JP2012031476A - HIGH STRENGTH α+β TYPE TITANIUM ALLOY PLATE EXCELLENT IN STRENGTH ANISOTROPY AND METHOD OF MANUFACTURING THE SAME - Google Patents
HIGH STRENGTH α+β TYPE TITANIUM ALLOY PLATE EXCELLENT IN STRENGTH ANISOTROPY AND METHOD OF MANUFACTURING THE SAME Download PDFInfo
- Publication number
- JP2012031476A JP2012031476A JP2010172463A JP2010172463A JP2012031476A JP 2012031476 A JP2012031476 A JP 2012031476A JP 2010172463 A JP2010172463 A JP 2010172463A JP 2010172463 A JP2010172463 A JP 2010172463A JP 2012031476 A JP2012031476 A JP 2012031476A
- Authority
- JP
- Japan
- Prior art keywords
- titanium alloy
- strength
- mass
- phase
- alloy plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Metal Rolling (AREA)
Abstract
Description
本発明は、強度異方性に優れた高強度α+β型チタン合金板および高強度α+β型チタン合金板の製造方法に関するものである。 The present invention relates to a high strength α + β type titanium alloy plate excellent in strength anisotropy and a method for producing a high strength α + β type titanium alloy plate.
チタン合金は、軽量で且つ強度、靭性、耐食性に優れたものであることから、近年、航空機産業や化学工業の分野を中心に広く実用化されている。一方で、チタン合金は加工性の悪い金属材料であって、成形加工にかかる製造コストが他の加工材料と比較して非常に高くなるという大きな欠点を有している。例えば、α+β型チタン合金の代表でもあるTi−6Al−4V合金は、難加工材であって常温加工性が悪く、冷間加工によってチタン合金板とすることは現在の技術では非常に困難であるのが実情となっている。 Titanium alloys are lightweight and excellent in strength, toughness, and corrosion resistance, and have recently been widely put into practical use mainly in the fields of aircraft industry and chemical industry. On the other hand, a titanium alloy is a metal material with poor workability, and has a major drawback that the manufacturing cost for forming is very high compared to other processing materials. For example, Ti-6Al-4V alloy, which is representative of α + β type titanium alloy, is a difficult-to-process material and has poor room temperature workability, and it is very difficult to form a titanium alloy plate by cold working. This is the actual situation.
そこで、Ti−6Al−4V合金を板状に加工するには、パック圧延という手法が採用されている。このパック圧延という手法は、一旦、熱間圧延によって加工したTi−6Al−4V合金板を、複数枚層状に重ね合わせて軟鋼製の収納箱(パック)に入れ、所定の温度より下がらないように保温しつつ熱間圧延により所望の薄板とする方法である。しかしながら、このパック圧延は、パックを製造するための軟鋼カバーやパック溶接が必要で、また、チタン合金板同士の拡散接合を阻止するため、重ね合わせるチタン合金板の表面に離型剤を塗布しなければならないなど、冷間圧延と比較して作業性が極めて悪く、多大な費用を必要とするうえに、更には、熱間圧延に適した温度域が700℃前後と限られているため、加熱温度、加熱時間等、加工上の制約も多いという様々な問題を有している。 Therefore, in order to process the Ti-6Al-4V alloy into a plate shape, a method called pack rolling is employed. In this pack rolling method, Ti-6Al-4V alloy plates once processed by hot rolling are stacked in a plurality of layers and placed in a mild steel storage box (pack) so as not to fall below a predetermined temperature. This is a method of forming a desired thin plate by hot rolling while keeping the temperature. However, this pack rolling requires a mild steel cover and pack welding for manufacturing the pack, and in order to prevent diffusion bonding between the titanium alloy plates, a release agent is applied to the surface of the titanium alloy plates to be overlapped. Since the workability is extremely poor compared to cold rolling and requires a great amount of cost, and furthermore, the temperature range suitable for hot rolling is limited to around 700 ° C, There are various problems such as many restrictions on processing such as heating temperature and heating time.
このような実情に対し、特許文献1や特許文献2で、チタン母材中のAl、VおよびMoの含有量を規定し、且つ、Fe、Ni、Co、Crから選ばれる少なくとも1種の合金元素を適量含有させることによって、Ti−6Al−4V合金並みの強度を有すると共に、超塑性加工性や熱間加工性においてTi−6Al−4V合金より優れたチタン合金が得ることができるという提案がなされている。 For such a situation, Patent Document 1 and Patent Document 2 specify the contents of Al, V and Mo in the titanium base material, and at least one alloy selected from Fe, Ni, Co and Cr There is a proposal that by including an appropriate amount of elements, a titanium alloy having strength similar to that of Ti-6Al-4V alloy and superior to Ti-6Al-4V alloy in superplastic workability and hot workability can be obtained. Has been made.
また、特許文献3や特許文献4として、Al含有量を1.0〜4.5%レベルに低減すると共に、V含有量を1.5〜4.5%、Mo含有量を0.1〜2.5%に規定し、或いは更に少量のFeやNiを含有させることによって、高強度を維持しつつ冷間圧延性を高め、更には溶接性(特に溶接熱影響部の強度)も高めたチタン合金に関する提案がなされている。 Moreover, as patent document 3 and patent document 4, while reducing Al content to a 1.0-4.5% level, V content is 1.5-4.5%, Mo content is 0.1-0.1%. By prescribing 2.5% or containing a small amount of Fe or Ni, the cold rolling property is improved while maintaining high strength, and the weldability (particularly the strength of the heat affected zone) is also improved. Proposals for titanium alloys have been made.
このようなチタン合金は、冷間加工性と高強度を兼ね備え、且つ溶接性も改善された点で優れたものであるとはいえるが、一方で、優れた冷間加工性を確保することの必要上、塑性加工時の変形抵抗が抑えられているため強度が低くなり、高強度とは記載されてはいるものの、焼鈍後の0.2%耐力で784MPa程度を確保するのが限界で、それ以上に強度を高めることは不可能であり、例えば、コイル製造は殆ど不可能であった。 Such a titanium alloy is excellent in that it has both cold workability and high strength and has improved weldability, but on the other hand, it can ensure excellent cold workability. Necessary, since the deformation resistance during plastic working is suppressed, the strength is low, and although high strength is described, it is the limit to ensure about 784 MPa with 0.2% proof stress after annealing, It was impossible to increase the strength beyond that, and for example, it was almost impossible to manufacture a coil.
このような問題を解決することを目的に開発されたチタン合金が、本出願人が先に提案した特許文献5に記載の発明である。このチタン合金はα+β型チタン合金であり、その成分組成を、全率固溶型β安定化元素の少なくとも1種をMo当量で2.0〜4.5質量%、共析型β安定化元素の少なくとも1種をFe当量で0.3〜2.0質量%を含み、更にSi:0.1〜1.5質量%、およびC:0.01〜0.15質量%を含有すると共に、Al当量が3質量%超5.5質量%以下としたものである。 A titanium alloy developed for the purpose of solving such problems is the invention described in Patent Document 5 previously proposed by the present applicant. This titanium alloy is an α + β type titanium alloy, and its component composition is at least one of the solid solution type β stabilizing elements of 2.0 to 4.5% by mass in Mo equivalent, eutectoid type β stabilizing element. And containing at least one of these in an Fe equivalent of 0.3 to 2.0 mass%, further containing Si: 0.1 to 1.5 mass%, and C: 0.01 to 0.15 mass%, The Al equivalent is more than 3% by mass and 5.5% by mass or less.
