空間である)が存在することもあり、固定子鉄心へ流れるよりも回転子の内部で隣り合う磁極の外周部間を通過しやすい。このため、回転子の隣り合う外周部を通して磁極間で磁束が短絡しやすく、固定子の巻線に鎖交する磁束を減少させている。薄肉連結部(例えば、回転子400の連結部406、外周薄肉部406a)は、磁束が通過しようとする磁性体の断面積を小さくすることで、磁束密度を飽和するまで高くして磁気抵抗を上げて回転子内で短絡する磁束を減らすようになっているが、完全に無くすものではない。   In general, the magnetic flux generated from a permanent magnet easily passes through a magnetic body having a low magnetic resistance, and there is a gap (a narrow space of several hundred μm) in the outer periphery of the stator core (magnetic body) and the rotor. In some cases, it is easier to pass between the outer peripheral portions of adjacent magnetic poles inside the rotor than to flow to the stator core. For this reason, the magnetic flux is easily short-circuited between the magnetic poles through the adjacent outer peripheral portions of the rotor, and the magnetic flux interlinking with the stator winding is reduced. The thin-walled connecting portion (for example, the connecting portion 406 of the rotor 400 and the outer peripheral thin-walled portion 406a) increases the magnetic resistance until the magnetic flux density is saturated by reducing the cross-sectional area of the magnetic material through which the magnetic flux is to pass. The magnetic flux that is raised and short-circuited in the rotor is reduced, but it is not completely eliminated.

図5乃至図8は実施の形態1を示す図で、図5は回転子鉄心201の斜視図、図6は第1の回転子鉄心201−1の平面図、図7は第2の回転子鉄心201−2の平面図、図8(a)は図6のA部拡大図、図8(b)は図7のB部拡大図である。   5 to 8 show the first embodiment. FIG. 5 is a perspective view of the rotor core 201, FIG. 6 is a plan view of the first rotor core 201-1, and FIG. 7 is a second rotor. FIG. 8A is an enlarged view of a portion A in FIG. 6, and FIG. 8B is an enlarged view of a portion B in FIG. 7.

図5乃至図8を参照しながら回転子鉄心201について説明する。本実施の形態は、回転子鉄心201に特徴があるので、詳細に説明する。回転子鉄心201は、図5に示すように、第1の回転子鉄心201−1と第2の回転子鉄心201−2とを上下に二段に積層している。回転子鉄心201は、軟磁性体板がプレス型の中で所定の形状に打ち抜かれながら、各軟磁性体板に形成される切り起こし突起を軸方向に隣接する軟磁性体板で嵌合させて固定する一般的なカシメ(カシメ部207)により積層される。従って、第1の回転子鉄心201−1と第2の回転子鉄心201−2とは、カシメ部207にて連結している。   The rotor core 201 will be described with reference to FIGS. Since this embodiment has a feature in the rotor core 201, it will be described in detail. As shown in FIG. 5, the rotor core 201 is formed by stacking a first rotor core 201-1 and a second rotor core 201-2 vertically in two stages. The rotor core 201 is formed by fitting the cut and raised protrusions formed on each soft magnetic plate with the adjacent soft magnetic plates in the axial direction while the soft magnetic plate is punched into a predetermined shape in a press die. These are laminated by general caulking (caulking portion 207) to be fixed. Therefore, the first rotor core 201-1 and the second rotor core 201-2 are connected by the caulking portion 207.

第1の回転子鉄心201−1は、外周鉄心部201aと内側鉄心部201bとが、一磁極において片側の極間(図6において、一磁極において時計方向側の極間)で連結部206並びに外周薄肉部206aで連結している。そして、一磁極の他方の極間(図6において、一磁極において反時計方向側の極間)は、開口部208が形成されていて、外周鉄心部201aと内側鉄心部201bとは分離している。   In the first rotor core 201-1, the outer peripheral core portion 201a and the inner core portion 201b are connected to each other at one link between one side poles (in FIG. 6, between the poles on the clockwise side in one pole). The outer peripheral thin portion 206a is connected. An opening 208 is formed between the other poles of one magnetic pole (in FIG. 6, between the poles on the counterclockwise side of one magnetic pole), and the outer core part 201a and the inner core part 201b are separated from each other. Yes.

図6に示すように、第1の回転子鉄心201−1には、外周部に沿って8個の永久磁石挿入部202(断面が略バスタブ形状、内側に凸)が、略正八角形に形成されている。これらの永久磁石挿入部202を間にして、永久磁石挿入部202よりも外側の鉄心部分を外周鉄心部201a、永久磁石挿入部202よりも内側の鉄心部分を内側鉄心部201bとする。第1の回転子鉄心201−1の中心部に回転軸(図示せず)が嵌合する軸孔205が形成されている。   As shown in FIG. 6, the first rotor core 201-1 is formed with eight permanent magnet insertion portions 202 (the cross-section is substantially bathtub-shaped and convex inward) along the outer periphery in a substantially regular octagon. Has been. With these permanent magnet insertion portions 202 in between, the outer core portion 201a is the outer core portion than the permanent magnet insertion portion 202, and the inner core portion 201b is the inner core portion than the permanent magnet insertion portion 202. A shaft hole 205 into which a rotation shaft (not shown) is fitted is formed at the center of the first rotor core 201-1.

図6に示すように、磁極間の薄肉連結部(連結部206、外周薄肉部206a)を各磁極において片側だけにすることで、隣り合う磁極間の磁束の短絡を抑制することができる。即ち、各磁極の一方の端部(極間)に、永久磁石挿入部202に連通する開口部208を設ける。   As shown in FIG. 6, short-circuiting of magnetic flux between adjacent magnetic poles can be suppressed by providing only one side of each magnetic pole with thin connection portions (connection portion 206, outer peripheral thin-wall portion 206 a) between the magnetic poles. That is, an opening 208 communicating with the permanent magnet insertion portion 202 is provided at one end (between the poles) of each magnetic pole.

この場合でも、永久磁石203の磁束の一部は、外周薄肉部206a、連結部206、内側鉄心部201bを通って、磁極自身で短絡する部分が生じる。そのため、完全に永久磁石203の磁束の短絡を防止することはできないが、回転子200内部で短絡する磁束は従来の半分にすることができる。それにより、より多くの磁束を固定子の巻線に鎖交することができ、同期電動機の誘起電圧の向上、トルクアップが図れ、同期電動機の高効率化を可能にする。   Even in this case, a part of the magnetic flux of the permanent magnet 203 is short-circuited by the magnetic pole itself through the outer peripheral thin portion 206a, the connecting portion 206, and the inner iron core portion 201b. For this reason, short-circuiting of the magnetic flux of the permanent magnet 203 cannot be completely prevented, but the magnetic flux that is short-circuited inside the rotor 200 can be halved compared to the conventional case. As a result, more magnetic flux can be linked to the stator windings, the induction voltage of the synchronous motor can be improved, the torque can be increased, and the efficiency of the synchronous motor can be increased.

また、第1の回転子鉄心201−1の内側鉄心部201bと外周鉄心部201aとが、少なくとも一箇所の外周薄肉部206aで結合されているため、回転子200の磁性体の部品数は増えることがない。このため、組立コストの増加を抑えることができる。   Further, since the inner core portion 201b and the outer peripheral core portion 201a of the first rotor core 201-1 are joined by at least one outer peripheral thin portion 206a, the number of magnetic parts of the rotor 200 increases. There is nothing. For this reason, an increase in assembly cost can be suppressed.

例えば、回転子鉄心201を第1の回転子鉄心201−1のみで構成すると、内側鉄心部201bと外周鉄心部201aとを一箇所の外周薄肉部206aで連結することになり、回転子200の回転で生じる遠心力(主に、永久磁石203による遠心力)が外周薄肉部206aに加わり、外周薄肉部206aに応力が集中して変形する可能性がある。このため、本実施の形態においては、開口部208の位置が異なる第1の回転子鉄心201−1と第2の回転子鉄心201−2とを組合せることで、遠心力により生じる回転子鉄心201の変形を抑制する。   For example, if the rotor core 201 is configured only by the first rotor core 201-1, the inner core portion 201b and the outer peripheral core portion 201a are connected by one outer peripheral thin portion 206a. There is a possibility that centrifugal force generated by rotation (mainly centrifugal force by the permanent magnet 203) is applied to the outer thin portion 206a, and stress concentrates on the outer thin portion 206a and deforms. For this reason, in this Embodiment, the rotor core produced by a centrifugal force is combined by combining the 1st rotor core 201-1 and the 2nd rotor core 201-2 from which the position of the opening part 208 differs. The deformation of 201 is suppressed.

一方、第2の回転子鉄心201−2は、図7に示すように、外周鉄心部201aと内側鉄心部201bとを連結する連結部206並びに外周薄肉部206aが、一磁極において反時計方向側の極間に設けられる。また、一磁極において時計方向側の極間に開口部208が形成されていて、外周鉄心部201aと内側鉄心部201bとは分離している。その他は、第1の回転子鉄心201−1と同じ形状である。   On the other hand, as shown in FIG. 7, the second rotor core 201-2 has a connecting portion 206 that connects the outer core portion 201a and the inner core portion 201b and a thin outer peripheral portion 206a on the counterclockwise side in one magnetic pole. It is provided between the poles. Moreover, the opening part 208 is formed between the poles of the clockwise direction in one magnetic pole, and the outer periphery iron core part 201a and the inner iron core part 201b are isolate | separated. Others are the same shape as the 1st rotor iron core 201-1.

図9は実施の形態1を示す図で、第1の回転子鉄心201−1と第2の回転子鉄心201−2とを重ねた状態の部分平面図である。第1の回転子鉄心201−1と並びに第2の回転子鉄心201−2とを重ねて上側から見ると、一方(第1の回転子鉄心201−1)の開口部208と、他方(第2の回転子鉄心201−2)の外周薄肉部206a内側の非磁性部202aとが同じ位置に重なるように存在している。言い換えれば、開口部208と非磁性部202aとは積層された回転子鉄心201において上下に連通している。図9に示す非磁性部202a(ハッチング部)は、開口部208と完全に重なる。   FIG. 9 is a diagram showing the first embodiment, and is a partial plan view of a state in which the first rotor core 201-1 and the second rotor core 201-2 are overlapped. When the first rotor core 201-1 and the second rotor core 201-2 are overlapped and viewed from above, the opening 208 of one (first rotor core 201-1) and the other (first The non-magnetic portion 202a inside the outer thin portion 206a of the second rotor core 201-2) is present so as to overlap at the same position. In other words, the opening 208 and the nonmagnetic portion 202a communicate with each other vertically in the laminated rotor core 201. The non-magnetic portion 202a (hatched portion) shown in FIG.

本実施の形態の回転子200では、第1の回転子鉄心201−1と第2の回転子鉄心201−2とを積層した回転子鉄心201に永久磁石203を挿入した後、この開口部208と非磁性部202aに非磁性の材料(樹脂)を注入して、固着する。これによって、外周鉄心部201aは、薄肉連結部(外周薄肉部206a、連結部206)と固着した非磁性材料210(樹脂)によって両端を内側鉄心部201bに固定されるため、遠心力により生じる回転子鉄心201の変形を抑制することができる。   In the rotor 200 of the present embodiment, the permanent magnet 203 is inserted into the rotor core 201 in which the first rotor core 201-1 and the second rotor core 201-2 are stacked, and then the opening 208 is inserted. Then, a nonmagnetic material (resin) is injected into the nonmagnetic portion 202a and fixed. As a result, the outer peripheral iron core part 201a is fixed to the inner iron core part 201b at both ends by the nonmagnetic material 210 (resin) fixed to the thin-walled connecting parts (outer peripheral thin-walled part 206a, connecting part 206). The deformation of the core iron 201 can be suppressed.

非磁性材料210には、樹脂を用いる。一般的な射出成形で一体に成形すればよい。しかし、樹脂と鉄心材料では、温度変化に対して線膨張係数が異なるため、樹脂が鉄心から剥離する場合がある。しかし、本実施の形態の場合、非磁性材料210が、薄肉連結部(外周薄肉部206a、連結部206)の内側の空間(非磁性部202a)に充填され、開口部208に充填される材料と一体化しており、非磁性材料210が剥離による飛散するのを防止できる。また、開口部208を外周側が内周側より幅を広くすることで、外周鉄心部201aに生じる遠心力を非磁性材料210で受けることとなり、外周鉄心部201aおよび永久磁石203に生じる遠心力を外周鉄心部201aの両側で受けえることとなり、回転子鉄心201の変形を抑制することができる。   Resin is used for the nonmagnetic material 210. What is necessary is just to shape | mold integrally by general injection molding. However, since the linear expansion coefficient differs between the resin and the iron core material with respect to the temperature change, the resin may peel from the iron core. However, in the case of the present embodiment, the nonmagnetic material 210 is filled in the space (nonmagnetic portion 202a) inside the thin connecting portion (the outer peripheral thin portion 206a and the connecting portion 206) and filled in the opening 208. And the non-magnetic material 210 can be prevented from scattering due to peeling. Further, by making the opening 208 wider on the outer peripheral side than on the inner peripheral side, the centrifugal force generated in the outer peripheral core portion 201a is received by the nonmagnetic material 210, and the centrifugal force generated in the outer peripheral core portion 201a and the permanent magnet 203 is received. It will be received on both sides of the outer peripheral core portion 201a, and the deformation of the rotor core 201 can be suppressed.

第1の回転子鉄心201−1、第2の回転子鉄心201−2は、裏返しにすれば同じ形状になるが、プレス金型の中では一連の動作において裏返すことは困難である。従って、第1の回転子鉄心201−1と第2の回転子鉄心201−2とは、形状の異なるものとなる。   The first rotor core 201-1 and the second rotor core 201-2 have the same shape if they are turned upside down, but it is difficult to turn them upside down in a series of operations in a press mold. Therefore, the first rotor core 201-1 and the second rotor core 201-2 have different shapes.

図10は実施の形態1を示す図で、変形例1の回転子300の斜視図である。回転子200では、非磁性材料210を、夫々の非磁性部202aもしくは開口部208に直接注入するようにしたが、樹脂注入時のゲートの数が減るとともに、永久磁石203の抜け止めのための端板を省略できる変形例1の回転子300について説明する。   FIG. 10 is a diagram showing the first embodiment, and is a perspective view of a rotor 300 of the first modification. In the rotor 200, the nonmagnetic material 210 is directly injected into each nonmagnetic portion 202a or the opening 208. However, the number of gates at the time of resin injection is reduced, and the permanent magnet 203 is prevented from coming off. The rotor 300 of the modification 1 which can abbreviate | end an end plate is demonstrated.

図10に示すように、変形例1の回転子300は、非磁性材料310が、回転子300の軸方向両端部にリング状に形成されている点だけが、回転子200と異なる。回転子300の軸方向両端部にリング状に形成される非磁性材料310(樹脂)の形状は、誘導機のエンドリングに酷似している。このように構成することにより、樹脂注入時のゲートの数が減るとともに、永久磁石の抜け止めのための端板を省略できる。   As shown in FIG. 10, the rotor 300 of Modification 1 is different from the rotor 200 only in that the nonmagnetic material 310 is formed in a ring shape at both axial ends of the rotor 300. The shape of the nonmagnetic material 310 (resin) formed in a ring shape at both ends in the axial direction of the rotor 300 is very similar to the end ring of the induction machine. By configuring in this way, the number of gates at the time of resin injection is reduced, and an end plate for preventing the permanent magnet from coming off can be omitted.

変形例1の回転子300の回転子鉄心301は、第1の回転子鉄心301−1と、第2の回転子鉄心301−2とで構成される。   The rotor core 301 of the rotor 300 of the first modification is configured by a first rotor core 301-1 and a second rotor core 301-2.

図11は実施の形態1を示す図で、変形例2の回転子600の斜視図である。図5に示す回転子鉄心201の場合、永久磁石挿入部202の反時計方向側が開口部208となっている第1の回転子鉄心201−1と、永久磁石挿入部202の時計方向側が開口部208となっている第2の回転子鉄心201−2とが、軸方向において2分割されている。そのため、例えば、回転子200の回転数が高くなり、外周薄肉部206aに加わる遠心力が大きくなると、開口部208の非磁性材料210で、外周薄肉部206aの内側の非磁性部202aから距離のある部分(軸方向に離れた部分)では、回転子200の強度が不足する場合がある。   FIG. 11 is a diagram showing the first embodiment, and is a perspective view of a rotor 600 of the second modification. In the case of the rotor core 201 shown in FIG. 5, the first rotor core 201-1 having the opening 208 on the counterclockwise side of the permanent magnet insertion portion 202 and the clockwise side of the permanent magnet insertion portion 202 are the opening. The second rotor core 201-2 which is 208 is divided into two in the axial direction. Therefore, for example, when the rotational speed of the rotor 200 increases and the centrifugal force applied to the outer peripheral thin portion 206a increases, the nonmagnetic material 210 of the opening 208 causes a distance from the nonmagnetic portion 202a inside the outer peripheral thin portion 206a. In some parts (parts away in the axial direction), the strength of the rotor 200 may be insufficient.

その場合には、ロータのコア幅(軸方向の長さ)を一定とし、ロータを軸方向に2分割した形状でなく、例えば、3分割、4分割(3分割以上)にして開口部の非磁性材料の充填部の体積を小さくすることでロータコアの強度を上げることができる。   In that case, the core width (length in the axial direction) of the rotor is fixed, and the rotor is not divided into two parts in the axial direction. The strength of the rotor core can be increased by reducing the volume of the filling portion of the magnetic material.

図11に示す変形例2の回転子600は、ロータを軸方向に3分割した一例である。変形例2の回転子600は、回転子200,300とコア幅(軸方向の長さ)は同じである。変形例2の回転子鉄心601は、二つの第1の回転子鉄心601−1と、二つの第1の回転子鉄心601−1の間に挟まれる第2の回転子鉄心601−2で構成される。第1の回転子鉄心601−1のコア幅(軸方向の長さ)は、第2の回転子鉄心601−2のコア幅(軸方向の長さ)の1/2である。   A rotor 600 of Modification 2 shown in FIG. 11 is an example in which the rotor is divided into three in the axial direction. The rotor 600 of the second modification has the same core width (length in the axial direction) as the rotors 200 and 300. The rotor core 601 of Modification 2 is composed of two first rotor cores 601-1 and a second rotor core 601-2 sandwiched between the two first rotor cores 601-1. Is done. The core width (axial length) of the first rotor core 601-1 is ½ of the core width (axial length) of the second rotor core 601-2.

第2の回転子鉄心601−2の非磁性材料610(樹脂)は、二つの第1の回転子鉄心601−1の非磁性部(図示せず)に軸方向の両端が連結しているため、外周薄肉部(図示せず)に加わる遠心力が大きくなっても回転子600の強度が不足する恐れが少ない。   The non-magnetic material 610 (resin) of the second rotor core 601-2 is connected to the non-magnetic portions (not shown) of the two first rotor cores 601-1 at both axial ends. Even if the centrifugal force applied to the thin outer peripheral portion (not shown) increases, there is little risk that the strength of the rotor 600 will be insufficient.

変形例2の回転子600は、軸方向両端部にリング状の非磁性材料610(樹脂)が形成されているが、このリング状の非磁性材料610がないものでもよい。   The rotor 600 of Modification 2 is formed with ring-shaped nonmagnetic material 610 (resin) at both ends in the axial direction, but the ring-shaped nonmagnetic material 610 may be omitted.

図12は実施の形態1を示す図で、本実施の形態の回転子(回転子200)を用いた同期電動機と、一般的な回転子を用いた同期電動機の誘起電圧の実効値を比較した図である。縦軸は誘起電圧を示すが、一般的な開口部無の回転子400を用いた同期電動機の誘起電圧を基準(100[%])とする。   FIG. 12 is a diagram showing the first embodiment, and compares the effective value of the induced voltage between the synchronous motor using the rotor (rotor 200) of the present embodiment and the synchronous motor using a general rotor. FIG. The vertical axis represents the induced voltage, and the induced voltage of a synchronous motor using a general rotor 400 having no opening is used as a reference (100 [%]).

図12に示すグラフは、左より外周部の両側を薄肉連結部で結合した開口部の無い一般的な回転子400、外周鉄心部を別部品で構成し、外周鉄心部の両側に開口部を設けた一般的な回転子500、外周鉄心部を片方のみ外周薄肉部並びに連結部で結合した、片側に開口部を有する本実施の形態の回転子(但し、例えば、回転子200のケースでは、第1の回転子鉄心201−1もしくは第2の回転子鉄心201−2いずれかで構成されるもの)を並べて示している。   The graph shown in FIG. 12 includes a general rotor 400 having no opening portion in which both sides of the outer peripheral portion are joined from the left with thin-walled connecting portions, and the outer peripheral core portion is constituted by separate parts, and the opening portions are formed on both sides of the outer peripheral core portion. The general rotor 500 provided, the rotor of the present embodiment having an opening on one side, in which the outer peripheral iron core is coupled to the outer peripheral thin-walled part and the connecting part only on one side (for example, in the case of the rotor 200, The first rotor core 201-1 or the second rotor core 201-2) is shown side by side.

開口部の無い回転子400に対して、両側に開口部を設けた回転子500は、誘起電圧が10%以上高くなっており、ロータ内部で短絡しない磁束が固定子の巻線に鎖交していることがわかる。   The rotor 500 having openings on both sides of the rotor 400 having no opening has an induced voltage higher by 10% or more, and the magnetic flux not short-circuited inside the rotor is linked to the stator windings. You can see that

本実施の形態の回転子は、片側に開口部を設けてロータ内の磁束の短絡を抑えているため、両側に開口部がある回転子500よりは効果が少ないが、開口部の無い一般的な回転子400より大きな誘起電圧が得られている。   The rotor of the present embodiment is provided with an opening on one side to suppress a short circuit of magnetic flux in the rotor, and thus is less effective than the rotor 500 having openings on both sides. An induced voltage larger than that of the rotor 400 is obtained.

図13は実施の形態1を示す図で、本実施の形態の回転子(回転子200)を用いた同期電動機と、一般的な回転子を用いた同期電動機の誘起電圧の波形を比較した図である。図13において、実線が開口部の無い一般的な回転子400、三角(黒ぬり)が両側に開口部を設けた一般的な回転子500、白ぬき丸が本実施の形態の片側に開口部を有する回転子(但し、例えば、回転子200のケースでは、第1の回転子鉄心201−1もしくは第2の回転子鉄心201−2いずれかで構成されるもの)の波形である。   FIG. 13 is a diagram showing the first embodiment, and compares the induced voltage waveforms of the synchronous motor using the rotor (rotor 200) of the present embodiment and the synchronous motor using a general rotor. It is. In FIG. 13, a solid rotor is a general rotor 400 having no opening, a triangle (blackening) is a general rotor 500 having openings on both sides, and a white circle is an opening on one side of the present embodiment. (However, in the case of the rotor 200, for example, it is a waveform of either the first rotor core 201-1 or the second rotor core 201-2).

図13に示すように、開口部の無い回転子400の場合、台形波に近い波形である。また、両側に開口部を設けた回転子500は、波形のピーク付近に二カ所のピークを持った歪みの大きい波形であり、次数の高い高調波成分を含んだ波形である。これらに対して、本実施の形態の回転子は、一般的な回転子400,500の誘起電圧に比べると歪みの少ない波形が得られている。   As shown in FIG. 13, in the case of the rotor 400 without an opening, the waveform is close to a trapezoidal wave. The rotor 500 having openings on both sides is a highly distorted waveform having two peaks in the vicinity of the peak of the waveform, and includes a high-order harmonic component. On the other hand, the rotor of the present embodiment has a waveform with less distortion compared to the induced voltages of the general rotors 400 and 500.

図14は実施の形態1を示す図で、本実施の形態の回転子(回転子200)を用いた同期電動機と、一般的な回転子を用いた同期電動機のコギングトルク振幅を比較した図である。   FIG. 14 is a diagram showing the first embodiment, and is a diagram comparing cogging torque amplitudes of the synchronous motor using the rotor (rotor 200) of the present embodiment and the synchronous motor using a general rotor. is there.

図14のグラフは、同期電動機で生じるコギングトルクを電磁界解析によって求め、実施の形態1の回転子を用いた同期電動機で生じるコギングトルクと、一般的な回転子を用いた同期電動機で生じるコギングトルクとを比較したものである。   In the graph of FIG. 14, the cogging torque generated in the synchronous motor is obtained by electromagnetic field analysis, and the cogging torque generated in the synchronous motor using the rotor of the first embodiment and the cogging generated in the synchronous motor using a general rotor. This is a comparison with torque.

図14のグラフは、左より外周部の両側を外周薄肉部で結合した開口部の無い一般的な回転子400、外周鉄心部を別部品で構成し、外周鉄心部の両側に開口部を設けた一般的な回転子500、外周鉄心部を片側のみ外周薄肉部で結合し、片側に開口部を設けた本実施の形態の回転子(但し、例えば、回転子200のケースでは、第1の回転子鉄心201−1もしくは第2の回転子鉄心201−2いずれかで構成されるもの(一段))、例えば図1に示した2種類の形状のコアを積層した回転子200(二段))を並べている。縦軸は従来の開口部無しの回転子を基準(100[%])にした比率[%]を示している。   The graph of FIG. 14 shows a general rotor 400 having no opening portion in which both sides of the outer peripheral portion are joined by a thin outer peripheral portion from the left, and the outer peripheral core portion is configured as a separate part, and openings are provided on both sides of the outer peripheral core portion. The general rotor 500 and the rotor of this embodiment in which the outer peripheral core portion is coupled to the outer peripheral thin portion only on one side and an opening is provided on one side (for example, in the case of the rotor 200, the first A rotor 200 (two stages) formed by stacking cores having two types of shapes shown in FIG. 1, for example, one composed of the rotor core 201-1 or the second rotor core 201-2 (one stage)). ). The vertical axis shows the ratio [%] based on the conventional rotor without opening (100 [%]).

図15は実施の形態1を示す図で、本実施の形態の回転子(回転子200)を用いた同期電動機と、一般的な回転子を用いた同期電動機のコギングトルクの波形を比較した図である。太線が開口部の無い一般的な回転子400、三角(黒ぬり)が外周鉄心部を別部品で構成し外周鉄心部の両側に開口部を設けた一般的な回転子500、細線が開口部を磁極の片側のみに設置した本実施の形態の回転子(但し、例えば、回転子200のケースでは、第1の回転子鉄心201−1もしくは第2の回転子鉄心201−2いずれかで構成されるもの(一段)))、白ぬき丸が、図1に示す本実施の形態の、開口部の位置が異なる二つのロータコア(第1の回転子鉄心201−1、第2の回転子鉄心201−2(二段)))を組合せた回転子200の波形である。   FIG. 15 is a diagram illustrating the first embodiment, and is a diagram comparing the cogging torque waveforms of the synchronous motor using the rotor (rotor 200) of the present embodiment and the synchronous motor using a general rotor. It is. A thick rotor is a general rotor 400 having no opening, a triangle (blackening) is a general rotor 500 in which an outer peripheral iron core is formed of a separate part and openings are provided on both sides of the outer iron core, and a thin wire is an opening. The rotor of the present embodiment is installed only on one side of the magnetic pole (however, in the case of the rotor 200, for example, it is constituted by either the first rotor core 201-1 or the second rotor core 201-2. 1), the white circle is the two rotor cores (the first rotor core 201-1 and the second rotor core) of the present embodiment shown in FIG. 201-2 (two stages))).

開口部の無い一般的な回転子400に対して、外周鉄心部を別部品で構成し、外周鉄心部の両側に開口部を設けた一般的な回転子500は、固定子に対して外周鉄心部と開口部で空隙間の磁束密度の変化が大きくなり、外周に開口部を持たない回転子400に対して2倍以上の大きなコギングトルクが発生している。   The general rotor 500 in which the outer peripheral core portion is configured as a separate part from the general rotor 400 having no opening portion and the opening portions are provided on both sides of the outer peripheral core portion. The change in the magnetic flux density between the gaps is large between the gap and the opening, and a large cogging torque more than twice that of the rotor 400 having no opening on the outer periphery is generated.

細線で示す開口部を磁極の片側のみに設置した本実施の形態の回転子(但し、例えば、回転子200のケースでは、第1の回転子鉄心201−1もしくは第2の回転子鉄心201−2いずれかで構成されるもの(一段)))では、影響が少なく60%程度の増加に抑えられている。   The rotor of the present embodiment in which the opening indicated by the thin line is provided only on one side of the magnetic pole (for example, in the case of the rotor 200, the first rotor core 201-1 or the second rotor core 201- 2) (one stage))) has a small influence and is suppressed to an increase of about 60%.

図1に示す回転子200の場合、軸方向上下二段のロータコアで開口部208の位置が異なり、それぞれで発生するコギングトルクの位相がずれるために、これらが打ち消し合うことでコギングトルクは20%程度の増加に抑えられる。   In the case of the rotor 200 shown in FIG. 1, the position of the opening 208 is different between the two upper and lower rotor cores in the axial direction, and the phases of the cogging torque generated in each of them are shifted. It is suppressed to an increase in the degree.

尚、変形例1の回転子300、変形例2の回転子600を用いる場合の誘起電圧、コギングトルクも、図12乃至図15に示す回転子200の特性と同じである。   The induced voltage and cogging torque in the case of using the rotor 300 of the first modification and the rotor 600 of the second modification are also the same as the characteristics of the rotor 200 shown in FIGS.

上述の説明では、ロータコアをブロックに分割して、異なる二種類のコア(例えば、第1の回転子鉄心201−1、第2の回転子鉄心201−2)を2段、もしくは3段に積層するのものを示したが、異なる二種類のコアの積層方法は任意でよい。例えば、異なる二種類のコアを交互に積層してもよい。また、或る部分は、異なる二種類のコアを交互に積層し、他の部分は異なるコアのブロック単位で積層してもよい。   In the above description, the rotor core is divided into blocks, and two different types of cores (for example, the first rotor core 201-1 and the second rotor core 201-2) are stacked in two or three stages. However, the method of stacking two different types of cores may be arbitrary. For example, two different types of cores may be alternately stacked. Moreover, a certain part may laminate | stack two different types of cores alternately, and may laminate | stack another part by the block unit of a different core.

図16乃至図21は実施の形態1を示す図で、図16は変形例3の回転子700の斜視図、図17は変形例3の回転子700の平面図、図18は変形例3の回転子組立700−1(樹脂成形前)の斜視図、図19は変形例3の回転子組立700−1(樹脂成形前)の平面図、図20は変形例3の回転子鉄心701の斜視図、図21は変形例3の第1の回転子鉄心701−1、第2の回転子鉄心701−2の平面図である。   16 to 21 are diagrams showing the first embodiment. FIG. 16 is a perspective view of a rotor 700 according to the third modification. FIG. 17 is a plan view of the rotor 700 according to the third modification. 19 is a perspective view of the rotor assembly 700-1 (before resin molding), FIG. 19 is a plan view of the rotor assembly 700-1 (before resin molding) of Modification 3, and FIG. 20 is a perspective of the rotor core 701 of Modification 3. FIGS. 21A and 21B are plan views of a first rotor core 701-1 and a second rotor core 701-2 of the third modification.

図16乃至図21を参照しながら、変形例3の回転子700について説明する。変形例3の回転子700が、回転子200,300,600と異なるのは、第1の回転子鉄心701−1、第2の回転子鉄心701−2の夫々の永久磁石挿入部702の開口部708の位置が隣り合う磁極で異なっている点である。隣り合う磁極で、開口部708もしくは連結部706(外周薄肉部706aを含む)が、極間に集めて配置されている。   A rotor 700 of Modification 3 will be described with reference to FIGS. 16 to 21. The rotor 700 of Modification 3 is different from the rotors 200, 300, and 600 in that the openings of the permanent magnet insertion portions 702 of the first rotor core 701-1 and the second rotor core 701-2 are different. The position of the portion 708 is different between adjacent magnetic poles. In adjacent magnetic poles, the opening 708 or the connecting portion 706 (including the outer peripheral thin portion 706a) is collected and disposed between the poles.

変形例3の回転子鉄心701は、第1の回転子鉄心701−1と第2の回転子鉄心701−2とを一磁極分回転させてずらして積層される。ロータコアの形状は一種類である。ロータコアを金型で打ち抜いて積層する場合には、最終段階で打ち抜いてカシメを行う際に、ロータコアを一磁極分、図16の場合でいえば、8極であるため45°回転させて積層すれば、回転子700を製造することが可能である。   The rotor core 701 of Modification 3 is stacked by shifting the first rotor core 701-1 and the second rotor core 701-2 by rotating one magnetic pole. There is one type of rotor core shape. When the rotor core is punched and laminated with a mold, the rotor core is rotated by 45 ° because it is 8 poles in the case of FIG. In this case, the rotor 700 can be manufactured.

このような構成でも、回転子700の磁性体内部で短絡する磁束の量を減らすことができるため、回転子200,300,600と同様の効果を得ることができる。   Even in such a configuration, since the amount of magnetic flux that is short-circuited inside the magnetic body of the rotor 700 can be reduced, the same effect as the rotor 200, 300, 600 can be obtained.

図16乃至図21において、その他の符号は、図1乃至図7に示す符号に対して、一桁目を「2」から「7」に変えているが、その他の桁の数字もしくはアルファベットが同じものは、同じ箇所を指す。例えば、軸孔705は、軸孔205と同じものである。   In FIG. 16 to FIG. 21, the other numerals are changed from “2” to “7” in the first digit with respect to the numerals shown in FIG. 1 to FIG. Things refer to the same part. For example, the shaft hole 705 is the same as the shaft hole 205.

回転子700は、永久磁石703の磁束の一部は、外周薄肉部706a、連結部706が集まる極間において、磁極自身並びに磁極間で短絡する。但し、開口部708が形成された極間では、永久磁石703の磁束の短絡は無いので、全体的にみると回転子700内部で短絡する磁束は従来の半分にすることができる。それにより、より多くの磁束を固定子の巻線に鎖交することができる。   In the rotor 700, a part of the magnetic flux of the permanent magnet 703 is short-circuited between the magnetic pole itself and the magnetic pole between the poles where the outer peripheral thin portion 706 a and the connecting portion 706 are gathered. However, since the magnetic flux of the permanent magnet 703 is not short-circuited between the poles in which the opening 708 is formed, the magnetic flux that is short-circuited inside the rotor 700 can be halved compared to the conventional case. As a result, more magnetic flux can be linked to the stator windings.

図22は実施の形態1を示す図で、変形例4の回転子800の斜視図である。回転子700では、非磁性材料710を、夫々の非磁性部702aもしくは開口部708に直接注入するものであるが、変形例4の回転子800は樹脂注入時のゲートの数が減るとともに、永久磁石の抜け止めのための端板を省略できるものである。   FIG. 22 is a diagram illustrating the first embodiment, and is a perspective view of a rotor 800 according to the fourth modification. In the rotor 700, the nonmagnetic material 710 is directly injected into the respective nonmagnetic portions 702a or openings 708. However, in the rotor 800 of the modified example 4, the number of gates at the time of resin injection is reduced, and the permanent magnetic material 710 is permanent. The end plate for retaining the magnet can be omitted.

図22に示すように、変形例4の回転子800は、非磁性材料810が、回転子800の軸方向両端部にリング状に形成されている点だけが、回転子700と異なる。回転子800の軸方向両端部にリング状に形成される非磁性材料810(樹脂)の形状は、誘導機のエンドリングに酷似している。このように構成することにより、樹脂注入時のゲートの数が減るとともに、永久磁石の抜け止めのための端板を省略できる。   As shown in FIG. 22, the rotor 800 of Modification 4 is different from the rotor 700 only in that the nonmagnetic material 810 is formed in a ring shape at both axial ends of the rotor 800. The shape of the nonmagnetic material 810 (resin) formed in a ring shape at both axial ends of the rotor 800 is very similar to the end ring of the induction machine. By configuring in this way, the number of gates at the time of resin injection is reduced, and an end plate for preventing the permanent magnet from coming off can be omitted.

図23は実施の形態1を示す図で、変形例5の回転子900の斜視図である。図22に示す回転子800の場合、回転子鉄心801を構成する第1の回転子鉄心801−1と、第2の回転子鉄心801−2とが、軸方向において2分割されている。そのため、例えば、回転子800の回転数が高くなり、外周薄肉部に加わる遠心力が大きくなると、開口部の非磁性材料810で、外周薄肉部の内側の非磁性部から距離のある部分(軸方向に離れた部分)では、回転子800の強度が不足する場合がある。   FIG. 23 is a diagram illustrating the first embodiment, and is a perspective view of a rotor 900 according to the fifth modification. In the case of the rotor 800 shown in FIG. 22, the first rotor core 801-1 and the second rotor core 801-2 constituting the rotor core 801 are divided into two in the axial direction. Therefore, for example, when the rotational speed of the rotor 800 increases and the centrifugal force applied to the outer thin portion increases, the nonmagnetic material 810 in the opening has a portion (shaft) away from the nonmagnetic portion inside the outer thin portion. In a portion separated in the direction), the strength of the rotor 800 may be insufficient.

その場合には、ロータのコア幅(軸方向の長さ)を一定とし、ロータを軸方向に2分割した形状でなく、例えば、3分割、4分割(3分割以上)にして開口部の非磁性材料の充填部の体積を小さくすることでロータコアの強度を上げることができる。   In that case, the core width (length in the axial direction) of the rotor is fixed, and the rotor is not divided into two parts in the axial direction. The strength of the rotor core can be increased by reducing the volume of the filling portion of the magnetic material.

図23に示す変形例5の回転子900は、ロータを軸方向に3分割した一例である。変形例5の回転子900は、回転子700,800とコア幅(軸方向の長さ)は同じである。変形例5の回転子900の回転子鉄心901は、二つの第1の回転子鉄心901−1と、二つの第1の回転子鉄心901−1の間に挟まれる第2の回転子鉄心901−2で構成される。第1の回転子鉄心901−1のコア幅(軸方向の長さ)は、第2の回転子鉄心901−2のコア幅(軸方向の長さ)の1/2である。   A rotor 900 of Modification 5 shown in FIG. 23 is an example in which the rotor is divided into three in the axial direction. The rotor 900 of Modification 5 has the same core width (length in the axial direction) as the rotors 700 and 800. The rotor core 901 of the rotor 900 of Modification 5 includes two first rotor cores 901-1 and a second rotor core 901 sandwiched between the two first rotor cores 901-1. -2. The core width (axial length) of the first rotor core 901-1 is ½ of the core width (axial length) of the second rotor core 901-2.

第2の回転子鉄心901−2の非磁性材料910(樹脂)は、二つの第1の回転子鉄心901−1の非磁性部(図示せず)に軸方向の両端が連結しているため、外周薄肉部(図示せず)に加わる遠心力が大きくなっても回転子900の強度が不足する恐れが少ない。   The non-magnetic material 910 (resin) of the second rotor core 901-2 is connected to the non-magnetic portions (not shown) of the two first rotor cores 901-1 at both axial ends. Even if the centrifugal force applied to the thin outer peripheral portion (not shown) increases, there is little risk that the strength of the rotor 900 will be insufficient.

変形例5の回転子900は、軸方向両端部にリング状の非磁性材料910(樹脂)が形成されているが、このリング状の非磁性材料910がないものでもよい。   The rotor 900 of Modification 5 has ring-shaped nonmagnetic material 910 (resin) formed at both ends in the axial direction, but the ring-shaped nonmagnetic material 910 may not be provided.

図26は実施の形態1を示す図で、本実施の形態の回転子(回転子700)を用いた同期電動機と、一般的な回転子を用いた同期電動機のコギングトルクの波形を比較した図である。太線が開口部の無い一般的な回転子400、三角(黒ぬり)が外周鉄心部を別部品で構成し、外周鉄心部の両側に開口部を設けた一般的な回転子500、細線が開口部を磁極の片側のみに設置した本実施の形態の回転子(但し、例えば、回転子700のケースでは、第1の回転子鉄心701−1もしくは第2の回転子鉄心701−2いずれかで構成されるもの(一段)))、白ぬき丸が、図16に示す本実施の形態の、開口部の位置が異なる二つのロータコア(第1の回転子鉄心701−1、第2の回転子鉄心701−2(二段)))を組合せた回転子200の波形である。   FIG. 26 is a diagram showing the first embodiment, and is a diagram comparing the cogging torque waveforms of the synchronous motor using the rotor (rotor 700) of the present embodiment and the synchronous motor using a general rotor. It is. A thick rotor is a general rotor 400 having no opening, a triangle (blackening) is a general rotor 500 in which an outer peripheral iron core is formed of a separate part, and openings are provided on both sides of the outer peripheral iron core, and a thin wire is an opening. The rotor of the present embodiment in which the part is installed only on one side of the magnetic pole (however, in the case of the rotor 700, for example, either the first rotor core 701-1 or the second rotor core 701-2) 16), the white circle is the two rotor cores (first rotor core 701-1, second rotor) of the present embodiment shown in FIG. It is the waveform of the rotor 200 which combined the iron core 701-2 (two steps)).

開口部の無い一般的な回転子400に対して、外周鉄心部を別部品で構成し、外周鉄心部の両側に開口部を設けた一般的な回転子500は、固定子に対して外周鉄心部と開口部で空隙間の磁束密度の変化が大きくなり、外周に開口部を持たない回転子400に対して2倍以上の大きなコギングトルクが発生している。   The general rotor 500 in which the outer peripheral core portion is configured as a separate part from the general rotor 400 having no opening portion and the opening portions are provided on both sides of the outer peripheral core portion. The change in the magnetic flux density between the gaps is large between the gap and the opening, and a large cogging torque more than twice that of the rotor 400 having no opening on the outer periphery is generated.

細線で示す開口部を磁極の片側のみに設置した本実施の形態の回転子(但し、例えば、回転子700のケースでは、第1の回転子鉄心701−1もしくは第2の回転子鉄心701−2いずれかで構成されるもの(一段)))では、影響が少なく60%程度の増加に抑えられている。   The rotor according to the present embodiment in which the opening indicated by the thin line is provided only on one side of the magnetic pole (for example, in the case of the rotor 700, the first rotor core 701-1 or the second rotor core 701- 2) (one stage))) has a small influence and is suppressed to an increase of about 60%.

図16に示す回転子700の場合、軸方向上下二段のロータコアで開口部708の位置が異なり、それぞれで発生するコギングトルクの位相がずれるために、これらが打ち消し合うことでコギングトルクは20%程度の増加に抑えられる。   In the case of the rotor 700 shown in FIG. 16, the position of the opening 708 is different between the two upper and lower rotor cores in the axial direction, and the phases of the cogging torque generated are shifted. It is suppressed to an increase in the degree.

尚、変形例4の回転子800、変形例5の回転子900を用いる場合も、図26に示す回転子700のコギングトルクの波形と同じになる。   In addition, when using the rotor 800 of the modification 4 and the rotor 900 of the modification 5, it becomes the same as the waveform of the cogging torque of the rotor 700 shown in FIG.

また、回転子700〜900の誘起電圧の実効値、誘起電圧の波形、コギングトルク振幅は、図12〜図14に示したものと略同等である。   Further, the effective value of the induced voltage, the waveform of the induced voltage, and the cogging torque amplitude of the rotors 700 to 900 are substantially the same as those shown in FIGS.

本発明の活用例として、比較的運転回転数の低い送風機に用いられる同期電動機への適用が可能である。   As an application example of the present invention, the present invention can be applied to a synchronous motor used for a blower having a relatively low operation speed.

200 回転子、200−1 回転子組立、201 回転子鉄心、201a 外周鉄心部、201b 内側鉄心部、201−1 第1の回転子鉄心、201−2 第2の回転子鉄心、202 永久磁石挿入部、202a 非磁性部、203 永久磁石、205 軸孔、206 連結部、206a 外周薄肉部、207 カシメ部、208 開口部、210 非磁性材料、300 回転子、301 回転子鉄心、301−1 第1の回転子鉄心、301−2 第2の回転子鉄心、310 非磁性材料、400 回転子、401 回転子鉄心、401a 外周鉄心部、401b 内側鉄心部、402 永久磁石挿入部、403 永久磁石、405 軸孔、406 連結部、406a 外周薄肉部、407 カシメ部、500 回転子、501 回転子鉄心、501a 外周鉄心部、501b 内側鉄心部、502 永久磁石挿入部、503 永久磁石、504 軸孔、507 カシメ部、508 開口部、600 回転子、601 回転子鉄心、601−1 第1の回転子鉄心、601−2 第2の回転子鉄心、610 非磁性材料、700 回転子、700−1 回転子組立、701 回転子鉄心、701−1 第1の回転子鉄心、701−2 第2の回転子鉄心、702 永久磁石挿入部、702a 非磁性部、703 永久磁石、705 軸孔、706 連結部、706a 外周薄肉部、708 開口部、710 非磁性材料、800 回転子、801 回転子鉄心、801−1 第1の回転子鉄心、801−2 第2の回転子鉄心、810 非磁性材料、900 回転子、901 回転子鉄心、901−1 第1の回転子鉄心、901−2 第2の回転子鉄心、910 非磁性材料。   200 Rotor, 200-1 Rotor assembly, 201 Rotor core, 201a Outer core, 201b Inner core, 201-1 First rotor core, 201-2 Second rotor core, 202 Permanent magnet insertion Part, 202a non-magnetic part, 203 permanent magnet, 205 shaft hole, 206 connecting part, 206a outer peripheral thin part, 207 crimping part, 208 opening part, 210 non-magnetic material, 300 rotor, 301 rotor iron core, 301-1 1 rotor core, 301-2 second rotor core, 310 nonmagnetic material, 400 rotor, 401 rotor core, 401a outer core, 401b inner core, 402 permanent magnet insert, 403 permanent magnet, 405 Shaft hole, 406 Connecting portion, 406a Thin outer peripheral portion, 407 Caulking portion, 500 Rotor, 501 Rotor core, 501a Outside Iron core part, 501b Inner iron core part, 502 Permanent magnet insertion part, 503 Permanent magnet, 504 Shaft hole, 507 Caulking part, 508 Opening part, 600 Rotor, 601 Rotor core, 601-1 First rotor core, 601 -2 second rotor core, 610 non-magnetic material, 700 rotor, 700-1 rotor assembly, 701 rotor core, 701-1 first rotor core, 701-2 second rotor core, 702 Permanent magnet insertion part, 702a Non-magnetic part, 703 Permanent magnet, 705 Shaft hole, 706 Connection part, 706a Thin outer peripheral part, 708 Opening part, 710 Non-magnetic material, 800 Rotor, 801 Rotor core, 801-1 1st 1 rotor core, 801-2 second rotor core, 810 non-magnetic material, 900 rotor, 901 rotor core, 901-1 first rotor core 901 - second rotor core, 910 non-magnetic material.

Claims (4)

所定の形状に打ち抜かれた軟磁性体を積層して形成される回転子鉄心の内部に磁極を構成する永久磁石が配置される同期電動機の回転子において、
前記回転子鉄心は、前記軟磁性体を複数積層して形成される第1の回転子鉄心と第2の回転子鉄心とが一磁極分回転させてずらして組み合わされて形成され、前記第1の回転子鉄心と前記第2の回転子鉄心とは、夫々、
前記第1の回転子鉄心もしくは前記第2の回転子鉄心の外周縁に沿って形成され、前記永久磁石が挿入される永久磁石挿入部と、
前記永久磁石挿入部の内側に形成される内側鉄心部と、
前記永久磁石挿入部の外側の各磁極に形成される外周鉄心部と、
前記内側鉄心部と前記外周鉄心部とを、各磁極の端部において連結する連結部並びに外周薄肉部と、
前記外周薄肉部の内側に形成され、前記永久磁石挿入部に連通する非磁性部と、
各磁極の前記連結部並びに前記外周薄肉部が設けられる端部と反対側の端部に設けられ、前記外周縁から前記永久磁石挿入部までに連通する開口部と、を備え、
周方向に隣り合う磁極間に前記開口部もしくは前記外周薄肉部が配置されており、周方向に交互に前記開口部と前記外周薄肉部とが配置され、前記第1の回転子鉄心と前記第2の回転子鉄心とを一磁極分回転させてずらして積層されることで、一方の前記開口部と他方の前記非磁性部とが軸方向に連通するとともに、一方の前記非磁性部と他方の前記開口部とが軸方向に連通し、連通した前記非磁性部と前記開口部とには全体に一体化した非磁性材料が充填されたことを特徴とする同期電動機の回転子。
In the rotor of a synchronous motor in which permanent magnets constituting magnetic poles are arranged inside a rotor core formed by laminating soft magnetic materials punched into a predetermined shape,
The rotor core is formed by combining a first rotor core formed by laminating a plurality of soft magnetic bodies and a second rotor core that are rotated and shifted by one magnetic pole. The rotor core and the second rotor core are respectively
A permanent magnet insertion portion formed along an outer peripheral edge of the first rotor core or the second rotor core, into which the permanent magnet is inserted;
An inner iron core portion formed inside the permanent magnet insertion portion;
An outer peripheral iron core portion formed on each magnetic pole outside the permanent magnet insertion portion;
A connecting portion for connecting the inner core portion and the outer peripheral core portion at the end of each magnetic pole, and a thin outer peripheral portion;
A non-magnetic portion that is formed inside the outer peripheral thin portion and communicates with the permanent magnet insertion portion;
An opening that is provided at an end opposite to the end where the connecting portion of each magnetic pole and the outer peripheral thin portion are provided, and communicates from the outer peripheral edge to the permanent magnet insertion portion,
The opening or the outer peripheral thin portion is arranged between magnetic poles adjacent in the circumferential direction, and the opening and the outer thin portion are alternately arranged in the circumferential direction, and the first rotor core and the first The two rotor iron cores are rotated and shifted by one magnetic pole so that the one opening and the other nonmagnetic part communicate in the axial direction, and the one nonmagnetic part and the other The rotor of the synchronous motor is characterized in that the non-magnetic portion and the opening are communicated with each other in the axial direction, and the non-magnetic material integrated with the non-magnetic portion is filled in the opening.
前記開口部は外周側が内側よりも幅が広くなっていることを特徴する請求項1記載の同期電動機の回転子。   The rotor of a synchronous motor according to claim 1, wherein the opening is wider on the outer peripheral side than on the inner side. 前記非磁性材料の充填を射出成形により行うことを特徴とする請求項1又は請求項2記載の同期電動機の回転子。   The synchronous motor rotor according to claim 1, wherein the nonmagnetic material is filled by injection molding. 前記非磁性部と前記開口部とに充填される非磁性材料により、当該回転子の軸方向両端部にリング形状部が形成されることを特徴とする請求項1乃至3のいずれかに記載の同期電動機の回転子。   The ring-shaped part is formed in the axial direction both ends of the said rotor with the nonmagnetic material with which the said nonmagnetic part and the said opening part are filled, The Claim 1 thru | or 3 characterized by the above-mentioned. Synchronous motor rotor.
JP2010229270A 2010-10-12 2010-10-12 Synchronous motor rotor Active JP5546413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010229270A JP5546413B2 (en) 2010-10-12 2010-10-12 Synchronous motor rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010229270A JP5546413B2 (en) 2010-10-12 2010-10-12 Synchronous motor rotor

Publications (2)

Publication Number Publication Date
JP2012085433A JP2012085433A (en) 2012-04-26
JP5546413B2 true JP5546413B2 (en) 2014-07-09

Family

ID=46243683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229270A Active JP5546413B2 (en) 2010-10-12 2010-10-12 Synchronous motor rotor

Country Status (1)

Country Link
JP (1) JP5546413B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786804B2 (en) 2012-06-13 2015-09-30 株式会社デンソー Rotor for rotating electrical machine and method for manufacturing the same
JP6028506B2 (en) * 2012-10-09 2016-11-16 株式会社デンソー Laminated steel plate manufacturing method
JP5971114B2 (en) * 2012-12-26 2016-08-17 株式会社豊田自動織機 Permanent magnet embedded rotary electric machine
DE102014226171A1 (en) * 2014-12-17 2016-06-23 Robert Bosch Gmbh Rotor for an electric machine
DE102015203908A1 (en) 2015-03-05 2016-09-08 Arburg Gmbh + Co. Kg Rotor for an electric motor and associated motor shaft
JP6599005B2 (en) * 2016-06-22 2019-10-30 三菱電機株式会社 Consecutive pole type rotor, electric motor and air conditioner
WO2018101183A1 (en) * 2016-12-02 2018-06-07 パナソニックIpマネジメント株式会社 Electric motor element, electric motor, and device
US11165293B2 (en) 2017-03-30 2021-11-02 Nidec Corporation Rotor and motor
CN110462983A (en) * 2017-03-31 2019-11-15 日本电产株式会社 Rotor, motor and electric power steering apparatus
WO2019187339A1 (en) * 2018-03-26 2019-10-03 パナソニックIpマネジメント株式会社 Rotor, motor, and rotor manufacturing method
CN110544997B (en) * 2018-05-29 2022-05-31 华为技术有限公司 Motor rotor device and motor
EP3780350B1 (en) * 2019-08-14 2022-07-13 Secop GmbH Interior permanent magnet rotor for a refrigerant compressor
WO2021117176A1 (en) * 2019-12-12 2021-06-17 三菱電機株式会社 Rotor, electric motor, fan, and air conditioner
JPWO2022210609A1 (en) * 2021-03-31 2022-10-06

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134841A (en) * 1998-10-20 2000-05-12 Hitachi Ltd Electrical rotating machine
JP2004096978A (en) * 2002-09-04 2004-03-25 Daikin Ind Ltd Permanent magnet embedded motor and rotary compressor
JP2004254403A (en) * 2003-02-19 2004-09-09 Toshiba Corp Permanent magnet type motor and manufacturing method for the motor
JP5315967B2 (en) * 2008-12-12 2013-10-16 トヨタ自動車株式会社 Rotating electrical machine rotor manufacturing method and rotor

Also Published As

Publication number Publication date
JP2012085433A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5350342B2 (en) Synchronous motor rotor
JP5546413B2 (en) Synchronous motor rotor
JP5279777B2 (en) Synchronous motor rotor
EP2378632B1 (en) Permanent magnet type rotary electric machine
JP5269032B2 (en) Synchronous motor rotor
JP6597184B2 (en) Permanent magnet type motor
JP5722301B2 (en) Embedded magnet type synchronous motor rotor and embedded magnet type synchronous motor
CN110086274B (en) Permanent magnet embedded motor and method for manufacturing the same
JP5752260B2 (en) Rotor of embedded permanent magnet electric motor, electric motor using this rotor, compressor using this electric motor, and air conditioner using this compressor
JP5623498B2 (en) Stator core and stator, electric motor and compressor
JPWO2017216995A1 (en) Permanent magnet type synchronous machine and method of manufacturing stator of permanent magnet type synchronous machine
JP4673825B2 (en) Embedded magnet rotor and manufacturing method of embedded magnet rotor
JP5174794B2 (en) Stator core and stator, electric motor and compressor
JP6121914B2 (en) Synchronous motor
JP5042184B2 (en) Synchronous motor rotor and method of manufacturing synchronous motor rotor
JP5279780B2 (en) Synchronous motor rotor
JP2000245087A (en) Permanent magnet motor
JP6112970B2 (en) Permanent magnet rotating electric machine
JP2001086673A (en) Permanent magnet motor
JP5691451B2 (en) Rotor for rotating electrical machines
EP3309931B1 (en) Permanent magnet-embedded motor and compressor
JP5679695B2 (en) Permanent magnet rotating electric machine
CN111130240A (en) Rotor and IPM motor using same
KR102515118B1 (en) A rotor for interior permanent magnet motors
JP2016063620A (en) Buried magnet type rotor and electric motor using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131230

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5546413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250