JPH104643A - Magnet rotor - Google Patents

Magnet rotor

Info

Publication number
JPH104643A
JPH104643A JP8189853A JP18985396A JPH104643A JP H104643 A JPH104643 A JP H104643A JP 8189853 A JP8189853 A JP 8189853A JP 18985396 A JP18985396 A JP 18985396A JP H104643 A JPH104643 A JP H104643A
Authority
JP
Japan
Prior art keywords
magnets
rotor
magnet
hole
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8189853A
Other languages
Japanese (ja)
Other versions
JP3776171B2 (en
Inventor
Itsuo Kito
逸夫 鬼頭
Shoji Mano
鐘治 真野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Elec Co
Original Assignee
Aichi Elec Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Elec Co filed Critical Aichi Elec Co
Priority to JP18985396A priority Critical patent/JP3776171B2/en
Publication of JPH104643A publication Critical patent/JPH104643A/en
Application granted granted Critical
Publication of JP3776171B2 publication Critical patent/JP3776171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnet rotor which has versatility and improved characteristics and can maintain high quality, by inserting magnets having lengths which are shorter than the lengths of the margins of housing holes, having margins formed in chorded states with respect to the circular arc which forms the outside diameter of an iron core into the housing holes. SOLUTION: A rotor is constituted, by inserting plate-shape magnets 3a into housing holes 2a, formed through the iron core 1a of the rotor, in the axial direction in parallel with an axial hole 9 by clearance fitting, press-fitting, etc., and covering both ends of the core 1a in the axial direction, by fixing end plates to both ends with a plurality of caulking pins, passed through the core 1a in the axial direction. Although the magnets 3a are rare-earth-type magnets which are magnetically oriented in parallel with the direction of the poles and so magnetized that the adjacent magnets mutually have differing polarities, the magnets 3a can be magnetized sufficiently at both end sections in the oriented direction, when the magnets 3a are magnetized by making a magnetizing current flow, because the magnets 3a are buried near the outer periphery of the core 1a. Therefore, a rotor which has versatility and improved characteristics and can maintain high quality can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機や空調機の圧縮
機駆動用電動機等に代表される永久磁石を装着した内転
型回転子に関し、特に回転子の鉄心の内部に磁石を埋め
込んで構成するいわゆるインテリアル・パーマネントマ
グネット・モータ(以下IPMと称す)の回転子に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adduction type rotor having a permanent magnet mounted thereon, such as a motor for driving a compressor of a refrigerator or an air conditioner, and more particularly, to a rotor in which a magnet is embedded inside an iron core. And a rotor of a so-called interior permanent magnet motor (hereinafter referred to as IPM).

【0002】[0002]

【従来の技術】IPMの回転子として、図7に示す構成
のものが知られており、例えば平成7年電気学会産業応
用部門全国大会講演論文集第385頁〜388頁(論文
番号306)に開示されている。この回転子は、円柱状
の鉄心11に軸孔9と、この軸孔9と平行に複数の収容
孔12を設け、この収容孔12に板状の磁石13を挿入
して構成されている。
2. Description of the Related Art As a rotor of an IPM, one having a configuration shown in FIG. 7 is known. For example, see, for example, pp. 385-388 (Paper No. 306) of the 1995 IEEJ National Conference on Industrial Applications. It has been disclosed. This rotor is configured by providing a shaft hole 9 in a cylindrical iron core 11 and a plurality of housing holes 12 in parallel with the shaft hole 9, and inserting a plate-shaped magnet 13 into the housing hole 12.

【0003】磁石13は、極方向に平行に磁気配向させ
た例えばNd−Fe−B系磁石等の希土類磁石であり、
隣接するものが互いに異極となるように着磁されたもの
であり、図7の場合4極の界磁を形成している。また、
図中14は磁束短絡防止部であり、収容孔12に連なる
空間によって形成したり、必要に応じてこの空間に非磁
性材料を挿入したりすることにより、各磁石13の極間
部が磁気的に短絡して磁石による磁束量が減少するのを
防止するようになっている。
[0003] The magnet 13 is a rare earth magnet such as an Nd-Fe-B magnet or the like, which is magnetically oriented parallel to the pole direction.
Adjacent magnets are magnetized so as to have mutually different polarities, and form a four-pole field in FIG. Also,
In the figure, reference numeral 14 denotes a magnetic flux short-circuit preventing portion, which is formed by a space connected to the housing hole 12 or a non-magnetic material is inserted into this space as needed, so that the gap between the poles of each magnet 13 is magnetically prevented. To prevent the amount of magnetic flux from being reduced by the magnet.

