JP2012032110A - 冷媒回路装置 - Google Patents

冷媒回路装置 Download PDF

Info

Publication number
JP2012032110A
JP2012032110A JP2010173685A JP2010173685A JP2012032110A JP 2012032110 A JP2012032110 A JP 2012032110A JP 2010173685 A JP2010173685 A JP 2010173685A JP 2010173685 A JP2010173685 A JP 2010173685A JP 2012032110 A JP2012032110 A JP 2012032110A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
compressor
internal
internal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010173685A
Other languages
English (en)
Other versions
JP5636797B2 (ja
Inventor
Takahiro Mitsumoto
孝博 三本
Toshiaki Tsuchiya
敏章 土屋
Kentetsu Yasujima
賢哲 安嶋
Shuhei Shibata
修平 柴田
Makoto Ishida
真 石田
Yasuzo Tamaoki
泰三 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010173685A priority Critical patent/JP5636797B2/ja
Publication of JP2012032110A publication Critical patent/JP2012032110A/ja
Application granted granted Critical
Publication of JP5636797B2 publication Critical patent/JP5636797B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)

Abstract

【課題】外気温度に関係なく良好に加熱単独運転が可能な冷媒回路装置を提供すること。
【解決手段】庫内熱交換器24、圧縮機21、庫外熱交換器22を冷媒配管25で接続した主経路20と、高圧導入バルブ321,322の開成により圧縮機21で圧縮した冷媒を導入して所定の庫内熱交換器24に供給する高圧冷媒導入経路30と、庫内熱交換器24で凝縮した冷媒を加熱側熱交換器42に供給する放熱経路40と、加熱側熱交換器42で放熱した冷媒を主経路20に戻す戻経路50とを備え、庫外熱交換器22と加熱側熱交換器42とが、それぞれを通過する冷媒が互いに熱交換可能な態様で配設してあり、バイパスバルブ621が開成して加熱側熱交換器42で放熱した冷媒を導入して庫外熱交換器22に供給するバイパス経路60と、帰還バルブ72が開成することにより庫外熱交換器22で蒸発させた冷媒を圧縮機21に帰還させる帰還経路70とを備えたものである。
【選択図】図3

Description

本発明は、冷媒回路装置に関し、より詳細には、ヒートポンプ機能を有する冷媒回路を備えた冷媒回路装置に関する。
従来、ヒートポンプ機能を有する冷媒回路を備えた冷媒回路装置として次のようなものが知られている。すなわち、主経路と、高圧冷媒導入経路と、放熱経路と、戻経路とを有する冷媒回路を備えたものである。
主経路は、庫内熱交換器、圧縮機、庫外熱交換器及び膨張機構が冷媒配管で順次接続されて環状に構成されている。庫内熱交換器は、対象となる室の内部に配設されている。圧縮機は、庫内熱交換器を通過した冷媒を吸引し、吸引した冷媒を圧縮して高温高圧の状態にして吐出するものである。庫外熱交換器は、圧縮機で圧縮した冷媒を導入して凝縮させるものである。膨張機構は、庫外熱交換器で凝縮した冷媒を減圧して断熱膨張させるものである。
このような主経路においては、圧縮機で圧縮された冷媒が庫外熱交換器で凝縮し、凝縮した冷媒が膨張機構で断熱膨張され、庫内熱交換器で蒸発する。この庫内熱交換器で蒸発した冷媒は、圧縮機により吸引されて再び圧縮されて循環することになる。これにより庫内熱交換器が配設された室の内部空気は冷却されることになる。
高圧冷媒導入経路は、圧縮機で圧縮した冷媒を導入し、主経路を構成する庫内熱交換器のうち加熱対象となる室に配設されたものに供給することにより該庫内熱交換器で冷媒を凝縮させるものである。これにより該庫内熱交換器が配設された室の内部空気は加熱されることになる。
放熱経路は、庫内熱交換器で凝縮した冷媒を導入して、主経路を構成する庫外熱交換器に供給するものである。これにより庫外熱交換器では、通過する冷媒が周囲空気と熱交換を行って蒸発することになる。
戻経路は、庫外熱交換器で蒸発した冷媒を導入して、圧縮機に送出させる態様で主経路に戻すものである。これにより戻経路を通過した冷媒は、主経路に至り、その後に圧縮機に送出されることになる。
このような構成を有する冷媒回路装置においては、すべての室の内部空気を冷却する場合には、主経路のみに冷媒を循環させればよく、一方、すべての室の内部空気を加熱する場合には、圧縮機で圧縮した冷媒を、高圧冷媒導入経路、放熱経路及び戻経路の順に通過させて圧縮機に戻すよう循環させればよい(例えば、特許文献1参照)。
特開2000−304397号公報
ところで、上述したような冷媒回路装置においては、対象となる室の内部空気を加熱する加熱単独運転が可能であるが、かかる加熱単独運転を行う場合には、庫外熱交換器を蒸発器として利用することとなる。庫外熱交換器を蒸発器として利用するには、庫外熱交換器の周囲空気の温度が十分に高いことが必要となる。
しかしながら、対象となる室の内部空気を加熱する場合は、外気温度が低い環境下にあるのが一般的であり、これにより庫外熱交換器で冷媒を十分に蒸発させることができず、この結果、庫内熱交換器で冷媒を良好に凝縮させることが困難になる虞れがあり、良好に加熱単独運転を行うことができないことがあった。
本発明は、上記実情に鑑みて、外気温度に関係なく良好に加熱単独運転が可能な冷媒回路装置を提供することを目的とする。
上記目的を達成するために、本発明の請求項1に係る冷媒回路装置は、対象室の内部に配設された庫内熱交換器と、前記庫内熱交換器を通過した冷媒を吸引して圧縮する圧縮機と、前記圧縮機で圧縮した冷媒を凝縮させる庫外熱交換器とを冷媒配管で順次接続して構成した主経路と、自身に設けられた導入バルブが開成することにより前記圧縮機で圧縮した冷媒を導入し、かつ前記庫内熱交換器のうち加熱対象となる室に配設されたものに供給することにより、該庫内熱交換器で冷媒を凝縮させる高圧冷媒導入経路と、庫内熱交換器で凝縮した冷媒を導入して加熱側熱交換器に供給し、該加熱側熱交換器にて該冷媒を放熱させる放熱経路と、加熱側熱交換器で放熱した冷媒を導入し、前記主経路の庫内熱交換器の上流側に戻す戻経路と、前記主経路における庫内熱交換器の上流側に開度変更が可能となる態様でそれぞれ設けられ、前記庫外熱交換器及び前記加熱側熱交換器のいずれかを通過した冷媒を断熱膨張させる膨張機構とを備えた冷媒回路装置において、前記庫外熱交換器と前記加熱側熱交換器とがそれぞれを通過する冷媒が互いに熱交換可能な態様で配設してあり、自身に設けられたバイパスバルブが開成して前記加熱側熱交換器で放熱した冷媒を導入し、前記庫外熱交換器に該冷媒を低圧冷媒として供給することにより庫外熱交換器で蒸発させるバイパス経路と、自身に設けられた帰還バルブが開成することにより前記庫外熱交換器で蒸発させた冷媒を導入し、前記圧縮機に帰還させる帰還経路と、複数の庫内熱交換器が自身を通過する冷媒を周囲空気と熱交換させて蒸発させる蒸発器として機能する冷却運転を行う場合に、これら蒸発器として機能する庫内熱交換器が配設された室の温度勾配に基づいて算出した各庫内熱交換器の稼働終了までの稼働可能時間を比較し、稼働可能時間が相対的に長い庫内熱交換器の過熱度目標値を減算させて更新し、該庫内熱交換器の上流側の膨張機構の開度を更新した過熱度目標値に一致させるよう制御する制御手段とを備えたことを特徴とする。
また、本発明の請求項2に係る冷媒回路装置は、上述した請求項1において、前記制御手段は、前回の冷却運転時における蒸発器として機能する各庫内熱交換器の稼働時間を比較し、稼働時間が相対的に長い庫内熱交換器の過熱度目標値を減算させて更新し、該庫内熱交換器の上流側の膨張機構の開度を更新した過熱度目標値に一致させるよう制御することを特徴とする。
また、本発明の請求項3に係る冷媒回路装置は、上述した請求項1又は請求項2において、前記制御手段は、前記室のいずれか一つの室内温度が予め決められたオン温度に達したら場合には前記圧縮機を駆動させる一方、前記室内温度が予め決められたオフ温度に達した場合には前記圧縮機を駆動停止させることを特徴とする。
本発明の冷媒回路装置によれば、庫外熱交換器と加熱側熱交換器とが、それぞれを通過する冷媒が互いに熱交換可能な態様で配設してあり、バイパス経路が、自身に設けられたバイパスバルブが開成して加熱側熱交換器で放熱した冷媒を導入し、庫外熱交換器に該冷媒を低圧冷媒として供給することにより庫外熱交換器で蒸発させ、帰還経路が、自身に設けられた帰還バルブが開成することにより庫外熱交換器で蒸発させた冷媒を導入し、圧縮機に帰還させるので、加熱側熱交換器を通過する冷媒と庫外熱交換器を通過する冷媒との間での熱交換を行うことができ、これにより外気温度に関係なく良好に加熱単独運転を行うことができ、消費電力量の低減化を図ることができるという効果を奏する。
また、本発明の冷媒回路装置によれば、制御手段が、複数の庫内熱交換器が自身を通過する冷媒を周囲空気と熱交換させて蒸発させる蒸発器として機能する冷却運転を行う場合に、これら蒸発器として機能する庫内熱交換器が配設された室の温度勾配に基づいて算出した各庫内熱交換器の稼働終了までの稼働可能時間を比較し、稼働可能時間が相対的に長い庫内熱交換器の過熱度目標値を減算させて更新し、該庫内熱交換器の上流側の膨張機構の開度を更新した過熱度目標値に一致させるよう制御するので、各室における庫内熱交換器の稼働時間を一致させることが可能になり、これにより圧縮機等の駆動時間を最小限にすることができ、消費電力量の低減化を図ることができるという効果を奏する。
図1は、本発明の実施の形態である冷媒回路装置が適用された自動販売機の内部構造を正面から見た場合を示す断面図である。 図2は、図1に示した自動販売機の内部構造を示すものであり、右側の商品収容庫の断面側面図である。 図3は、図1及び図2に示した自動販売機に適用された冷媒回路装置を概念的に示す概念図である。 図4は、図3に示した冷媒回路装置の制御系を模式的に示すブロック図である。 図5は、図3に示した膨張機構の開度の制御を説明するブロック図である。 図6は、図3に示した冷媒回路装置においてCCC運転をする場合の冷媒の流れを示す概念図である。 図7は、図3に示した冷媒回路装置においてHCC運転をする場合の冷媒の流れを示す概念図である。 図8は、図3に示した冷媒回路装置において加熱単独運転をする場合の冷媒の流れを示す概念図である。 図9は、図4に示したコントローラ(圧縮機制御部)が実行する圧縮機駆動処理の処理内容を示すフローチャートである。 図10は、図4に示したコントローラ(過熱度目標値更新処理部)が実行する過熱度目標値更新処理の処理内容を示すフローチャートである。
以下に添付図面を参照して、本発明に係る冷媒回路装置の好適な実施の形態について詳細に説明する。
図1は、本発明の実施の形態である冷媒回路装置が適用された自動販売機の内部構造を正面から見た場合を示す断面図である。ここで例示する自動販売機は、本体キャビネット1を備えている。
本体キャビネット1は、前面が開口した直方状の形態を成すものである。この本体キャビネット1には、その内部に例えば2つの断熱仕切板2によって仕切られた3つの独立した商品収容庫3が左右に並んだ態様で設けてある。この商品収容庫3は、缶入り飲料やペットボトル入り飲料等の商品を所望の温度に維持した状態で収容するためのもので、断熱構造を有している。
図2は、図1に示した自動販売機の内部構造を示すものであり、右側の商品収容庫3の断面側面図である。尚、ここでは右側の商品収容庫3(以下、適宜右庫3aとも称する)の内部構造について示すが、中央の商品収容庫3(以下、適宜中庫3bとも称する)及び左側の商品収容庫3(以下、適宜左庫3cとも称する)の内部構造も右庫3aと略同じような構成である。尚、本明細書における右側とは、自動販売機を正面から見た場合の右方を示し、左側とは、自動販売機を正面から見た場合の左方を示す。
かかる図2に示すように、本体キャビネット1の前面には、外扉4及び内扉5が設けてある。外扉4は、本体キャビネット1の前面開口を開閉するためのものであり、内扉5は、商品収容庫3の前面を開閉するためのものである。この内扉5は、上下に分割してあり、上側の扉5aは商品を補充する際に開閉するものである。
上記商品収容庫3には、商品収納ラック6、搬出機構7及び搬出シュータ8が設けてある。商品収納ラック6は、商品を上下方向に沿って並ぶ態様で収納するためのものである。搬出機構7は、商品収納ラック6の下部に設けてあり、この商品収納ラック6に収納された商品群の最下位にある商品を1つずつ搬出するためのものである。搬出シュータ8は、搬出機構7から搬出された商品を外扉4に設けられた商品取出口4aに導くためのものである。
図3は、図1及び図2に示した自動販売機に適用された冷媒回路装置を概念的に示す概念図であり、図4は、図3に示した冷媒回路装置の制御系を模式的に示すブロック図である。ここで例示する冷媒回路装置は、主経路20、高圧冷媒導入経路30、放熱経路40及び戻経路50からなる冷媒回路10を備えて構成してある。冷媒回路10は、内部に冷媒(例えばR134a)が封入されている。
主経路20は、圧縮機21、庫外熱交換器22及び庫内熱交換器24を冷媒配管25にて順次接続して構成してある。
圧縮機21は、図2にも示すように機械室9に配設してある。機械室9は、本体キャビネット1の内部であって商品収容庫3と区画され、かつ商品収容庫3の下方側の室である。この圧縮機21は、吸引口を通じて冷媒を吸引し、吸引した冷媒を圧縮して高温高圧の状態(高温高圧冷媒)にして吐出口より吐出するものである。
庫外熱交換器22は、図2にも示すように圧縮機21と同様に機械室9に配設してある。この庫外熱交換器22は、圧縮機21で圧縮された冷媒が通過する場合には、該冷媒を凝縮させるものである。
この庫外熱交換器22と圧縮機21とを接続する冷媒配管25には、三方弁261が設けてある。かかる三方弁261については後述する。
庫内熱交換器24は、複数(図示の例では3つ)設けてあり、各商品収容庫3の内部低域であって、背面ダクトD(図2参照)の前面側に配設してある。これら庫内熱交換器24と庫外熱交換器22とを接続する冷媒配管25は、その途中の第1分岐点P1で3つに分岐して、右庫3aに配設された庫内熱交換器24(以下、右庫内熱交換器24aとも称する)の入口側に、中庫3bに配設された庫内熱交換器24(以下、中庫内熱交換器24bとも称する)の入口側に、左庫3cの内部に配設された庫内熱交換器24(以下、左庫内熱交換器24cとも称する)の入口側にそれぞれ接続してある。
また、この冷媒配管25においては、第1分岐点P1から右庫内熱交換器24a、中庫内熱交換器24b及び左庫内熱交換器24cのそれぞれに至る途中に膨張機構231,232,233が設けてある。膨張機構231,232,233は、後述するコントローラ80から与えられる指令に応じて開度を個別に調整することができる流量可変のものであり、全閉状態となることも可能である。かかる膨張機構231,232,233は、通過する冷媒を減圧して断熱膨張させるものである。
上記庫内熱交換器24の出口側に接続された冷媒配管25は、途中の第1合流点P2で合流し、アキュムレータ27を介して圧縮機21に接続している。ここでアキュムレータ27は、通過する冷媒が気液混合冷媒である場合に、液相冷媒を貯留して気相冷媒を通過させる気液分離手段である。尚、中庫内熱交換器24b及び左庫内熱交換器24cの出口側から第1合流点P2に至る冷媒配管25の途中には出口側低圧電磁弁262b,262cが配設してある。かかる出口側低圧電磁弁262b,262cは、開閉可能な弁体であり、コントローラ80から開指令が与えられた場合には開成して冷媒の通過を許容する一方、閉指令が与えられた場合には閉成して冷媒の通過を規制するものである。
このような主経路20において、図3中の符号28及び291は、内部熱交換器及びリリーフバルブである。内部熱交換器28は、高圧冷媒と低圧冷媒との間で熱交換させるものである。リリーフバルブ291は、圧縮機21から三方弁261に至る冷媒配管25の途中と、三方弁261から庫外熱交換器22に至る冷媒配管25の途中とを接続するリリーフ配管29の途中に設けてある。このリリーフバルブ291は、常態においては閉成しているが、圧縮機21の吐出側の圧力が予め決められた大きさを超える場合に開成して高圧冷媒の通過を許容するものである。
高圧冷媒導入経路30は、三方弁261に連結され、その途中で分岐して、一方が中庫内熱交換器24bの入口側の冷媒配管25に、他方が左庫内熱交換器24cの入口側の冷媒配管25にそれぞれ合流する高圧冷媒導入配管31により構成された経路である。この高圧冷媒導入経路30は、圧縮機21で圧縮された冷媒(高圧冷媒)を導入する経路である。
ここで三方弁261は、圧縮機21で圧縮した冷媒を庫外熱交換器22へ送出する第1送出状態と、圧縮機21で圧縮した冷媒を高圧冷媒導入経路30へ送出する第2送出状態との間で択一的に切り換え可能な切換バルブである。かかる三方弁261の切換動作は、コントローラ80から与えられる指令に応じて行われる。
上記高圧冷媒導入配管31においては、分岐個所の下流側にそれぞれ高圧導入バルブ321,322が設けてある。高圧導入バルブ321,322は、開閉可能な弁体であり、コントローラ80から開指令が与えられた場合には開成して冷媒の通過を許容する一方、閉指令が与えられた場合には閉成して冷媒の通過を規制するものである。
つまり、中庫内熱交換器24b及び左庫内熱交換器24cは、高圧冷媒導入経路30を通じて圧縮機21で圧縮された冷媒が供給された場合には、通過する冷媒を凝縮させて対象となる商品収容庫3(中庫3b、左庫3c)の内部空気を加熱するものである。
放熱経路40は、中庫内熱交換器24b及び左庫内熱交換器24cの出口側に接続された冷媒配管25のそれぞれの途中で分岐され、第2合流点P3で合流し、庫外熱交換器22に隣接する態様で配設された加熱側熱交換器42の入口側に接続された放熱配管41により構成された経路である。この放熱経路40は、中庫内熱交換器24b及び左庫内熱交換器24cの少なくとも一方で凝縮した冷媒を加熱側熱交換器42に供給するためのものである。
加熱側熱交換器42は、上記庫外熱交換器22との間で、それぞれを通過する冷媒が互いに熱交換可能な態様で配設してあり、庫外熱交換器22を通過する冷媒との間で熱交換させる他、自身を通過する冷媒と周囲空気との間で熱交換させて、該冷媒を放熱させるものである。すなわち、放熱経路40は、庫内熱交換器24で凝縮した冷媒を導入して加熱側熱交換器42に送出し、該加熱側熱交換器42にて該冷媒を放熱させるものである。
このような放熱経路40を構成する放熱配管41の途中、すなわち中庫内熱交換器24b及び左庫内熱交換器24cの出口側に接続された冷媒配管25との分岐点から第2合流点P3に至る途中に、それぞれ逆止弁431,432が設けてある。
戻経路50は、加熱側熱交換器42の出口側に接続され、かつ主経路20を構成する冷媒配管25、すなわち庫外熱交換器22と第1分岐点P1(図示の例では内部熱交換器28)との間の冷媒配管25の第3合流点P4に接続する戻配管51により構成されたものである。この戻経路50は、加熱側熱交換器42で放熱した冷媒を導入し、主経路20の庫内熱交換器24の上流側に戻すためのものである。
また、図3に示すように、庫外熱交換器22と第3合流点P4との間の冷媒配管25、並びに戻配管51の途中には逆止弁263,52が設けてある。
以上のような構成を有する冷媒回路10においては、上記構成の他に、バイパス経路60、帰還経路70、入口冷媒温度センサS1、出口冷媒温度センサS2、庫内温度センサS3及びコントローラ80を備えている。
バイパス経路60は、第1分岐点P1から右庫内熱交換器24aの上流側に配設された膨張機構231に至る冷媒配管25の途中の第2分岐点P5から分岐し、庫外熱交換器22と第3合流点P4(図示の例では逆止弁263)との間の冷媒配管25の途中の第4合流点P6に合流する態様で設けられたバイパス配管61により構成してある。このようなバイパス配管61には、バイパスバルブ621及び膨張ユニット622が設けてある。
バイパスバルブ621は、開閉可能な弁体であり、コントローラ80から開指令が与えられた場合には開成して冷媒の通過を許容する一方、閉指令が与えられた場合には閉成して冷媒の通過を規制するものである。
膨張ユニット622は、バイパスバルブ621と第4合流点P6との間に設けてある。この膨張ユニット622は、例えばキャピラリーチューブや電子膨張弁等により構成してあり、通過する冷媒を減圧して断熱膨張させるものである。
帰還経路70は、リリーフ配管29のうちリリーフバルブ291の下流側(庫外熱交換器22側)の第3分岐点P7から分岐し、第1合流点P2(図示の例では内部熱交換器28)と圧縮機21の入口側との間の冷媒配管25の途中の第5合流点P8に合流する態様で設けられた帰還配管71により構成してある。このような帰還配管71には、帰還バルブ72が設けてある。
帰還バルブ72は、開閉可能な弁体であり、コントローラ80から開指令が与えられた場合には開成して冷媒の通過を許容する一方、閉指令が与えられた場合には閉成して冷媒の通過を規制するものである。
入口冷媒温度センサS1は、右庫内熱交換器24a、中庫内熱交換器24b及び左庫内熱交換器24cのそれぞれの入口近傍に配設されている。これら入口冷媒温度センサS1は、自身が配設された部位を通過する冷媒の温度を検出するもので、より詳細には、右庫内熱交換器24a、中庫内熱交換器24b及び左庫内熱交換器24cのそれぞれに供給される冷媒の温度を検出する検出手段である。
出口冷媒温度センサS2は、右庫内熱交換器24a、中庫内熱交換器24b及び左庫内熱交換器24cのそれぞれの出口近傍に配設されている。これら出口冷媒温度センサS2は、自身が配設された部位を通過する冷媒の温度を検出するもので、より詳細には、右庫内熱交換器24a、中庫内熱交換器24b及び左庫内熱交換器24cのそれぞれから吐出される冷媒の温度を検出する検出手段である。
庫内温度センサS3は、各商品収容庫3の内部に配設されている。これら庫内温度センサS3は、自身が配設された商品収容庫3の内部温度(庫内温度)を検出する検出手段である。
これら入口冷媒温度センサS1、出口冷媒温度センサS2及び庫内温度センサS3で検出された冷媒温度は、検出信号としてコントローラ80に与えられる。
コントローラ80は、メモリ80Mに記憶されたプログラムやデータに従って、あるいは図示せぬ自販機制御部からの指令に従って冷媒回路装置の動作を統括的に制御するものである。ここで、自販機制御部は、冷媒回路装置が適用される自動販売機の動作を統括的に制御するものである。
メモリ80Mには、種々の情報が記憶されており、本実施の形態における特徴的なものとしては、各商品収容庫3のオン温度(例えば5℃)及びオフ温度(例えば0℃)、目標過熱度の初期値、過熱度目標値、目標過熱度の設定範囲(例えば3〜10℃)が記憶されている。また、メモリ80Mには、各センサS1,S2,S3から与えられた検出結果、各商品収容庫3の冷却運転時間が一時的に記憶されるようになっている。
このようなコントローラ80は、種々の制御部を備えているが、本実施の形態における特徴的な制御回路として、圧縮機制御部82、膨張機構制御部84及び過熱度目標値更新処理部86を備えている。
圧縮機制御部82は、圧縮機21の駆動を制御するもので、温度比較部821及び駆動処理部822を備えている。温度比較部821は、庫内温度センサS3から与えられた検出信号に含まれる検出結果(庫内温度)と、オン温度若しくはオフ温度とを比較するものである。駆動処理部822は、温度比較部821を通じての比較結果に応じて圧縮機21を駆動若しくは駆動停止させるものである。
膨張機構制御部84は、各膨張機構231,232,233の開度を個別に制御するものである。膨張機構制御部84は、図5に示すように、過熱度目標値に基づいて対象となる膨張機構231,232,233の開度を設定し、該膨張機構231,232,233の下流側に位置する庫内熱交換器24に流れる冷媒流量を制御するものである。より詳細には、膨張機構制御部84は、庫内熱交換器24の出口冷媒温度センサS2の検出した冷媒温度から入口冷媒温度センサS1の検出した冷媒温度を差し引いた温度差として定義される過熱度を計測し、計測した過熱度がメモリ80Mに記憶された過熱度目標値に一致するようフィードバック制御を行うものである。このように膨張機構制御部84は、各庫内熱交換器24の過熱度を計測しその計測結果に応じて各膨張機構231,232,233の開度を個別に制御するものである。
過熱度目標値更新処理部86は、膨張機構制御部84が各膨張機構231,232,233の開度を制御する際の指標となる過熱度目標値を更新するものであり、算出部861、時間比較部862及び目標値設定部863を備えている。
算出部861は、対象となる商品収容庫3の庫内温度における一定時間毎の検出結果から温度勾配、すなわち庫内温度低下速度を測定し、これにより当該商品収容庫3の庫内温度がオフ温度に達するまでの時間、すなわち該商品収容庫3に配設された庫内熱交換器24の稼働終了までの稼働可能時間を算出するものである。時間比較部862は、算出部861を通じて算出された各稼働可能時間を比較するものである。
目標値設定部863は、時間比較部862による比較結果に応じて過熱度目標値を設定するものである。より詳細には、目標値設定部863は、時間比較部862の比較結果により、稼働可能時間が相対的に長い庫内熱交換器24の過熱度目標値を予め決められた大きさ(例えば1℃)だけ減算させて設定するものである。新たに設定された過熱度目標値は、メモリ80Mに記憶されることになる。
以上のような構成を有する冷媒回路装置は、次のようにして商品収容庫3に収容された商品を冷却、あるいは加熱する。
まず、CCC運転(すべての商品収容庫3の内部空気を冷却する運転)を行う場合について説明する。この場合、コントローラ80は、三方弁261を第1送出状態にさせ、高圧導入バルブ321,322、バイパスバルブ621及び帰還バルブ72に閉指令を与え、出口側低圧電磁弁262b,262cに対して開指令を与える。また、コントローラ80は、膨張機構231,232,233の開度を所定の大きさに設定する。これにより圧縮機21で圧縮された冷媒は、図6に示すように循環する。
すなわち、圧縮機21で圧縮された冷媒は、第1送出状態にある三方弁261を経由して庫外熱交換器22に至る。庫外熱交換器22に至った冷媒は、該庫外熱交換器22を通過中に、周囲空気(外気)に放熱して凝縮する。庫外熱交換器22で凝縮した冷媒は、第1分岐点P1で3つに分岐した後、膨張機構231,232,233でそれぞれ断熱膨張し、右庫内熱交換器24a、中庫内熱交換器24b及び左庫内熱交換器24cに至り、各庫内熱交換器24で蒸発して商品収容庫3の内部空気から熱を奪い、該内部空気を冷却する。冷却された内部空気は、各庫内送風ファンF1の駆動により内部を循環し、これにより各商品収容庫3に収容された商品は、循環する内部空気に冷却される。各庫内熱交換器24で蒸発した冷媒は、第1合流点P2で合流した後、圧縮機21に吸引され、圧縮機21に圧縮されて上述した循環を繰り返す。
次に、HCC運転(左庫3cの内部空気を加熱し、かつ右庫3a及び中庫3bの内部空気を冷却する運転)を行う場合について説明する。この場合、コントローラ80は、三方弁261を第2送出状態にさせ、出口側低圧電磁弁262c、高圧導入バルブ321、バイパスバルブ621及び帰還バルブ72に対して閉指令を与え、出口側低圧電磁弁262b、高圧導入バルブ322に対して開指令を与える。また、コントローラ80は、膨張機構233を全閉状態に設定し、膨張機構231,232の開度を所定の大きさに設定する。これにより圧縮機21で圧縮された冷媒は、図7に示すように循環する。
すなわち、圧縮機21で圧縮された冷媒は、第2送出状態にある三方弁261を経由して高圧冷媒導入配管31を通過し、左庫内熱交換器24cに至る。左庫内熱交換器24cに至った冷媒は、該左庫内熱交換器24cを通過中に、左庫3cの内部空気とそれぞれ熱交換し、該内部空気に放熱して凝縮する。これにより、左庫3cの内部空気を加熱する。加熱された内部空気は、庫内送風ファンF1の駆動により、左庫3cの内部を循環し、これにより左庫3cに収容された商品は、循環する内部空気に加熱される。
左庫内熱交換器24cで凝縮した冷媒は、放熱経路40を構成する放熱配管41を通過して加熱側熱交換器42に至り、該加熱側熱交換器42で周囲空気に放熱する。加熱側熱交換器42で放熱した冷媒は、戻配管51を通過して第3合流点P4より主経路20に流入し、膨張機構231,232でそれぞれ断熱膨張して右庫内熱交換器24a及び中庫内熱交換器24bに至り、これら右庫内熱交換器24a及び中庫内熱交換器24bで蒸発して右庫3a及び中庫3bの内部空気からそれぞれ熱を奪い、該内部空気を冷却する。冷却された内部空気は、庫内送風ファンF1の駆動により右庫3a及び中庫3bのそれぞれの内部を循環し、これにより右庫3a及び中庫3bに収容された商品は冷却される。右庫内熱交換器24a及び中庫内熱交換器24bで蒸発した冷媒は、圧縮機21に吸引され、圧縮機21に圧縮されて上述した循環を繰り返す。
更に、加熱単独運転(ここでは左庫3cのみの内部空気を加熱する運転)を行う場合について説明する。この場合、コントローラ80は、出口側低圧電磁弁262b,262c及び高圧導入バルブ321に対して閉指令を与え、高圧導入バルブ322、バイパスバルブ621及び帰還バルブ72に対して開指令を与える。また、コントローラ80は、膨張機構231,232,233を全閉状態に設定する。これにより圧縮機21で圧縮された冷媒は、図8に示すように循環する。
すなわち、圧縮機21で圧縮された冷媒は、第2送出状態にある三方弁261を経由して高圧冷媒導入配管31を通過し、左庫内熱交換器24cに至る。左庫内熱交換器24cに至った冷媒は、該左庫内熱交換器24cを通過中に、左庫3cの内部空気と熱交換し、該内部空気に放熱して凝縮する。これにより左庫3cの内部空気を加熱する。加熱された内部空気は、庫内送風ファンF1の駆動により、左庫3cの内部を循環し、これにより左庫3cに収容された商品は、循環する内部空気に加熱される。
左庫内熱交換器24cで凝縮した冷媒は、放熱経路40を構成する放熱配管41を通過して加熱側熱交換器42に至り、該加熱側熱交換器42で放熱する。加熱側熱交換器42で放熱した冷媒は、戻配管51を通過して第3合流点P4より主経路20に流入し、第1分岐点P1及び第2分岐点P5を通過してバイパス経路60を構成するバイパス配管61に至る。バイパス配管61を通過する冷媒は、膨張ユニット622で断熱膨張し、断熱膨張した冷媒は、第4合流点P6を通過して庫外熱交換器22に至る。庫外熱交換器22に至った冷媒は、加熱側熱交換器42を通過する冷媒と熱交換を行うことで該庫外熱交換器22を通過中に蒸発する。庫外熱交換器22で蒸発した冷媒は、リリーフ配管29を経由して、第3分岐点P7から帰還配管71に流入し、帰還配管71を通過する。帰還配管71を通過した冷媒は、第5合流点P8を経由してから圧縮機21に吸引され、圧縮機21に圧縮されて上述した循環を繰り返す。
このように、バイパス経路60は、自身に設けられたバイパスバルブ621が開成して加熱側熱交換器42で放熱した冷媒を導入し、庫外熱交換器22に該冷媒を低圧冷媒として供給することにより庫外熱交換器22で蒸発させるものであり、帰還経路70は、自身に設けられた帰還バルブ72が開成することにより庫外熱交換器22で蒸発させた冷媒を導入し、圧縮機21に帰還させるものである。
上述したような冷媒回路装置を構成するコントローラ80は、上述したCCC運転やHCC運転のように複数の庫内熱交換器24が自身を通過する冷媒を周囲空気と熱交換させて蒸発させる蒸発器として機能する冷却運転を行う場合、次のような圧縮機駆動処理及び過熱度目標値更新処理を実施する。
図9は、図4に示したコントローラ80(圧縮機制御部82)が実行する圧縮機駆動処理の処理内容を示すフローチャートである。
この圧縮機駆動処理においてコントローラ80の圧縮機制御部82は、圧縮機21が駆動中に各庫内温度センサS3から庫内温度を入力した場合(ステップS101:Yes,ステップS102:Yes)、温度比較部821を通じて検出した庫内温度がオフ温度を下回るものがあるか否かの比較を行う(ステップS103)。
一つの商品収容庫3でも庫内温度がオフ温度を下回るものがあれば(ステップS103:Yes)、コントローラ80(圧縮機制御部82)は、駆動処理部822を通じて圧縮機21を駆動停止させ(ステップS104)、その後に手順をリターンさせて今回の処理を終了する。これによれば、各商品収容庫3の庫内温度は上昇する方向に推移することになる。
庫内温度がオフ温度を下回るものがなければ(ステップS103:No)、コントローラ80(圧縮機制御部82)は、圧縮機21の駆動を維持したままその後に手順をリターンさせて今回の処理を終了する。これによれば、各商品収容庫3の庫内温度は低下する方向に推移することになる。
一方、圧縮機21が駆動停止中に各庫内温度センサS3から庫内温度を入力した場合(ステップS101:No,ステップS105:Yes)、温度比較部821を通じて検出した庫内温度がオン温度を上回るものがあるか否かの比較を行う(ステップS106)。
一つの商品収容庫3でも庫内温度がオン温度を上回るものがあれば(ステップS106:Yes)、コントローラ80(圧縮機制御部82)は、駆動処理部822を通じて圧縮機21を駆動させ(ステップS107)、その後に手順をリターンさせて今回の処理を終了する。これによれば、各商品収容庫3の庫内温度は低下する方向に推移することになる。
庫内温度がオン温度を上回るものがなければ(ステップS106:No)、コントローラ80(圧縮機制御部82)は、圧縮機21の駆動停止を維持したままその後に手順をリターンさせて今回の処理を終了する。これによれば、各商品収容庫3の庫内温度は上昇する方向に推移することになる。
このように圧縮機駆動処理は、一つの庫内温度がオン温度を上回れば圧縮機21を駆動させ、一つの庫内温度がオフ温度を下回れば圧縮機21を駆動停止させる処理である。
図10は、図4に示したコントローラ80(過熱度目標値更新処理部86)が実行する過熱度目標値更新処理の処理内容を示すフローチャートである。尚、この過熱度目標値更新処理は、上述したHCC運転が行われている場合に所定のタイムスケジュールで実行されるものとして説明する。
コントローラ80の過熱度目標値更新処理部86は、算出部861を通じて対象となる庫内熱交換器24の稼働可能時間、すなわち右庫内熱交換器24aの稼働可能時間T1及び中庫内熱交換器24bの稼働可能時間T2を算出する(ステップS201)。これら右庫内熱交換器24aの稼働可能時間T1及び中庫内熱交換器24bの稼働可能時間T2の算出は次のようにして行われる。
過熱度目標値更新処理部86は、算出部861を通じて対象となる商品収容庫3(右庫3a及び中庫3b)の庫内温度における一定時間毎の検出結果から温度勾配、すなわち庫内温度低下速度を測定し、これによりこれら右庫3a及び中庫3bのそれぞれの庫内温度がオフ温度に達するまでの時間、すなわち稼働可能時間T1,T2を算出する。
稼働可能時間T1,T2を算出した過熱度目標値更新処理部86は、時間比較部862を通じて稼働可能時間T1と稼働可能時間T2とのどちらが長いかの比較を行って、右庫3aの稼働可能時間T1の方が中庫3bの稼働可能時間T2よりも長い場合には(ステップS202:Yes)、目標値設定部863を通じて右庫内熱交換器24aの上流側における膨張機構231の過熱度目標値を減算処理する(ステップS203)。すなわち、過熱度目標値更新処理部86は、目標値設定部863を通じて現状の過熱度目標値から予め決められた大きさの(例えば1℃)だけ減算する。
過熱度目標値の減算処理を行った過熱度目標値更新処理部86は、目標値設定部863を通じてかかる処理後の過熱度目標値がメモリ80Mに記憶された設定範囲内にあるか否かを比較する(ステップS204)。
減算処理後の過熱度目標値が設定範囲内にあれば(ステップS204:Yes)、過熱度目標値更新処理部86は、目標値設定部863を通じて減算処理後の過熱度目標値を新たな過熱度目標値とする右庫3aの膨張機構231の更新処理を行い(ステップS205)、その後に手順をリターンさせて今回の処理を終了する。
これによれば、更新された過熱度目標値は、メモリ80Mに記憶されることとなり、その後に膨張機構制御部84による膨張機構231の開度制御の指標として用いられることとなる。
減算処理後の過熱度目標値が設定範囲内になければ(ステップS204:No)、過熱度目標値更新処理部86は、目標値設定部863を通じて現状の過熱度目標値を維持し(ステップS206)、その後に手順をリターンさせて今回の処理を終了する。
一方、ステップS201で稼働可能時間T1,T2を算出した過熱度目標値更新処理部86は、時間比較部862を通じて稼働可能時間T1と稼働可能時間T2とのどちらが長いかの比較を行って、中庫3bの稼働可能時間T2の方が右庫3aの稼働可能時間T1よりも長い場合には(ステップS202:No,ステップS207:Yes)、目標値設定部863を通じて中庫内熱交換器24bの上流側における膨張機構232の過熱度目標値を減算処理する(ステップS208)。すなわち、過熱度目標値更新処理部86は、目標値設定部863を通じて現状の過熱度目標値から予め決められた大きさ(例えば1℃)だけ減算する。
過熱度目標値の減算処理を行った過熱度目標値更新処理部86は、目標値設定部863を通じてかかる処理後の過熱度目標値がメモリ80Mに記憶された設定範囲内にあるか否かを比較する(ステップS209)。
減算処理後の過熱度目標値が設定範囲内にあれば(ステップS209:Yes)、過熱度目標値更新処理部86は、目標値設定部863を通じて減算処理後の過熱度目標値を新たな過熱度目標値とする中庫3bの膨張機構232の更新処理を行い(ステップS210)、その後に手順をリターンさせて今回の処理を終了する。
これによれば、更新された過熱度目標値は、メモリ80Mに記憶されることとなり、その後に膨張機構制御部84による膨張機構232の開度制御の指標として用いられることとなる。
ところで、ステップS201で稼働可能時間T1,T2を算出した過熱度目標値更新処理部86は、時間比較部862を通じて稼働可能時間T1と稼働可能時間T2とのどちらが長いかの比較を行ってこれらの長さが等しい場合(ステップS202:No,ステップS207:No)、あるいは上記ステップS209で減算処理後の過熱度目標値が設定範囲内になければ(ステップS209:No)、過熱度目標値更新処理部86は、目標値設定部863を通じて現状の過熱度目標値を維持し(ステップS211)、その後に手順をリターンさせて今回の処理を終了する。
以上説明したような本実施の形態である冷媒回路装置によれば、庫外熱交換器22と加熱側熱交換器42とが、それぞれを通過する冷媒が互いに熱交換可能な態様で配設してあり、バイパス経路60が、自身に設けられたバイパスバルブ621が開成して加熱側熱交換器42で放熱した冷媒を導入し、庫外熱交換器22に該冷媒を低圧冷媒として供給することにより庫外熱交換器22で蒸発させ、帰還経路70が、自身に設けられた帰還バルブ72が開成することにより庫外熱交換器22で蒸発させた冷媒を導入して圧縮機21に帰還させるので、加熱側熱交換器42を通過する冷媒と庫外熱交換器22を通過する冷媒との間での熱交換を行うことができ、これにより外気温度に関係なく良好に加熱単独運転を行うことができ、消費電力量の低減化を図ることができる。
また、上記冷媒回路装置によれば、コントローラ80が、複数の庫内熱交換器24が自身を通過する冷媒を周囲空気と熱交換させて蒸発させる蒸発器として機能する冷却運転を行う場合に、これら蒸発器として機能する庫内熱交換器24が配設された商品収容庫3の庫内温度の温度勾配に基づいて算出した稼働可能時間を比較し、稼働可能時間が相対的に長い庫内熱交換器24の過熱度目標値を減算させて更新し、該庫内熱交換器24の上流側の膨張機構231,232,233の開度を更新した過熱度目標値に一致させるよう制御するので、各商品収容庫3における庫内熱交換器24の稼働時間を一致させることが可能になり、これにより圧縮機21や、庫内送風ファンF1及び庫外送風ファンF2の駆動時間を最小限にすることができ、消費電力量の低減化を図ることができる。
更に、上記冷媒回路装置によれば、コントローラ80が、商品収容庫3のいずれか一つの庫内温度が予め決められたオン温度に達したら場合には圧縮機21を駆動させる一方、庫内温度が予め決められたオフ温度に達した場合には圧縮機21を駆動停止させるので、これによっても圧縮機21の駆動時間を最小限にすることができ、消費電力量の低減化を図ることができる。
以上、本発明の好適な実施の形態について説明したが、本発明これに限定されるものではなく、種々の変更を行うことができる。
上述した実施の形態では、商品収容庫3のいずれか一つの庫内温度が予め決められたオン温度に達したら場合には圧縮機21を駆動させる一方、庫内温度が予め決められたオフ温度に達した場合には圧縮機21を駆動停止させる圧縮機駆動処理を行っていたが、本発明においては、この圧縮機駆動処理を必ずしも行う必要がない。
そして、このような圧縮機駆動処理を行わない場合において、本発明では、冷却運転中だけでなく、HCC運転(冷却運転)が一旦停止した際に過熱度目標値の更新を行い、その後に冷却運転が再開したときの過熱度目標値として用いることもできる。このように冷却運転が一旦停止して過熱度目標値の更新を行う場合には、前回の冷却運転時における蒸発器として機能する各庫内熱交換器24(右庫3a及び中庫3b)の稼働時間を比較し、稼働時間が長い庫内熱交換器24の過熱度目標値を例えば1℃減算させて更新するようにすればよい。
これによっても圧縮機21や、庫内送風ファンF1及び庫外送風ファンF2の駆動時間を最小限にすることができ、消費電力量の低減化を図ることができる。
以上のように、本発明に係る冷媒回路装置は、例えば缶入り飲料やペットボトル入り飲料等の商品を販売する自動販売機に有用である。
1 本体キャビネット
10 冷媒回路
20 主経路
21 圧縮機
22 庫外熱交換器
231 膨張機構
232 膨張機構
233 膨張機構
24 庫内熱交換器
24a 右庫内熱交換器
24b 中庫内熱交換器
24c 左庫内熱交換器
25 冷媒配管
261 三方弁
262b 出口側低圧電磁弁
262c 出口側低圧電磁弁
30 高圧冷媒導入経路
31 高圧冷媒導入配管
321 高圧導入バルブ
322 高圧導入バルブ
40 放熱経路
41 放熱配管
42 加熱側熱交換器
50 戻経路
51 戻配管
60 バイパス経路
61 バイパス配管
621 バイパスバルブ
70 帰還経路
71 帰還配管
72 帰還バルブ
80 コントローラ
82 圧縮機制御部
821 温度比較部
822 駆動処理部
84 膨張機構制御部
86 過熱度目標値更新処理部
861 算出部
862 時間比較部
863 目標値設定部
S1 入口冷媒温度センサ
S2 出口冷媒温度センサ
S3 庫内温度センサ

Claims (3)

  1. 対象室の内部に配設された庫内熱交換器と、前記庫内熱交換器を通過した冷媒を吸引して圧縮する圧縮機と、前記圧縮機で圧縮した冷媒を凝縮させる庫外熱交換器とを冷媒配管で順次接続して構成した主経路と、
    自身に設けられた導入バルブが開成することにより前記圧縮機で圧縮した冷媒を導入し、かつ前記庫内熱交換器のうち加熱対象となる室に配設されたものに供給することにより、該庫内熱交換器で冷媒を凝縮させる高圧冷媒導入経路と、
    庫内熱交換器で凝縮した冷媒を導入して加熱側熱交換器に供給し、該加熱側熱交換器にて該冷媒を放熱させる放熱経路と、
    加熱側熱交換器で放熱した冷媒を導入し、前記主経路の庫内熱交換器の上流側に戻す戻経路と、
    前記主経路における庫内熱交換器の上流側に開度変更が可能となる態様でそれぞれ設けられ、前記庫外熱交換器及び前記加熱側熱交換器のいずれかを通過した冷媒を断熱膨張させる膨張機構と
    を備えた冷媒回路装置において、
    前記庫外熱交換器と前記加熱側熱交換器とがそれぞれを通過する冷媒が互いに熱交換可能な態様で配設してあり、
    自身に設けられたバイパスバルブが開成して前記加熱側熱交換器で放熱した冷媒を導入し、前記庫外熱交換器に該冷媒を低圧冷媒として供給することにより庫外熱交換器で蒸発させるバイパス経路と、
    自身に設けられた帰還バルブが開成することにより前記庫外熱交換器で蒸発させた冷媒を導入し、前記圧縮機に帰還させる帰還経路と、
    複数の庫内熱交換器が自身を通過する冷媒を周囲空気と熱交換させて蒸発させる蒸発器として機能する冷却運転を行う場合に、これら蒸発器として機能する庫内熱交換器が配設された室の温度勾配に基づいて算出した各庫内熱交換器の稼働終了までの稼働可能時間を比較し、稼働可能時間が相対的に長い庫内熱交換器の過熱度目標値を減算させて更新し、該庫内熱交換器の上流側の膨張機構の開度を更新した過熱度目標値に一致させるよう制御する制御手段と
    を備えたことを特徴とする冷媒回路装置。
  2. 前記制御手段は、前回の冷却運転時における蒸発器として機能する各庫内熱交換器の稼働時間を比較し、稼働時間が相対的に長い庫内熱交換器の過熱度目標値を減算させて更新し、該庫内熱交換器の上流側の膨張機構の開度を更新した過熱度目標値に一致させるよう制御することを特徴とする請求項1に記載の冷媒回路装置。
  3. 前記制御手段は、前記室のいずれか一つの室内温度が予め決められたオン温度に達したら場合には前記圧縮機を駆動させる一方、前記室内温度が予め決められたオフ温度に達した場合には前記圧縮機を駆動停止させることを特徴とする請求項1又は請求項2に記載の冷媒回路装置。
JP2010173685A 2010-08-02 2010-08-02 冷媒回路装置 Active JP5636797B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010173685A JP5636797B2 (ja) 2010-08-02 2010-08-02 冷媒回路装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010173685A JP5636797B2 (ja) 2010-08-02 2010-08-02 冷媒回路装置

Publications (2)

Publication Number Publication Date
JP2012032110A true JP2012032110A (ja) 2012-02-16
JP5636797B2 JP5636797B2 (ja) 2014-12-10

Family

ID=45845736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010173685A Active JP5636797B2 (ja) 2010-08-02 2010-08-02 冷媒回路装置

Country Status (1)

Country Link
JP (1) JP5636797B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108120042A (zh) * 2016-11-29 2018-06-05 富士电机株式会社 制冷剂回路装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05189651A (ja) * 1992-01-17 1993-07-30 Fuji Electric Co Ltd 自動販売機の冷却装置
JP2004061072A (ja) * 2002-07-31 2004-02-26 Fuji Electric Retail Systems Co Ltd 自動販売機
JP2006011604A (ja) * 2004-06-23 2006-01-12 Fuji Electric Holdings Co Ltd 自動販売機の冷却加熱装置
JP2008102683A (ja) * 2006-10-18 2008-05-01 Fuji Electric Retail Systems Co Ltd 自動販売機
JP2010033520A (ja) * 2008-07-31 2010-02-12 Fuji Electric Retail Systems Co Ltd 自動販売機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05189651A (ja) * 1992-01-17 1993-07-30 Fuji Electric Co Ltd 自動販売機の冷却装置
JP2004061072A (ja) * 2002-07-31 2004-02-26 Fuji Electric Retail Systems Co Ltd 自動販売機
JP2006011604A (ja) * 2004-06-23 2006-01-12 Fuji Electric Holdings Co Ltd 自動販売機の冷却加熱装置
JP2008102683A (ja) * 2006-10-18 2008-05-01 Fuji Electric Retail Systems Co Ltd 自動販売機
JP2010033520A (ja) * 2008-07-31 2010-02-12 Fuji Electric Retail Systems Co Ltd 自動販売機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108120042A (zh) * 2016-11-29 2018-06-05 富士电机株式会社 制冷剂回路装置

Also Published As

Publication number Publication date
JP5636797B2 (ja) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5636797B2 (ja) 冷媒回路装置
JP2012002427A (ja) 冷媒回路装置
JP5369971B2 (ja) 冷媒回路装置
JP5915365B2 (ja) 冷媒回路装置
JP2018080861A (ja) 冷媒回路装置
JP5482501B2 (ja) 冷媒回路装置
JP5915364B2 (ja) 冷媒回路装置
JP5417961B2 (ja) 冷媒回路装置
JP5488260B2 (ja) 冷媒回路装置
JP2010065992A (ja) 冷媒回路装置
JP2012037064A (ja) 冷媒回路装置
JP5458872B2 (ja) 冷却加熱装置
JP5434534B2 (ja) 冷却加熱装置
JP5560937B2 (ja) 冷媒回路装置
JP5459091B2 (ja) 冷却加熱装置
JP5488261B2 (ja) 冷媒回路装置
JP2012007861A (ja) 冷媒回路装置
JP5370108B2 (ja) 冷却加熱装置
JP2010169361A (ja) 冷却加熱装置
JP2012002430A (ja) 冷媒回路装置
JP5125851B2 (ja) 冷媒回路装置
JP4957677B2 (ja) 冷媒回路装置
JP6387672B2 (ja) 冷媒回路装置
JP2012002431A (ja) 冷媒回路装置
JP2011113480A (ja) 冷却加熱装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5636797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250