JP2012054500A - 露光装置、露光方法及びデバイス製造方法 - Google Patents

露光装置、露光方法及びデバイス製造方法 Download PDF

Info

Publication number
JP2012054500A
JP2012054500A JP2010197791A JP2010197791A JP2012054500A JP 2012054500 A JP2012054500 A JP 2012054500A JP 2010197791 A JP2010197791 A JP 2010197791A JP 2010197791 A JP2010197791 A JP 2010197791A JP 2012054500 A JP2012054500 A JP 2012054500A
Authority
JP
Japan
Prior art keywords
mask
substrate
variable shaping
illumination light
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010197791A
Other languages
English (en)
Other versions
JP5641210B2 (ja
Inventor
Tomoharu Fujiwara
朋春 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010197791A priority Critical patent/JP5641210B2/ja
Publication of JP2012054500A publication Critical patent/JP2012054500A/ja
Application granted granted Critical
Publication of JP5641210B2 publication Critical patent/JP5641210B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】基板ステージに対する可変成形マスクの相対位置を高精度に計測できる露光装置、露光方法及びデバイス製造方法を提供する。
【解決手段】露光装置は、照明光ILiの状態を空間的に個別に変調する複数のマイクロミラー素子21を有し、マイクロミラー素子21を照明光ILiの入射位置に2次元的に配置して照明光ILiを変調する可変成形マスク20と、所定の走査方向に移動する基板ステージ10と、可変成形マスク20によって変調された照明光ILiを基板ステージ10に載置された基板へ導いて、基板上に光パターンを投影する投影光学系PLと、基板ステージ10の位置を検出する第1レーザー干渉計31の少なくとも一部が設けられて、基板ステージ10の位置の基準となるメトロロジーフレームと、メトロロジーフレームに設けられて、可変成形マスク20との相対位置を検出するマスク位置計測部33とを備える。
【選択図】図4