【0004】上記回転子は、三相巻線を有する固定子内
に配置されて永久磁石型の同期電動機を構成し、インバ
ータを介して固定子巻線を励磁することによって回転を
行うようになっている。このようなIPMの場合、逆突
極性を特徴としているため、低速域においては、これに
より生じるリラクタンストルクと磁石により生じる主磁
束トルクの双方の最大トルクポイントで駆動するいわゆ
る最大トルク制御を行い、一方高速域においては、主磁
束トルクをリラクタンストルクにて補ういわゆる進み位
相制御を行うのが有効であり、前述の圧縮機等の駆動に
用いられている。
The rotor is arranged in a stator having three-phase windings to constitute a permanent magnet type synchronous motor, and rotates by exciting the stator windings via an inverter. ing. In the case of such an IPM, since it is characterized by reverse saliency, in a low speed range, so-called maximum torque control is performed in which the motor is driven at the maximum torque points of both the reluctance torque generated thereby and the main magnetic flux torque generated by the magnet. In the high-speed region, it is effective to perform so-called advance phase control for supplementing the main magnetic flux torque with the reluctance torque, and is used for driving the above-described compressor and the like.

【0005】即ち、一般にIPMのトルクTは、主磁束
トルクをT1、リラクタンストルクをT2とすると、 T=T1+T2 ……(1) であり、磁石による磁束量をΦ、q軸電流をIq、d軸
電流をId、q軸インダクタンスをLq、d軸インダク
タンスをLdとすれば、 T1=Φ・Iq ……(2) T2=(Ld−Lq)Id・Iq ……(3) で表される。
That is, in general, the torque T of the IPM is T = T1 + T2 (1) where T1 is the main magnetic flux torque and T2 is the reluctance torque, and the magnetic flux amount by the magnet is Φ, the q-axis current is Iq, d Assuming that the axis current is Id, the q-axis inductance is Lq, and the d-axis inductance is Ld, T1 = Φ · Iq (2) T2 = (Ld−Lq) Id · Iq (3)

【0006】[0006]

【発明が解決しようとする課題】図7に示すようなIP
Mの回転子においては、磁石13が鉄心11の中央部寄
りに埋め込まれる形となっており、これは、磁石とエア
ギャップ間に介在する鉄心部分を積極的に活用すること
により、リラクタンストルク成分の占める割合を大きく
設定した制御を行うためである。従ってこのような回転
子を用いたIPMに対しては、前述の(2)式及び
(3)式にて説明したq軸電流Iqの成分が少なく、d
軸電流Idの成分が多くなるように構成されたインバー
タ(以下Id成分主体のインバータと称す)が使用され
る。
SUMMARY OF THE INVENTION An IP as shown in FIG.
In the rotor of M, the magnet 13 is embedded near the center of the iron core 11. This is because the core part interposed between the magnet and the air gap is positively utilized to provide a reluctance torque component. This is for performing control in which the ratio occupied by is set large. Therefore, with respect to the IPM using such a rotor, the component of the q-axis current Iq described in the above equations (2) and (3) is small, and d
An inverter configured to increase the component of the shaft current Id (hereinafter, referred to as an inverter mainly based on the Id component) is used.

【0007】ところが、このようなインバータを構成す
るためにはマイクロコンピュータや電流センサ等の部品
が高価なものとなるため、コスト的なメリットからIq
の成分が多く、Idの成分が少なくなるように構成され
た低廉なインバータ(以下Iq成分主体のインバータと
称す)の需要も多いのが実状である。このようなIq成
分主体のインバータによって図7の回転子を駆動するこ
とは、IPMの特性悪化あるいは駆動不能の状態をまね
くことになる。換言すれば、図7に示すような従来の回
転子は非常に汎用性に乏しい構造となっていた。
However, in order to construct such an inverter, components such as a microcomputer and a current sensor are expensive, so that the Iq
In fact, there is a great demand for a low-cost inverter (hereinafter, referred to as an inverter mainly composed of Iq components) configured to reduce the Id component by increasing the amount of the Id component. Driving the rotor shown in FIG. 7 by such an inverter mainly composed of the Iq component leads to a state in which the characteristics of the IPM are deteriorated or the IPM cannot be driven. In other words, the conventional rotor as shown in FIG. 7 has a very poor versatility.

【0008】また、IPMの回転子を製作する場合、磁
石13を予め着磁しておくと、その強力な磁力のために
回転予の組立の作業性が著しく悪化してしまうため、一
般に、鉄心11にすべての磁石を装着した後、回転子の
外側に配置させた固定子巻線または専用の着磁巻線に着
磁電流を通電することにより、すべての磁石を所定の極
数に同時着磁するようになっている。
In the case of manufacturing an IPM rotor, if the magnet 13 is magnetized in advance, the workability of assembling the rotor before rotation will be significantly deteriorated due to its strong magnetic force. After mounting all the magnets on the magnet 11, a magnetizing current is applied to the stator winding or the dedicated magnetizing winding arranged outside the rotor, so that all the magnets are simultaneously attached to a predetermined number of poles. It is magnetized.

【0009】この場合、図7に示す回転子について説明
すると、図8に示すように、磁石13の磁気配向は実線
矢印15で示すように極の方向に平行に形成されている
のに対し、着磁磁束は破線矢印16で示すように着磁磁
界の極間部近傍に相当する磁石両端部において、磁気配
向15に対してかなり傾斜した流れを形成する。この現
象は磁石13が鉄心11の中央部寄りに埋め込まれるほ
ど顕著となり、この結果、磁石両端部の着磁が不十分と
なって完成時の磁石の磁力が低下してIPMの特性が悪
化することになる。また、回転子の有する磁力の品質が
安定しないため、q軸インダクタンスLq及びd軸イン
ダクタンスLdの値がばらついてインバータとのマッチ
ングが悪くなり、IPMの特性のばらつきが極端に大き
くなってしまう欠点がある。
In this case, the rotor shown in FIG. 7 will be described. As shown in FIG. 8, the magnetic orientation of the magnet 13 is formed parallel to the direction of the pole as shown by the solid arrow 15. The magnetizing magnetic flux forms a flow which is considerably inclined with respect to the magnetic orientation 15 at both ends of the magnet corresponding to the vicinity of the gap between the poles of the magnetizing magnetic field, as indicated by a broken arrow 16. This phenomenon becomes more remarkable as the magnet 13 is embedded closer to the center of the iron core 11. As a result, the magnetization of both ends of the magnet becomes insufficient, the magnetic force of the completed magnet is reduced, and the characteristics of the IPM are deteriorated. Will be. In addition, since the quality of the magnetic force of the rotor is not stable, the values of the q-axis inductance Lq and the d-axis inductance Ld vary, and the matching with the inverter is deteriorated. is there.

【0010】[0010]

【課題を解決するための手段】本発明は、円柱状の鉄心
の中央に軸孔を備えるとともに、この軸孔と平行に複数
の収容孔を備え、この収容孔に板状の磁石を挿入して構
成する磁石回転子に関する。軸方向に垂直な断面におい
て、前記収容孔は前記鉄心の外径を形成する円弧に対し
て弦状に形成された孔縁を有しており、この収容孔には
前記弦状の孔縁の長さに満たない長さに形成された磁石
が挿入されて構成される。
According to the present invention, a cylindrical core is provided with a shaft hole in the center thereof, a plurality of receiving holes are provided in parallel with the shaft hole, and a plate-like magnet is inserted into the receiving hole. The present invention relates to a magnet rotor constituted by In a cross section perpendicular to the axial direction, the accommodation hole has a hole edge formed in a chord shape with respect to an arc forming the outer diameter of the iron core. A magnet formed to have a length less than the length is inserted.

