JP2012033270A - 固体酸化物形燃料電池および固体酸化物形燃料電池の二酸化炭素回収方法 - Google Patents

固体酸化物形燃料電池および固体酸化物形燃料電池の二酸化炭素回収方法 Download PDF

Info

Publication number
JP2012033270A
JP2012033270A JP2010169020A JP2010169020A JP2012033270A JP 2012033270 A JP2012033270 A JP 2012033270A JP 2010169020 A JP2010169020 A JP 2010169020A JP 2010169020 A JP2010169020 A JP 2010169020A JP 2012033270 A JP2012033270 A JP 2012033270A
Authority
JP
Japan
Prior art keywords
gas
solid oxide
heat
cell stack
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010169020A
Other languages
English (en)
Inventor
So Arai
創 荒井
Kotoe Mizuki
琴絵 水木
Masayuki Yokoo
雅之 横尾
Kimitaka Watabe
仁貴 渡部
Katsuya Hayashi
克也 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010169020A priority Critical patent/JP2012033270A/ja
Publication of JP2012033270A publication Critical patent/JP2012033270A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】コストを低く抑えながら高い濃度の二酸化炭素を回収することが可能な固体酸化物形燃料電池を提供する。
【解決手段】固体酸化物形燃料電池セル15を積層してなるセルスタック3と、水蒸気と炭化水素ガスとから燃料ガスを生成する改質器4と、酸化剤ガスを予熱する空気予熱器6と、これらの装置を収容する断熱容器2を備える。セルスタック3には、燃料電池セル15からの排ガスを排出する排出通路14が接続される。この排出通路14は、改質器4および空気予熱器6を通って断熱容器2の外に延びる。改質器4と空気予熱器6とは、排出通路14との間で熱伝達が可能に形成され、セルスタック3を熱源として動作する。セルスタック3は、改質器4および空気予熱器6の動作に必要な熱が得られる発熱量を有するものである。
【選択図】 図1

Description

本発明は、複数の固体酸化物形燃料電池セルを重ねて構成された固体酸化物形燃料電池および固体酸化物形燃料電池の二酸化炭素回収方法に関するものである。
固体酸化物形燃料電池は、作動温度が800℃〜1000℃と高温であり、発電効率が高い(45%以上)という特徴を備えている。固体酸化物形燃料電池の出力は、固体酸化物形燃料電池セル(以下、これを単に単セルという)を積層させることによって高くなる。このため、従来の固体酸化物形燃料電池は、複数の前記単セルを積層させた構造のセルスタックを使用することが多い。
このようなセルスタックを用いる固体酸化物形燃料電池は、タービン発電などを組み合わせてより高い効率のコジェネレーションシステムが構築できるという利点を有し、発電所としての用途などが期待されている。高出力を発生する固体酸化物形燃料電池は、数十枚の単セルを積層させたセルスタックを使用することによって実現することができる。
この種の固体酸化物形燃料電池に使用する燃料ガスは、都市ガスなどの炭化水素ガスを改質器によって改質して得られた水素を含む改質ガスが用いられている。改質器は、炭化水素ガスに水蒸気を加えて加熱する構成が採られている。改質器によって生成された改質ガスには、水素の他に炭化水素や一酸化炭素などが含まれている。
燃料ガスは、多数の単セルを積層させたセルスタックを使用する場合は、発電に必要な供給量より過剰となるようにセルスタックに供給されている。この理由は、多数の単セルが積層されて構成されたセルスタックは、各単セルに供給される燃料ガスの供給量にばらつきが生じ易いからである。単セルに供給される燃料ガスが不足すると、セル構成材料の一つであるニッケルが酸素イオンと反応して酸化されてしまう。ニッケルが酸化されると、体積膨張によりセルが破壊されることがある。すなわち、従来の固体酸化物形燃料電池は、このような不具合が生じることがないように、燃料ガスの供給量が多く設定されていた。
このようにセルスタックに燃料ガスが過剰に供給されると、このセルスタックから排出される燃料ガスの量が増大することになる。従来の固体酸化物形燃料電池においては、このような余剰の燃料ガスは、熱源として利用するために燃焼させられることが多い。例えば、余剰の燃料ガスは、セルスタックを収容する断熱容器の内部の温度を上昇させるための燃焼器の燃料や、特許文献1に記載されているように、燃焼式空気予熱器の燃料として使用されている。
特許文献1に開示されている空気予熱器は、固体酸化物形燃料電池に燃料ガスとともに供給される酸化剤ガス(空気)を予熱するためのもので、前記余剰の燃料ガスを燃焼させた熱で酸化剤ガスを予熱する。
一方、固体酸化物形燃料電池は、燃料ガスに炭化水素や一酸化炭素などが含まれるために、発電時に二酸化炭素が発生する。二酸化炭素は、地球温暖化の原因とされる温室効果ガスの1つである。このため、近年においては、上述したように燃料電池から排出される二酸化炭素を回収して貯留することが要請されている。
特開2008−204784号公報
しかしながら、固体酸化物形燃料電池から排出された余剰の燃料ガスを燃焼させると、二酸化炭素を回収して貯留することが難しくなるという問題があった。これは、前記燃料ガスを燃焼させた後の排ガス中に二酸化炭素の他に他のガスが大量に含まれているからである。この他のガスとは、燃焼時に供給された大気中に含まれていた酸素および窒素や、燃料電池から排出された水蒸気などである。二酸化炭素を貯留するためには、上述した他のガスを二酸化炭素から分離させて二酸化炭素の濃度を高くする必要がある。これを実現するためには、特殊で高価な装置が必要になるから、上述したように二酸化炭素の回収、貯留を行うことが難しくなる。
本発明はこのような問題を解消するためになされたもので、コストを低く抑えながら高い濃度の二酸化炭素を回収することができる固体酸化物形燃料電池および固体酸化物形燃料電池の二酸化炭素回収方法を提供することを目的とする。
この目的を達成するために、本発明に係る固体酸化物形燃料電池は、複数の固体酸化物形燃料電池セルを積層して形成されたセルスタックと、水蒸気供給部から供給された水蒸気と炭化水素ガスとの反応により前記セルスタックの燃料ガスを生成する改質器と、前記セルスタックに供給する酸化剤ガスを予熱する予熱器と、前記セルスタックと、改質器および予熱器を収容する断熱容器とを備え、前記セルスタックには、前記各固体酸化物形燃料電池セルから排出された燃料ガスと水蒸気とを排出する排出通路が接続され、前記排出通路は、前記改質器および前記予熱器を通って前記断熱容器の外に延びるように形成され、前記改質器と前記予熱器とは、前記排出通路との間で熱伝達が可能に形成されるとともに、前記セルスタックを熱源として動作するように構成され、前記セルスタックは、前記改質器および前記予熱器の動作に必要な熱が前記断熱容器内の熱と、前記排出通路内を流れるガスの熱とによって得られるような発熱量を有するものであることを特徴とするものである。
本発明は、前記発明において、前記改質器は、前記排出通路を前記水蒸気供給部として排出通路内の水蒸気と炭化水素ガスとから前記燃料ガスを生成する機能と、前記排出通路内の一酸化炭素と水蒸気とを用いて水性ガスシフト反応を促進させる機能とを有するものであることを特徴とするものである。
本発明は、前記発明において、前記排出通路によって前記断熱容器の外に排出された水素ガスを燃料ガスとする補助燃料電池と、この補助燃料電池から排出された二酸化炭素を貯留する貯留装置とをさらに備えたことを特徴とするものである。
本発明に係る固体酸化物形燃料電池の二酸化炭素回収方法は、断熱容器内の熱と、固体酸化物形燃料電池セルを有するセルスタックから排出されたガスの熱と、セルスタックから排出された水蒸気と、炭化水素ガスと用いて改質器で燃料ガスを生成するステップと、断熱容器内の熱と、固体酸化物形燃料電池セルを有するセルスタックから排出されたガスの熱とを熱源として予熱器で酸化剤ガスを加熱するステップと、前記燃料ガスと酸化剤ガスとを前記セルスタックに供給して発電させるステップと、前記セルスタックから排出されたガスに水性ガスシフト反応を起こさせ、この水性ガスシフト反応によって生成された水素を前記セルスタックに供給するステップと、前記水性ガスシフト反応後の排ガスを他の燃料電池に燃料ガスとして供給するステップと、前記他の燃料電池から排出された排ガスを貯留するステップとによって実施する方法である。
本発明によれば、セルスタックで発電時に生じた熱(ジュール熱)と、セルスタックから排出されたガス(燃料ガスと水蒸気)の熱とを用いて改質器による改質ガスの生成と、予熱器による酸化剤ガスの予熱とが行われる。すなわち、本発明による固体酸化物形燃料電池は、セルスタックから排出された余剰の燃料ガスを燃焼させることなく有効に利用することができ、いわゆる熱自立が可能なものとなる。
このため、排出通路から排出される排ガス中に酸素や窒素が含まれることがなく、排ガス中の二酸化炭素の濃度が高くなるから、少ない費用で二酸化炭素を回収して貯留することができるようになる。したがって、本発明によれば、コストを低く抑えながら高い濃度の二酸化炭素を回収することが可能な固体酸化物形燃料電池を提供することができる。
また、本発明に係る固体酸化物形燃料電池の二酸化炭素回収方法によれば、固体酸化物形燃料電池と他の燃料電池とによって発電しながら、高濃度の二酸化炭素を回収し、貯留することができる。
本発明に係る固体酸化物形燃料電池の構成を示すブロック図である。 セルスタックの構成を示す断面図である。 固体酸化物形燃料電池の他の実施の形態を示すブロック図である。 改質器の一例を示す断面図である。 固体酸化物形燃料電池の他の実施の形態を示すブロック図である。
(第1の実施の形態)
以下、本発明に係る固体酸化物形燃料電池の一実施の形態を図1および図2によって詳細に説明する。
図1に示す固体酸化物形燃料電池1は、断熱容器2に後述する各種の装置を収容させた構成が採られている。各種の装置とは、詳細は後述するが、セルスタック3と、改質器4と、水蒸発器5と、空気予熱器6である。なお、図1においては、発熱部分を左下がりのハッチングによって示し、吸熱部分を右下がりのハッチングによって示している。
前記断熱容器2は、耐熱性を有する断熱材を使用して所定の形状に形成されている。この断熱容器2には、燃料供給管10と、水供給管11と、空気供給管12と、排気管13とが接続されている。前記燃料供給管10は、燃料としての炭化水素ガスを改質器4に供給するためのものである。この実施の形態においては、炭化水素ガスを多く含む都市ガスが燃料として用いられている。前記水供給管11は、水を水蒸発器5に供給するためのものである。
前記空気供給管12は、空気を空気予熱器6に供給するためのものである。排気管13は、本発明でいう「排出通路」、すなわちセルスタック3から排出された排ガスを断熱容器2の外に排出するための排出通路14の一部を構成するものである。この実施の形態による排出通路14は、セルスタック3から改質器4→空気予熱器6→排気管13という経路で断熱容器2の外に延びるように形成されている。排出通路14の下流側端部は、図示してはいないが、二酸化炭素を貯留するための貯留装置に接続されている。
セルスタック3は、図2に示すように、固体酸化物形燃料電池セル(以下、単に燃料電池セルという)15とインターコネクタ16とからなる単セルユニット17を上下方向に複数個積層して形成されている。燃料電池セル15は、従来からよく知られているように、平板形の燃料極15aと、この燃料極15aの上に積層された平板形の固体酸化物からなる電解質層15bおよび空気極15cとを有する燃料極支持形のものである。
インターコネクタ16は、前記燃料極15aの下面に接触する燃料極側インターコネクタ16aと、前記空気極15cの上面に接触する空気極側インターコネクタ16bとによって構成されている。燃料極側インターコネクタ16aには、燃料電池セル15を収容するための凹部16cが形成されているとともに、この凹部16cの開口部分を閉塞するためのガス封止材18が設けられている。
前記凹部16cの底部分には、燃料ガスを燃料極15aに供給するための燃料ガス供給用通路19と、余剰の燃料ガスおよび水蒸気を排出するためのガス排出用通路20とが形成されている。燃料ガス供給用通路19の上流側端部は、燃料ガス供給管21を介して後述する改質器4の燃料ガス出口に接続されている。
前記ガス排出用通路20は、図1に示すように、セルスタック3から導出するガス管22を介して改質器4の排ガス入口に接続されている。このガス管22は、本発明でいう「排出通路」の一部を構成するものである。
空気極側インターコネクタ16bには、図2に示すように、酸化剤ガスとしての空気を空気極15cに供給するための酸化剤ガス供給用通路23が形成されている。この酸化剤ガス供給用通路23の上流側端部は、図1に示すように、酸化剤ガス供給管24を介して後述する空気予熱器6の空気出口に接続されている。燃料電池セル15の空気極15cに供給された酸化剤ガスのうち、余剰の酸化剤ガスは、空気極15cから燃料電池セル15の外に放出され、さらに、断熱容器2に設けられている排気口(図示せず)を通過して大気中に放散される。
この実施の形態によるセルスタック3は、発電時に発熱した状態で後述する他の装置の熱源として利用できる発熱量を有するものが用いられている。セルスタック3を他の装置の熱源とするためには、下記の構成を採ることが望ましい。
セルスタックの規模は、10kW以上とする。
燃料ガスの供給量は、100l/min程度とする。
酸化剤ガスの供給量は、200l/min程度とする。
断熱容器2の容量:2立方メートル程度とする。
断熱容器2の壁(断熱材)は、厚さ150mm程度のWDSと呼ばれる断熱材を使用する。
このように高出力のセルスタック3に燃料ガスと酸化剤ガスとを充分に供給し、断熱容器2で確実に断熱を行うことにより、発熱用の装置を使用することなく断熱容器2内の温度を800℃〜1000℃に保つことが可能になる。
前記改質器4は、炭化水素ガスと水蒸気とを混合させた状態で加熱することによって改質反応を起こさせ、水素と一酸化炭素とを含む燃料ガス(改質ガス)を生成するものである。炭化水素ガスは、前記燃料供給管10から都市ガスとして供給される。水蒸気は、水蒸発器5から蒸気管25(図1参照)によって供給される。この水蒸発器5は、前記水供給管11によって供給された水を断熱容器2内の熱で加熱して水蒸気を生成するものである。この実施の形態においては、この水蒸発器5によって本発明でいう「水蒸気供給部」が構成されている。
改質器4によって生成された燃料ガスは、上述したように燃料ガス供給管21によってセルスタック3に供給され、さらに燃料極側インターコネクタ16aの燃料ガス供給用通路19を通って各燃料電池セル15の燃料極15aに分配される。
また、改質器4には、図1に示すように、前記ガス管22内の排ガス(セルスタック3から排出された排ガス)を通すための排ガス通路26が形成されている。
この排ガス通路26の下流側端部は、連通管27によって後述する空気予熱器6の排ガス通路28に接続されている。改質器4の排ガス通路26と、連通管27と、空気予熱器6の排ガス通路28は、本発明でいう「排出通路」一部を構成するものである。
この改質器4は、前記排ガス通路26を流れる排ガスの熱と、断熱容器2の内部の熱とによって炭化水素ガスと水蒸気とが加熱され、改質反応が起こるように構成されている。
前記空気予熱器6は、燃料電池セル15に供給される酸化剤ガスを発電可能な温度(約800℃)まで昇温させるためのものである。酸化剤ガスは、前記空気供給管12によって空気予熱器6に供給された空気(大気)である。空気予熱器6で加熱された予熱後の酸化剤ガスは、前記酸化剤ガス供給管24と、単セルユニット毎に空気極側インターコネクタ16bに設けられている酸化剤ガス供給用通路23とを介して各燃料電池セル15の空気極15cに供給される。
この実施の形態による空気予熱器6は、前記排ガス通路を流れる排ガスの熱と、断熱容器2内の熱とによって酸化剤ガスが前記発電可能な温度まで昇温される構成が採られている。
このように構成された固定酸化物形燃料電池1においては、セルスタック3から排出された排ガス(余剰の燃料ガスと水蒸気)は、改質器4と空気予熱器6とを加熱した後に断熱容器2の外に排出され、図示していない貯留装置に送られる。
この実施の形態による固体酸化物形燃料電池によれば、前記排ガスの熱と、セルスタック3で発電時に生じた熱(ジュール熱)とを用いて改質器4による改質ガスの生成と、空気予熱器6による酸化剤ガスの予熱とが行われる。すなわち、この固体酸化物形燃料電池1は、セルスタック3から排出された余剰の燃料ガスを燃焼させることなく有効に利用することができ、いわゆる熱自立が可能なものとなる。
このため、この固体酸化物形燃料電池1においては、排出通路14から排出される排ガス中に酸素や窒素が含まれることがなく、排ガス中の二酸化炭素の濃度が高くなるから、少ない費用で二酸化炭素を回収して貯留することができるようになる。したがって、この実施の形態によれば、コストを低く抑えながら高い濃度の二酸化炭素を回収することが可能な固体酸化物形燃料電池を提供することができる。
(第2の実施の形態)
本発明に係る固体酸化物形燃料電池は図3および図4に示すように構成することができる。図3および図4において、前記図1および図2によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
図3に示す固体酸化物形燃料電池1は、セルスタック3から排出された排ガスを改質器4内に導入して再循環させる構成が採られている。この実施の形態による固体酸化物形燃料電池1に用いられている改質器4は、排ガス中に含まれている水蒸気を用いて上述した改質反応を起こさせる構成のものである。すなわち、この改質器4は、都市ガスと排ガスとが供給される反応部4aを備えている。
また、この改質器4は、水蒸気改質法と呼称される方法によって炭化水素ガスと水蒸気とから前記燃料ガスを生成する機能と、排ガス中に含まれている一酸化炭素と水蒸気とを用いて水性ガスシフト反応を促進させる機能とを有するものである。炭化水素ガスの改質を行うに当たっては、Ni系の金属を触媒として担持させたアルミナの多孔質材に炭化水素ガスと水蒸気とを通すことによって行われる。
前記水性ガスシフト反応とは、従来からよく知られているように、一酸化炭素と水蒸気とから水素と二酸化炭素とを生成する反応である。この実施の形態による改質器4は、前記改質反応と水性ガスシフト反応とによって生成された水素を前記燃料ガス供給管21に送る構成が採られている。また、この改質器4は、セルスタック3から改質器4に送られた排ガス中の二酸化炭素と、上述した水性ガスシフト反応で生成された二酸化炭素とを連通管に導く構成が採られている。
前記改質器4は、たとえば図4に示すように構成することができる。図4に示す改質器4は、反応部4aを容器4bの中に収納した構造が採られている。容器4b内には、反応部4aを加熱するために、排出通路14から排ガスの一部が送られる。容器4b内の排ガスは、連通管27に排出される。
前記反応部4aには、Ni系の金属を触媒として担持させたアルミナの多孔質材からなる触媒層4cが設けられている。この触媒層4cには、燃料供給管10から送られた炭化水素ガスと、排出通路14から送られた排ガスとが供給される。触媒層4cの出口部分には、燃料ガス供給管21が接続されている。
この実施の形態による固体酸化物形燃料電池1は、セルスタック3から排出された排ガスを前記改質器4に確実に送るために燃料再循環装置31を備えている。この燃料再循環装置31は、詳細には図示してはいないが、前記排ガスを都市ガスの供給圧力と同等の圧力で改質器4に送るブロワを備えている。
この実施の形態によれば、前記改質器4において水性ガスシフト反応によって排ガス中の一酸化炭素を除去することができる。このため、排ガス中の二酸化炭素を回収して貯留するに当たって、排ガス中から除去するガスがさらに少なくなる。したがって、この実施の形態によれば、より一層低い費用で二酸化炭素の回収し貯留することが可能な固体酸化物形燃料電池を提供することができる。
この実施の形態によれば、排ガス中に含まれる水素と、前記水性ガスシフト反応によって生じた水素とをセルスタック3に供給しているから、排ガスを再循環して利用することができる。すなわち、各単セルにおいて不足する水素を水性ガスシフト反応により得られた水素で補うことができるから、水素の不足が原因で単セルが損傷するようなことを防ぎながら、セルスタック3に供給する燃料ガスの量を低減することができる。例えば、セルスタック3に供給する総水素量の10%の水素を再循環できると、燃料ガス中の水素の利用率を約80%から約90%程度に高くすることができる。
また、この実施の形態によれば、セルスタック3で生じた水蒸気を用いて改質器4による改質反応と水性ガスシフト反応とが行われるから、外部からの水の供給が不要になり、いわゆる水自立が実現されて利便性が向上する。しかも、断熱容器内の熱で水を加熱して水蒸気を発生させる場合に較べて、吸熱量が少なくなるから、断熱容器2内の温度を高く維持することが容易になる。
(第3の実施の形態)
本発明に係る固体酸化物形燃料電池は図5に示すように構成することができる。図5において、前記図1〜図4によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
図5に示す固体酸化物形燃料電池は、排出通路14の下流側端部に接続された補助燃料電池32と、この補助燃料電池32の排出通路33に接続された二酸化炭素貯留システム34とを備えている。この実施の形態においては、前記補助燃料電池32によって、請求項4記載の発明でいう「他の燃料電池」が構成され、二酸化炭素貯留システム34によって、本発明でいう貯留装置が構成されている。
前記補助燃料電池32は、プロトン導電体(図示せず)使用した燃料電池セルを用いて構成されている。この補助燃料電池32の燃料ガス入口32aには、上述した固体酸化物形燃料電池1の排出通路14が接続されている。すなわち、補助燃料電池32は、固体酸化物形燃料電池1の断熱容器2の外に排出された排ガス中の水素を燃料として発電を行う。この補助燃料電池32から排出されたガス(主に二酸化炭素)は、二酸化炭素貯留システム34に回収されて貯留される。
この実施の形態においては、補助燃料電池32で発電を行うことによって、排出通路14内の排ガス中から水素が除去される。したがって、この実施の形態によれば、高濃度の二酸化炭素を二酸化炭素貯留システム34に貯留することができる。
この実施の形態においては、下記の方法によって二酸化炭素が回収される。すなわち、この実施の形態による固体酸化物形燃料電池の二酸化炭素回収方法は、水性ガスシフト反応を起こすステップと、排ガスを補助燃料電池32に送るステップと、補助燃料電池32の排ガスを二酸化炭素貯留システム34に回収して貯留するステップとによって実施する。
前記水性ガスシフト反応を起こすステップにおいては、セルスタック3から排出された排ガスに改質器4で水性ガスシフト反応を起こさせ、この水性ガスシフト反応によって生成された水素を固体酸化物形燃料電池1の前記セルスタック3に燃料として供給する。このステップによって、排ガス中の一酸化炭素を除去することができる。
排ガスを補助燃料電池32に供給するステップにおいては、前記水性ガスシフト反応後の排ガスを前記補助燃料電池32に燃料ガスとして供給する。このステップによって、排ガスに含まれる水素を除去することができる。この補助燃料電池32から排出される排ガスは、二酸化炭素の濃度が高いガスとなり、二酸化炭素貯留システム34に貯留される。
したがって、この実施の形態による二酸化炭素回収方法によれば、固体酸化物形燃料電池1と補助燃料電池32とによって発電しながら、高濃度の二酸化炭素を回収し、貯留することができる。
1…固体酸化物燃料電池、2…断熱容器、3…セルスタック、4…改質器、5…水蒸発器、6…空気予熱器、15…燃料電池セル、31…燃料再循環装置、32…補助燃料電池、34…二酸化炭素貯留システム。

Claims (4)

  1. 複数の固体酸化物形燃料電池セルを積層して形成されたセルスタックと、
    水蒸気供給部から供給された水蒸気と炭化水素ガスとの反応により前記セルスタックの燃料ガスを生成する改質器と、
    前記セルスタックに供給する酸化剤ガスを予熱する予熱器と、
    前記セルスタックと、改質器および予熱器を収容する断熱容器とを備え、
    前記セルスタックには、前記各固体酸化物形燃料電池セルから排出された燃料ガスと水蒸気とを排出する排出通路が接続され、
    前記排出通路は、前記改質器および前記予熱器を通って前記断熱容器の外に延びるように形成され、
    前記改質器と前記予熱器とは、前記排出通路との間で熱伝達が可能に形成されるとともに、前記セルスタックを熱源として動作するように構成され、
    前記セルスタックは、前記改質器および前記予熱器の動作に必要な熱が前記断熱容器内の熱と、前記排出通路内を流れるガスの熱とによって得られるような発熱量を有するものであることを特徴とする固体酸化物形燃料電池。
  2. 請求項1記載の固体酸化物形燃料電池において、前記改質器は、前記排出通路を前記水蒸気供給部として炭化水素ガスと排出通路内の水蒸気とから前記燃料ガスを生成する機能と、前記排出通路内の一酸化炭素と水蒸気とを用いて水性ガスシフト反応を促進させる機能とを有するものであることを特徴とする固体酸化物形燃料電池。
  3. 請求項2記載の固体酸化物形燃料電池において、前記排出通路によって前記断熱容器の外に排出された水素ガスを燃料ガスとする補助燃料電池と、
    この補助燃料電池から排出された二酸化炭素を貯留する貯留装置とをさらに備えたことを特徴とする固体酸化物形燃料電池。
  4. 断熱容器内の熱と、固体酸化物形燃料電池セルを有するセルスタックから排出されたガスの熱と、セルスタックから排出された水蒸気と、炭化水素ガスと用いて改質器で燃料ガスを生成するステップと、
    断熱容器内の熱と、固体酸化物形燃料電池セルを有するセルスタックから排出されたガスの熱とを熱源として予熱器で酸化剤ガスを加熱するステップと、
    前記燃料ガスと酸化剤ガスとを前記セルスタックに供給して発電させるステップと、
    前記セルスタックから排出されたガスに水性ガスシフト反応を起こさせ、この水性ガスシフト反応によって生成された水素を前記セルスタックに供給するステップと、
    前記水性ガスシフト反応後の排ガスを他の燃料電池に燃料ガスとして供給するステップと、
    前記他の燃料電池から排出された排ガスを貯留するステップとによって実施する固体酸化物形燃料電池の二酸化炭素回収方法。
JP2010169020A 2010-07-28 2010-07-28 固体酸化物形燃料電池および固体酸化物形燃料電池の二酸化炭素回収方法 Pending JP2012033270A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169020A JP2012033270A (ja) 2010-07-28 2010-07-28 固体酸化物形燃料電池および固体酸化物形燃料電池の二酸化炭素回収方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169020A JP2012033270A (ja) 2010-07-28 2010-07-28 固体酸化物形燃料電池および固体酸化物形燃料電池の二酸化炭素回収方法

Publications (1)

Publication Number Publication Date
JP2012033270A true JP2012033270A (ja) 2012-02-16

Family

ID=45846491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169020A Pending JP2012033270A (ja) 2010-07-28 2010-07-28 固体酸化物形燃料電池および固体酸化物形燃料電池の二酸化炭素回収方法

Country Status (1)

Country Link
JP (1) JP2012033270A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229164A (ja) * 2002-02-05 2003-08-15 Tokyo Gas Co Ltd 固体酸化物形燃料電池システム
JP2004087362A (ja) * 2002-08-28 2004-03-18 Daikin Ind Ltd 燃料電池発電システム
JP2006156015A (ja) * 2004-11-26 2006-06-15 Tokyo Gas Co Ltd 燃料電池システムおよび燃料ガス供給方法
JP2007311161A (ja) * 2006-05-18 2007-11-29 Honda Motor Co Ltd 燃料電池システム及びその運転方法
JP2008108619A (ja) * 2006-10-26 2008-05-08 Nippon Telegr & Teleph Corp <Ntt> 燃料電池発電システムとその二酸化炭素回収方法
JP2009302010A (ja) * 2008-06-17 2009-12-24 Showa Shell Sekiyu Kk 燃料電池コージェネレーションシステム
JP2011113934A (ja) * 2009-11-30 2011-06-09 Ngk Spark Plug Co Ltd 燃料電池システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229164A (ja) * 2002-02-05 2003-08-15 Tokyo Gas Co Ltd 固体酸化物形燃料電池システム
JP2004087362A (ja) * 2002-08-28 2004-03-18 Daikin Ind Ltd 燃料電池発電システム
JP2006156015A (ja) * 2004-11-26 2006-06-15 Tokyo Gas Co Ltd 燃料電池システムおよび燃料ガス供給方法
JP2007311161A (ja) * 2006-05-18 2007-11-29 Honda Motor Co Ltd 燃料電池システム及びその運転方法
JP2008108619A (ja) * 2006-10-26 2008-05-08 Nippon Telegr & Teleph Corp <Ntt> 燃料電池発電システムとその二酸化炭素回収方法
JP2009302010A (ja) * 2008-06-17 2009-12-24 Showa Shell Sekiyu Kk 燃料電池コージェネレーションシステム
JP2011113934A (ja) * 2009-11-30 2011-06-09 Ngk Spark Plug Co Ltd 燃料電池システム

Similar Documents

Publication Publication Date Title
JP6397502B2 (ja) 水素製造のための改質装置・電解装置・精製装置(rep)組立体、同組立体を組み込むシステムおよび水素製造方法
JP5061450B2 (ja) 燃料電池
KR100987823B1 (ko) 고체산화물 연료전지 시스템
JP5581240B2 (ja) Co2回収型固体酸化物形燃料電池システム及びその運転制御方法
JP2008108619A (ja) 燃料電池発電システムとその二酸化炭素回収方法
JP4745618B2 (ja) 燃料電池構造体の運転方法
JP2014502020A (ja) 固体酸化物形燃料電池システム及び固体酸化物形燃料電池システム運用方法
JP4706190B2 (ja) 固体酸化物形燃料電池
JP2014229438A (ja) 燃料電池装置
KR101721237B1 (ko) 외부열원에 의하여 가열되는 고체산화물 연료전지 시스템
US20180191006A1 (en) Solid oxide fuel cell system with improved thermal efficiency, and solid oxide fuel cell system heated by high-temperature gas
JP4570904B2 (ja) 固体酸化物形燃料電池システムのホットスタンバイ法及びそのシステム
KR101753335B1 (ko) 고온가스에 의하여 가열되는 고체산화물 연료전지 시스템
JP2005019036A (ja) 燃料電池
JP4210912B2 (ja) 燃料改質器および燃料電池発電装置
JP2007200709A (ja) 固体酸化物形燃料電池スタックおよびその運転方法
JP2017183155A (ja) 燃料電池システム
JP2012033270A (ja) 固体酸化物形燃料電池および固体酸化物形燃料電池の二酸化炭素回収方法
JP2004247234A (ja) 固体高分子形燃料電池発電装置およびその運転方法
JP2009176659A (ja) 燃料電池発電システムおよびその制御方法
JP2004119298A (ja) 燃料電池発電システム
JP2016184550A (ja) ガス製造装置
JP6582572B2 (ja) 燃料電池システム
KR100987824B1 (ko) 자립 고체산화물 연료전지 시스템의 운전 방법
KR101912209B1 (ko) 일체형 고체산화물연료전지 발전시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212