Description

本発明は、光源から射出された照明光を空間的に変調して、変調した照明光で基板を露光する露光装置、露光方法及びデバイス製造方法に関するものである。
半導体チップ等のマイクロデバイスを製造するための露光装置は、光源からの照明光をレチクルに導き、該レチクルに形成されたパターンを投影光学系を介してレジスト等の感光剤が塗布された基板上に結像させている。一般的に、レチクルは、水平方向等に移動可能なレチクルステージに載置され、その位置を変更可能である。
露光工程を行う際、レチクルと基板ステージとのアライメントを予め行っておく必要がある。このため、露光装置には、レチクルの位置を検出するためのレチクルアライメント系と、基板位置を検出するための基板アライメント系とが設けられている。
レチクルと基板ステージとのアライメントの一例として、基板を載置する基板ステージに隣接された計測用ステージを用いる方法がある。この方法では、計測用ステージに設けられた基準マークをレチクルアライメント系と基板アライメント系とで順次検出することで、ベースライン量(露光中心と基板アライメント系の検出中心との間隔)の計測を行うことができる。そして、基板のアライメントを行う際に、そのベースライン量を用いることで高精度にアライメントを行うことができる(例えば、特許文献1参照)。
従来、レチクルを位置合わせするためのアライメント系としては、基板ステージに設けられた基準マークから光を照射し、投影光学系及びレチクルに設けられたアライメントマークを介してマスク上方のセンサで受光する方法(ISS)がある。また、レチクルに設けられたアライメントマークを撮影し、その撮影データを画像処理してマークの位置を検出する方法等もある。さらに、レチクル上のアライメントマークとこれらに対応する計測ステージ上の基準マークとを露光波長の光を用いて同時に観察するための露光波長の光を用いたTTR(Through The Reticle)方式もある(例えば、特許文献1参照)。
米国特許第7,433,050号
一方、近年ではレチクルに代えて、可変成形マスクを用いたいわゆるマスクレスタイプの露光装置が開発されている。このタイプの装置の一例として、空間光変調器の一種であるマイクロミラーアレイを可変成形マスクとして用いる装置がある。この装置によれば、基板ステージの走査方向への走査に同期して可変成形マスクにおいて生成されるパターンを変化させて基板を露光することで、基板上に任意のパターンを容易に形成することができ、装置のコストダウン及び小型化が可能である。
この可変成形マスクは予め設定された位置に固定されているが、露光時の光源装置からの熱や床から伝達した振動等の要因により、移動量はレチクルに比べて小さいものの初期位置から変位することがある。このため、基板ステージに対する可変成形マスクの相対位置(又は変位量)を計測する必要があるが、上記した各種方法を適用すると、移動量が小さいにも関わらずマスクアライメント系の機構が大型且つ複雑であって、コストアップす
る問題がある。
本発明は、上記問題点に鑑みてなされたものであり、その目的は、基板ステージに対する可変成形マスクの相対位置を高精度に計測できる露光装置、露光方法及びデバイス製造方法を提供することにある。
上記の課題を解決するため、本発明は、実施形態に示す図1〜図9に対応付けした以下の構成を採用している。
本発明の態様は、光源から射出された光で基板を露光する露光装置であって、照明光)の状態を空間的に個別に変調する複数の変調素子を有し、該変調素子を前記照明光の入射位置に2次元的に配置して前記照明光を変調する可変成形マスクと、前記基板を保持して所定の走査方向に移動する移動体と、前記可変成形マスクによって変調された照明光を前記移動体に載置された前記基板へ導いて、前記基板上に光パターンを投影する光学系と、前記移動体の位置を検出する移動体位置計測部の少なくとも一部が設けられて、前記移動体の位置の基準となる基準構造物と、前記基準構造物に設けられて、前記可変成形マスクとの相対位置を検出するマスク位置計測部とを備えることを要旨とする。
上記構成によれば、基準構造物には移動体位置計測部の少なくとも一部が設けられるとともに、マスク位置計測部とが設けられるので、基準構造物に対する可変成形マスクの相対位置と、基準構造物に対する移動体の相対位置とを計測することで、可変成形マスクと移動体との相対位置を高精度に計測することができる。
本発明によれば、基板ステージに対する可変成形マスクの相対位置を高精度に計測できる露光装置、露光方法及びデバイス製造方法を提供することができる。
第1実施形態の露光装置の要部を示す概略図。 マイクロミラーアレイが有する各マイクロミラーの配置を示す斜視図。 (a)はマイクロミラーの基準位置、(b)はオン位置、(c)はオフ位置を示す斜視図。 露光装置のブロック図。 第1位置計測用パターンに配置された各マイクロミラーの斜視図。 第2位置計測用パターンに配置された各マイクロミラーの斜視図。 第2実施形態の露光装置の概略図。 デバイスの製造例のフローチャート。 半導体デバイスの場合の基板処理に関する詳細なフローチャート。
(第1実施形態)
以下、本発明を具体化した一実施形態を図1〜図6にしたがって説明する。図1は、本実施形態の露光装置1の要部を示す概略図である。
露光装置1は、走査露光型の装置であって、下面に台座2aを有するベースフレーム2を備えている。ベースフレーム2には、光源装置3が備えられている。
光源装置3は、KrFエキシマレーザー、ArFエキシマレーザー、固体レーザー光源(YAGレーザ又は半導体レーザ)等のレーザー光源を有する。レーザー光源から出射された照明光ILiは、オプティカルインテグレータ等の照度均一化部材、ビームスプリッタ、ミラー、リレーレンズ等から構成される照明系5に導かれる。
また、ベースフレーム2には、基板ベース7が固定され、基板ベース7には基板Wを載置する基板ステージ10が、露光中走査される方向であるX軸方向、及びX軸方向と直交するY軸方向に対して平行に移動可能に設けられるとともに、鉛直方向であるZ軸方向を回転中心として回転可能に設けられている。また、基板ステージ10の隣には、アライメントマークが設けられた計測用ステージ11がX軸方向及びY軸方向に平行に移動可能に設けられている。
また、ベースフレーム2の上側には、防振部材13を介して上部フレーム15が固定されている。上部フレーム15は、複数の支持部材15Pによって中空状に形成され、この中空部分には、照明系5から射出された照明光ILiを基板Wに導いて、基板上に光パターンを結像させる投影光学系PLが収容されている。また、支持部材15Pの中央には貫通孔15a,15bが設けられ、この貫通孔15a,15bに投影光学系PLの上部及び下部がそれぞれ支持される。
投影光学系PLと照明系5との間には、基板Wに所望のパターンを投影するための可変成形マスク20が、図示しない支持部材に固定されている。可変成形マスク20は、非発光型画像表示素子(空間光変調器 SLM;Spatial Light Modulator)の一種である複
数のマイクロミラー素子21を有している。
このマイクロミラー素子21は、照明光ILiの入射位置に2次元的に配置して照明光を空間的に変調する。各マイクロミラー素子21の構成は特に限定されないが、本実施形態では複数のマイクロミラーM(図2参照)と、電極等を有し各マイクロミラー素子21を駆動する駆動部23とをそれぞれ備える。そして、マイクロミラーMの位置を変更して、照明光ILiの状態を空間的に個別に変調する。
図2に示すように、マイクロミラーMは、初期状態において、その反射面MaがX−Y平面と平行になるとともに、下方(投影光学系PL側)を向くように配置されている。投影光学系PLは、可変成形マスク20のマイクロミラーMが配列される面(反射面Ma)と基板Wとを光学的に共役にする。また、m行n列にわたって2次元的に並べられることにより、マイクロミラーアレイALを構成している。尚、i行目且つj列目のマイクロミラーMについて説明する際は、マイクロミラーM(i,j)として説明し、その位置を特に区別しないで説明する場合には単にマイクロミラーMとして説明する(i=1〜m、j=1〜n、m,nは自然数)。
マイクロミラーMは、駆動部23により、初期状態の際の位置(以下、基準位置という)以外に、作用位置であるオン位置と非作用位置であるオフ位置との間で動作するように構成されている。そして、オン位置及びオフ位置に配置されることで照明光ILiの入射角度及び反射角度を個別に変更可能となっている。
図3(a)〜(c)はマイクロミラーMの配置について示した図である。図3(a)は、マイクロミラーMの反射面MaがX−Y平面と平行である基準位置を示す。図3(b)は、その反射面Maが投影光学系PL側を向くように+10°程度傾斜したオン位置を示している。図3(c)は、その反射面Maが投影光学系PL側と反対側を向くように−10°程度傾斜したオフ位置を示している。
オン位置に配置されたマイクロミラーMは、照明光ILiを投影光学系側の反射面Maで受け、その反射光ILrは投影光学系PLに入射する。オフ位置に配置されたマイクロミラーMは、照明光ILiを投影光学系PLから外れた方向へ反射する。
露光の際には、図4に示すように露光装置1に備えられる主制御装置25が、駆動系26に露光パターンを出力し、駆動系26は入力した露光パターンに相当するデータ信号を生成する。駆動系26は、駆動部23にデータ信号を出力するとともに、パターン表示のタイミングをとるためのミラー駆動用パルスを送信する。
駆動部23は、ミラー駆動用パルス及び入力したデータ信号に従って、露光パターンを生成するためにマイクロミラーMを選択的にオン位置とし、それ以外のマイクロミラーMをオフ位置又は基準位置とする。
そして、主制御装置25は、光源装置3を駆動して光源装置3から照明系5及びミラー6を介して可変成形マスク20に照明光ILiを導く。導かれた照明光ILiは、各マイクロミラーMに反射するが、オン位置のマイクロミラーMに反射した反射光ILrは投影光学系PLに入射し、投影光学系PLを介して基板上に指定された露光パターンを結像させる。オフ位置又は基準位置のマイクロミラーMに反射した反射光ILrは投影光学系PLから外れた位置に向かう。
また、図1に示すように上部フレーム15の下面であって貫通孔15bの外側には、断面略L字状のセンサ支持部16が設けられている。このセンサ支持部16には、オートフォーカスセンサ(図示略)が設けられており、該オートフォーカスセンサは、基板Wの複数の計測点にスリット像を投影し、ウェハ表面からの反射光を受光して、基板Wの位置と投影光学系PLとの相対位置を検出する。
また、上部フレーム15の下部には基準構造物としてのメトロロジーフレーム18が支持されている。メトロロジーフレーム18の形状は特に限定されないが、本実施形態では環状をなし、その下部が上部フレーム15の下面から突出し、上部が上部フレーム15に形成された貫通孔15c、15dに嵌挿された状態で上部フレーム15に対して支持されている。メトロロジーフレーム18には、投影光学系PLに対する基板ステージ10の座標を計測するための第1レーザー干渉計31の少なくとも一部(図4参照)と、投影光学系PLに対する計測用ステージ11の座標を計測するための第2レーザー干渉計32(図4参照)の少なくとも一部とがそれぞれ設けられている。
第1レーザー干渉計31は、基板ステージ10のX座標を計測するレーザー干渉計と、基板ステージ10のY座標を計測するレーザー干渉計(いずれも図示略)とを有しており、これらの干渉計はそれぞれ異なる位置に設けられている。第1レーザー干渉計31は、光源を有する本体、ビームスプリッタ、ミラー、CCD(Charge Coupled Device)等の
光検出器を有している。この第1レーザー干渉計31は、測定光を投影光学系PLの下部に設けられた参照鏡35に照射してその反射波を受光するとともに、基板ステージ10に固定された移動鏡36にも測定光を照射してその反射光を受光する。そして、光路の違いから生じた干渉縞を光検出器で測定し、投影光学系PLに対する基板ステージ10の相対位置を計測するようになっている。尚、参照鏡35、移動鏡36及び第1レーザー干渉計31は移動体位置計測部を構成する。
また、第2レーザー干渉計32は、計測用ステージ11のX座標を計測するレーザー干渉計と、計測用ステージ11のY座標を計測するレーザー干渉計(いずれも図示略)とを有しており、これらの干渉計はそれぞれ異なる位置に設けられている。第2レーザー干渉計32は第1レーザー干渉計31と同様な構成であり、測定光を投影光学系PLの下部に設けられた参照鏡37に照射してその反射波を受光するとともに、基板ステージ10に固定された移動鏡38にも測定光を照射してその反射光を受光する。そして、光路の違いから生じた干渉縞を光検出器で計測し、投影光学系PLに対する計測用ステージ11の相対位置を計測するようになっている。
さらに、図4に示すように、メトロロジーフレーム18には、基板ステージ10に対する可変成形マスク20との相対位置を計測するためのマスク位置計測部33が支持固定されている。マスク位置計測部33は、本実施形態ではレーザー干渉計であって、レーザー光源、ビームスプリッタやミラー等の光学系、CCD等の光検出器、増幅器、A/Dコンバータ等の信号処理部を有している。光検出器は2次元センサであって、微弱な光を検出可能な光電変換素子を有している。マスク位置計測部33は、レーザー光源からの出射光をビームスプリッタにより参照光と測定光とに分割し、測定光を上部フレーム15に形成された貫通孔15e(図1参照)を介して可変成形マスク20に照射する。そして、マイクロミラーMの反射面Maに反射した反射光ILrを貫通孔15eを介して受光し、装置内部で参照光と干渉させて干渉光(干渉縞)とし、その干渉光の位相等を光検出器で検出する。さらに、その干渉光の位相を、予め計測した干渉光の位相と比較することで、可変成形マスク20との相対位置を計測するようになっている。
このマスク位置計測部33は、メトロロジーフレーム18のうち可変成形マスク20と同軸上になる位置に設けられている。より具体的には、マスク位置計測部33の照射点P1から射出された測定光ILmの光軸AX1上に、可変成形マスク20が位置する。このため、検出点と計測対象物とが同一光軸上に位置することで計測誤差が抑制される、いわゆるアッベの原理を満たす配置となる。従って、このような配置にすることにより可変成形マスク20の計測誤差を抑制できる。
可変成形マスク20のZ軸方向における相対位置(高さ)を計測する際は、図5に示すように、可変成形マスク20のマイクロミラーMを全て基準位置とする。そして、基準位置のマイクロミラーMに対し、マスク位置計測部33から測定光ILmを照射し、マイクロミラーMによって反射された反射光ILrをマスク位置計測部33によって受光する。上記光検出器は、受光した反射光ILrと参照光とを干渉させ、その干渉光の位相を検出し、検出信号を主制御装置25に出力する。主制御装置25は、検出信号に基づきメトロロジーフレーム18を基準とした可変成形マスク20のZ軸方向における位置を算出する。メトロロジーフレーム18と投影光学系PLは一体に設けられているため、メトロロジーフレーム18を基準とした可変成形マスク20の相対位置は、投影光学系PLに対する相対位置を示す。尚、マイクロミラーMを基準位置とした可変成形マスク20の配置パターンを、以下、第1位置計測パターンという。
可変成形マスク20のX軸方向における相対位置及びY軸方向における相対位置を計測する際は、例えば図6に示すように予め設定した位置のマイクロミラーM(以下、傾斜ミラーMsという)をオン位置(又はオフ位置)に配置する。図6では、傾斜ミラーMsを1つにしたが複数でもよい。傾斜ミラーMsが複数の場合には、各傾斜ミラーMsの間に基準位置のマイクロミラーMを配置したパターンにしてもよいし、傾斜ミラーMsが互いに隣り合った傾斜ミラー群を設けてもよく、そのパターンは特に問わない。尚、各マイクロミラーMのうち、予め設定したマイクロミラーMを傾斜させたパターンを、以下、第2位置計測パターンという。
傾斜ミラーMsに反射した反射光ILrは、マスク位置計測部33から外れた方向に向かう。傾斜ミラーMs以外の基準位置に配置されたマイクロミラーMに反射した反射光ILrは、マスク位置計測部33の方向、即ち−Z軸方向に向かう。このため、上記光検出器で検出された干渉光の位相は、第1位置計測パターンと第2位置計測パターンとで異なる位相となる。上記光検出器は、干渉光の位相を検出し、検出信号を主制御装置25に出力する。従って、主制御装置25は、Z軸方向における相対位置を検出した際の干渉光の位相又は予め計測した干渉光の位相との差に基づいて、メトロロジーフレーム18を基準とした可変成形マスク20のX軸方向における相対位置及びY軸方向における相対位置を
算出する。
そして、主制御装置25は、上記のように算出した可変成形マスク20の相対位置と初期位置とを比較して、可変成形マスク20の初期位置からのずれ量ΔPを算出する。このずれ量ΔPを露光前に検出した場合、可変成形マスク20を初期位置に位置するように調整される。
また、可変成形マスク20の相対位置の計測は、露光中においても行うことができる。露光中にずれ量ΔPが検出された場合には、そのずれ量ΔPを相殺するように、基板ステージ10を移動する。このため、露光中の光源装置3からの熱により、上部フレーム15が熱膨張したり、床からの振動により可変成形マスク20又は基板ステージ10がずれたとしても、露光中に基板ステージ10を調整することでそのずれを相殺することができる。尚、上部フレーム15が膨張したとしても、その膨張量は僅かであるので、可変成形マスク20とマスク位置計測部33とは同軸上にある。
次に、可変成形マスク20の相対位置の計測動作について具体的に説明する。計測動作を開始する際、図4に示す主制御装置25は、駆動系26に第1制御開始信号を出力する。駆動系26はこの制御開始信号をトリガとして、第1位置計測パターンにするためのデータ信号を駆動部23に出力する。データ信号の出力が完了すると、駆動系26は、ミラー駆動のタイミングをとるためのミラー駆動用パルスを駆動部23に出力する。
駆動部23は、駆動系26からのデータ信号を入力するとともに、ミラー駆動用パルスを入力すると、マイクロミラーアレイALを図5に示すように全てのマイクロミラーMを基準位置に配置した第1位置計測用パターンにする。
さらに主制御装置25は、マスク位置計測部33を駆動して、レーザー光源から測定光ILmを射出する。測定光ILmは、上部フレーム15の貫通孔15eを介して各マイクロミラーMの反射面Maに入射する。このとき、マスク位置計測部33と可変成形マスク20とが同軸上に位置するので、上記したようにアッベの原理を満たすために計測誤差が抑制される。
測定光ILmは、マイクロミラーMの反射面Maに反射して、反射光ILrとなってマスク位置計測部33に向かう。反射光ILrは、マスク位置計測部33の検出窓からその内部に入射し、装置内の参照面に反射した参照光と干渉して干渉光とされる。上記光検出器は、干渉光の位相等を示す光電変換信号を主制御装置25に出力する。
主制御装置25は、可変成形マスク20が初期位置に配置された際に予め計測した干渉光の位相を記憶部から読み出して、読み出した位相と入力した光電変換信号とを比較する。そして、可変成形マスク20のZ軸方向における初期位置からのずれを算出し、可変成形マスク20のZ軸方向における相対位置を算出する。
こうしてZ軸方向における相対位置が算出されると、主制御装置25は第2制御開始信号を駆動系26に出力する。駆動系26は、第2制御開始信号を入力すると、第2位置計測用パターンにするためのデータ信号を駆動部23に出力する。データ信号の出力が完了すると、駆動系26は、ミラー駆動のタイミングをとるためのミラー駆動用パルスを駆動部23に出力する。
駆動部23は、駆動系26からのデータ信号を入力するとともに、ミラー駆動用パルスを入力すると、図6に示すようにマイクロミラーアレイALを第2位置計測パターンには位置する。
マイクロミラーアレイALを第2位置計測用パターンにすると、主制御装置25はマスク位置計測部33を駆動して、レーザー光源から測定光ILmを出力し、測定光ILmをマイクロミラーMに入射させる。このとき、オフ位置に配置されたマイクロミラーMとオン位置に配置されたマイクロミラーMとの光路差とから、第1位置計測用パターンとは異なる干渉縞を生成する。上記光検出器は、干渉光の位相等を光電変換信号とし、主制御装置25に出力する。
主制御装置25は、可変成形マスク20が初期位置に配置された際に予め計測した干渉光の位相又はZ軸方向における相対位置を計測した際の位相を記憶部から読み出して、その位相と第1位置計測用パターンで検出された位相と比較する。そしてその位相差から、X軸における相対位置及びY軸における相対位置を算出する。
また、主制御装置25は、第1レーザー干渉計31及び第2レーザー干渉計32を駆動制御して、基板ステージ10の位置を別途計測する。
そして、可変成形マスク20が基準となる位置からずれている場合であって、露光前である場合には、可変成形マスク20の位置が調整され、露光中である場合には、そのずれを相殺するように基板ステージ10の位置を調整する。そして、主制御装置25は、任意のマスクパターンに基づいて駆動系26を駆動して、マイクロミラーアレイALをマスクパターンに従った配置にする。また、照明系5を駆動して、光源装置3から照明光ILiを射出させ、可変成形マスク20に入射させる。照明光ILiはマイクロミラーMの反射面Maに反射して反射光ILrとなり、反射光ILrは投影光学系PLを介して基板上に結像して所望のパターンが投影される。
上記実施形態によれば、以下のような効果を得ることができる。
(1)上記実施形態では、露光装置1は、照明光ILiの状態を空間的に個別に変調する複数のマイクロミラー素子21を有し、マイクロミラー素子21を照明光ILiの入射位置に2次元的に配置して照明光ILiを変調する可変成形マスク20を備えた。また、基板Wを保持して所定の走査方向に移動する基板ステージ10と、可変成形マスク20を介した照明光ILiを基板ステージ10上の基板Wへ導いて、基板上に光パターンを投影する投影光学系PLを備えた。さらに基板ステージ10の位置を検出する第1レーザー干渉計31の少なくとも一部が設けられて、基板ステージ10の位置の基準となるメトロロジーフレーム18と、メトロロジーフレーム18に設けられて、可変成形マスク20との相対位置を検出するマスク位置計測部33とを備えた。即ち、第1レーザー干渉計31及びマスク位置計測部33がメトロロジーフレーム18に固定されることにより、基板ステージ10に対する可変成形マスク20の相対位置を高精度に計測することができる。また、マスク位置計測部33から可変成形マスク20に対し、ミラー等の光学的要素を介さずに測定光ILmを直接照射するので、基板ステージ10から投影光学系PLを介して可変成形マスク20に光を照射するよりも光路を短くすることができるとともに、計測誤差を抑制することができる。
(2)上記実施形態では、可変成形マスク20の複数のマイクロミラー素子21は、オン位置、及びオフ位置(又は基準位置)に配置されることで照明光ILiの入射角度及び反射角度を個別に変更可能な複数のマイクロミラーMを有する。またマスク位置計測部33は、各マイクロミラーMのうち一部のマイクロミラーMの位置を選択的に変更し、位置変更前後の可変成形マスク20からの反射光ILrの位相差に基づき可変成形マスク20のX軸方向における相対位置及びY軸方向における相対位置を計測する。
(3)上記実施形態では、マスク位置計測部33は、可変成形マスク20と同軸上に配置される。即ち、マスク位置計測部33及び可変成形マスク20の配置は、いわゆるアッ
ベの原理を満たすので、計測誤差を抑制することができる。
(4)上記実施形態では、メトロロジーフレーム18は、可変成形マスク20の複数のマイクロミラー素子21が配列される面と基板Wとを光学的に共役にする投影光学系PLを固定する。このため、第1レーザー干渉計31及びマスク位置計測部33により、投影光学系PLに対する基板ステージ10の相対位置と、投影光学系PLに対する可変成形マスク20の相対位置とを計測することができる。
(第2実施形態)
次に、本発明を具体化した第2実施形態を図7にしたがって説明する。尚、第2実施形態は、第1実施形態の上部フレーム15を変更したのみの構成であるため、同様の部分についてはその詳細な説明を省略する。
本実施形態の上部フレーム40は、屈曲形状のフレーム本体41と、メトロロジーフレーム18及びマスク位置計測部33を支持する基準構造物としての2つの支持部42とを有している。支持部42は、低熱膨張率の材質からなり、長尺状に形成されている。また支持部42は、可変成形マスク20と基板ステージ10との間であって、フレーム本体41に、その長手方向が鉛直方向(Z軸方向)と平行となるように固定されている。また、支持部42の内側には、投影光学系PLが固定されている。尚、本実施形態では、支持部42を2つにしたが、支持部を環状に形成して1つ設けるようにしてもよい。
支持部42のうち、下部であって基板ステージ10側には、第1レーザー干渉計31の少なくとも1部が設けられるメトロロジーフレーム18が固定されている。また、その上部であって可変成形マスク20側には、マスク位置計測部33が固定されている。従って、低熱膨張率の材質からなる支持部42の上下にメトロロジーフレーム18及びマスク位置計測部33が固定されているため、メトロロジーフレーム18及びマスク位置計測部33の相対位置は変化することがない。
可変成形マスク20は、初期状態においてこの支持部42の真上に固定されている。即ち、マスク位置計測部33は、支持部42のうち可変成形マスク20と同軸上になる位置に設けられている。このため、可変成形マスク20及びマスク位置計測部33の配置は、アッベの原理を満たす。さらに、マスク位置計測部33を支持部42の上部に設けることにより、マスク位置計測部33と可変成形マスク20との間の光路が短かくなる。このため、可変成形マスクの相対位置をより高精度に検出することができる。
従って、第2実施形態によれば、第1実施形態に記載の効果に加えて以下の効果を得ることができる。
(5)第2実施形態では、可変成形マスク20と基板ステージ10との間に設けられた長尺状の支持部42のうち、該可変成形マスク側にマスク位置計測部33を備え、基板ステージ側に第1レーザー干渉計31を備えた。このため、可変成形マスク20とマスク位置計測部33との間の光路を短くし、可変成形マスク20をマスク位置計測部33とを確実に同軸上に配置することができるので、計測誤差をより確実に抑制することができる。また、基板ステージ10とマスク位置計測部33との間の光路も短くすることができるので、計測誤差を抑制することができる。
尚、上記各実施形態は以下のように変更してもよい。
・上記実施形態では、移動体位置計測部としてレーザー干渉計を用いたが、例えば米国特許公開第2007/0288121号公報に開示されるようにエンコーダを併用してもよい。また、移動体位置計測部としてレーザー干渉計の代わりに、例えば米国特許公開第2008/0106722号公報や第2009/0027640号公報に開示されるよう
なエンコーダを用いてもよい。
・上記実施形態では、マイクロミラーMを傾斜させることで任意の投影パターンを生成する可変成形マスク20を用いたが、マイクロミラーMの反射面MaをX−Y平面と平行な状態にしたまま、駆動部に設けられたバネによって上下動させる可変成形マスク20を用いるようにしてもよい。
・上記実施形態では、マスク位置計測部33をレーザー干渉計とし、マイクロミラーMの位置を変化させて可変成形マスク20の相対位置を計測するようにしたが、その他の方法で計測してもよい。例えば、可変成形マスク20のエッジ部にグレーディング(回折格子)を設け、マスク位置計測部33をエンコーダとする。そして、グレーディングに測定光を照射して、エンコーダで検出することにより、可変成形マスク20の相対位置を計測するようにしてもよい。
・上記実施形態では、可変成形マスク20との相対位置を光学的に計測するようにしたが、その他の方法で計測してもよい。例えば、磁気エンコーダを用いて磁気的に計測するようにしてもよいし、可変成形マスク20とマスク位置計測部33との間の距離が変化することによる静電容量変化を検出するようにしてもよい。或いは、空気の流量で位置計測を行うエアマイクロ等の方法を用いてもよい。
・第1実施形態では基準構造物をメトロロジーフレーム18とし、第2実施形態では基準構造物を支持部42としたが、第1レーザー干渉計31が設けられる部材であれば上部フレーム15等、その他の部材にしてもよい。
・露光装置1の露光対象は、半導体チップ等のマイクロデバイスを形成するための基板の他、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置等に利用されるレチクル又はマスクを形成するための基板であってもよい。また露光装置1の露光対象は、液晶ディスプレイやプラズマディスプレイ等を形成するための基板、CCD等の撮像デバイスを形成するための基板であってもよい。
・光源装置3は、例えば、g線(436nm)、i線(365nm)、Fレーザ(157nm)、Krレーザ(146nm)、Arレーザ(126nm)等を射出する光源であってもよい。また、光源装置3は、DFB半導体レーザ又はファイバレーザから発振される赤外領域又は可視領域の単一波長レーザ光を、例えばエルビウム又はエルビウムとイッテルビウムの双方がドープされたファイバアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を射出する光源であってもよい。
・光源装置3に用いられるEUV光発生物質には、気体状の錫(Sn)、液体状又は固体状の錫、キセノン(Xe)等を用いることができる。
・光源装置3に搭載される光源には、放電型プラズマ光源を採用することもできる。
次に、上記実施形態の露光装置1を用いたデバイスの製造方法をマイクロデバイスの製造方法に具体化した一実施形態について説明する。図8は、ICやLSI等の半導体チップ、表示パネル、CCD、薄膜磁気ヘッド、マイクロマシン等、これらマイクロデバイスの製造方法の一例を示すフローチャートである。
まず、設計工程では、マイクロデバイスの機能設計や性能設計が行われ、その後、設計された機能や性能を実現するための目標パターンが設計される(ステップS101)。続いて、マスク製作工程では、設計された目標パターンに基づいて、可変成形マスクを駆動するためのパターンデータが生成される(ステップS102)。すなわち、可変成形マス
クの形成するパターンが目標パターンに基づいて決定される。一方、基板製造工程では、シリコン基板、ガラス基板、セラミックス基板等、マイクロデバイスの基材である基板が準備される(ステップS103)。
次に、基板処理工程では、基板上に各種の膜を形成する成膜技術、上述したパターンデータと露光装置1とを用いたリソグラフィー技術、基板上に形成された膜の一部をエッチングするエッチング技術等によって、回路パターン等の実パターンが基板上に形成される(ステップS104)。続いて、デバイス組立工程では、基板処理後の基板を用いてデバイスの組立が行われる(ステップS105)。このデバイス組立工程では、ダイシング、ボンティング、及びパッケージング等の各種の実装処理が必要に応じて実施される。次いで、検査工程では、デバイス組立工程で組み立てられたマイクロデバイスの動作確認テスト、耐久性テスト等の各種の検査が行われる(ステップS106)。そして、これらの工程を経て、マイクロデバイスが製造される。
図9は、上述した基板処理工程の一部を示す一例であって、シリコン基板に薄膜トランジスタを形成するための各種の処理を示すフローチャートである。
まず、酸化工程では、加熱されたシリコン基板の表面が酸素の雰囲気下で熱酸化され、これにより、ゲート絶縁膜が形成される(ステップS111)。CVD工程では、ゲート酸化膜上にポリシリコン膜等のゲート電極膜がCVD法によって形成される(ステップS112)。電極形成工程では、基板上に電極を蒸着によって形成する(ステップS113)。イオン打込工程では、レジストマスクで覆われていないシリコン基板の領域にイオンが注入される(ステップ114)。以上の各工程S111〜ステップS114のそれぞれは、基板処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
レジスト膜形成工程では、ゲート電極膜上に感光性材料が塗布され、これにより、基板の全面にレジスト膜が形成される(ステップS115)。露光工程では、露光装置1によって可変成形マスクの形成するパターンの投影像がレジスト膜上に投影される(ステップS116)。現像工程では、露光工程において露光されたレジスト膜が現像され、これによりゲートが形成される部位を覆うレジストパターンが形成される(ステップS117)。エッチング工程では、レジストパターンをマスクにしたエッチングが実施され、これにより、ゲート絶縁膜及びゲート電極膜がパターニングされる(ステップS118)。レジスト除去工程では、エッチングに利用されたレジストパターンが、例えば酸素ラジカルの雰囲気下で除去される(ステップS119)。これらの前処理工程と後処理工程とを繰り返し行うことによって、基板上に多重に回路パターンが形成される。
1…露光装置、3…光源装置、6…ミラー、10…移動体としてのウェハステージ、18…基準構造物としてのメトロロジーフレーム、20…可変成形マスク、21…変調素子としてのミラー素子、31…移動体位置計測部としての第1レーザー干渉計、33…マスク位置計測部、ILi…照明光、ILr…反射波、M…マイクロミラー、PL…投影光学系、W…物体としての基板。

Claims (11)

  1. 光源から射出された照明光で基板を露光する露光装置であって、
    照明光の状態を空間的に個別に変調する複数の変調素子を有し、該変調素子を前記照明光の入射位置に2次元的に配置して前記照明光を変調する可変成形マスクと、
    前記基板を保持して所定の走査方向に移動する移動体と、
    前記可変成形マスクによって変調された照明光を前記移動体に載置された前記基板へ導いて、前記基板上に光パターンを投影する光学系と、
    前記移動体の位置を検出する移動体位置計測部の少なくとも一部が設けられて、前記移動体の位置の基準となる基準構造物と、
    前記基準構造物に設けられて、前記可変成形マスクとの相対位置を検出するマスク位置計測部とを備えることを特徴とする露光装置。
  2. 前記可変成形マスクの前記複数の変調素子は、作用位置及び非作用位置に配置されることで前記照明光の入射角度及び反射角度を個別に変更可能な複数のミラーを有し、前記マスク位置計測部は、前記各ミラーのうち一部の前記ミラーの位置を選択的に変更し、位置変更前後の前記可変成形マスクからの反射波の差異に基づき前記可変成形マスクの相対位置を計測することを特徴とする請求項1に記載の露光装置。
  3. 前記マスク位置計測部は、前記基準構造物のうち前記可変成形マスクと同軸上になる位置に設けられることを特徴とする請求項1又は2に記載の露光装置。
  4. 前記基準構造物は前記光学系と一体に設けられているとともに、該光学系は、前記可変成形マスクの前記複数の変調素子が配列される面と前記基板とを光学的に共役にすることを特徴とする請求項1〜3のいずれか1項に記載の露光装置。
  5. 前記基準構造物は、前記可変成形マスクと前記移動体との間に設けられた長尺状の部材であって、前記可変成形マスク側に前記マスク位置計測部を備え、前記移動体側に前記移動体位置計測部を備えることを特徴とする請求項1〜4のいずれか1項に記載の露光装置。
  6. 光源から射出された光で基板を露光する露光方法であって、
    照明光の状態を空間的に個別に変調する複数の変調素子を有し、該変調素子を前記照明光の入射位置に2次元的に配置して前記照明光を変調する可変成形マスクを用いて前記照明光を空間的に変調させ、
    前記可変成形マスクによって変調された照明光を、光学系を介して、所定の走査方向に移動する移動体に載置された前記基板へ導いて該基板上に光パターンを投影し、
    基準構造物を基準として移動体位置計測部により移動体の相対位置を計測するとともに、
    前記基準構造物を基準としてマスク位置計測部により前記可変成形マスクの相対位置を計測することを特徴とする露光方法。
  7. 前記可変成形マスクの前記複数の変調素子は、作用位置及び非作用位置に配置されることで前記照明光の入射角度及び反射角度を個別に変更可能な複数のミラーを有し、
    前記各ミラーのうち一部の前記ミラーの位置を選択的に変更し、前記マスク位置計測部により位置変更前後の前記可変成形マスクからの反射波の差異に基づき前記可変成形マスクの相対位置を計測することを特徴とする請求項6に記載の露光方法。
  8. 前記マスク位置計測部を前記基準構造物のうち前記可変成形マスクと同軸上になる位置に設けて、前記可変成形マスクの相対位置を計測することを特徴とする請求項6又は7に
    記載の露光方法。
  9. 前記基準構造物は前記光学系と一体に設けられているとともに、該光学系は、前記可変成形マスクの前記複数の変調素子が配列される面と前記基板とを光学的に共役にすることを特徴とする請求項6〜8のいずれか1項に記載の露光装置。
  10. 前記基準構造物は、前記可変成形マスクと前記移動体との間に設けられた長尺状の部材であって、前記可変成形マスク側に前記マスク位置計測部を配置し、前記移動体側に前記移動体位置計測部を配置することを特徴とする請求項6〜9のいずれか1項に記載の露光方法。
  11. 請求項6〜10のいずれか1項に記載の露光方法を用いて物体を露光する工程と、前記露光された物体を現像する工程とを含むデバイス製造方法。
JP2010197791A 2010-09-03 2010-09-03 露光装置、露光方法及びデバイス製造方法 Active JP5641210B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197791A JP5641210B2 (ja) 2010-09-03 2010-09-03 露光装置、露光方法及びデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197791A JP5641210B2 (ja) 2010-09-03 2010-09-03 露光装置、露光方法及びデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2012054500A true JP2012054500A (ja) 2012-03-15
JP5641210B2 JP5641210B2 (ja) 2014-12-17

Family

ID=45907489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197791A Active JP5641210B2 (ja) 2010-09-03 2010-09-03 露光装置、露光方法及びデバイス製造方法

Country Status (1)

Country Link
JP (1) JP5641210B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060385A1 (ja) 2013-10-25 2015-04-30 株式会社ニコン レーザ装置、該レーザ装置を備えた露光装置及び検査装置
WO2015125827A1 (ja) * 2014-02-18 2015-08-27 株式会社ニコン パルス光の発生方法、パルスレーザ装置、及び該パルスレーザ装置を備えた露光装置及び検査装置
US10559937B2 (en) 2016-05-26 2020-02-11 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
CN111183501A (zh) * 2017-10-04 2020-05-19 Asml荷兰有限公司 干涉测量台定位装置
US11366070B2 (en) 2016-05-26 2022-06-21 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283415A (ja) * 1996-04-18 1997-10-31 Nikon Corp 投影露光装置
JPH10261570A (ja) * 1997-03-19 1998-09-29 Nikon Corp ステージ装置及び該装置を備えた露光装置
JP2005217303A (ja) * 2004-01-30 2005-08-11 Nikon Corp 露光装置及びデバイスの製造方法
JP2008091907A (ja) * 2006-10-03 2008-04-17 Asml Netherlands Bv 測定装置および方法
JP2008242066A (ja) * 2007-03-27 2008-10-09 Fujifilm Corp 位置情報管理装置、描画システム、及び位置情報管理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283415A (ja) * 1996-04-18 1997-10-31 Nikon Corp 投影露光装置
JPH10261570A (ja) * 1997-03-19 1998-09-29 Nikon Corp ステージ装置及び該装置を備えた露光装置
JP2005217303A (ja) * 2004-01-30 2005-08-11 Nikon Corp 露光装置及びデバイスの製造方法
JP2008091907A (ja) * 2006-10-03 2008-04-17 Asml Netherlands Bv 測定装置および方法
JP2008242066A (ja) * 2007-03-27 2008-10-09 Fujifilm Corp 位置情報管理装置、描画システム、及び位置情報管理方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9882340B2 (en) 2013-10-25 2018-01-30 Nikon Corporation Laser device, and exposure device and inspection device provided with the laser device
WO2015060385A1 (ja) 2013-10-25 2015-04-30 株式会社ニコン レーザ装置、該レーザ装置を備えた露光装置及び検査装置
JPWO2015060385A1 (ja) * 2013-10-25 2017-03-09 株式会社ニコン レーザ装置、該レーザ装置を備えた露光装置及び検査装置
TWI616709B (zh) * 2013-10-25 2018-03-01 Nikon Corp 雷射裝置、具備該雷射裝置之曝光裝置及檢查裝置
US10044160B2 (en) 2014-02-18 2018-08-07 Nikon Corporation Pulsed light generating method, pulse laser apparatus, exposure apparatus having pulse laser apparatus, and inspection apparatus having pulse laser apparatus
JPWO2015125827A1 (ja) * 2014-02-18 2017-03-30 株式会社ニコン パルス光の発生方法、パルスレーザ装置、及び該パルスレーザ装置を備えた露光装置及び検査装置
WO2015125827A1 (ja) * 2014-02-18 2015-08-27 株式会社ニコン パルス光の発生方法、パルスレーザ装置、及び該パルスレーザ装置を備えた露光装置及び検査装置
US10559937B2 (en) 2016-05-26 2020-02-11 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US11303091B2 (en) 2016-05-26 2022-04-12 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US11366070B2 (en) 2016-05-26 2022-06-21 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US11757247B2 (en) 2016-05-26 2023-09-12 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
CN111183501A (zh) * 2017-10-04 2020-05-19 Asml荷兰有限公司 干涉测量台定位装置
TWI729315B (zh) * 2017-10-04 2021-06-01 荷蘭商Asml荷蘭公司 電子束檢測設備載台定位
CN111183501B (zh) * 2017-10-04 2022-11-25 Asml荷兰有限公司 干涉测量台定位装置

Also Published As

Publication number Publication date
JP5641210B2 (ja) 2014-12-17

Similar Documents

Publication Publication Date Title
TWI454852B (zh) A moving body system and a moving body driving method, a pattern forming apparatus and a pattern forming method, an exposure apparatus and an exposure method, and an element manufacturing method
US7566893B2 (en) Best focus detection method, exposure method, and exposure apparatus
US20220317581A1 (en) Measurement device and measurement method, exposure apparatus and exposure method, and device manufacturing method
KR101963012B1 (ko) 노광 장치 및 노광 방법, 그리고 디바이스 제조 방법
JPH07270122A (ja) 変位検出装置、該変位検出装置を備えた露光装置およびデバイスの製造方法
US10678152B2 (en) Layout method, mark detection method, exposure method, measurement device, exposure apparatus, and device manufacturing method
US11567419B2 (en) Control method of movable body, exposure method, device manufacturing method, movable body apparatus, and exposure apparatus
JP5641210B2 (ja) 露光装置、露光方法及びデバイス製造方法
JP2004014876A (ja) 調整方法、空間像計測方法及び像面計測方法、並びに露光装置
JP5861858B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP5057235B2 (ja) 較正方法、露光方法及びデバイス製造方法、並びに露光装置
JP6748907B2 (ja) 計測装置、露光装置、デバイス製造方法、及びパターン形成方法
US20140022377A1 (en) Mark detection method, exposure method and exposure apparatus, and device manufacturing method
TW200826154A (en) Exposure apparatus and device manufacturing method
JP4968335B2 (ja) 計測部材、センサ、計測方法、露光装置、露光方法、及びデバイス製造方法
JP2009252994A (ja) 露光方法及びデバイス製造方法、並びに露光装置
JP2011146449A (ja) フレア計測方法、露光方法及び装置、並びにデバイス製造方法
JP2007287898A (ja) マーク部材、計測方法、計測装置及び露光装置
JP2010050223A (ja) 基板処理方法、露光装置、及びデバイス製造方法
JP2016149405A (ja) 計測装置、露光装置、デバイス製造方法、及び計測方法
JP2016143849A (ja) 露光方法、デバイス製造方法、及び露光装置
JP2002043211A (ja) アライメント装置及び露光装置
JP2009252852A (ja) 移動体システム、露光装置及び露光方法、並びにデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5641210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250