【0011】[0011]

【作用】磁束短絡防止部を含めた収容孔が各極で直線状
に配置されることにより、磁石が鉄心の外周部寄りに埋
め込まれる形となり、磁石による磁束量を増加させるこ
とができる。また磁石の長さを変更することにより、鉄
心形状をそのままにした状態で主磁束トルク成分とリラ
クタンストルク成分の割合の変更が容易に行い得るよう
になる。さらに磁石両端部における着磁磁束の傾斜を緩
やかなものとすることができる。
The accommodation holes including the magnetic flux short-circuit preventing portion are linearly arranged at each pole, so that the magnet is embedded near the outer periphery of the iron core, and the amount of magnetic flux by the magnet can be increased. Further, by changing the length of the magnet, the ratio between the main magnetic flux torque component and the reluctance torque component can be easily changed while keeping the iron core shape as it is. Further, the inclination of the magnetized magnetic flux at both ends of the magnet can be made gentle.

【0012】[0012]

【実施例】本発明の回転子を図面に基づいて説明する。
図1は本発明の第1の実施例を示し、回転子の軸方向に
垂直な断面を表している。この回転子は、軸孔9に嵌入
される軸によって支持されて、ケーシング等に固定され
た電動機固定子の内側に配置され、鉄心1aの外周部が
固定子鉄心の内周部との間に所定の空隙を介して対向す
るように構成される。鉄心1aは所定形状に打ち抜いた
0.35mm,0.50mm等の板厚の薄鉄板を多数積
層して形成されており、各薄鉄板に設けた打ち出し突起
による凹凸部を軸方向に隣接する薄鉄板相互で嵌合させ
て固定する周知のカシメクランプ手段7によって固定さ
れて構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A rotor according to the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the present invention, and shows a cross section perpendicular to the axial direction of a rotor. This rotor is supported by a shaft inserted into the shaft hole 9 and is disposed inside a motor stator fixed to a casing or the like, and an outer peripheral portion of the iron core 1a is located between the outer peripheral portion of the stator core and an inner peripheral portion of the stator core. It is comprised so that it may oppose via a predetermined space | gap. The iron core 1a is formed by laminating a large number of thin iron plates having a thickness of 0.35 mm, 0.50 mm or the like stamped into a predetermined shape. It is configured to be fixed by well-known caulking clamp means 7 which is fitted and fixed between the iron plates.

【0013】この鉄心1aには軸孔9と平行に軸方向に
貫通する複数の収容孔2aが設けてあり、この収容孔2
aには板状の磁石3aがすきまばめあるいは圧入等によ
って挿入され、しかる後、鉄心1aを軸方向に貫通する
複数のカシメピン8によって軸方向両端部に端板を固定
して蓋がなされて回転子が構成されるようになってい
る。磁石3aは、極方向に平行に磁気配向させた例えば
Nd−Fe−B系磁石等の希土類磁石であり、隣接する
ものが互いに異極となるように着磁され、実施例の場合
4極の界磁を形成している。
The iron core 1a is provided with a plurality of housing holes 2a penetrating in the axial direction in parallel with the shaft hole 9.
A plate-like magnet 3a is inserted into the a by a loose fit or press-fitting, and thereafter, the end plates are fixed to both ends in the axial direction by a plurality of caulking pins 8 penetrating through the iron core 1a in the axial direction. A rotor is configured. The magnet 3a is a rare-earth magnet such as an Nd-Fe-B-based magnet magnetically oriented parallel to the pole direction, and is magnetized so that adjacent magnets have different polarities. A field is formed.

【0014】収容孔2aは、図2に拡大して示すよう
に、鉄心1aの外径を形成する円弧に対して弦状に形成
された孔縁6aと6c、及び6bと6dによって形成さ
れている。この直線状の孔縁6aと6cの間、及び6b
と6dの間には孔幅を狭める方向に突出した突起部5が
設けられており、この突起部5によって位置決めされる
ことによって、孔縁の直線部の長さに満たない長さに形
成された磁石3aが収容孔2aの中央部に挿入されてい
る。この結果、収容孔2aの両端部には磁束短絡防止部
である空間4が孔縁6c,6dによって形成され、各磁
石3aの極間部が磁気的に短絡して磁石による磁束量が
減少するのが防止されるようになっている。
As shown in FIG. 2, the receiving hole 2a is formed by hole edges 6a and 6c and 6b and 6d formed in chords with respect to an arc forming the outer diameter of the iron core 1a. I have. Between the straight hole edges 6a and 6c, and 6b
And 6d are provided with a protrusion 5 protruding in the direction of narrowing the hole width, and by being positioned by the protrusion 5, formed with a length less than the length of the linear portion of the hole edge. Magnet 3a is inserted into the center of accommodation hole 2a. As a result, spaces 4 as magnetic flux short-circuit preventing portions are formed at both ends of the accommodation hole 2a by the hole edges 6c and 6d, and the gap between the poles of each magnet 3a is magnetically short-circuited to reduce the amount of magnetic flux by the magnet. Is prevented.

【0015】このように各極の収容孔2aを直線状に設
け、この収容孔に孔縁6aと6cまたは6bと6dの長
さに満たない長さに形成された磁石3aを収容すること
により、各極の極間部に磁束短絡防止部4を設けること
ができ、同時に磁石3aは鉄心1aの外周部寄りに埋め
込まれる形となる。従って前述の(2)式における磁束
量Φを増加させ、主磁束トルクT1を増加させることが
でき、Iq成分主体のインバータによって問題なく駆動
可能な構成となっている。勿論、Id成分主体のインバ
ータによっても支障なく駆動可能である。
As described above, the accommodating holes 2a of the respective poles are provided linearly, and the accommodating holes accommodate the magnets 3a having a length less than the lengths of the hole edges 6a and 6c or 6b and 6d. A magnetic flux short-circuit preventing portion 4 can be provided between the poles, and at the same time, the magnet 3a is embedded near the outer periphery of the iron core 1a. Therefore, the amount of magnetic flux Φ in the above equation (2) can be increased, and the main magnetic flux torque T1 can be increased, so that the inverter can be driven by the Iq component-based inverter without any problem. Of course, it can be driven without any trouble by an inverter mainly composed of the Id component.

【0016】Id成分主体のインバータによって駆動す
る場合、IPMの効率を一層向上させるためには、
(3)式におけるリラクタンストルクT2を大きくする
必要があり、最も効果的な構成は(Ld−Lq)の絶対
値を大きくするのがよい。従ってこの場合は図5に示す
ような構成として対処することができる。図5に示す回
転子の鉄心1aは、図1及び図2の実施例に示した鉄心
と同一のものであり、収容孔2aには図1及び図2の磁
石3aより短く形成した磁石3bが収容されている。こ
の場合、磁石3bは磁極の中央に位置するように非磁性
のスペーサ10bによって位置決めされている。図5の
回転子のように構成することにより、回転子の磁石によ
る磁束量Φが減少するため、鉄心1aを通過する固定子
磁束が増加してリラクタンストルク成分を大きくするこ
とができる。この構成における長所は、鉄心1aの型を
変更することなく磁石型の変更のみで対処できる点であ
る。
In order to further improve the efficiency of the IPM when driven by an inverter mainly composed of the Id component,
It is necessary to increase the reluctance torque T2 in the equation (3), and the most effective configuration is to increase the absolute value of (Ld-Lq). Therefore, this case can be dealt with as a configuration as shown in FIG. The iron core 1a of the rotor shown in FIG. 5 is the same as the iron core shown in the embodiment of FIGS. 1 and 2, and the magnet 3b formed shorter than the magnet 3a of FIGS. Is housed. In this case, the magnet 3b is positioned by the non-magnetic spacer 10b so as to be located at the center of the magnetic pole. By configuring like the rotor of FIG. 5, the amount of magnetic flux Φ by the magnet of the rotor is reduced, so that the stator magnetic flux passing through the iron core 1a is increased, and the reluctance torque component can be increased. An advantage of this configuration is that it can be dealt with only by changing the magnet type without changing the type of the iron core 1a.

【0017】また図1に示した回転子は、前述したよう
に磁石3aが鉄心1aの外周部寄りに埋め込まれている
ため、回転子の外側に配置させた固定子巻線または専用
の着磁巻線に着磁電流を通電して着磁する際、図6に示
すように、着磁磁束16は着磁磁界の極間部近傍に相当
する磁石3aの両端部において、磁石3aの磁気配向の
方向に対する傾斜が緩やかとなる。これは磁石3aが図
6に破線で示す従来の磁石13の位置より外側に配置さ
れることにより、着磁巻線の磁極に近接するためであ
り、この結果、磁石3aの両端部においてほぼ配向方向
に沿った十分な着磁が達成される。
In the rotor shown in FIG. 1, since the magnet 3a is embedded near the outer peripheral portion of the iron core 1a as described above, a stator winding or a dedicated magnetizer disposed outside the rotor is provided. As shown in FIG. 6, when a magnetizing current is applied to the winding to magnetize it, the magnetizing magnetic flux 16 is generated at both ends of the magnet 3a corresponding to the vicinity of the gap between the magnetizing magnetic fields. The inclination with respect to the direction becomes gentle. This is because the magnet 3a is located closer to the magnetic pole of the magnetized winding by being disposed outside the position of the conventional magnet 13 indicated by a broken line in FIG. Sufficient magnetization along the direction is achieved.

【0018】図3は本発明の別の実施例を示している。
図3における回転子は、収容孔2bの中央部の孔縁6
a,6bに対して両端部の孔縁6e,6fを孔幅を狭め
る方向に段付きに形成したものであり、段付き部分によ
って磁石3aの位置決めを行うものである。磁束短絡防
止部4の幅が機能上支障のない程度に得られれば、この
構成によっても図2に示した回転子同様の作用、効果が
得られる。また図5に示したような短い磁石3bを用い
る場合についても、図5の回転子同様に構成し得ること
は容易に類推できる。
FIG. 3 shows another embodiment of the present invention.
The rotor in FIG. 3 has a hole edge 6 at the center of the accommodation hole 2b.
The hole edges 6e and 6f at both ends are formed stepwise in the direction of reducing the hole width with respect to the holes a and 6b, and the magnet 3a is positioned by the stepped portions. If the width of the magnetic flux short-circuit preventing portion 4 is obtained to such an extent that the function is not hindered, the same operation and effect as those of the rotor shown in FIG. Also, when using the short magnet 3b as shown in FIG. 5, it can be easily analogized that the rotor can be configured in the same manner as in FIG.

【0019】図4は本発明のさらに別の実施例を示して
おり、図2に示した回転子の収容孔2aにおける突起部
5を取り除いた形状の孔縁6g、6hにより収容孔2c
を形成したものである。この場合は磁束短絡防止部4に
非磁性スペーサ10aを挿入することにより、図2同様
の磁石3aを磁極の中央に位置決めして装着することが
でき、これによる作用、効果も同様のものが得られる。
また図5に示したような短い磁石3bを用いる場合につ
いては、非磁性スペーサ10aの長さを調節することに
より対処し得るものである。
FIG. 4 shows still another embodiment of the present invention, in which the accommodating hole 2c is formed by the hole edges 6g and 6h of the rotor accommodating hole 2a shown in FIG.
Is formed. In this case, by inserting the non-magnetic spacer 10a into the magnetic flux short-circuit preventing portion 4, the magnet 3a similar to FIG. 2 can be positioned and mounted at the center of the magnetic pole, and the same operation and effect can be obtained. Can be
The case where the short magnet 3b as shown in FIG. 5 is used can be dealt with by adjusting the length of the non-magnetic spacer 10a.

【0020】[0020]

【発明の効果】本発明によれば、Id成分主体のインバ
ータのみならず、Iq成分主体のインバータによっても
問題なく駆動可能な汎用性に優れた回転子が得られ、低
廉な制御装置が利用可能となるものである。またIPM
の効率を追求する場合は、鉄心型を変更することなく磁
石型のみの変更によって、各インバータに最も適した構
成の回転子を容易に形成できる特長がある。
According to the present invention, a versatile rotor can be obtained which can be driven by not only an inverter mainly composed of an Id component but also an inverter mainly composed of an Iq component without any problem, and a low-cost controller can be used. It is what becomes. Also IPM
In the case of pursuing high efficiency, there is a feature that a rotor having a configuration most suitable for each inverter can be easily formed by changing only the magnet type without changing the iron core type.

【0021】さらに、磁石に対して十分な着磁がなされ
ることから、完成時における磁力不足やばらつきがなく
なって品質的に安定し、またq軸インダクタンス及びd
軸インダクタンスの値が安定してインバータとのマッチ
ングが良好となり、これらの結果IPMの特性向上及び
その品質維持が達成できるものである。
Further, since the magnet is sufficiently magnetized, there is no shortage or variation in magnetic force at the time of completion and the quality is stabilized, and the q-axis inductance and d
The value of the shaft inductance is stabilized and the matching with the inverter is improved, and as a result, the characteristics of the IPM can be improved and its quality can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す回転子の平面断面
図。
FIG. 1 is a plan sectional view of a rotor showing a first embodiment of the present invention.

【図2】図1の要部拡大図。FIG. 2 is an enlarged view of a main part of FIG.

【図3】本発明の第2の実施例を示す回転子の要部拡大
平面断面図。
FIG. 3 is an enlarged plan sectional view of a main part of a rotor showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す回転子の要部拡大
平面断面図。
FIG. 4 is an enlarged plan cross-sectional view of a main part of a rotor showing a third embodiment of the present invention.

【図5】本発明の第4の実施例を示す回転子の要部拡大
平面断面図。
FIG. 5 is an enlarged plan sectional view of a main part of a rotor according to a fourth embodiment of the present invention.

【図6】着磁時の磁束流を示す説明図。FIG. 6 is an explanatory diagram showing a magnetic flux flow during magnetization.

【図7】従来例を示す回転子の平面断面図。FIG. 7 is a plan sectional view of a rotor showing a conventional example.

【図8】磁石の磁気配向と着磁磁束の関係を示す説明
図。
FIG. 8 is an explanatory diagram showing a relationship between a magnetic orientation of a magnet and a magnetized magnetic flux.

【符号の説明】[Explanation of symbols]

1a,1b,1c,11 鉄心 2a,2b,2c,12 収容孔 3a,3b,13 磁石 4,14 磁束短絡防止部 5 突起部 6a〜6h 孔縁 7 カシメクランプ手段 8 カシメピン 9 軸孔 10a,10b 非磁性スペーサ 1a, 1b, 1c, 11 Iron cores 2a, 2b, 2c, 12 Housing holes 3a, 3b, 13 Magnets 4, 14 Magnetic flux short-circuit prevention parts 5 Projections 6a to 6h Hole rims 7 Caulking clamp means 8 Caulking pins 9 Shaft holes 10a, 10b Non-magnetic spacer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円柱状の鉄心の中央に軸孔を備えるとと
もに、この軸孔と平行に複数の収容孔を備え、この収容
孔に板状の磁石を挿入して構成する磁石回転子におい
て、前記収容孔の軸方向に垂直な断面は前記鉄心の外径
を形成する円弧に対して弦状に形成された孔縁を有し、
この収容孔には前記弦状の孔縁の長さに満たない長さに
形成された磁石が挿入されていることを特徴とする磁石
回転子。
1. A magnet rotor comprising a cylindrical core having a shaft hole at the center thereof, a plurality of housing holes parallel to the shaft hole, and a plate-shaped magnet inserted into the housing hole. A cross section perpendicular to the axial direction of the accommodation hole has a hole edge formed in a chord shape with respect to an arc forming the outer diameter of the iron core,
A magnet rotor, wherein a magnet formed to a length less than the length of the chordal hole edge is inserted into the accommodation hole.
JP18985396A 1996-06-13 1996-06-13 Magnet rotor Expired - Fee Related JP3776171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18985396A JP3776171B2 (en) 1996-06-13 1996-06-13 Magnet rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18985396A JP3776171B2 (en) 1996-06-13 1996-06-13 Magnet rotor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006002360A Division JP2006109700A (en) 2006-01-10 2006-01-10 Interior permanent magnet motor

Publications (2)

Publication Number Publication Date
JPH104643A true JPH104643A (en) 1998-01-06
JP3776171B2 JP3776171B2 (en) 2006-05-17

Family

ID=16248286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18985396A Expired - Fee Related JP3776171B2 (en) 1996-06-13 1996-06-13 Magnet rotor

Country Status (1)

Country Link
JP (1) JP3776171B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703745B2 (en) * 2001-09-10 2004-03-09 Adlee Powertronic Co, Ltd. Rotor structure for a motor having built-in type permanent magnet
WO2005060074A1 (en) * 2003-12-09 2005-06-30 BSH Bosch und Siemens Hausgeräte GmbH Electric machine
JP2008148391A (en) * 2006-12-06 2008-06-26 Toyota Industries Corp Rotor for rotary electric machine, and the rotary electric machine
JP2009112181A (en) * 2007-11-01 2009-05-21 Nissan Motor Co Ltd Rotator of permanent magnet type motor
JP2012060774A (en) * 2010-09-08 2012-03-22 Mitsubishi Electric Corp Rotor of synchronous motor
WO2012046465A1 (en) * 2010-10-08 2012-04-12 トヨタ車体株式会社 Motor rotor and manufacturing method for the rotor
JP2013115899A (en) * 2011-11-28 2013-06-10 Mitsubishi Electric Corp Rotor of permanent magnet type motor, manufacturing method of the same, and permanent magnet type motor
WO2014064787A1 (en) * 2012-10-24 2014-05-01 三菱電機株式会社 Rotor for electric motor and electric motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010176A (en) 2014-06-20 2016-01-18 日本電産株式会社 Motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703745B2 (en) * 2001-09-10 2004-03-09 Adlee Powertronic Co, Ltd. Rotor structure for a motor having built-in type permanent magnet
WO2005060074A1 (en) * 2003-12-09 2005-06-30 BSH Bosch und Siemens Hausgeräte GmbH Electric machine
KR100822989B1 (en) 2003-12-09 2008-04-16 베에스하 보쉬 운트 지멘스 하우스게랫테 게엠베하 Electric machine
US8026648B2 (en) 2003-12-09 2011-09-27 Bsh Bosch Und Siemens Hausgeraete Gmbh Electric machine
JP2008148391A (en) * 2006-12-06 2008-06-26 Toyota Industries Corp Rotor for rotary electric machine, and the rotary electric machine
JP2009112181A (en) * 2007-11-01 2009-05-21 Nissan Motor Co Ltd Rotator of permanent magnet type motor
JP2012060774A (en) * 2010-09-08 2012-03-22 Mitsubishi Electric Corp Rotor of synchronous motor
WO2012046465A1 (en) * 2010-10-08 2012-04-12 トヨタ車体株式会社 Motor rotor and manufacturing method for the rotor
JP2013115899A (en) * 2011-11-28 2013-06-10 Mitsubishi Electric Corp Rotor of permanent magnet type motor, manufacturing method of the same, and permanent magnet type motor
WO2014064787A1 (en) * 2012-10-24 2014-05-01 三菱電機株式会社 Rotor for electric motor and electric motor
JPWO2014064787A1 (en) * 2012-10-24 2016-09-05 三菱電機株式会社 Electric motor rotor and electric motor

Also Published As

Publication number Publication date
JP3776171B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
EP1014542B1 (en) Motor having a rotor with interior split-permanent-magnet
CN108475971B (en) Magnetizing method, rotor, motor and scroll compressor
JP3602392B2 (en) Permanent magnet embedded motor
JP4084889B2 (en) Permanent magnet motor rotor
JP2000041367A (en) Hybrid excitation type synchronous machine
US20030168924A1 (en) Permanent magnet synchronous motor
JP3818205B2 (en) Permanent magnet rotor of inner rotor type rotating electrical machine
JP3703907B2 (en) Brushless DC motor
US20100295401A1 (en) Motor and device using the same
JPH104643A (en) Magnet rotor
JP7047337B2 (en) Permanent magnet type rotary electric machine
JP3655205B2 (en) Rotating electric machine and electric vehicle using the same
JP2007143331A (en) Permanent-magnet-embedded rotor
JP2006109700A (en) Interior permanent magnet motor
JPH11220846A (en) Magnet rotor and rotating electric machine using the same
JP2010154676A (en) Permanent magnet motor and hermetic compressor
JP2007300796A (en) Rotor for permanent magnet type motor
US7388309B2 (en) Magnetic circuit structure for rotary electric machine
JPH07231589A (en) Rotor for permanent magnet electric rotating machine
JPH05122877A (en) Rotor for permanent magnet type synchronous motor
JPH09298852A (en) Brushless dc motor
JPH10164784A (en) Magnet rotor
JP5128800B2 (en) Hybrid permanent magnet rotating electric machine
JP3507653B2 (en) Permanent magnet rotating electric machine
JP4666726B2 (en) Permanent magnet motor rotor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150303

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees