JPH10146031A - Permanent magnet rotating electric machine and electric vehicle - Google Patents

Permanent magnet rotating electric machine and electric vehicle

Info

Publication number
JPH10146031A
JPH10146031A JP9141385A JP14138597A JPH10146031A JP H10146031 A JPH10146031 A JP H10146031A JP 9141385 A JP9141385 A JP 9141385A JP 14138597 A JP14138597 A JP 14138597A JP H10146031 A JPH10146031 A JP H10146031A
Authority
JP
Japan
Prior art keywords
permanent magnet
angle
electric machine
stator
rotating electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9141385A
Other languages
Japanese (ja)
Other versions
JP3370901B2 (en
Inventor
Yutaka Matsunobu
豊 松延
Fumio Tajima
文男 田島
Koji Kobayashi
孝司 小林
Shoichi Kawamata
昭一 川又
Suetaro Shibukawa
末太郎 渋川
Osamu Koizumi
小泉  修
Keiji Oda
圭二 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP14138597A priority Critical patent/JP3370901B2/en
Publication of JPH10146031A publication Critical patent/JPH10146031A/en
Application granted granted Critical
Publication of JP3370901B2 publication Critical patent/JP3370901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

PROBLEM TO BE SOLVED: To suppress the peak value of induced voltage to an effective value by approximating the waveform of induced voltage to sine wave. SOLUTION: As a permanent magnet 8, an object in such form that the angle θ becomes smaller than the angle ϕ when defined that the angle that the side on stator side, that is, the width of the peripheral face forms to the axis θ and that the angle that the side on anti-stator side, that is, the width of the peripheral face forms to the axis is ϕ is used. Here, the angle θ takes a value in the range of 0<θ<45, because the number of poles of the permanent magnet is eight. Then, using a permanent magnet 8 where the angle θ is 26 deg. and the angle ϕ is 36 deg. as a result of computation will bring the waveform of induced voltage close to sine wave. Hereby, design of the permanent magnet rotating electric machine which can gets maximum drive torque while suppressing the peak value of induced voltage becomes possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は永久磁石回転電機お
よび電動車両に係り、特に複数個の永久磁石を回転子の
周方向に配置固定することによって構成される永久磁石
回転電機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet rotating electric machine and an electric vehicle, and more particularly to a permanent magnet rotating electric machine constituted by arranging and fixing a plurality of permanent magnets in a circumferential direction of a rotor.

【0002】[0002]

【従来の技術】従来から回転電機の一種として、回転子
の磁界発生手段として永久磁石を用いた永久磁石回転電
機が使用されている。
2. Description of the Related Art Conventionally, as one type of rotating electric machine, a permanent magnet rotating electric machine using a permanent magnet as a magnetic field generating means of a rotor has been used.

【0003】従来の永久磁石回転電機としては、高トル
ク化及び高効率化を図ったものとして、永久磁石埋め込
み型の回転子を用いた永久磁石回転電機が特開平5−761
46号公報に記載されている。
As a conventional permanent magnet rotating electric machine, a permanent magnet rotating electric machine using a permanent magnet embedded type rotor is disclosed in Japanese Patent Application Laid-Open No. 5-761.
No. 46 is described.

【0004】この公報には、固定子として、環状の固定
子鉄心に形成された複数個のスロットに三相の固定子巻
線を配置したものが開示されている。また回転子として
は、回転軸に嵌合固着された略円形の回転子鉄心の内周
部に軸方向に伸びる収納部を複数個形成し、この収納部
に断面が長方形をなす永久磁石を、隣り合った任意の永
久磁石同士が回転子表面に向かって互いに逆極性の磁束
を発生するように挿入する構成が開示されている。また
この回転子は、環状の固定子の中に固定子鉄心の内周部
と所定の回転空隙を有する状態で回転可能に配置されて
いる。
This publication discloses a stator in which three-phase stator windings are arranged in a plurality of slots formed in an annular stator core. Further, as the rotor, a plurality of storage portions extending in the axial direction are formed on the inner peripheral portion of the substantially circular rotor core fitted and fixed to the rotation shaft, and a permanent magnet having a rectangular cross section is formed in the storage portion. A configuration is disclosed in which arbitrary adjacent permanent magnets are inserted so as to generate magnetic fluxes of opposite polarities toward the rotor surface. The rotor is rotatably disposed in the annular stator with an inner peripheral portion of the stator core and a predetermined rotation gap.

【0005】上記のような長方形の永久磁石を用いた回
転電機は、高速回転時に弱め界磁が効き易く、効率が良
い。よって、性質上高速回転を要求されるもの、例えば
電動車両用の駆動モータ等に有効である。
A rotating electric machine using a rectangular permanent magnet as described above has a high efficiency because the field weakening is apt to be effective at high speed rotation. Therefore, the present invention is effective for a device that requires high-speed rotation in nature, such as a drive motor for an electric vehicle.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記のような
従来の永久磁石回転電機においては、誘起電圧波形に関
し次のような問題点がある。
However, the above-described conventional permanent magnet rotating electric machine has the following problems with respect to the induced voltage waveform.

【0007】外力によって回転子が回転されると、回転
電機内に誘起電圧が発生し、通電回路または制御回路に
電流が流れる。よって、制御回路をより安全に保護する
ために、所定の回転速度における誘起電圧の実効値をあ
らかじめ測定し、その値に耐え得るよう、またはその値
を抑制するよう制御回路が設計される。
[0007] When the rotor is rotated by an external force, an induced voltage is generated in the rotating electric machine, and a current flows through the energizing circuit or the control circuit. Therefore, in order to protect the control circuit more safely, the control circuit is designed to measure the effective value of the induced voltage at a predetermined rotation speed in advance and to withstand the value or to suppress the value.

【0008】しかし、実際の誘起電圧は、正弦波にいく
つかの波形が重畳された形で現れる。実効値はその波形
の平均値であることから、必ず実効値の√2倍を上回る
ピーク値が存在する。よって、実効値の√2倍に対応す
るよう設計されている制御回路をより確実に保護するた
めには、ピーク値を実効値の√2倍に近づける必要があ
る。
However, the actual induced voltage appears in a form in which some waveforms are superimposed on a sine wave. Since the effective value is the average value of the waveform, there always exists a peak value exceeding √2 times the effective value. Therefore, in order to more reliably protect a control circuit designed to cope with √2 times the effective value, it is necessary to make the peak value close to √2 times the effective value.

【0009】ピーク値を下げるためには、永久磁石によ
って発生する磁束量自体を低減することが考えられる
が、磁束量が低減すれば当然に回転電機を電動機として
動作させたときの駆動トルクも低下する。
To reduce the peak value, it is conceivable to reduce the amount of magnetic flux itself generated by the permanent magnet. However, if the amount of magnetic flux is reduced, the driving torque when the rotating electric machine is operated as an electric motor is naturally reduced. I do.

【0010】そこで本発明は、上記の事情に鑑み、永久
磁石回転電機において駆動トルクを下げることなく、実
効値に対する誘起電圧のピーク値を抑えることを目的と
する。
In view of the above, an object of the present invention is to suppress the peak value of the induced voltage with respect to the effective value without lowering the driving torque in a permanent magnet rotating electric machine.

【0011】また本発明の他の目的は、車両のブレーキ
ング時または降坂時に永久磁石回転電機が発生する誘起
電圧のピーク値を抑え、より安全な電動車両を提供する
ことである。
Another object of the present invention is to provide a safer electric vehicle by suppressing the peak value of the induced voltage generated by the permanent magnet rotating electric machine when the vehicle is braking or downhill.

【0012】[0012]

【課題を解決するための手段】上記目的は、巻線を有す
る固定子と、該固定子に回転空隙をもって配置され、複
数個の永久磁石を周方向に配置固定した回転子とを備え
た永久磁石回転電機において、誘起電圧の波形が正弦波
に近似していることを特徴とする永久磁石回転電機によ
り達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a permanent magnet comprising a stator having a winding and a rotor having a plurality of permanent magnets arranged and fixed in a circumferential direction in the stator with a rotating gap. This is achieved by a permanent magnet rotating electric machine characterized in that the waveform of the induced voltage approximates a sine wave.

【0013】また上記目的は、巻線を有する固定子と、
該固定子に回転空隙をもって配置され、複数個の永久磁
石を周方向に配置固定した回転子とを備えた永久磁石回
転電機において、誘起電圧の波形が正弦波に近似するよ
うに、前記永久磁石の固定子側の面の周方向長さを設定
したことを特徴とする永久磁石回転電機により達成され
る。
[0013] Further, the object is to provide a stator having a winding,
A permanent magnet rotating electric machine having a rotor in which a plurality of permanent magnets are arranged and fixed in a circumferential direction, the permanent magnet being arranged so that a waveform of an induced voltage approximates a sine wave. The permanent magnet rotating electric machine is characterized in that the circumferential length of the surface on the stator side is set.

【0014】また前記他の目的は、永久磁石回転電機を
駆動モータとして用いた電動車両において、車両のブレ
ーキング時または降坂時に前記永久磁石回転電機が発生
する誘起電圧の波形を正弦波に近似させることにより達
成される。
Another object of the present invention is to provide an electric vehicle using a permanent magnet rotating electric machine as a drive motor, wherein a waveform of an induced voltage generated by the permanent magnet rotating electric machine at the time of braking or downhill of the vehicle is approximated to a sine wave. This is achieved by

【0015】[0015]

【発明の実施の形態】以下、本発明の一実施形態である
永久磁石回転電機を図を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a permanent magnet rotating electric machine according to an embodiment of the present invention will be described with reference to the drawings.

【0016】図1は、三相8極,48スロットのインナ
ロータ形永久磁石回転電機に本発明を適用した実施形態
の周方向断面図であり、図はそのうち一のポールペアを
示している。図2は図1の磁束密度分布図である。
FIG. 1 is a circumferential sectional view of an embodiment in which the present invention is applied to a three-phase eight-pole, 48-slot inner-rotor permanent-magnet rotating electric machine. FIG. 1 shows one pole pair. FIG. 2 is a magnetic flux density distribution diagram of FIG.

【0017】永久磁石回転電機は固定子1および回転子
6から構成され、回転子6は固定子1に回転空隙5(ギ
ャップ)をもって図のように回転可能に配置されてい
る。
The permanent magnet rotating electric machine includes a stator 1 and a rotor 6, and the rotor 6 is rotatably disposed on the stator 1 with a rotating gap 5 (gap) as shown in the figure.

【0018】固定子1は、ほぼ環状をなす固定子鉄心2
に形成された48個のスロット3にU相の固定子巻線U
1,V相の固定子巻線V1、およびW相の固定子巻線W
1が挿入配置される。固定子鉄心の内周部には、各スロ
ットに対応して開口部4が形成されている。
The stator 1 has a substantially annular stator core 2.
U-phase stator winding U is provided in 48 slots 3 formed in
1, V-phase stator winding V1 and W-phase stator winding W
1 is inserted and arranged. Openings 4 are formed in the inner peripheral portion of the stator core corresponding to the respective slots.

【0019】一方回転子6は、回転軸9に回転子鉄心7
を嵌合固着し、この回転子鉄心7にネオジウム製の8個
の永久磁石8(図では8a,8b)を軸方向に挿入,固
着する収納部を形成している。永久磁石8は、図のよう
に隣り合ったものが互いに逆極性になるように配置さ
れ、また回転子鉄心7は硅素鋼板を多数枚積層して構成
されている。
On the other hand, the rotor 6 has a rotor core 7
Are fitted and fixed, and a storage part is formed in the rotor core 7 for inserting and fixing eight neodymium permanent magnets 8 (8a, 8b in the figure) in the axial direction. As shown in the figure, the permanent magnets 8 are arranged such that adjacent magnets have opposite polarities, and the rotor core 7 is formed by laminating many silicon steel plates.

【0020】このとき、永久磁石8としては、その周方
向の断面において、固定子側の辺すなわち外周面幅が軸
に対してなす角度をθ,反固定子側の辺すなわち内周面
幅が軸に対してなす角度をφとしたとき、θがφよりも
小さくなるような形状のものを用いる。
At this time, in the cross section of the permanent magnet 8 in the circumferential direction, the angle formed by the side on the stator side, that is, the outer peripheral surface width with respect to the axis is θ, and the side on the opposite stator side, that is, the inner peripheral surface width is When the angle with respect to the axis is φ, a shape having a shape in which θ is smaller than φ is used.

【0021】なお、永久磁石8が図のような台形形状で
はなく、他の形状のときも同様にθとφを定義できる。
例えばアーチ形のときは、θ,φはそれぞれ固定子側の
アーチの端点と他端点が軸に対してなす角度、反固定子
側のアーチの端点と他端点が軸に対してなす角度を示
す。
It is to be noted that θ and φ can be similarly defined when the permanent magnet 8 has a trapezoidal shape as shown in FIG.
For example, in the case of an arch shape, θ and φ indicate the angle between the end point and the other end point of the arch on the stator side with respect to the axis, and the angle between the end point and the other end point of the arch on the anti-stator side with respect to the axis. .

【0022】この場合、θの大きさを変化させると、回
転子が外力によって回転したときに発生する誘起電圧の
波形が変化する。またφの大きさを変化させると、φが
永久磁石8の周方向最大幅を規定することから、回転電
機の駆動トルクの大きさが変化する。
In this case, when the magnitude of θ is changed, the waveform of the induced voltage generated when the rotor is rotated by an external force changes. When the magnitude of φ is changed, the magnitude of the driving torque of the rotating electric machine changes because φ defines the maximum circumferential width of the permanent magnet 8.

【0023】ここでθ(度)は、永久磁石の極数が8で
あることから、0<θ<45の範囲の値を取り得るが、
θが45度に近いときは、補助突極の周方向幅が極端に
小さいことからリラクタンストルクを得ることが困難に
なる。また逆に0に近いときは、誘起電圧の波形がθで
なくφに依存することになるが、後述する理想波形の実
現と駆動トルクの最大化の双方を同時に達成するφの値
は存在しない。
Here, since the number of poles of the permanent magnet is 8, θ (degree) can take a value in the range of 0 <θ <45.
When θ is close to 45 degrees, it is difficult to obtain reluctance torque because the circumferential width of the auxiliary salient pole is extremely small. Conversely, when it is close to 0, the waveform of the induced voltage depends on φ instead of θ, but there is no value of φ that simultaneously achieves both the realization of the ideal waveform described below and the maximization of the driving torque. .

【0024】そこでθをサンプリングすると、θを2
4,26,28度とした場合、また32,34,36度
とした場合の最高回転数における誘起電圧波形は、それ
ぞれ図3,図4のようになる。
Then, when θ is sampled, θ is 2
The induced voltage waveforms at the maximum rotation speed when the angle is set to 4, 26, 28 degrees and when set to 32, 34, 36 degrees are as shown in FIGS. 3 and 4, respectively.

【0025】図を見ると、誘起電圧波形は正弦波に5つ
の山が重畳された凸波形と、凹凸が比較的少なく正弦波
に近似する波形と、5つの谷が重畳された凹波形が以下
に述べる規則性をもって現れることがわかる。
As shown in the figure, the induced voltage waveform includes a convex waveform in which five peaks are superimposed on a sine wave, a waveform in which there are relatively few irregularities and approximates a sine wave, and a concave waveform in which five valleys are superimposed. It appears that it appears with the regularity described in.

【0026】すなわち、θが18.75<θ<26.25
および33.75<θ<41.25の範囲内にあるとき凹
波形が現れ、θが26.25<θ<33.75の範囲内に
あるときは凸波形が現れる。またθがおよそ26.25
度および33.75度のとき、凹凸が比較的少なく正弦
波に近似する波形が現れる。
That is, θ is 18.75 <θ <26.25
When 33 is within the range of 33.75 <θ <41.25, a concave waveform appears, and when θ is within the range of 26.25 <θ <33.75, a convex waveform appears. Θ is about 26.25
In the case of degrees and 33.75 degrees, a waveform having relatively few irregularities and approximating a sine wave appears.

【0027】さらに詳しく分析すると、τsを固定子の
スロットピッチ、nを自然数としたとき、θが {(2n−1)+0.5}×τs<θ<(2n+0.5)×
τs の範囲内にあるとき凸波形が現れ、θが (n+0.5)×τs のときに凹凸が少なくなり、θが (2n+0.5)×τs<θ<{(2n+1)+0.5}×
τs の範囲内にあるとき凹波形が現れることがわかる。
More specifically, when τs is a slot pitch of the stator and n is a natural number, θ is {(2n−1) +0.5} × τs <θ <(2n + 0.5) ×
When it is within the range of τs, a convex waveform appears, and when θ is (n + 0.5) × τs, the unevenness decreases, and θ becomes (2n + 0.5) × τs <θ <{(2n + 1) +0.5} ×
It can be seen that a concave waveform appears when it is within the range of τs.

【0028】これらの波形のピーク値は、凸波形のとき
は電気角が90度の凸部頂点の値、凹波形のときは電気
角が90度の凹部を挟む2つの凸部頂点の値となる。従
って、ピーク値が最小となるのは、凹凸のない波形、す
なわち正弦波に近似した波形が現れたときである。
The peak values of these waveforms are the peak value of the convex portion having an electrical angle of 90 degrees in the case of the convex waveform, and the peak values of two convex portions sandwiching the concave portion having the electrical angle of 90 degrees in the case of the concave waveform. Become. Therefore, the peak value becomes the minimum when a waveform having no irregularities, that is, a waveform approximating a sine wave appears.

【0029】この実施形態では、誘起電圧波形が正弦波
にそれぞれ最も近くなるのは、θが約26度または約3
4度のときであることが図より分かる。
In this embodiment, the reason why the induced voltage waveforms are closest to the sine wave is that θ is about 26 degrees or about 3 degrees.
It can be seen from the figure that the time is 4 degrees.

【0030】次に、実際の誘起電圧波形が正弦波にどの
程度近似しているかを定量的に評価するため、波形狂い
率を定義し、θによる波形狂い率を図5にグラフとして
表す。
Next, in order to quantitatively evaluate to what extent the actual induced voltage waveform approximates a sine wave, a waveform deviation rate is defined, and the waveform deviation rate due to θ is shown in a graph in FIG.

【0031】ここで波形狂い率は、Here, the waveform deviation rate is

【0032】[0032]

【数1】 (Equation 1)

【0033】と定義する。この式は、誘起電圧波形が正
弦波であれば、電機角90度における電圧は実効値の√
2倍であることに基づいたものである。すなわちこの値
が1より大きい場合は凸波形、1より小さい場合は凹波
形であり、1に近いほど正弦波に近いということにな
る。
The definition is as follows. This equation shows that if the induced voltage waveform is a sine wave, the voltage at an armature angle of 90 degrees is the effective value of √
It is based on being twice. That is, when this value is greater than 1, the waveform is convex, and when it is less than 1, the waveform is concave.

【0034】このグラフからも、θが26度および34
度付近において、誘起電圧波形が正弦波に近似すること
がわかる。
From this graph, it can be seen that θ is 26 degrees and 34 degrees.
It can be seen that the induced voltage waveform approximates a sine wave near the degree.

【0035】ところで、この角度をスロットピッチτs
=7.5度のn+0.5倍(nは自然数)である26.2
5度,33.75度と比較すると、図3,図4、および
図5において少なくとも誤差±1度の範囲内にて一致し
ている。
By the way, this angle is referred to as the slot pitch τs
27.5 = n + 0.5 times (n is a natural number) of 7.5 degrees
When compared with 5 degrees and 33.75 degrees, in FIGS. 3, 4 and 5, the values match at least within a range of error ± 1 degree.

【0036】すなわち、θ(度)が θ≒(n+0.5)×τs (nは自然数) で表される値のとき、誘起電圧の波形が正弦波に近似す
る。
That is, when θ (degree) is a value represented by θ ≒ (n + 0.5) × τs (n is a natural number), the waveform of the induced voltage approximates a sine wave.

【0037】さらに図6にθを変化させた場合の誘起電
圧のピーク値と実効値を示す。
FIG. 6 shows the peak value and the effective value of the induced voltage when θ is changed.

【0038】図6において実効値はθが大きくなるに従
って増加している。これはθが大きくなれば永久磁石が
大きくなり、当然に主磁束も大きくなることが原因であ
る。一方ピーク値は、θが大きくなるに従って階段状の
変化を示していることがわかる。すなわちθが26度よ
りも小さいときはθが増加するに従って僅かながら下降
し、26度を越えると急激に上昇している。さらに約3
2度を頂点としてまた緩やかに下降していることがわか
る。
In FIG. 6, the effective value increases as θ increases. This is because the larger the θ, the larger the permanent magnet, and naturally the larger the main magnetic flux. On the other hand, it can be seen that the peak value shows a stepwise change as θ increases. That is, when θ is smaller than 26 degrees, the angle slightly decreases as θ increases, and sharply increases after 26 degrees. About 3 more
It can be seen that the temperature is gradually falling again with the peak at 2 degrees.

【0039】一般的に実効値が大きいほど主磁束は大き
くなり、駆動トルクをより多く得ることができる。一方
ピーク値は、制御回路等はその永久磁石回転電機特有の
実効値に合わせて設計されることから、できるだけ実効
値の√2倍に近い方がよい。従ってθは、図6において
ピーク値が実効値の√2倍に近く、しかも実効値が大き
いという観点から、26度付近が最も優れていると考え
られる。
In general, the larger the effective value is, the larger the main magnetic flux is, so that more driving torque can be obtained. On the other hand, the peak value is preferably as close as possible to √2 times the effective value as much as possible because the control circuit and the like are designed according to the effective value specific to the permanent magnet rotating electric machine. Therefore, it is considered that θ is best around 26 degrees from the viewpoint that the peak value is close to √2 times the effective value and the effective value is large in FIG.

【0040】次に、θを26度に固定しながらφを変化
させ、磁束量の補正を行うことで主磁束によるトルクと
リラクタンストルクの和が最大となる角度φを求める。
Next, the angle φ at which the sum of the torque due to the main magnetic flux and the reluctance torque is maximum is obtained by changing φ while fixing θ to 26 degrees and correcting the amount of magnetic flux.

【0041】回転電機の駆動トルクTは、永久磁石によ
る磁束をψ,q軸インダクタンスをLq,d軸インダク
タンスをLd,q軸巻線電流をIq,d軸巻線電流をI
dとすると、 T=ψIq+(Lq−Ld)Iq×Id で表される。
The driving torque T of the rotating electric machine is represented by the magnetic flux of the permanent magnet ψ, the q-axis inductance Lq, the d-axis inductance Ld, the q-axis winding current Iq, and the d-axis winding current I
Assuming d, T = ψIq + (Lq−Ld) Iq × Id.

【0042】この式において右辺の第1項は永久磁石の
主磁束によるトルクであり、第2項は隣り合った永久磁
石間の回転子部材、すなわち補助突極によるリラクタン
ストルクである。これら二つの値は、それぞれ永久磁
石,補助突極がなす回転子の周方向の角度に依存するこ
とから、駆動トルクを最大とする永久磁石の周方向の角
度は個々の回転子において一義的に定まる。
In this equation, the first term on the right side is the torque due to the main magnetic flux of the permanent magnet, and the second term is the reluctance torque due to the rotor member between adjacent permanent magnets, ie, the auxiliary salient pole. Since these two values depend on the circumferential angle of the rotor formed by the permanent magnet and the auxiliary salient pole, respectively, the circumferential angle of the permanent magnet that maximizes the driving torque is uniquely determined for each rotor. Is determined.

【0043】図7にφと(モータの使用頻度を考慮し
た)加重平均効率(インバータ損失含む)の関係を示
す。図からφは36度が最も大きいことがわかる。
FIG. 7 shows the relationship between φ and the weighted average efficiency (including the inverter loss) (considering the frequency of use of the motor). It can be seen from the figure that φ is the largest at 36 degrees.

【0044】従って、本実施形態の場合、θが26度で
φが36度の永久磁石を用いれば、誘起電圧の波形が正
弦波に近似し、誘起電圧のピーク値を抑えながら、かつ
最大の駆動トルクを得ることができる永久磁石回転電機
の設計が可能である。
Therefore, in the case of the present embodiment, if a permanent magnet having θ of 26 degrees and φ of 36 degrees is used, the waveform of the induced voltage approximates a sine wave, and the peak value of the induced voltage is suppressed and the maximum value is obtained. It is possible to design a permanent magnet rotating electric machine capable of obtaining a driving torque.

【0045】さらに、上記のθとφの角度による永久磁
石の形状の汎用性を確認するため、半径や積厚,出力な
どが異なる回転電機について検討した磁束密度分布を図
8に、誘起電圧波形を図9に、φと加重平均効率(イン
バータ損失含む)の関係を図10に示す。この実施形態
においても、図9よりθが26度のとき誘起電圧波形が
正弦波に近く、図10よりφが36度のとき駆動トルク
が最大になることがわかる。
Further, in order to confirm the versatility of the shape of the permanent magnet according to the angles of θ and φ described above, FIG. 8 shows a magnetic flux density distribution examined for rotating electric machines having different radii, thicknesses, and outputs, and FIG. FIG. 9 shows the relationship between φ and the weighted average efficiency (including the inverter loss) in FIG. Also in this embodiment, it can be seen from FIG. 9 that the induced voltage waveform is close to a sine wave when θ is 26 degrees, and that the driving torque becomes maximum when φ is 36 degrees from FIG.

【0046】さらに上記θは、通常よく用いられる固定
子ティース部がなす角αと固定子スロット部がなす角β
がほぼ等しい場合にはスロットピッチτsのn+0.5
倍(nは自然数)の場合が優れているが、αとβが大き
く異なる場合には、nを自然数として、 θ≒n×τs+α または θ≒n×τs+β とした方が誘起電圧波形は正弦波に近くなる。特に後者
がより正弦波に近い。
Further, the above-mentioned θ is the angle α formed by the stator teeth commonly used and the angle β formed by the stator slot.
Are approximately equal, n + 0.5 of the slot pitch τs
In the case of α (n is a natural number), when α and β are greatly different, the induced voltage waveform is a sine wave when θ ≒ n × τs + α or θ ≒ n × τs + β, where n is a natural number. Become closer to In particular, the latter is closer to a sine wave.

【0047】さらに、固定子スロット部をなす角βと固
定子開口部をなす角γが大きく異なる場合、すなわちテ
ィースの突起が大きい場合には、 θ≒n×τs+γ とした方が誘起電圧波形は正弦波に近くなる。
Further, when the angle β forming the stator slot portion and the angle γ forming the stator opening portion are greatly different, that is, when the teeth are large, the induced voltage waveform can be obtained by setting θ ≒ n × τs + γ. It becomes closer to a sine wave.

【0048】ここで突起部の径方向長さが小さい場合、
突起部の磁束が飽和し、γがほとんどθに影響しなくな
る。そこでγがθに対して影響する度合いを係数A(0
<A≦1)とすると、 θ≒n×τs+γ×A と表わすことができる。
Here, when the radial length of the projection is small,
The magnetic flux of the protrusion is saturated, and γ hardly affects θ. Therefore, the degree of the influence of γ on θ is determined by the coefficient A (0
If <A ≦ 1), then θ ≒ n × τs + γ × A.

【0049】また、永久磁石8はネオジウム磁石以外で
もよく、たとえば図5の波形狂い率の検討をフェライト
磁石で行った場合を図11に示す。
The permanent magnet 8 may be other than a neodymium magnet. FIG. 11 shows a case where the waveform distortion rate shown in FIG. 5 is examined using a ferrite magnet.

【0050】ネオジウム磁石を用いて検討した図5と比
較するとθが機械角で2度ほど小さくなっているが、こ
の理由はフェライト磁石がネオジウム磁石と比べて磁石
の強さが約1/3のため、固定子スロットの突起部を十
分に飽和できないからである。よって、フェライト磁石
を用いた場合、誘起電圧波形を正弦波に近似させるθは θ≒n×τs+γ (nは自然数) となる。
Compared with FIG. 5 using a neodymium magnet, θ is smaller by about 2 degrees in mechanical angle. This is because the ferrite magnet has a magnet strength about one-third that of the neodymium magnet. Therefore, the protrusion of the stator slot cannot be sufficiently saturated. Therefore, when a ferrite magnet is used, θ which approximates the induced voltage waveform to a sine wave is θ ≒ n × τs + γ (n is a natural number).

【0051】なお、本発明において、誘起電圧波形を正
弦波に近似させる角度θは磁石形状によらない。図12
に他の実施形態として磁石形状が長方形の場合の磁束密
度分布を、図13に図12の実施形態における誘起電圧
波形を、図14に他の実施形態として磁石形状がアーク
形の場合の磁束密度分布を、図15に図14における誘
起電圧波形を、図16に他の実施形態として磁石形状が
円弧状の台形の場合の磁束密度分布を、図17に図16
における誘起電圧波形を、図18に他の実施形態として
磁石形状がV字形の場合の磁束密度分布を、図19に図
18における誘起電圧波形を、図20に他の実施形態と
して磁石形状がU字形の場合の磁束密度分布を、図21
に図20における誘起電圧波形を示す。いずれの場合も
図のようなθ=26度で誘起電圧波形が正弦波に近似し
ていることがわかる。
In the present invention, the angle θ for approximating the induced voltage waveform to a sine wave does not depend on the magnet shape. FIG.
13 shows a magnetic flux density distribution when the magnet shape is rectangular as another embodiment, FIG. 13 shows an induced voltage waveform in the embodiment of FIG. 12, and FIG. 14 shows a magnetic flux density when the magnet shape is an arc shape as another embodiment. FIG. 15 shows the distribution of the induced voltage in FIG. 14, FIG. 16 shows the magnetic flux density distribution in the case where the magnet shape is an arc trapezoid as another embodiment, and FIG.
18, the magnetic flux density distribution when the magnet shape is V-shaped as another embodiment, FIG. 19 shows the induced voltage waveform in FIG. 18, and FIG. 20 shows the magnet shape U as another embodiment. FIG. 21 shows the magnetic flux density distribution in the case of the letter shape.
FIG. 20 shows the induced voltage waveform in FIG. In each case, it can be seen that the induced voltage waveform approximates a sine wave at θ = 26 degrees as shown in the figure.

【0052】一方、永久磁石が回転子内に一部埋め込ま
れている場合は、永久磁石部と鉄部の磁束の疎密が大き
くなるため、 θ≒n×τs+γ (nは自然数) の場合が誘起電圧波形を正弦波に近似できる。この場合
θは、永久磁石8が回転子鉄心7の表面に露出している
部分が回転子周方向になす角度となる。
On the other hand, when the permanent magnet is partially embedded in the rotor, the density of the magnetic flux between the permanent magnet portion and the iron portion increases, so that the case of θ ≒ n × τs + γ (n is a natural number) is induced. The voltage waveform can be approximated to a sine wave. In this case, θ is the angle formed by the portion where the permanent magnet 8 is exposed on the surface of the rotor core 7 in the circumferential direction of the rotor.

【0053】図22に本発明の他の実施形態として磁石
形状がアーク形で一部埋め込まれている場合の磁束密度
分布を、図23に図22における誘起電圧波形を、図2
4に他の実施形態として磁石形状が円弧状の台形で一部
埋め込まれている場合の磁束密度分布を、図25に図2
4における誘起電圧波形を、図26に他の実施形態とし
て磁石形状が概略台形で一部埋め込まれている場合の磁
束密度分布を、図27に図26における誘起電圧波形を
示す。いずれの場合も図のようなθ=24度で誘起電圧
波形を正弦波に近似できることがわかる。
FIG. 22 shows a magnetic flux density distribution when a magnet is partially embedded in an arc shape as another embodiment of the present invention, FIG. 23 shows an induced voltage waveform in FIG.
FIG. 25 shows the magnetic flux density distribution when the magnet shape is partially embedded in an arc trapezoidal shape as another embodiment in FIG.
26 shows the induced voltage waveform in FIG. 26, FIG. 26 shows the magnetic flux density distribution in a case where the magnet shape is partially trapezoidal and partially embedded as another embodiment, and FIG. 27 shows the induced voltage waveform in FIG. In each case, it can be seen that the induced voltage waveform can be approximated to a sine wave at θ = 24 degrees as shown in the figure.

【0054】また、誘起電圧のピーク値を抑えながら、
コギングトルクや騒音を低減するためには、磁石の両端
に図28のような磁気的な空隙を設けることが有効であ
る。ここで磁気的な空隙とは、物体が存在しない空間と
してもよいし、非磁性体の物質を挿入または充填し、ワ
ニスや接着剤などで固定したものでもよい。
Further, while suppressing the peak value of the induced voltage,
In order to reduce cogging torque and noise, it is effective to provide magnetic gaps at both ends of the magnet as shown in FIG. Here, the magnetic gap may be a space where no object exists, or may be a space where a non-magnetic substance is inserted or filled and fixed with a varnish or an adhesive.

【0055】さらに、本発明による永久磁石回転電機
は、電動車両の駆動モータとして用いた場合に有効であ
る。
Further, the permanent magnet rotating electric machine according to the present invention is effective when used as a drive motor for an electric vehicle.

【0056】永久磁石回転電機を駆動モータとして用い
た電動車両のブレーキ動作時、または降坂時には、回転
電機が発電機として動作し、制御回路に誘起電圧が発生
する。通常、制御回路は回転電機の誘起電圧の実効値に
合わせて設計されているので、波形のピーク値によって
誘起電圧が実効値の√2倍を大きく超過しないよう、本
発明のように誘起電圧の波形を正弦波に近似させ、ピー
ク値を抑えることによって、より安全性の高い電動車両
を得ることができる。
At the time of a braking operation of an electric vehicle using a permanent magnet rotating electric machine as a drive motor or during a downhill, the rotating electric machine operates as a generator, and an induced voltage is generated in a control circuit. Normally, the control circuit is designed in accordance with the effective value of the induced voltage of the rotating electric machine, so that the induced voltage does not greatly exceed 実 効 2 times the effective value due to the peak value of the waveform as in the present invention. An electric vehicle with higher safety can be obtained by approximating the waveform to a sine wave and suppressing the peak value.

【0057】なお本発明は、永久磁石の個数(極数)は
8極以外でもよく、固定子のスロット数も48個以外で
もよい。さらに永久磁石8はネオジウム磁石以外でもよ
く、永久磁石を構成する角度は製作誤差の範囲内である
幅を持つことは言うまでもない。また、波形改善が有効
となるものは、内転型,外転型などの回転電機に限ら
ず、リニアモータなどにも応用できる。
In the present invention, the number of permanent magnets (the number of poles) may be other than eight, and the number of slots of the stator may be other than forty-eight. Further, the permanent magnet 8 may be other than the neodymium magnet, and it goes without saying that the angle constituting the permanent magnet has a width within a range of a manufacturing error. In addition, those in which waveform improvement is effective can be applied not only to rotary electric machines such as an inversion type and an external rotation type but also to a linear motor and the like.

【0058】[0058]

【発明の効果】本発明によれば、誘起電圧の波形が正弦
波に近似していることにより、誘起電圧のピーク値を実
効値に対して抑えることができる。
According to the present invention, the peak value of the induced voltage can be suppressed from the effective value because the waveform of the induced voltage approximates a sine wave.

【0059】また本発明によれば、誘起電圧の波形が正
弦波に近似するように、前記永久磁石の固定子側の面の
周方向長さを設定したことにより、誘起電圧のピーク値
を抑えながら、大きな駆動トルクを得ることができる。
Further, according to the present invention, the peak value of the induced voltage is suppressed by setting the circumferential length of the surface of the permanent magnet on the stator side so that the waveform of the induced voltage approximates a sine wave. However, a large driving torque can be obtained.

【0060】また本発明によれば、誘起電圧の波形を正
弦波に近似させることにより、車両のブレーキング時ま
たは降坂時に永久磁石回転電機が発生する誘起電圧のピ
ーク値を抑え、より安全な電動車両を得ることができ
る。
Further, according to the present invention, by approximating the waveform of the induced voltage to a sine wave, the peak value of the induced voltage generated by the permanent magnet rotating electric machine at the time of braking or downhill of the vehicle can be suppressed, and a more safe operation can be achieved. An electric vehicle can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態をなす永久磁石回転電機の
周方向断面図の一部を示す。
FIG. 1 shows a part of a circumferential sectional view of a permanent magnet rotating electric machine according to an embodiment of the present invention.

【図2】図1の磁束密度分布図を示す。FIG. 2 shows a magnetic flux density distribution diagram of FIG.

【図3】図1のθを24,26,28度とした場合の最
高回転数における誘起電圧波形を示す。
FIG. 3 shows an induced voltage waveform at the maximum rotation speed when θ in FIG. 1 is 24, 26, and 28 degrees.

【図4】図1のθを32,34,36度とした場合の最
高回転数における誘起電圧波形を示す。
FIG. 4 shows an induced voltage waveform at the maximum rotation speed when θ in FIG. 1 is 32, 34, and 36 degrees.

【図5】図1のθと波形狂い率の関係図を示す。FIG. 5 is a diagram showing the relationship between θ and the waveform deviation rate in FIG. 1;

【図6】図1のθと誘起電圧ピーク値および実効値の関
係図を示す。
FIG. 6 shows a relationship diagram between θ in FIG. 1 and an induced voltage peak value and an effective value.

【図7】図1のφと(モータの使用頻度を考慮した)加
重平均効率(インバータ損失含む)の関係図を示す。
FIG. 7 shows a relationship diagram between φ in FIG. 1 and a weighted average efficiency (including inverter loss) (considering the frequency of use of the motor).

【図8】図1のθとφを、半径や積厚,出力などが異な
る他の実施形態に適用した場合の磁束密度分布図を示
す。
FIG. 8 is a magnetic flux density distribution diagram when θ and φ in FIG. 1 are applied to another embodiment having different radii, thicknesses, outputs, and the like.

【図9】図8における誘起電圧波形を示す。FIG. 9 shows an induced voltage waveform in FIG.

【図10】図8におけるφと加重平均効率(インバータ
損失を含む)の関係図を示す。
FIG. 10 shows a relationship diagram between φ and weighted average efficiency (including inverter loss) in FIG.

【図11】フェライト磁石を用いた本発明の他の実施形
態をなす永久磁石回転電機のθと波形狂い率の関係図を
示す。
FIG. 11 is a diagram showing a relationship between θ and a waveform distortion rate of a permanent magnet rotating electric machine according to another embodiment of the present invention using a ferrite magnet.

【図12】本発明の他の実施形態をなす永久磁石回転電
機の磁束密度分布図を示す。
FIG. 12 shows a magnetic flux density distribution diagram of a permanent magnet rotating electric machine according to another embodiment of the present invention.

【図13】図12の誘起電圧波形を示す。FIG. 13 shows an induced voltage waveform of FIG.

【図14】本発明の他の実施形態をなす永久磁石回転電
機の磁束密度分布図を示す。
FIG. 14 shows a magnetic flux density distribution diagram of a permanent magnet rotating electric machine according to another embodiment of the present invention.

【図15】図14の誘起電圧波形を示す。FIG. 15 shows an induced voltage waveform of FIG.

【図16】本発明の他の実施形態をなす永久磁石回転電
機の磁束密度分布図を示す。
FIG. 16 shows a magnetic flux density distribution diagram of a permanent magnet rotating electric machine according to another embodiment of the present invention.

【図17】図16の誘起電圧波形を示す。FIG. 17 shows an induced voltage waveform of FIG.

【図18】本発明の他の実施形態をなす永久磁石回転電
機の磁束密度分布図を示す。
FIG. 18 shows a magnetic flux density distribution diagram of a permanent magnet rotating electric machine according to another embodiment of the present invention.

【図19】図18の誘起電圧波形を示す。FIG. 19 shows an induced voltage waveform of FIG.

【図20】本発明の他の実施形態をなす永久磁石回転電
機の磁束密度分布図を示す。
FIG. 20 shows a magnetic flux density distribution diagram of a permanent magnet rotating electric machine according to another embodiment of the present invention.

【図21】図20の誘起電圧波形を示す。FIG. 21 shows an induced voltage waveform of FIG.

【図22】本発明の他の実施形態をなす永久磁石回転電
機の磁束密度分布図を示す。
FIG. 22 shows a magnetic flux density distribution diagram of a permanent magnet rotating electric machine according to another embodiment of the present invention.

【図23】図22の誘起電圧波形を示す。FIG. 23 shows an induced voltage waveform of FIG.

【図24】本発明の他の実施形態をなす永久磁石回転電
機の磁束密度分布図を示す。
FIG. 24 shows a magnetic flux density distribution diagram of a permanent magnet rotating electric machine according to another embodiment of the present invention.

【図25】図24の誘起電圧波形を示す。FIG. 25 shows an induced voltage waveform of FIG.

【図26】本発明の他の実施形態をなす永久磁石回転電
機の磁束密度分布図を示す。
FIG. 26 shows a magnetic flux density distribution diagram of a permanent magnet rotating electric machine according to another embodiment of the present invention.

【図27】図26の誘起電圧波形を示す。FIG. 27 shows an induced voltage waveform of FIG. 26.

【図28】本発明の他の実施形態をなす永久磁石回転電
機の周方向断面図を示す。
FIG. 28 is a circumferential sectional view of a permanent magnet rotating electric machine according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…固定子、2…固定子鉄心、3…スロット、4…開口
部、5…回転空隙、6…回転子、7…回転子鉄心、8
a,8b…永久磁石、9…回転軸、10…空隙。
DESCRIPTION OF SYMBOLS 1 ... Stator, 2 ... Stator core, 3 ... Slot, 4 ... Opening, 5 ... Rotation gap, 6 ... Rotor, 7 ... Rotor core, 8
a, 8b: permanent magnet, 9: rotating shaft, 10: air gap.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 孝司 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 川又 昭一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 渋川 末太郎 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 小泉 修 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 小田 圭二 茨城県ひたちなか市高場2477番地 株式会 社日立カーエンジニアリング内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Kobayashi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Shoichi Kawamata 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Suetaro Shibukawa 2520 Oji Takaba, Hitachinaka City, Ibaraki Prefecture Inside Automotive Equipment Division, Hitachi, Ltd. (72) Inventor Osamu Koizumi Oita Takahiro, Hitachinaka City, Ibaraki Prefecture 2520 Address Hitachi Automotive Equipment Division (72) Inventor Keiji Oda 2477 Takaba, Hitachinaka-shi, Ibaraki Pref.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】巻線を有する固定子と、該固定子に回転空
隙をもって配置され、複数個の永久磁石を周方向に配置
固定した回転子とを備えた永久磁石回転電機において、
誘起電圧の波形が正弦波に近似していることを特徴とす
る永久磁石回転電機。
1. A permanent magnet rotating electric machine comprising: a stator having a winding; and a rotor arranged with a rotating gap in the stator and having a plurality of permanent magnets arranged and fixed in a circumferential direction.
A permanent magnet rotating electric machine characterized in that a waveform of an induced voltage approximates a sine wave.
【請求項2】巻線を有する固定子と、該固定子に回転空
隙をもって配置され、複数個の永久磁石を周方向に配置
固定した回転子とを備えた永久磁石回転電機において、
誘起電圧の波形が正弦波に近似するように、前記永久磁
石の固定子側の面の周方向長さを設定したことを特徴と
する永久磁石回転電機。
2. A permanent magnet rotating electric machine comprising: a stator having a winding; and a rotor arranged with a rotating gap in the stator and having a plurality of permanent magnets arranged and fixed in a circumferential direction.
A permanent magnet rotating electric machine characterized in that the circumferential length of the surface of the permanent magnet on the stator side is set so that the waveform of the induced voltage approximates a sine wave.
【請求項3】請求項2記載において、前記固定子のスロ
ットピッチをτs(度)としたとき、前記永久磁石の固
定子側の面の周方向幅が前記回転子の軸に対してなす角
度θ(度)が、 θ≒(n+0.5)×τs (nは自然数) であることを特徴とする永久磁石回転電機。
3. An angle defined by a circumferential width of a surface of the permanent magnet on a stator side with respect to an axis of the rotor, wherein a slot pitch of the stator is τs (degrees). A permanent magnet rotating electric machine wherein θ (degrees) is θ ≒ (n + 0.5) × τs (n is a natural number).
【請求項4】請求項2記載において、前記永久磁石は前
記回転子鉄心の表面に露出し、かつ前記露出部分が軸に
対してなす角度θ(度)が θ≒(n+0.5)×τs (nは自然数) であることを特徴とする永久磁石回転電機。
4. The method according to claim 2, wherein the permanent magnet is exposed on a surface of the rotor core, and an angle θ (degree) formed by the exposed portion with respect to an axis is θ ≒ (n + 0.5) × τs. (N is a natural number).
【請求項5】請求項2記載において、前記固定子のスロ
ットピッチをτs(度)、前記固定子におけるティース
部の角度をα(度),スロット部の角度をβ(度),開
口部の角度をγ(度)としたとき、前記永久磁石の固定
子側の面の周方向幅が前記回転子の軸に対してなす角度
θ(度)が、 θ≒n×τs+α (nは自然数) または θ≒n×τs+β (nは自然数) もしくは θ≒n×τs+γ (nは自然数) のいずれかであることを特徴とする永久磁石回転電機。
5. The stator according to claim 2, wherein the slot pitch of the stator is τs (degree), the angle of the teeth portion of the stator is α (degree), the angle of the slot portion is β (degree), and the angle of the slot is β (degree). When the angle is γ (degree), the angle θ (degree) formed by the circumferential width of the surface of the permanent magnet on the stator side with respect to the axis of the rotor is θ ≒ n × τs + α (n is a natural number) Or θ 磁石 n × τs + β (n is a natural number) or θ ≒ n × τs + γ (n is a natural number).
【請求項6】請求項2記載において、前記固定子のスロ
ット数が48、前記永久磁石の極数が8であり、かつ前
記永久磁石の固定子側の面の周方向幅が前記回転子の軸
に対してなす角度が26±1度の範囲内、前記永久磁石
の反固定子側の面の周方向幅が前記回転子の軸に対して
なす角度が36±1度の範囲内であることを特徴とする
永久磁石回転電機。
6. The rotor according to claim 2, wherein the number of slots of the stator is 48, the number of poles of the permanent magnet is 8, and the circumferential width of the surface of the permanent magnet on the stator side is equal to that of the rotor. The angle formed with respect to the axis is within a range of 26 ± 1 degrees, and the angle formed by the circumferential width of the surface of the permanent magnet on the side opposite to the stator with respect to the axis of the rotor is within a range of 36 ± 1 degrees. A permanent magnet rotating electric machine characterized by the above-mentioned.
【請求項7】請求項2記載において、前記永久磁石の固
定子側の面の周方向幅が前記回転子の軸に対してなす角
度をθ(度)、前記永久磁石の反固定子側の面の周方向
幅が前記回転子の軸に対してなす角度をφ(度)とした
とき、θがφよりも小さいことを特徴とする永久磁石回
転電機。
7. The method according to claim 2, wherein the angle between the circumferential width of the surface of the permanent magnet on the stator side and the axis of the rotor is θ (degree), and A permanent magnet rotating electric machine characterized in that θ is smaller than φ when an angle between a circumferential width of the surface and an axis of the rotor is φ (degree).
【請求項8】請求項7記載において、前記永久磁石の周
方向断面の形状は台形であることを特徴とする永久磁石
回転電機。
8. A permanent magnet rotating electric machine according to claim 7, wherein said permanent magnet has a trapezoidal cross section in a circumferential direction.
【請求項9】請求項2記載において、各永久磁石の両端
に磁気的な空隙を設けたことを特徴とする永久磁石回転
電機。
9. The permanent magnet rotating electric machine according to claim 2, wherein magnetic gaps are provided at both ends of each permanent magnet.
【請求項10】永久磁石回転電機を駆動モータとして用
いた電動車両において、車両のブレーキング時または降
坂時に前記永久磁石回転電機が発生する誘起電圧の波形
を正弦波に近似させたことを特徴とする電動車両。
10. An electric vehicle using a permanent magnet rotating electric machine as a drive motor, wherein a waveform of an induced voltage generated by the permanent magnet rotating electric machine at the time of braking or downhill of the vehicle is approximated to a sine wave. Electric vehicle.
JP14138597A 1996-09-13 1997-05-30 Permanent magnet rotating electric machine and electric vehicle using the same Expired - Lifetime JP3370901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14138597A JP3370901B2 (en) 1996-09-13 1997-05-30 Permanent magnet rotating electric machine and electric vehicle using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-243218 1996-09-13
JP24321896 1996-09-13
JP14138597A JP3370901B2 (en) 1996-09-13 1997-05-30 Permanent magnet rotating electric machine and electric vehicle using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000290339A Division JP3817416B2 (en) 1996-09-13 2000-09-20 Permanent magnet rotating electric machine and electric vehicle using the same

Publications (2)

Publication Number Publication Date
JPH10146031A true JPH10146031A (en) 1998-05-29
JP3370901B2 JP3370901B2 (en) 2003-01-27

Family

ID=26473633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14138597A Expired - Lifetime JP3370901B2 (en) 1996-09-13 1997-05-30 Permanent magnet rotating electric machine and electric vehicle using the same

Country Status (1)

Country Link
JP (1) JP3370901B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053734A1 (en) * 2001-12-21 2003-07-03 Aisin Aw Co., Ltd. Electrically-driven vehicle drive controller
JP2005261024A (en) * 2004-03-10 2005-09-22 Hitachi Ltd Permanent magnet rotating electric machine and electric vehicle using it
JP2007520720A (en) * 2004-02-06 2007-07-26 デルファイ・テクノロジーズ・インコーポレーテッド Device for detecting position and / or torque
JP2009278860A (en) * 2009-06-26 2009-11-26 Hitachi Ltd Permanent magnet rotating electric machine and electric vehicle using the same
JP2011050216A (en) * 2009-08-28 2011-03-10 Suzuki Motor Corp Motor
JP2012060774A (en) * 2010-09-08 2012-03-22 Mitsubishi Electric Corp Rotor of synchronous motor
KR101332037B1 (en) * 2011-12-16 2013-11-22 엘지이노텍 주식회사 Rotor Core and Motor having the same
CN108667176A (en) * 2017-03-27 2018-10-16 本田技研工业株式会社 The manufacturing method of IPM magnet rotors, IPM rotors and IPM magnet rotors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5974599B2 (en) 2012-04-12 2016-08-23 株式会社デンソー Rotating electric machine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053734A1 (en) * 2001-12-21 2003-07-03 Aisin Aw Co., Ltd. Electrically-driven vehicle drive controller
US7163072B2 (en) 2001-12-21 2007-01-16 Aisin Aw Co., Ltd. Motor-driven vehicle drive control apparatus and method thereof
JP2007520720A (en) * 2004-02-06 2007-07-26 デルファイ・テクノロジーズ・インコーポレーテッド Device for detecting position and / or torque
US8067871B2 (en) 2004-03-10 2011-11-29 Hitachi, Ltd. Permanent magnet rotating electric machine and electric car using the same
JP2005261024A (en) * 2004-03-10 2005-09-22 Hitachi Ltd Permanent magnet rotating electric machine and electric vehicle using it
USRE44037E1 (en) 2004-03-10 2013-03-05 Hitachi, Ltd. Rotating electric machine having rotor embedded-permanent-magnets with inner-end magnetic gaps and outer-end magnetic gaps, and electric car using the same electric machine
JP2009278860A (en) * 2009-06-26 2009-11-26 Hitachi Ltd Permanent magnet rotating electric machine and electric vehicle using the same
JP2011050216A (en) * 2009-08-28 2011-03-10 Suzuki Motor Corp Motor
JP2012060774A (en) * 2010-09-08 2012-03-22 Mitsubishi Electric Corp Rotor of synchronous motor
KR101332037B1 (en) * 2011-12-16 2013-11-22 엘지이노텍 주식회사 Rotor Core and Motor having the same
CN108667176A (en) * 2017-03-27 2018-10-16 本田技研工业株式会社 The manufacturing method of IPM magnet rotors, IPM rotors and IPM magnet rotors
JP2018164378A (en) * 2017-03-27 2018-10-18 本田技研工業株式会社 Ipm rotor magnet, and method of manufacturing ipm rotor and ipm rotor magnet
US10651697B2 (en) 2017-03-27 2020-05-12 Honda Motor Co., Ltd. Magnet for IPM rotor, IPM rotor, and method of manufacturing magnet for IPM rotor

Also Published As

Publication number Publication date
JP3370901B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
US6133662A (en) Permanent magnet dynamoelectric rotating machine and electric vehicle equipped with the same
US7148597B2 (en) Permanent magnet rotating electric machine
JP3746372B2 (en) Permanent magnet type rotating electric machine and electric vehicle using the same
JP3282427B2 (en) Permanent magnet motor
US9059621B2 (en) Electric rotating machine
US7482724B2 (en) Ipm electric rotating machine
JP2002315242A (en) Permanent magnet type rotary electric machine, power generation system utilizing the same and drive system
US20130106226A1 (en) Electric rotating machine
JP2007060755A (en) Rotor structure for dynamo-electric machine
JP3428234B2 (en) Interior magnet type motor
JP3370901B2 (en) Permanent magnet rotating electric machine and electric vehicle using the same
JP2000316241A (en) Motor with embedded permanent magnet
JP3117164B2 (en) Permanent magnet rotating electric machine, control method and control device thereof, and electric vehicle using the same
WO2021084788A1 (en) Rotor and electric motor
JP2005080381A (en) Ipm rotary electric machine
JP2007097290A (en) Permanent magnet type reluctance dynamo-electric machine
JP3289635B2 (en) Permanent magnet rotating electric machine
JP2001112202A (en) Permanent-magnet rotary electric machine and motor- driven vehicle using the same
JP4396142B2 (en) Permanent magnet rotating electric machine
JP2002209350A (en) Motor or rotor of power generator
JP2003070192A (en) Rotating machine using built-in permanent magnet
JP5130679B2 (en) Forward salient pole motor
JP2005006484A (en) Ipm rotary electric machine
JP2002369422A (en) Permanent magnet dynamo-electric machine
JP2005130627A (en) Embedded magnet type synchronous motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

EXPY Cancellation because of completion of term