このような成分組成のα+β型チタン合金とすることで、焼鈍後の0.2%耐力で813MPa程度以上、抗張力で882MPa程度以上、限界冷延率が40%程度以上とすることができ、コイル製造については可能になった。尚、限界冷延率とは、工業的観点からすると、僅かな割れが発生してもその割れがある程度(例えば5mm程度)で進展が止まっている状態から、板の表面まで割れが進展し始める限界の板厚減少率のことを示し、以下の本発明の説明においても多用する。 By using an α + β-type titanium alloy having such a component composition, the 0.2% yield strength after annealing can be about 813 MPa or more, the tensile strength can be about 882 MPa or more, and the critical cold rolling rate can be about 40% or more. Manufacturing has become possible. From the industrial viewpoint, the critical cold rolling rate means that even if a slight crack occurs, the crack starts to progress from the state where the crack stops to a certain extent (for example, about 5 mm) to the surface of the plate. This indicates the limit thickness reduction rate, and is frequently used in the following description of the present invention.
しかしながら、このα+β型チタン合金を冷間圧延でチタン合金板に加工した場合、L方向(板の圧延方向)とT方向(板の圧延垂直方向)での強度の差異が極めて顕著に現れることが多く、この成分組成のα+β型チタン合金を用いて、強度異方性が改善されたチタン合金板を確実に得ることができる技術を開発することが従来からの課題となっていた。 However, when this α + β-type titanium alloy is processed into a titanium alloy plate by cold rolling, the difference in strength between the L direction (the rolling direction of the plate) and the T direction (the vertical direction of rolling of the plate) may appear very markedly. In many cases, it has been a conventional problem to develop a technique capable of reliably obtaining a titanium alloy plate having improved strength anisotropy using an α + β type titanium alloy having this component composition.
本発明は、上記従来の実情に鑑みてなされたもので、高強度で、且つ強度異方性にも優れたα+β型チタン合金板を提供することを課題とするものである。 The present invention has been made in view of the above-described conventional situation, and an object of the present invention is to provide an α + β-type titanium alloy plate having high strength and excellent strength anisotropy.
請求項1記載の発明は、全率固溶型β安定化元素の少なくとも1種をMo当量で2.0〜4.5質量%、共析型β安定化元素の少なくとも1種をFe当量で0.3〜2.0質量%、α安定化元素の少なくとも1種をAl当量で3質量%超5.5質量%以下含有すると共に、更にSiを0.1〜1.5質量%、Cを0.01〜0.15質量%含有し、残部がTiおよび不可避的不純物であるα+β型チタン合金板であって、α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値が60°以下であり、且つ、前記傾角が70°以上であるα相の、全α相に占める面積率が40%以下であることを特徴とする強度異方性に優れた高強度α+β型チタン合金板である。 According to the first aspect of the present invention, at least one of the solid solution type β-stabilizing elements is 2.0 to 4.5% by mass in Mo equivalent, and at least one of the eutectoid β-stabilizing elements is Fe equivalent. 0.3 to 2.0% by mass, containing at least one kind of α-stabilizing element in an Al equivalent of more than 3% by mass and not more than 5.5% by mass, and further containing Si in an amount of 0.1 to 1.5% by mass, C Is an α + β type titanium alloy plate containing 0.01 to 0.15% by mass with the balance being Ti and inevitable impurities, and the normal of the (0001) plane of the α phase and the normal of the rolled surface The average value of the inclination angle is 60 ° or less, and the α phase having the inclination angle of 70 ° or more has an excellent area of 40% or less in the area ratio of all α phases. It is a high strength α + β type titanium alloy plate.
請求項2記載の発明は、請求項1記載の高強度α+β型チタン合金板の製造方法であって、請求項1に記載の組成を有するチタン合金鋳塊から、分塊圧延、熱間圧延、中間焼鈍、冷間圧延、最終焼鈍という順の工程で前記チタン合金板の製造を行い、前記熱間圧延の開始温度を、Tβを超え、1300℃以下の温度とすることを特徴とする強度異方性に優れた高強度α+β型チタン合金板の製造方法である。 Invention of Claim 2 is a manufacturing method of the high intensity | strength alpha + beta type titanium alloy plate of Claim 1, Comprising: From the titanium alloy ingot which has a composition of Claim 1, it is a piece rolling, hot rolling, The titanium alloy plate is manufactured in the order of intermediate annealing, cold rolling, and final annealing, and the hot rolling start temperature is set to a temperature exceeding Tβ and 1300 ° C. or less. This is a method for producing a high-strength α + β-type titanium alloy plate excellent in directionality.
本発明によると、高強度で且つ、強度異方性にも優れたα+β型チタン合金板を得ることができる。更には、チタン本来の優れた耐久性はもとより、高い機械的強度に加えて、優れた強度異方性を有しているので、航空機部材のほか、熱交換器用のプレート材、Tiゴルフヘッド材料、各種線材、棒材、登山用品や釣り具などの民生品等の用途に広く適用することができる。 According to the present invention, an α + β type titanium alloy plate having high strength and excellent strength anisotropy can be obtained. Furthermore, in addition to the excellent durability inherent in titanium, in addition to high mechanical strength, it has excellent strength anisotropy, so in addition to aircraft members, plate materials for heat exchangers, Ti golf head materials It can be widely applied to various uses such as various wire rods, rods, mountain climbing equipment and fishing goods.
本発明者らは、特許文献5に記載の高強度α+β型チタン合金を用いて、L方向(板の圧延方向)とT方向(板の圧延垂直方向)での強度の差異が少なく、強度異方性が改善されたチタン合金板を確実に得ることができるα+β型チタン合金板に関する技術を開発するために、鋭意、実験、研究を進めた。その結果、α相の(0001)面の法線と圧延面の法線とがなす傾角(図1に示すθ)を適切に制御することで、チタン合金板の強度異方性を向上できることを見出し、本発明の完成に至った。 The present inventors use the high-strength α + β-type titanium alloy described in Patent Document 5, and there is little difference in strength between the L direction (the rolling direction of the plate) and the T direction (the vertical direction of rolling of the plate). In order to develop a technology related to α + β-type titanium alloy plates that can reliably obtain titanium alloy plates with improved isotropic properties, we have been diligently experimenting and researching. As a result, the strength anisotropy of the titanium alloy sheet can be improved by appropriately controlling the inclination angle (θ shown in FIG. 1) formed by the normal of the (0001) plane of the α phase and the normal of the rolled surface. The headline, the present invention has been completed.
以下、本発明を実施形態に基づき詳細に説明する。本発明では、チタン合金板の成分組成に加え、α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値と、その傾角が70°以上であるα相の面積率を規定するが、まず、成分組成について説明する。 Hereinafter, the present invention will be described in detail based on embodiments. In the present invention, in addition to the component composition of the titanium alloy plate, the average value of the inclination angle formed between the normal line of the (0001) plane of the α phase and the normal line of the rolled surface, and the area of the α phase where the inclination angle is 70 ° or more The ratio is defined, but first, the component composition will be described.
(全率固溶型β安定化元素の少なくとも1種をMo当量で2.0〜4.5質量%)
Moを代表とする全率固溶型β安定化元素は、β相の体積比を増加させると共に、β相に固溶してチタン合金の強度上昇に寄与する。また、チタン母材中に固溶して微細な等軸晶組織を作りやすくする性質もあり、優れた強度・延性バランスを確保するうえで有用な元素である。こうした全率固溶型β安定化元素による作用を有効に発揮させるためには、Mo当量で2.0質量%以上、より好ましくは2.5質量%以上含有させる必要がある。一方、その含有量が多すぎると、β焼鈍後の延性が低下するほか、耐食性が増大して、冷間圧延後に行われる最終焼鈍時に生成する酸化スケールおよびαケースと呼ばれる酸素が固溶した地金の除去が困難になり、加工性を阻害するばかりではなくチタン合金全体の密度を高め、チタン合金が本来有しているはずの高比強度という特性を損なうため、その含有量は、Mo当量で4.5質量%以下、より好ましくは3.5質量%以下とする必要がある。
(At least one of all solid solution type β-stabilizing elements is 2.0 to 4.5% by mass in terms of Mo)
The total solid solution type β stabilizing element represented by Mo increases the volume ratio of the β phase and contributes to the increase in the strength of the titanium alloy by forming a solid solution in the β phase. In addition, it has the property of easily forming a fine equiaxed crystal structure by dissolving in a titanium base material, and is an element useful for securing an excellent balance between strength and ductility. In order to effectively exert the effect of such a solid solution type β-stabilizing element, it is necessary to contain 2.0% by mass or more, more preferably 2.5% by mass or more in terms of Mo equivalent. On the other hand, if the content is too large, the ductility after β annealing will decrease, the corrosion resistance will increase, and the oxygen scale called α scale, which is generated at the time of final annealing after cold rolling, will be dissolved in oxygen. It becomes difficult to remove gold, not only hinders workability, but also increases the density of the entire titanium alloy and impairs the properties of the high specific strength that the titanium alloy should originally have. And 4.5 mass% or less, more preferably 3.5 mass% or less.
尚、全率固溶型β安定化元素としては、代表的な元素としてMoを挙げることができるが、Moと同様の効果を奏する全率固溶型β安定化元素としては、V、Ta、Nb等も挙げることができる。全率固溶型β安定化元素としてV、Ta、Nb等を含有する場合には、[Mo+1/1.5・V+1/5・Ta+1/3.6・Nb]から求めることができるMo当量が、2.0〜4.5質量%の範囲となるようにして調整する必要がある。 In addition, although Mo can be mentioned as a typical element as a total solid solution type | mold beta stabilization element, As a full percentage solid solution type | mold beta stabilization element which has the effect similar to Mo, V, Ta, Nb etc. can also be mentioned. When V, Ta, Nb or the like is contained as the total solid solution type β-stabilizing element, the Mo equivalent that can be obtained from [Mo + 1 / 1.5 · V + 1/5 · Ta + 1 / 3.6 · Nb] is It is necessary to adjust so that it may become the range of 2.0-4.5 mass%.
(共析型β安定化元素の少なくとも1種をFe当量で0.3〜2.0質量%)
Feを代表とする共析型β安定化元素は、少量の添加でチタン合金の強度を高めることができるほか、熱間加工性を向上させる作用も有している。また、その理由は明確ではないが、特にFeをMoと共存させると冷間加工性を高めることができる。こうした共析型β安定化元素による作用を有効に発揮させるためには、共析型β安定化元素をFe当量で0.3質量%以上、より好ましくは0.4質量%以上含有させる必要がある。一方、その含有量が多すぎると、β焼鈍後の延性が大きく低下するほか、鋳塊製造時の偏析が顕著になって品質安定性を阻害する原因となるので、その含有量は、Fe当量で2.0質量%以下、より好ましくは1.5質量%以下とする必要がある。
(At least one eutectoid β-stabilizing element is 0.3 to 2.0% by mass in terms of Fe)
The eutectoid β-stabilizing element typified by Fe can increase the strength of the titanium alloy with a small amount of addition, and has an effect of improving hot workability. The reason for this is not clear, but it is possible to improve the cold workability especially when Fe coexists with Mo. In order to effectively exert the effect of such a eutectoid β-stabilizing element, it is necessary to contain the eutectoid β-stabilizing element in an Fe equivalent of 0.3% by mass or more, more preferably 0.4% by mass or more. is there. On the other hand, if the content is too large, the ductility after β annealing is greatly reduced, and segregation during ingot production becomes prominent and the quality stability is hindered. And 2.0 mass% or less, more preferably 1.5 mass% or less.
尚、共析型β安定化元素としては、代表的な元素としてFeを挙げることができるが、Feと同様の効果を奏する共析β安定化元素としては、Cr、Ni、Co、Mn等も挙げることができる。共析型β安定化元素としてCr、Ni、Co、Mn等を含有する場合には、[Fe+1/2・Cr+1/2・Ni+1/1.5・Co+1/1.5・Mn]から求めることができるFe当量が、0.3〜2.0質量%の範囲となるようにして調整する必要がある。 As eutectoid β-stabilizing elements, Fe can be mentioned as a representative element, but as eutectoid β-stabilizing elements having the same effect as Fe, Cr, Ni, Co, Mn, etc. Can be mentioned. When Cr, Ni, Co, Mn, etc. are contained as the eutectoid β stabilizing element, it can be obtained from [Fe + 1/2 · Cr + 1/2 · Ni + 1 / 1.5 · Co + 1 / 1.5 · Mn]. It is necessary to adjust so that the Fe equivalent can be in the range of 0.3 to 2.0 mass%.
(α安定化元素の少なくとも1種をAl当量で3質量%超5.5質量%以下)
Alを代表とするα安定化元素は、チタン合金の強度向上に寄与する元素であり、その含有量がAl当量で3質量%以下であると、チタン合金が強度不足となる。尚、強度と冷間加工性の兼ね合いを考慮すると、より好ましいα安定化元素のAl当量の下限は3.5質量%である。一方、その含有量が5.5質量%を超えると限界冷延率が低くなって冷間加工性が低下し、所定の厚さに圧延するまでの冷間圧延および焼鈍の回数を増やす必要が生じ、コストの上昇につながる。
(At least one kind of α-stabilizing element is more than 3% by mass and 5.5% by mass or less in terms of Al equivalent)
The α-stabilizing element typified by Al is an element that contributes to improving the strength of the titanium alloy. If the content thereof is 3% by mass or less in terms of Al equivalent, the titanium alloy becomes insufficient in strength. In view of the balance between strength and cold workability, the more preferable lower limit of the Al equivalent of the α-stabilizing element is 3.5% by mass. On the other hand, if the content exceeds 5.5% by mass, the critical cold rolling rate is lowered, the cold workability is lowered, and it is necessary to increase the number of cold rolling and annealing until rolling to a predetermined thickness. And cost increases.
尚、α安定化元素としては、代表的な元素としてAlを挙げることができるが、Alと同様の効果を奏するα安定化元素としては、Sn、Zr等も挙げることができる。α安定化元素としてSn、Zr等を含有する場合には、[Al+1/3・Sn+1/6・Zr]から求めることができるAl当量が、3質量%超5.5質量%以下の範囲となるようにして調整する必要がある。 As the α-stabilizing element, Al can be exemplified as a representative element, but examples of the α-stabilizing element that exhibits the same effect as Al include Sn and Zr. When Sn, Zr, etc. are contained as an α-stabilizing element, the Al equivalent that can be obtained from [Al + 1/3 · Sn + 1/6 · Zr] is in the range of more than 3% by mass and less than 5.5% by mass. Need to be adjusted.
(Siを0.1〜1.5質量%)
前述した全率固溶型β安定化元素、共析型β安定化元素、α安定化元素に関する要件を満たすチタン合金は、限界冷延率が40%程度以上の優れた冷間加工性を有するα+β型チタン合金であるが、このままでは強度特性や溶接性は必ずしも十分ではなく、更にSiを0.1〜1.5質量%含有させることで所望の特性を満足させることができる。
(0.1 to 1.5% by mass of Si)
Titanium alloys that meet the requirements for the above-mentioned solid solution β-stabilizing element, eutectoid β-stabilizing element, and α-stabilizing element have excellent cold workability with a critical cold rolling rate of about 40% or more. Although it is an α + β type titanium alloy, the strength characteristics and weldability are not necessarily sufficient as they are, and desired characteristics can be satisfied by further containing 0.1 to 1.5 mass% of Si.
すなわち、Siは、α+β型チタン合金の冷延性に悪影響を殆ど及ぼすことなく強度特性を高める作用を有し、また、溶接熱影響部についても強度と延性を高める作用を発揮する。こうした作用をより効果的に発揮させるためには、前述したように、Siを0.1〜1.5質量%という極めて限られた範囲で含有させることが必要であり、Siの含有率が0.1質量%未満である場合は、強度不足になる傾向があるほか、溶接部の強度−延性バランスの向上効果も不十分になる。一方、Siの含有率が1.5質量%を超えると、冷延性が乏しくなる。より好ましいSiの含有率の下限値は0.2質量%、上限値は1.0質量%である。 That is, Si has an effect of improving the strength characteristics with little adverse effect on the cold-rollability of the α + β-type titanium alloy, and also exhibits an effect of improving the strength and ductility of the weld heat affected zone. In order to exhibit these actions more effectively, as described above, it is necessary to contain Si in a very limited range of 0.1 to 1.5% by mass, and the Si content is 0. When the amount is less than 1% by mass, the strength tends to be insufficient, and the effect of improving the strength-ductility balance of the welded portion becomes insufficient. On the other hand, when the Si content exceeds 1.5% by mass, the cold-rollability becomes poor. The lower limit value of the Si content is more preferably 0.2% by mass, and the upper limit value is 1.0% by mass.
(Cを0.01〜0.15質量%)
Cは、α+β型チタン合金の優れた延性を維持しつつ強度特性を更に高める作用を有し、また、溶接熱影響部については、若干の延性低下を招くものの強度を著しく高める作用を有しており、このようなCの添加効果によってチタン合金母材の強度や延性は一段と高められ、溶接熱影響部の強度と延性を更に高めることができる。
(C is 0.01 to 0.15% by mass)
C has the effect of further improving the strength characteristics while maintaining the excellent ductility of the α + β type titanium alloy, and the weld heat-affected zone has the effect of remarkably increasing the strength while causing a slight decrease in ductility. Thus, the strength and ductility of the titanium alloy base material are further enhanced by such an effect of addition of C, and the strength and ductility of the weld heat affected zone can be further increased.
以上の作用をより効果的に発揮させるには、Cを0.01〜0.15質量%という極めて限られた範囲で含有させる必要があり、Cの含有率が0.01質量%未満である場合は、強度不足になる。一方、Cの含有率が0.15質量%を超えると、TiCのような炭化物の顕著な析出硬化によって冷延性が損なわれることになる。より好ましいCの含有率の下限値は0.02質量%、上限値は0.12質量%である。 In order to exhibit the above effect more effectively, it is necessary to contain C in an extremely limited range of 0.01 to 0.15% by mass, and the C content is less than 0.01% by mass. If so, the strength will be insufficient. On the other hand, if the C content exceeds 0.15% by mass, the cold-rollability is impaired due to the remarkable precipitation hardening of carbides such as TiC. The lower limit value of the C content is more preferably 0.02% by mass, and the upper limit value is 0.12% by mass.
(Oを0.07〜0.25質量%)
本発明では、先に示したSiやCに加えて、少量のO(酸素)を含有させることで、α+β型チタン合金の優れた延性に悪影響を殆ど及ぼすことなく強度特性を一段と高めることができるので好ましい。以上の作用をより効果的に発揮させるには、Oを0.07質量%以上、より好ましくは0.1質量%以上含有させる必要がある。一方で、Oの含有量が多くなりすぎると、冷間加工性が低下するほか、過度の強度上昇により延性も低下してくるので、Oの含有量は0.25質量%以下、より好ましくは0.18質量%以下に止める必要がある。
(O is 0.07 to 0.25% by mass)
In the present invention, by adding a small amount of O (oxygen) in addition to the Si and C described above, the strength characteristics can be further improved without adversely affecting the excellent ductility of the α + β type titanium alloy. Therefore, it is preferable. In order to exhibit the above effect more effectively, it is necessary to contain O in an amount of 0.07% by mass or more, more preferably 0.1% by mass or more. On the other hand, if the O content is too large, the cold workability is lowered, and the ductility is also lowered due to an excessive increase in strength. Therefore, the O content is 0.25% by mass or less, more preferably It is necessary to stop at 0.18% by mass or less.
本発明において、全率固溶型β安定化元素、共析型β安定化元素、α安定化元素を、本発明に規定する要件で適量含有するα+β型チタン合金に、適量のSiとC、更には適量のOを含有させることで、前述したような作用効果が発揮される理由は明確には解明されていないが、以下に説明するような理由が考えられる。 In the present invention, an appropriate amount of Si and C in an α + β type titanium alloy containing an appropriate amount of a solid solution type β stabilizing element, a eutectoid β stabilizing element, and an α stabilizing element according to the requirements stipulated in the present invention, Furthermore, the reason why the above-described effects are exhibited by containing an appropriate amount of O has not been clearly clarified, but the reasons described below are conceivable.
すなわち、適量のSiを含有させることによって冷延性を損なうことなく強度特性が高められる理由については、Siはβ相中に固溶して強度向上に寄与するにもかかわらず延性には大きな阻害要因とはならず、また固溶限を超えてSiを含有させてもシリサイドが形成されることによって、β相中のSi濃度はある一定値以下に保たれる。従って、過度のシリサイドの生成により延性が阻害されない範囲にSiの含有量を抑えてやれば、高延性を維持しつつ強度特性が高められると考えられる。 That is, the reason why the strength characteristics can be improved without impairing the cold-rolling property by containing an appropriate amount of Si is that Si is a solid inhibitor in the β phase and contributes to the improvement of the strength. In addition, even if Si is contained beyond the solid solubility limit, the Si concentration in the β phase is kept below a certain value by forming silicide. Therefore, it is considered that if the Si content is suppressed in a range where the ductility is not hindered by excessive generation of silicide, the strength characteristics can be enhanced while maintaining high ductility.
更には、適量のSiを含有させると、β相中に生成するシリサイドによって、溶接熱影響部における結晶組織の粗大化が抑制され、且つ、シリサイドの析出によって、Tiがトラップされてβ相が安定し、或いは、固溶Siの変態抑制作用によって、残留β相が増大し、これらの効果が相俟って溶接性が改善されると考えられる。 Furthermore, when an appropriate amount of Si is contained, the coarseness of the crystal structure in the weld heat affected zone is suppressed by the silicide formed in the β phase, and Ti is trapped by the precipitation of the silicide and the β phase is stabilized. However, it is considered that the residual β phase increases due to the transformation inhibiting action of the solute Si, and these effects combine to improve the weldability.
また、Cもα相中に固溶して強度向上に寄与するが、α相の延性にはそれほど大きな阻害要因とはならない。しかも、固溶限を超えるCが含有されていても、カーバイドが形成されることでα相中のC濃度はある一定値以下に保たれる。従って、過度のカーバイドの生成により延性が阻害されない範囲にCの含有量を抑えてやれば、高延性を維持しつつ強度特性が高められると考えられる。 C also dissolves in the α phase and contributes to improving the strength, but it does not become a significant hindrance to the ductility of the α phase. Moreover, even if C exceeding the solid solubility limit is contained, the C concentration in the α phase is kept below a certain value by forming carbide. Therefore, if the C content is suppressed in a range where the ductility is not hindered by excessive carbide generation, it is considered that the strength characteristics can be enhanced while maintaining high ductility.
尚、SiおよびCは、前述した作用効果に加えてチタン合金の耐熱性を高める作用も発揮する。 Si and C exhibit the effect of increasing the heat resistance of the titanium alloy in addition to the above-described effects.
また、Oは、α相、β相の双方に固溶して固溶強化作用を発揮するが、何れの相においても固溶量が多くなると延性を阻害するので、その含有量は前述した範囲の含有量、すなわち、極少量に抑えるべきである。 Further, O dissolves in both the α phase and the β phase and exerts a solid solution strengthening action. However, if the amount of the solid solution increases in any phase, the ductility is inhibited, so the content thereof is in the range described above. Should be kept to a minimum, that is, a very small amount.
以上説明したチタン合金には、前述した元素以外の不純物元素が不可避的に混入してくることがあるが、その特性を阻害しない限りそれら不可避的不純物元素の微量の含有は許容される。また、前記特性を維持しつつ更に他の特性を与えるため、必要であれば、これら不可避的不純物元素を積極的に含有させることは可能である。それら積極的に含有させても問題のない元素としては、耐食性向上効果を発揮する白金族元素(Pb、Ru、Ir、Inなど:好ましくは0.03〜0.2質量%程度)、耐熱性向上効果を発揮するP(好ましくは0.05質量%程度以下)、強度向上効果を発揮するN(好ましくは0.03質量%程度以下)などを例示することができる。 In the titanium alloy described above, impurity elements other than the elements described above may be inevitably mixed, but a trace amount of these unavoidable impurity elements is allowed as long as the characteristics are not impaired. Further, in order to provide other characteristics while maintaining the above characteristics, it is possible to positively contain these inevitable impurity elements if necessary. As elements that do not cause any problems even if they are positively contained, platinum group elements (Pb, Ru, Ir, In, etc .: preferably about 0.03 to 0.2% by mass) exhibiting an effect of improving corrosion resistance, heat resistance P (preferably about 0.05% by mass or less) exhibiting an improvement effect, N (preferably about 0.03% by mass or less) exhibiting a strength improvement effect, and the like can be exemplified.
以上説明した成分組成のα+β型チタン合金は、高レベルの強度特性を有しながら優れた延性を有し、更には、溶接性においても優れた特性を有するものであり、具体的には、α+β温度域で焼鈍した後の0.2%耐力が813MPa程度以上、抗張力で882MPa程度以上、限界冷延率が40%程度以上を示すものとなる。 The α + β type titanium alloy having the component composition described above has excellent ductility while having a high level of strength characteristics, and further has excellent characteristics in weldability. Specifically, α + β The 0.2% yield strength after annealing in the temperature range is about 813 MPa or more, the tensile strength is about 882 MPa or more, and the critical cold rolling rate is about 40% or more.
しかしながら、この高強度α+β型チタン合金を冷間圧延でチタン合金板に加工した場合、L方向(板の圧延方向)とT方向(板の圧延垂直方向)での強度の差異が極めて顕著に現れることが多く、単に、このような成分組成のα+β型チタン合金を用いただけでは、強度異方性が改善されたチタン合金板を確実に得ることはできない。そこで、本発明では、α+β型チタン合金板のα相の(0001)面の法線と圧延面の法線とがなす傾角の平均値と、その傾角が70°以上であるα相の全α相に占める面積率を規定することで高強度α+β型チタン合金板の強度異方性を改善した。 However, when this high-strength α + β-type titanium alloy is processed into a titanium alloy plate by cold rolling, the difference in strength between the L direction (the rolling direction of the plate) and the T direction (the vertical direction of rolling of the plate) appears extremely remarkably. In many cases, simply by using an α + β type titanium alloy having such a component composition, a titanium alloy plate with improved strength anisotropy cannot be reliably obtained. Therefore, in the present invention, the average value of the inclination angle formed by the normal line of the (0001) plane of the α phase of the α + β type titanium alloy sheet and the normal line of the rolled surface, and the total α of the α phase whose inclination angle is 70 ° or more. By defining the area ratio in the phase, the strength anisotropy of the high strength α + β type titanium alloy plate was improved.
(α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値)
チタン合金板においては、α相の(0001)面の法線と圧延面の法線とがなす傾角が大きすぎると、そのL方向(板の圧延方向)とT方向(板の圧延垂直方向)の強度がともに低下するが、特にL方向の強度はT方向に比べ大きく低下し、その結果、強度の差異が極めて顕著に現れ、強度異方性が増大する。本発明では、α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値が60°以下であることを要件とする。好ましい上限は55°、より好ましい上限は50°である。
(Average value of the inclination angle between the normal of the (0001) plane of the α phase and the normal of the rolled surface)
In a titanium alloy plate, if the inclination angle between the normal of the (0001) plane of the α phase and the normal of the rolled surface is too large, the L direction (the rolling direction of the plate) and the T direction (the vertical direction of rolling of the plate) In particular, the strength in the L direction is significantly lower than that in the T direction, and as a result, the difference in strength appears extremely remarkably and the strength anisotropy increases. In the present invention, it is a requirement that the average value of the inclination angle formed by the normal line of the (0001) plane of the α phase and the normal line of the rolled surface is 60 ° or less. A preferable upper limit is 55 °, and a more preferable upper limit is 50 °.
尚、本発明では、α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値の下限は特に限定しない。しかしながら、分塊圧延、熱間圧延、冷間圧延の圧延方向を、何れも同一方向に行う通常の量産製造条件で、下限を設定する場合、その下限は30°程度である。 In the present invention, the lower limit of the average value of the inclination angles formed by the normal line of the (0001) plane of the α phase and the normal line of the rolled surface is not particularly limited. However, when the lower limit is set under normal mass production conditions in which the rolling directions of the partial rolling, hot rolling, and cold rolling are all in the same direction, the lower limit is about 30 °.
(傾角が70°以上であるα相の全α相に占める面積率)
また、α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値が60°以下であっても、傾角が70°以上であるα相の全α相に占める面積率が大きすぎると、T方向の強度は増大するものの、逆にL方向は低下し、強度異方性が増大する。本発明では、傾角が70°以上であるα相の全α相に占める面積率が40%以下であることを要件とする。好ましい上限は30%、より好ましい上限は20%である。
(Area ratio of the α phase with an inclination angle of 70 ° or more in the total α phase)
In addition, even if the average value of the inclination angle formed by the normal line of the (0001) plane of the α phase and the normal line of the rolled surface is 60 ° or less, the area of the α phase having the inclination angle of 70 ° or more in the total α phase. If the rate is too large, the strength in the T direction increases, but conversely the L direction decreases and the strength anisotropy increases. In the present invention, it is a requirement that the area ratio of the α phase having an inclination angle of 70 ° or more in all α phases is 40% or less. A preferable upper limit is 30%, and a more preferable upper limit is 20%.
一方、傾角が70°以上であるα相の全α相に占める面積率の下限については、本発明では特に規定はせず、0%であっても構わない。 On the other hand, the lower limit of the area ratio of the α phase having an inclination angle of 70 ° or more in all α phases is not particularly defined in the present invention, and may be 0%.
(製造条件)
次に、本発明のα+β型チタン合金板の製造方法について説明する。通常のチタン合金板は、分塊圧延→熱間圧延→中間焼鈍→冷間圧延→最終焼鈍といった各工程間に、随時ブラスト、酸洗処理を入れて製造される。
(Production conditions)
Next, the manufacturing method of the (alpha) + (beta) type titanium alloy plate of this invention is demonstrated. Ordinary titanium alloy sheets are manufactured by performing blasting and pickling treatment at any time between each process of block rolling → hot rolling → intermediate annealing → cold rolling → final annealing.
本発明のチタン板を製造するための製造条件を、本発明者らが鋭意検討したところ、以下に示す製造条件を採用することで、本発明で意図する強度異方性に優れた高強度α+β型チタン合金板を確実に製造することができることを確認した。 The present inventors diligently studied the production conditions for producing the titanium plate of the present invention, and by adopting the production conditions shown below, the high strength α + β excellent in strength anisotropy intended in the present invention was obtained. It was confirmed that a type titanium alloy plate could be manufactured reliably.
その製造条件は、分塊圧延、冷間圧延、最終焼鈍については従来とほぼ同様の条件を採用するものの、熱間圧延の開始温度を従来採用されていた条件よりも高温にすること、すなわち、Tβを超える温度とすることである。 Although the production conditions are the same as the conventional conditions for the batch rolling, cold rolling, and final annealing, the hot rolling start temperature is higher than the conditions conventionally adopted, that is, The temperature exceeds Tβ.
より具体的に説明すると、本発明のα+β型チタン合金板は、鋳塊をTβ以上で分塊(鍛造または圧延)して圧延スラブを得た後、当該スラブをTβを超える温度域に加熱して熱間圧延する。その後、600℃〜Tβの温度範囲で焼鈍し、脱スケール処理を行って熱延材を得る。該熱延材を用いた冷延は、圧下率で40%以下程度を目安として、600℃〜Tβの温度範囲で焼鈍する操作を繰り返し行って、所定の板厚を得る。その後、600℃〜(Tβ-170℃)程度の温度域で最終焼鈍を行う。尚、焼鈍はバッチ式ないしは連続式のどちらでも構わない。 More specifically, the α + β-type titanium alloy plate of the present invention is obtained by rolling the ingot at Tβ or more (forging or rolling) to obtain a rolled slab, and then heating the slab to a temperature range exceeding Tβ. And hot rolling. Then, it anneals in the temperature range of 600 degreeC-T (beta), performs a descaling process, and obtains a hot-rolled material. In cold rolling using the hot-rolled material, an operation of annealing in a temperature range of 600 ° C. to Tβ is repeatedly performed with a rolling reduction of about 40% or less as a guideline to obtain a predetermined plate thickness. Then, final annealing is performed in a temperature range of about 600 ° C. to (Tβ-170 ° C.). The annealing may be either a batch type or a continuous type.
従来の熱間圧延は、上記圧延スラブをTβ以下のα+β温度域(通常、[Tβ-30℃]±20℃前後)に加熱して行われていた。これは、加工性に優れた等軸組織を得るためには、一般にTβ以下での熱延が必要とされているからである。しかし、本発明者らの検討の結果、熱延温度を従来よりも高温、すなわち、Tβを超える温度まで加熱してから行うことよって、前記したような本発明のα+β型チタン合金板組織を得ることができることが分かった。熱延時の加熱温度がTβ以下、すなわち従来のような比較的低めの温度範囲であると、α相の平均傾角は60°を超え、傾角70°以上のα相の面積率も40%を超えることとなって、その結果、強度異方性が大きく出てしまうこととなる。一方、熱延温度の上限は、前記した組織制御の観点からは特に規定されないが、あまり加熱しすぎると、スラブの表面の酸化が進みすぎて、歩留まりの低下など生産上の問題が生じることがあるので、1300℃以下とする。 Conventional hot rolling is performed by heating the rolled slab to an α + β temperature range of Tβ or less (usually around [Tβ-30 ° C.] ± 20 ° C.). This is because, in order to obtain an equiaxed structure excellent in workability, generally, hot rolling at Tβ or less is required. However, as a result of the study by the present inventors, the α + β type titanium alloy sheet structure of the present invention as described above is obtained by performing the hot rolling after heating to a temperature higher than the conventional temperature, that is, a temperature exceeding Tβ. I found out that I could do it. If the heating temperature during hot rolling is Tβ or less, that is, a relatively low temperature range as in the prior art, the average inclination angle of the α phase exceeds 60 °, and the area ratio of the α phase with the inclination angle of 70 ° or more also exceeds 40%. As a result, the strength anisotropy is greatly increased. On the other hand, the upper limit of the hot rolling temperature is not particularly defined from the viewpoint of the above-described structure control, but if it is heated too much, the surface of the slab is oxidized too much and production problems such as a decrease in yield may occur. Therefore, the temperature is set to 1300 ° C. or lower.
尚、Tβとはβ変態点のことであり、α+β型チタン合金板の成分組成にもよるが、本発明のα+β型チタン合金板ではおおよそ970℃程度である。 Incidentally, Tβ is a β transformation point, which is about 970 ° C. in the α + β type titanium alloy plate of the present invention, although it depends on the component composition of the α + β type titanium alloy plate.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.
本実施例では、まず、CCIM(コールドクルーシブル誘導溶解法)により、本発明の成分組成を満足するTi−4.5Al−2Mo−1.6V−0.5Fe−0.3Si−0.03C(全て質量%)でなるチタン合金鋳塊を鋳造した。この鋳塊の大きさはφ100mmの円柱形で、約10kgである。この鋳塊を用いて分塊圧延を行い、その後は放冷して厚み75mm、幅100mmの板形状の分塊圧延材を得た。更に、表1に示す熱延開始温度まで加熱した後に直ちに熱間圧延を実施し、スケール除去を行い厚み約4.5mmの熱延板を得た。 In this example, first, Ti-4.5Al-2Mo-1.6V-0.5Fe-0.3Si-0.03C satisfying the component composition of the present invention was obtained by CCIM (Cold Crucible Induction Melting Method) (all A titanium alloy ingot made of (mass%) was cast. The size of the ingot is a cylindrical shape of φ100 mm and is about 10 kg. This ingot was used for ingot rolling, and then allowed to cool to obtain a plate-like ingot rolled material having a thickness of 75 mm and a width of 100 mm. Furthermore, hot rolling was performed immediately after heating to the hot rolling start temperature shown in Table 1, scale removal was performed, and a hot rolled sheet having a thickness of about 4.5 mm was obtained.
次いで、大気炉にて、850℃で3分間加熱してから空冷する焼鈍処理、スケール除去、冷間圧延率30%の冷間圧延を繰り返す工程を、計3回実施した後、大気炉にて、表1に示す各条件(焼鈍温度、焼鈍時間)で焼鈍処理(最終焼鈍)を行い、スケール除去を行って厚み1.0mmのチタン合金板を製造した。 Next, after repeating the annealing process of heating at 850 ° C. for 3 minutes and then air cooling in an atmospheric furnace, removing the scale, and cold rolling at a cold rolling rate of 30%, the process was repeated three times, and then in the atmospheric furnace. Then, annealing treatment (final annealing) was performed under the conditions shown in Table 1 (annealing temperature, annealing time), scale removal was performed, and a 1.0 mm thick titanium alloy plate was manufactured.
本実施例では、製造した各チタン合金板の金属組織の観察・測定と、強度異方性の評価を夫々下記の要領で行った。 In this example, observation and measurement of the metal structure of each manufactured titanium alloy plate and evaluation of strength anisotropy were performed as follows.
<α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値、傾角が70°以上のα相が全α相に占める面積率>
本実施例では、上記各パラメータの測定を、電界放出型走査顕微鏡(Field Emission Scanning Electron Microscope:FESEM)(日本電子社製、JSM5410)に、後方錯乱電子回析像(Electron Back Scattering(Scattered) Pattern:EBSP)システムを搭載した結晶方位解析法で行った。この測定方法を用いたのは、EBSP法は他の測定方法と比較して高分解能であり、高精度な測定ができるためである。まず、測定原理について説明する。
<Average value of the inclination angle between the normal of the (0001) plane of the α phase and the normal line of the rolled surface, the area ratio of the α phase with the inclination angle of 70 ° or more in the total α phase>
In this example, the measurement of each of the above parameters was performed on a field emission scanning electron microscope (FESEM) (manufactured by JEOL Ltd., JSM5410) on a back-scattered electron diffraction image (Electron Back Scattered). : EBSP) system mounted crystal orientation analysis method. This measurement method was used because the EBSP method has higher resolution than other measurement methods and can perform measurement with high accuracy. First, the measurement principle will be described.
EBSP法は、FESEMの鏡筒内にセットした試料に電子線を照射してスクリーン上にEBSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は3次元オイラー角として、位置座標(x、y)などと共に記録される。このプロセスが全測定点に対して自動的に行われるので、測定終了時には数万〜数十万点のデータを得ることができる。 In the EBSP method, an electron beam is irradiated onto a sample set in a lens barrel of FESEM to project EBSP on a screen. This is taken with a high-sensitivity camera and captured as an image on a computer. The orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. The calculated crystal orientation is recorded as a three-dimensional Euler angle together with position coordinates (x, y) and the like. Since this process is automatically performed for all measurement points, data of tens of thousands to hundreds of thousands of points can be obtained at the end of measurement.
このように、EBSP法には、X線回析法や透過電子顕微鏡を用いた電子線回析法よりも、観察視野が広く、数百個以上の多数の結晶粒に対する各種情報を、数時間以内で得ることができる利点がある。また、結晶粒毎の測定ではなく、指定した領域を一定間隔で走査して測定するために、測定領域全体を網羅した上記多数の測定ポイントに関する、上記各情報を得ることができる利点もある。尚、これらFESEMにEBSPシステムを搭載した結晶方位解析法の詳細は、神戸製鋼技報/Vol.52 No.2(Sep.2002)P66−70などに詳細に記載されている。 Thus, the EBSP method has a wider field of view than the X-ray diffraction method or the electron beam diffraction method using a transmission electron microscope, and can provide various information on hundreds of crystal grains for several hours. There are advantages you can get within. In addition, since the specified region is scanned at a fixed interval instead of the measurement for each crystal grain, there is an advantage that each of the above-mentioned information regarding the above-described many measurement points covering the entire measurement region can be obtained. Details of the crystal orientation analysis method in which the EBSP system is mounted on these FESEMs are described in Kobe Steel Technical Report / Vol. 52 no. 2 (Sep. 2002) P66-70 and the like.
α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値、および傾角が70°以上のα相が全α相に占める面積率を、この測定から得た。これらの測定については、前記したように、FESEMにEBSPシステムを搭載した結晶方位解析法を用いて、チタン合金板の表面に平行な面であって、且つ、板厚方向の1/4t部の集合組織を測定することで行った。具体的には、チタン合金板の圧延面表面を機械研磨し、更にバフ研磨に次いで電解研磨を行い、表面を調整した試料を準備した。その後、日本電子社製FESEM(JEOL JSM 5410)を用いて、EBSPによる測定を行った。測定領域は300μm×300μmの領域であり、測定ステップ間隔0.5μmとした。EBSP測定・解析システムは、EBSP:TSL社製のOIM(Orientation Imaging Microscopy)を用いた。 The average value of the inclination angle formed by the normal line of the (0001) plane of the α phase and the normal line of the rolled surface, and the area ratio of the α phase with the inclination angle of 70 ° or more in the total α phase were obtained from this measurement. For these measurements, as described above, using the crystal orientation analysis method in which the EBSP system is mounted on the FESEM, the surface is parallel to the surface of the titanium alloy plate and is a 1/4 t portion in the plate thickness direction. This was done by measuring the texture. Specifically, the surface of the rolled surface of the titanium alloy plate was mechanically polished, followed by buffing and then electrolytic polishing to prepare a sample whose surface was adjusted. Then, the measurement by EBSP was performed using FESEM (JEOL JSM 5410) by JEOL. The measurement area was an area of 300 μm × 300 μm, and the measurement step interval was 0.5 μm. As the EBSP measurement / analysis system, EBSP: OIM (Orientation Imaging Microscopy) manufactured by TSL was used.
本発明においては、基本的に、方位のズレが各結晶方位から±15°以内のものは同一の結晶方位に属するとし、また、隣り合う結晶の方位のズレが15°を超える場合にそこを結晶粒界と定義した。 In the present invention, basically, those whose orientation misalignment is within ± 15 ° from each crystal orientation belong to the same crystal orientation, and when the misalignment between adjacent crystals exceeds 15 °, It was defined as the grain boundary.
このような測定方法により、測定範囲内のα相、β相の全結晶粒の方位を個別に同定し、α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値、その傾角が70°以上のα相が全α相に占める面積率を求めた。 With such a measurement method, the orientation of all crystal grains of the α phase and β phase within the measurement range is individually identified, and the average of the inclination angles formed by the normal of the (0001) plane of the α phase and the normal of the rolled surface The area ratio of the α phase having an inclination angle of 70 ° or more to the total α phase was determined.
(チタン合金板の金属組織の観察・測定)
製造した各チタン合金板から試験片を採取し、この試験片の圧延面を機械研磨し、次いでバフ研磨を行った後、電解研磨を行うことで、チタン合金板の圧延面から板厚方向に板厚1/4の位置の結晶組織が観察できるように調整し、この電解研磨された各試験片の表面(1/4部)を、前記した測定により観察した。
(Observation and measurement of metal structure of titanium alloy plate)
A test piece is collected from each manufactured titanium alloy plate, the rolled surface of this test piece is mechanically polished, then buffed, and then subjected to electrolytic polishing in the thickness direction from the rolled surface of the titanium alloy plate. It adjusted so that the crystal structure of the position of a board thickness 1/4 could be observed, and the surface (1/4 part) of each electropolished test piece was observed by the above-mentioned measurement.
α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値は、測定エリア内の各測定点におけるα相の傾角を夫々求めた上で、全測定点の平均値を計算により求め出した。また、その傾角が70°以上のα相が全α相に占める面積率は、測定エリア内の各測定点における傾角が70°以上の測定点数を全測定点数で除することにより求め出した。 The average value of the inclination angle formed between the normal line of the (0001) plane of the α phase and the normal line of the rolled surface is obtained by calculating the inclination angle of the α phase at each measurement point in the measurement area, and then the average value of all measurement points. Was calculated. Further, the area ratio of the α phase having an inclination angle of 70 ° or more to the total α phase was obtained by dividing the number of measurement points having an inclination angle of 70 ° or more at each measurement point in the measurement area by the total number of measurement points.
(引張強度の測定)
チタン合金板の引張強度(TS)については、STEM E8Mに準拠する方法で引張試験を実施することで求めた。尚、引張試験は、L方向(試験片の圧延方向)とT方向(試験片の圧延垂直方向)の2方向で夫々実施し、L方向とT方向の引張強度(TS)を夫々求めた。強度異方性は、それらL方向とT方向の引張強度(TS)を用い、(T方向の引張強度)÷(L方向の引張強度)という計算式から求めた。本実施例では、求められた強度異方性が1.2以下のものを、強度異方性に優れたα+β型チタン合金板と評価し、合格とした。
(Measurement of tensile strength)
About the tensile strength (TS) of a titanium alloy board, it calculated | required by implementing a tensile test by the method based on STEM E8M. The tensile test was performed in two directions, the L direction (rolling direction of the test piece) and the T direction (vertical rolling direction of the test piece), respectively, and the tensile strength (TS) in the L direction and the T direction was obtained. The strength anisotropy was obtained from a calculation formula (tensile strength in the T direction) / (tensile strength in the L direction) using the tensile strength (TS) in the L direction and the T direction. In this example, a sheet having an obtained strength anisotropy of 1.2 or less was evaluated as an α + β-type titanium alloy plate excellent in strength anisotropy, and was regarded as acceptable.
以上の試験結果を表1に示す。
実施例は全て本発明の成分組成を満足するチタン合金鋳塊を用いて製造したチタン合金板であるが、No.1〜4は、熱間圧延の開始温度をTβ(970℃)以上とした本発明の製造要件を満足する発明例であり、No.5〜7は、熱間圧延の開始温度をTβ(970℃)以下とした本発明の製造要件を満足しない比較例である。 The examples are all titanium alloy plates produced using a titanium alloy ingot that satisfies the composition of the present invention. 1-4 are invention examples that satisfy the production requirements of the present invention in which the hot rolling start temperature is Tβ (970 ° C.) or higher. 5 to 7 are comparative examples that do not satisfy the production requirements of the present invention in which the hot rolling start temperature is Tβ (970 ° C.) or lower.
その結果、No.1〜4の発明例では、α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値が60°以下、その傾角が70°以上であるα相の全α相に占める面積率が40%以下であるという本発明の要件を満足するチタン合金板を製造することができた。一方、No.5〜7の比較例では、α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値が60°を超え、その傾角が70°以上であるα相の全α相に占める面積率が40%を超えるという結果となった。 As a result, no. In the inventive examples 1 to 4, the average value of the inclination angle formed by the normal line of the (0001) plane of the α phase and the normal line of the rolled surface is 60 ° or less, and all α phases of the α phase have an inclination angle of 70 ° or more. It was possible to produce a titanium alloy plate that satisfies the requirement of the present invention that the area ratio in the area is 40% or less. On the other hand, no. In the comparative examples of 5 to 7, the average value of the inclination angle between the normal line of the (0001) plane of the α phase and the normal line of the rolled surface exceeds 60 °, and the total α of the α phase has an inclination angle of 70 ° or more. As a result, the area ratio in the phase exceeded 40%.
引張試験から求めた強度異方性は、No.1〜4の発明例では、1.2以下という強度異方性に優れたα+β型チタン合金板の合格判定条件を満足したのに対し、No.5〜7の比較例では、1.2を上回り合格判定条件を満足することができなかった。 The strength anisotropy obtained from the tensile test was No. In the inventive examples 1 to 4, the pass judgment condition of the α + β type titanium alloy plate excellent in strength anisotropy of 1.2 or less was satisfied. In the comparative examples of 5-7, it exceeded 1.2 and was not able to satisfy the pass criteria.
Claims (2)
α相の(0001)面の法線と圧延面の法線とがなす傾角の平均値が60°以下であり、且つ、前記傾角が70°以上であるα相の、全α相に占める面積率が40%以下であることを特徴とする強度異方性に優れた高強度α+β型チタン合金板。 At least one of the solid solution type β-stabilizing elements is 2.0 to 4.5% by mass in terms of Mo, and at least one of the eutectoid type β-stabilizing elements is 0.3 to 2.0% by mass in terms of Fe. %, At least one kind of α-stabilizing element is contained in an Al equivalent of more than 3% by mass and 5.5% by mass or less, Si is further 0.1 to 1.5% by mass, and C is 0.01 to 0.15%. A high-strength α + β-type titanium alloy plate containing mass% and the balance being Ti and inevitable impurities,
The average of the inclination angle formed by the normal line of the (0001) plane of the α phase and the normal line of the rolled surface is 60 ° or less, and the area of the α phase in which the inclination angle is 70 ° or more occupies in all α phases A high strength α + β type titanium alloy plate excellent in strength anisotropy, characterized in that the rate is 40% or less.
請求項1に記載の組成を有するチタン合金鋳塊から、分塊圧延、熱間圧延、中間焼鈍、冷間圧延、最終焼鈍という順の工程で前記チタン合金板の製造を行い、
前記熱間圧延の開始温度を、β変態点温度(Tβ)を超え、1300℃以下、とすることを特徴とする強度異方性に優れた高強度α+β型チタン合金板の製造方法。 A method for producing a high-strength α + β-type titanium alloy plate according to claim 1,
From the titanium alloy ingot having the composition according to claim 1, the titanium alloy plate is manufactured in the order of partial rolling, hot rolling, intermediate annealing, cold rolling, and final annealing,
A method for producing a high-strength α + β-type titanium alloy plate excellent in strength anisotropy, characterized in that the starting temperature of the hot rolling exceeds the β transformation point temperature (Tβ) and is 1300 ° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010172463A JP5421873B2 (en) | 2010-07-30 | 2010-07-30 | High strength α + β type titanium alloy plate excellent in strength anisotropy and method for producing high strength α + β type titanium alloy plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010172463A JP5421873B2 (en) | 2010-07-30 | 2010-07-30 | High strength α + β type titanium alloy plate excellent in strength anisotropy and method for producing high strength α + β type titanium alloy plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012031476A true JP2012031476A (en) | 2012-02-16 |
JP5421873B2 JP5421873B2 (en) | 2014-02-19 |
Family
ID=45845228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010172463A Expired - Fee Related JP5421873B2 (en) | 2010-07-30 | 2010-07-30 | High strength α + β type titanium alloy plate excellent in strength anisotropy and method for producing high strength α + β type titanium alloy plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5421873B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5182452B2 (en) * | 2011-02-24 | 2013-04-17 | 新日鐵住金株式会社 | Α + β-type titanium alloy plate excellent in cold-rolling property and cold handling property and its manufacturing method |
JP5196083B2 (en) * | 2011-02-24 | 2013-05-15 | 新日鐵住金株式会社 | High-strength α + β-type titanium alloy hot-rolled sheet excellent in cold coil handling and manufacturing method thereof |
CN114629267A (en) * | 2020-12-11 | 2022-06-14 | 株式会社丰田自动织机 | Nonmagnetic member and method for manufacturing same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000204425A (en) * | 1998-11-12 | 2000-07-25 | Kobe Steel Ltd | High strength and high ductility alpha + beta type titanium alloy |
JP2007084864A (en) * | 2005-09-21 | 2007-04-05 | Kobe Steel Ltd | alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY |
-
2010
- 2010-07-30 JP JP2010172463A patent/JP5421873B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000204425A (en) * | 1998-11-12 | 2000-07-25 | Kobe Steel Ltd | High strength and high ductility alpha + beta type titanium alloy |
JP2007084864A (en) * | 2005-09-21 | 2007-04-05 | Kobe Steel Ltd | alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5182452B2 (en) * | 2011-02-24 | 2013-04-17 | 新日鐵住金株式会社 | Α + β-type titanium alloy plate excellent in cold-rolling property and cold handling property and its manufacturing method |
JP5196083B2 (en) * | 2011-02-24 | 2013-05-15 | 新日鐵住金株式会社 | High-strength α + β-type titanium alloy hot-rolled sheet excellent in cold coil handling and manufacturing method thereof |
CN114629267A (en) * | 2020-12-11 | 2022-06-14 | 株式会社丰田自动织机 | Nonmagnetic member and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP5421873B2 (en) | 2014-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5298368B2 (en) | Titanium alloy plate with high strength and excellent formability and manufacturing method thereof | |
JP5166921B2 (en) | Titanium alloy plate with high strength and excellent formability | |
US10913242B2 (en) | Titanium material for hot rolling | |
KR102532976B1 (en) | Titanium alloy plate, manufacturing method of titanium alloy plate, manufacturing method of copper foil manufacturing drum and copper foil manufacturing drum | |
WO2020075667A1 (en) | α+β TYPE TITANIUM ALLOY WIRE AND METHOD FOR PRODUCING α+β TYPE TITANIUM ALLOY WIRE | |
JP2017155251A (en) | Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor | |
JP5625646B2 (en) | Titanium plate excellent in rigidity in the rolling width direction and method for producing the same | |
JP5161059B2 (en) | Titanium alloy plate with high strength and excellent deep drawability and method for producing titanium alloy plate | |
JP6816779B2 (en) | Austenitic heat-resistant alloy member and its manufacturing method | |
JP5027603B2 (en) | Titanium alloy plate with high strength and excellent formability and manufacturing method thereof | |
JP3297027B2 (en) | High strength and high ductility α + β type titanium alloy | |
JP6075384B2 (en) | Titanium cast for hot rolling and method for producing the same | |
JP5399759B2 (en) | Titanium alloy plate having high strength and excellent bending workability and press formability, and method for producing titanium alloy plate | |
JP5421873B2 (en) | High strength α + β type titanium alloy plate excellent in strength anisotropy and method for producing high strength α + β type titanium alloy plate | |
JP5088876B2 (en) | Titanium alloy plate with high strength and excellent formability and manufacturing method thereof | |
JP2013227618A (en) | α+β TYPE TITANIUM ALLOY PLATE, AND METHOD OF MANUFACTURING THE SAME | |
JP2019157250A (en) | Titanium alloy sheet and golf club head | |
JP5064356B2 (en) | Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate | |
JP6927418B2 (en) | Titanium alloy and its manufacturing method | |
JP5408525B2 (en) | Titanium alloy, titanium alloy member, and titanium alloy member manufacturing method | |
JP5421872B2 (en) | High strength α + β type titanium alloy plate excellent in bending workability and bending anisotropy and method for producing high strength α + β type titanium alloy plate | |
TWI701343B (en) | Titanium alloy plate and golf club head | |
JP6536317B2 (en) | α + β-type titanium alloy sheet and method of manufacturing the same | |
JP2000273598A (en) | Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability | |
JP4996854B2 (en) | Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130910 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5421873 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |