JP2012028528A - 露光装置及びデバイス製造方法 - Google Patents

露光装置及びデバイス製造方法 Download PDF

Info

Publication number
JP2012028528A
JP2012028528A JP2010165263A JP2010165263A JP2012028528A JP 2012028528 A JP2012028528 A JP 2012028528A JP 2010165263 A JP2010165263 A JP 2010165263A JP 2010165263 A JP2010165263 A JP 2010165263A JP 2012028528 A JP2012028528 A JP 2012028528A
Authority
JP
Japan
Prior art keywords
temperature adjustment
reticle
mask
temperature
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010165263A
Other languages
English (en)
Inventor
Hiromitsu Yoshimoto
宏充 吉元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010165263A priority Critical patent/JP2012028528A/ja
Publication of JP2012028528A publication Critical patent/JP2012028528A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】レチクルを温度調整する。
【解決手段】ギャップセンサ87,87からの計測結果に基づいて温度調整装置駆動系を制御してレチクルRに対する温度調整装置86の離間距離と傾斜を調整することにより、レチクルRを保持したレチクルステージRSTの走査方向の移動中に、レチクルRの上面と温度調整装置とのクリアランスを調整する。そして、温度調整装置86をレチクルに接触させることなく温度調整装置を用いてレチクルRを温度調整しつつ、そのレチクルRを用いてパターンをウエハ上に転写する。
【選択図】図6

Description

本発明は、露光装置及びデバイス製造方法に係り、特に、半導体素子(集積回路)、液晶表示素子等の電子デバイスを製造するためのリソグラフィ工程で用いられる露光装置、及び該露光装置を用いるデバイス製造方法に関する。
半導体素子(集積回路)、液晶表示素子等の電子デバイスを製造するためのリソグラフィ工程で用いられる投影露光装置では、集積回路の微細化に対応して、高解像度を実現するため、その露光波長をより短波長側にシフトしてきた。現在、その波長はKrFエキシマレーザの248nm、又はこれより短波長の真空紫外域に属するArFエキシマレーザの193nmが主流となっている。
投影露光装置では、回路素子のレイヤ(層)間の位置合わせ(重ね合わせ)に関して、非常に高い精度が要求されるとともに、高いスループットが要求される。このため、露光光の照度は次第に大きくなる傾向にある。今や、積極的にパターン原版であるマスク(レチクル)の温度調整を行わないと、マスクの熱膨張による変形により、要求される重ね合わせ精度を満たすことが困難になっている。
また、近年では、高解像度を得るため、高NA化及び低収差化が容易な小視野の投影光学系を用いて実質的に大きな露光フィールドを得ることができる走査型投影露光装置(例えばいわゆるスキャナなど)が主流となっている。
従来においても、例えば露光光の照射とレチクルの温度との関係を予め求めておき、露光光の照射回数が予め定めた閾値を超えたとき、その直後の露光停止時、例えばウエハ交換時などに停止状態にあるマスクを冷却する方法、例えば温度制御された空気(気体)を吹き付ける方法(例えば、特許文献1参照)などが提案されている。しかるに、スキャナにおいても、スループット向上の観点から、レチクルステージは高速化かつ高加速度化する傾向にあり、そのため、単位時間にレチクルに照射される露光エネルギ量は増大化している。このため、例えばウエハ交換時間などの限られた時間でレチクルを十分に冷却するには、温度差の大きい冷却装置で急激に冷却することが必要となるが、この場合雰囲気の温度変化が周辺の計測器などに対する外乱となる。
特開2010−80855号公報
本発明の第1の態様によれば、パターンが形成されたマスクを照明光で照明して前記マスクと物体とを同期して走査方向に移動し、前記パターンを前記物体上に転写する露光装置であって、前記マスクを保持して前記走査方向である所定平面内の一軸方向に移動する移動体と;前記一軸方向に関して前記照明光の照射領域の少なくとも一側に設定された温度調整領域に対応して配置され、前記温度調整領域において前記移動体に保持された前記マスクに対向して前記マスクを温度調整する温度調整装置と;前記温度調整領域について前記マスクの前記温度調整装置に対向する側の面の前記所定平面に直交する方向及び前記所定平面に対する傾斜方向の位置情報を計測する計測装置と;前記温度調整装置を前記所定平面に直交する方向及び前記所定平面に対する傾斜方向に駆動する駆動装置と;前記計測装置による計測情報に基づいて前記駆動装置を制御することにより、前記マスクの前記温度調整装置に対向する側の面と前記温度調整装置とのクリアランスを調整する制御装置とを備える露光装置が、提供される。
これによれば、制御装置により計測装置による計測情報(マスクの温度調整装置に対向する側の面の所定平面に直交する方向及び所定平面に対する傾斜方向の位置情報)に基づいて駆動装置が制御され、これにより、マスクを保持した移動体の走査方向の移動中に、マスクの温度調整装置に対向する側の面と温度調整装置とのクリアランスが調整される。従って、温度調整装置との接触によるマスクの損傷を事前に回避することができるとともに、走査露光中にも温度調整するので、限られた時間に温度調整を行う場合と異なり、急激な温度調整は不要である。従って、雰囲気の温度変化を招くことなく、温度調整装置によりマスクを十分に温度調整することが可能になる。
本発明の第2の態様によれば、本発明の露光装置を用いて物体上に前記パターンを転写することと;前記パターンが転写された前記物体を現像することと;を含むデバイス製造方法が、提供される。
一実施形態の露光装置の構成を概略的に示す図である。 図1のレチクルステージ装置の外観を示す斜視図である。 天板及び8本の支持脚を取り去った状態のレチクルステージ装置を示す斜視図である。 図4(A)はレチクルステージを示す平面図、図4(B)はレチクルステージ装置をXZ平面にて断面した断面図である。 図1の露光装置のレチクルステージ装置近傍を示す縦断面図である。 図6は、温度調整装置アッセンブリ及び温度調整装置搬送系の構成を説明するためのレチクルステージ装置の一部省略した断面図である。 温度調整装置の構成を示す斜視図である。 レチクルエンコーダシステムの構成を説明するための図である。 図9(A)は、レチクル搬送系の構成並びにレチクルのロード開始時の状態を示す図、図9(B)は、レチクルがレチクルステージ上へロードされた直後の状態を示す図である。 図1の露光装置の制御系を中心的に構成する主制御装置の入出力関係を示すブロック図である。 ウエハ交換時のレチクル退避位置でのレチクルの温度調整を説明するための図である。
以下、本発明の一実施形態を図1〜図11に基づいて説明する。
図1には、一実施形態の露光装置100の構成が概略的に示されている。露光装置100は、ステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャニング・ステッパ(スキャナとも呼ばれる)である。後述するように本実施形態では、投影光学系PLが設けられており、以下においては、この投影光学系PLの光軸AX方向をZ軸方向、これに直交する平面内でレチクルとウエハとが相対走査される方向をY軸方向、Z軸及びX軸に直交する方向をX軸方向とし、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。
露光装置100は、照明ユニットIOP、レチクルRを保持してXY平面に平行な面内で移動するレチクルステージRSTを含むレチクルステージ装置20、投影光学系PL、ウエハWをXY2次元方向に駆動するウエハステージWST、及びこれらの制御系、並びにレチクルステージ装置20及び投影光学系PLを保持するコラム34等を備えている。
照明ユニットIOPは、光源及び照明光学系を含み、その内部に配置された視野絞り(マスクキングブレード又はレチクルブラインドとも呼ばれる)により設定される矩形又は円弧状の照明領域に照明光(露光光)ILを照射し、回路パターン等が形成されたレチクルRを均一な照度で照明する。照明ユニットIOPと同様の構成は、例えば米国特許第5,534,970号明細書などに開示されている。ここでは、一例として照明光ILとして、ArFエキシマレーザ光(波長193nm)が用いられるものとする。
レチクルステージ装置20は、照明ユニットIOPの下方に所定間隔を隔ててほぼ水平に配置されたレチクルステージ定盤RBS、該レチクルステージ定盤RBS上に配置されたレチクルステージRST、該レチクルステージRSTを取り囲む状態でレチクルステージ定盤RBS上に配置された枠状部材から成るカウンタマス18、レチクルステージRSTを駆動するレチクルステージ駆動系340(図10参照)、及びカウンタマス18の上に所定のクリアランスを介して略水平に配置された天板(カバー部材)80等を備えている。
レチクルステージ定盤RBSは、図1に示されるように、コラム34の天板部32a上に複数(例えば3つ)の防振ユニット14(図1における紙面奥側の防振ユニットは不図示)を介して略水平に支持されている。レチクルステージ定盤RBS上に、レチクルステージRSTが配置され、レチクルステージRST上にレチクルRが保持されている。なお、レチクルステージ装置20の具体的な構成等については後にさらに詳述する。
投影光学系PLとしては、例えば、Z軸方向の共通の光軸を有する複数のレンズ(レンズエレメント)から成る屈折光学系が用いられている。投影光学系PLは、例えば、両側テレセントリックで所定の投影倍率(例えば1/4あるいは1/5)を有する。このため、照明ユニットIOPからの照明光ILによって照明領域が照明されると、投影光学系PLの第1面(物体面)とパターン面がほぼ一致して配置されるレチクルRを通過した照明光ILにより、投影光学系PLを介してその照明領域内のレチクルRの回路パターンの縮小像(回路パターンの一部の投影像)が、投影光学系PLの第2面(像面)側に配置され、表面にレジスト(感応剤)が塗布されたウエハW上の照明領域に共役な領域(露光領域)に形成される。
そして、レチクルステージRSTとウエハステージWSTとの同期駆動によって、照明領域(照明光IL)に対してレチクルRを走査方向(Y軸方向)に相対移動するとともに、露光領域(照明光IL)に対してウエハWを走査方向(Y軸方向)に相対移動することで、ウエハW上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にレチクルRのパターンが転写される。すなわち、本実施形態では、照明ユニットIOP及び投影光学系PLによって、ウエハW上にレチクルRのパターンが生成され、照明光ILによるウエハW上の感応層(レジスト層)の露光によってウエハW上にそのパターンが形成される。
投影光学系PLの鏡筒の高さ方向のほぼ中央には、フランジFLGが設けられている。
コラム34は、床面Fにその下端部が固定された複数(例えば3本)の脚部32b(図1における紙面奥側の脚部は不図示)と、3本の脚部32bにより略水平に支持された天板部32aとを含んでいる。天板部32aの中央部には、上下方向(Z軸方向)に貫通した開口34aが形成されている。開口34a内に投影光学系PLの上端部が挿入されている。
天板部32aの下面側に一端が固定された3つの吊り下げ支持機構137(ただし紙面奥側の吊り下げ支持機構は不図示)の他端がフランジFLGに接続され、これにより投影光学系PLが天板部32aに吊り下げ支持されている。3つの吊り下げ支持機構137のそれぞれは、柔構造の連結部材であるコイルばね136とワイヤ135とを含む。コイルばね136は、投影光学系PLの光軸(Z軸)に垂直な方向には振り子のように振動するため、投影光学系PLの光軸に垂直な方向の除振性能(床の振動が投影光学系PLに伝達するのを防止する性能)を有している。また、光軸に平行な方向に関しても、高い除振性能を有している。
また、コラム34の各脚部32bのZ軸方向に関する中央部近傍には凸部134aが内側に突設され、各凸部134aと投影光学系PLのフランジFLGの外周部との間には、駆動系440が設けられている。駆動系440は、投影光学系PLを鏡筒の半径方向に駆動するボイスコイルモータと、投影光学系PLを光軸方向(Z軸方向)に駆動するボイスコイルモータとを含んでいる。3本の脚部32bに設けられた3つの駆動系440により投影光学系PLを6自由度方向に変位させることができる。
投影光学系PLのフランジFLGには、投影光学系PLの6自由度方向の加速度を検出するための加速度センサ234(図1では不図示、図10参照)が設けられており、加速度センサ234で検出される加速度情報に基づいて、主制御装置50(図1では不図示、図10参照)が、投影光学系PLがコラム34及び床面Fに対して静止した状態となるように3つの駆動系440のボイスコイルモータの駆動を制御する。
投影光学系PLのフランジFLGの下面からは、リング状の計測マウント51が複数(ここでは例えば3本)の支持部材53(ただし、紙面奥側の支持部材は不図示)を介して吊り下げ支持されている。3本の支持部材53は、実際には、その両端部に支持部材53の長手方向以外の5自由度方向の変位が可能なフレクシャ部を有するリンク部材を含んで構成され、計測マウント51とフランジFLGとの間に応力が殆ど生じることなく計測マウント51を支持することができるようになっている。
計測マウント51には、ウエハ干渉計58、ウエハアライメント系(以下、アライメント系と称する)ALG(図1では不図示、図10参照)、及び不図示の多点焦点位置検出系などが保持されている。アライメント系ALGとしては、例えば米国特許第5,721,605号明細書などに開示される画像処理方式のFIA系を用いることができる。また、多点焦点位置検出系としては、例えば米国特許第5,448,332号明細書等に開示される多点焦点位置検出系を用いることができる。
ウエハステージWSTは、投影光学系PLの下方に水平に配置されたステージ定盤BSの上面に、その底面に設けられたエアベアリングなどを介して浮上支持されている。
ここで、ステージ定盤BSは、直接的に床面F上に据え付けられており、その+Z側の面(上面)は、その平坦度が非常に高くなるように加工されており、ウエハステージWSTの移動基準面(ガイド面)とされている。
ウエハステージWSTは、ウエハホルダ125を介してウエハWを例えば真空吸着等により保持し、主制御装置50により、ウエハステージ駆動系122(図1では不図示、図10参照)を介して、ステージ定盤BSの上面に沿ってXY平面内で自在に駆動されるようになっている。
次に、レチクルステージ装置20及びその近傍の構成部分について詳述する。
図2には、レチクルステージ装置20の外観が斜視図にて示されている。カウンタマス18の上面と僅かな間隙を介してカウンタマス18の全面を覆う天板80が、コラム34の天板部32a上に、8本の支持脚80を介して略水平に支持されている。天板80のほぼ中央には、照明光ILの通路となる開口80aが形成されている。開口80aの周囲部分の天板80の上面に、後述するパージカバー82の下端が接続されている(図5参照)。天板80の−Y側の端部近傍には、図2に示されるように、レチクルRの搬出入口88aが形成されている。搬出入口88aは、スライド式の開閉部材(シャッタ)88によって開閉される。
図3には、天板80及び8本の支持脚80を取り去った状態のレチクルステージ装置が斜視図にて示されている。レチクルステージ定盤RBSは、平面視(上方から見て)略長方形の板状部材から成り、その中央部には、照明光ILの通路となる開口RBSa(図1及び図4(B)等参照)が形成されている。開口RBSaは、前述した天板部32aの開口34aとZ軸方向に連通した状態となっている。また、レチクルステージ定盤RBSの上面の、中心から−X方向及び+X方向に等距離離れた位置には、凸状部分RBSb、RBSc(図4(B)参照)がY軸方向に延設されている。凸状部分RBSb,RBScの上面(+Z側の面)は、平坦度が非常に高くなるように加工され、レチクルステージRSTの移動の際のガイド面が形成されている。
また、レチクルステージ定盤RBSの上面の外周部近傍には、不図示ではあるが、所定間隔で複数のエアパッドが固定されている。これらの複数のエアパッド上にカウンタマス18が配置されている。これらの複数のエアパッドの一部、例えばレチクルステージ定盤RBSの4隅にあるエアパッドは、カウンタマス18の自重をレチクルステージ定盤RBSの上面(+Z側の面)上で非接触で支持している。残りのエアパッドは、真空吸引力と吹き出し圧力とのバランスの調整が可能であり、カウンタマス18の下面とレチクルステージ定盤RBSの上面との間を所定間隔に維持している。
レチクルステージ定盤RBSと天板部32aとの間に設けられた図1に示される複数(例えば3つ)の防振ユニット14は、それぞれがエアダンパ又は油圧式のダンパ等の機械式のダンパを含んでいる。この防振ユニット14により、エアダンパ又は油圧式のダンパによって比較的高周波の振動がレチクルステージRSTへ伝達するのを回避することができる。また、レチクルステージ定盤RBSと天板部32aとの間には、レチクルステージ定盤RBSにX軸方向の駆動力を作用させるXボイスコイルモータ66X、Y軸方向の駆動力を作用させるYボイスコイルモータ66Y、及びZ軸方向の駆動力を作用させるZボイスコイルモータ66Z(いずれも、図3では不図示、図10参照)が設けられている。
これらボイスコイルモータとしては、例えば、Xボイスコイルモータ66XとYボイスコイルモータ66Yの少なくとも一方を2つ、Zボイスコイルモータ66Zを3つ設けることとすることができる。すなわち、Xボイスコイルモータ66XとYボイスコイルモータ66Yとの少なくとも一方を2つ設けることで、レチクルステージ定盤RBSをX軸方向及びY軸方向のみならず、θz方向にも微小駆動することが可能であり、また、Zボイスコイルモータ66Zを3つ設けることで、レチクルステージ定盤RBSをZ軸方向のみならず、θx方向及びθy方向にも微小移動することが可能である。従って、ボイスコイルモータ66X,66Y,66Zにより、レチクルステージ定盤RBSを6自由度方向に微小駆動することが可能である。なお、レチクルステージ定盤RBSの位置は、定盤干渉計240及びZエンコーダ81(いずれも図10参照)により投影光学系PLを基準として計測される。
ここで、例えば3つのZボイスコイルモータ66Zは、レチクルステージ定盤RBSと天板部32aとの間の一直線上に無い3箇所に設けられている。この3つのZボイスコイルモータ66Zに加えて、レチクルステージ定盤RBSと天板部32aとの間に、変形抑制部材(例えばボイスコイルモータなど)を複数配置しても良い。このようにすると、Zボイスコイルモータ66Zのみにより、レチクルステージ定盤RBSをZ軸方向、θx方向、θy方向に駆動した(変位させた)場合に、Zボイスコイルモータ66Zの推力の作用点同士が離れていることに起因してレチクルステージ定盤RBSに撓みあるいはねじれが発生するような場合でも、主制御装置50が、3つのZボイスコイルモータ66Zの発生推力に応じて、その複数の変形抑制部材の発生する推力を制御(推力分配)することで、レチクルステージ定盤RBSを、その変形が極力抑制された状態でZ、θx、θy方向に駆動する(変位させる)ことが可能となる。
レチクルステージRSTは、図3に示されるように、レチクルステージ本体22と、レチクルステージ本体22のX軸方向の両端部に固定された一対の可動子30A,30Bとを備えている。
レチクルステージ本体22は、図4(A)に拡大して示されるように、平面視(上方から見て)矩形状の板状部22と、板状部22の±X端にそれぞれ固定されたY軸方向を長手方向とする直方体状のエアスライダ部22,22とを有している。ここで、板状部22のほぼ中央には、照明光ILの通路となる開口22a(図4(B)参照)が形成されている。
板状部22上面の開口22aのX軸方向の両側の部分には、レチクルRの裏面を吸着保持する一対のバキュームチャック95,96が配置されている。
また、板状部22上面の開口22aの−Y側の部分には、一対のストッパ(位置決め部材)93,94が、X軸方向に関して所定距離(レチクルRのX軸方向に関する幅より幾分短い距離)隔てて配置され、固定されている。これらのストッパ93,94は、レチクルRの−Y側の端面(側面)に当接してそのレチクルRを位置決めする。
また、板状部22上面の開口22aの+Y側の部分には、一対の回動アームから成るクランパ(押圧部材)91、92が取り付けられている。クランパ91、92は、それぞれストッパ93、94と組を成し、レチクルRをY軸方向の一側と他側から挟持するクランプ装置を、それぞれ構成する。
一方のクランパ91は、X軸方向を長手方向とし、その−X端を支点(回転中心)として回動可能に板状部22に取り付けられている。また、このクランパ91の−Y側の面の+X端部には、ストッパ93に対向してほぼ半球状の凸部が設けられている。そして、このクランパ91は、その凸部がレチクルRの+Y側の端面に圧接するように、不図示のゼンマイバネなどから成る付勢部材によって時計回りに常に付勢されている。他方のクランパ92は、左右対称ではあるが、クランパ91と同様に構成されている。
レチクルRは、開口22aを上方から塞ぐ状態で、板状部22(レチクルステージRST)上に載置されている。そして、レチクルRは、その−Y側の面がストッパ93,94に接触して位置決めされ、クランパ91,92により+Y側の面に所定の押圧力が加えられて固定される。レチクルRは、このようにしてクランパ91,92及びストッパ93,94によって固定された後、バキュームチャック95,96により、その下面のX軸方向両端部が吸着される。レチクルRをレチクルステージRST上からアンロードする場合には、吸着を解除した後、クランパ91,92を付勢力に抗して、レチクルRから離し、例えば上方から吸盤等でレチクルRの上面(パターン面と反対側の面)を吸着して持ち上げる。あるいは、レチクルRのパターン領域の外部をフック等で引っ掛けて持ち上げる。あるいは、レチクルRの下面のパターン領域の外部を複数本の上下動部材で下方から一旦持ち上げ、上下動部材から搬送アームに渡すなどしても良い。なお、クランパ91,92を常時付勢する構成に換えて、アクチュエータ(例えばモータあるいはエアシリンダなど)により、クランパ91,92の半球状凸部が、レチクルRに当接する第1位置と、レチクルRから離間する第2位置とで切り替え可能な構成を採用しても良い。また、回動式に限らず、スライド式のクランパを用いることもできる。
その他、板状部22上には、各種計測部材が設けられている。例えば、板状部22の開口22aの±Y側には、X軸方向を長手方向とする矩形状の開口がそれぞれ形成されている。これらの開口を上方から塞ぐ状態で、空間像計測用基準マークが形成されたレチクルフィデューシャルマーク板(以下、「レチクルマーク板」と略述する)LF1,LF2が、レチクルRと並ぶように配置され、板状部22に固定されている。このレチクルマーク板LF1,LF2は、レチクルRと同材質のガラス素材、例えば合成石英やホタル石、フッ化リチウムその他のフッ化物結晶などから構成されている。レチクルマーク板の詳細については、例えば米国特許出願公開第2002/0041377号明細書等に開示されている。
本実施形態では、図4(B)から分かるように、レチクルRは、そのパターン面(下面)がレチクルステージ本体22(レチクルステージRST)の中立面(レチクルステージ本体22の重心を通るXY平面に平行な面)に略一致する状態で支持される。
エアスライダ部22,22は、図4(A)にエアスライダ部22について、その上面の一部を破砕して示されるように、その内部に強度を維持するための格子状のリブが設けられ、この格子状のリブによってその内部空間が区画された中空部材から成る。換言すれば、エアスライダ部22,22は、軽量化を図るべく、リブ部のみが残るように肉抜きされた直方体状の部材から成る。
エアスライダ部22,22の底面のX軸方向の外側半部、すなわち図4(B)に示されるようにレチクルステージ定盤RBSの前述の凸状部分RBSc、RBSbに対向する部分には、表面絞り溝を有する給気溝と排気溝(いずれも不図示)とが、Y軸方向の全長に渡って形成されている。また、給気溝と排気溝とのそれぞれの少なくとも一部に対向してレチクルステージ定盤RBSの凸状部分RBSc、RBSbの上面に、給気口と排気口とがそれぞれ形成されている。このように、本実施形態では、いわゆる定盤給気タイプの差動排気型気体静圧軸受が用いられている。定盤給気タイプの差動排気型気体静圧軸受の詳細は、例えば米国特許第7,489,389号明細書などに詳細に開示されている。
本実施形態では、給気口を介して供給され表面絞り溝から凸状部分RBSc、RBSbの上面に噴き付けられる加圧気体の静圧と、レチクルステージRST全体の自重とのバランスにより、凸状部分RBSc、RBSbの上に数ミクロン程度のクリアランスを介して、レチクルステージRSTが非接触で浮上支持される。ここで、加圧気体としては、クリーンドライエア(CDA)、窒素、又はヘリウムなどの希ガスなどが用いられる。
一対の可動子30A、30Bのそれぞれは、図3及び図4(B)に示されるように、エアスライダ部22の+X側の面、エアスライダ部22の−X側の面に固定されている。
可動子30A,30Bは、それぞれ所定の位置関係で配置された複数の磁石を内蔵する磁石ユニットによって構成されている。可動子30A,30Bのそれぞれは、図3及び図4(B)に示されるように、一対の固定子40A、40Bに係合している。
固定子40A、40Bは、図3及び図4(B)に示されるように、カウンタマス18内部のX軸方向の一側と他側にそれぞれ配置され、カウンタマス18に固定支持されている。
本実施形態では、固定子40Aとこれに係合する可動子30Aとにより、レチクルステージRSTをY軸方向に所定ストロークで駆動するとともに、X軸方向にも微少駆動するムービングマグネット型の第1のXY駆動リニアモータが構成されている。同様に、固定子40Bとこれに係合する可動子30Bとにより、レチクルステージRSTをY軸方向に所定ストロークで駆動するとともに、X軸方向にも微少駆動するムービングマグネット型の第2のXY駆動リニアモータが構成されている。そして、これら第1、第2のXY駆動リニアモータにより、レチクルステージRSTをY軸方向に所定ストロークで駆動するとともに、X軸方向及びθz方向にも微少駆動するレチクルステージ駆動系340(図10参照)が構成されている。また、レチクルステージ駆動系340は、レチクルステージRSTの重心を含む中立面内でレチクルステージRSTを駆動する。レチクルステージ駆動系340を構成する構成する第1、第2のXY駆動リニアモータの固定子40A、40Bの各コイルに供給される電流の大きさ及び方向が、主制御装置50によって制御される。
本実施形態では、図5に示されるように、照明ユニットIOPの下端(射出端)に位置する光透過窓部材(例えば、ガラス板又はレンズなど)を照明ユニットIOPのハウジングに固定するための環状の固定部材90と天板80との間に、パージカバー82が設けられている。パージカバー82は、平面視でX軸方向に細長い矩形の筒状部82と、筒状部82の上端部及び下端部にそれぞれ設けられたフランジ部82,82とを有している。
フランジ部82は、その上面が、固定部材90の下面に固定されている。筒状部82は、照明ユニットIOPからの射出される照明光ILの照射領域を取り囲んでいる。筒状部82は、照明ユニットIOPからレチクルRに照射される照明光ILを妨げないようにY軸方向の両側壁がテーパ部となっている。筒状部82のX軸方向の長さは、レチクルステージRSTのエアスライダ部22,22の外縁間のX軸方向に関する距離より幾分長く設定されている。フランジ部82は、その下面が、開口80aを取り囲んで天板80の上面に固定されている。
また、レチクルステージRSTの+Y側の端部には、図5に示されるように、その上端と先端とを覆う側面視L字状の端部カバー23が取り付けられている。同様に、レチクルステージRSTの−Y側の端部には、その上端と先端とを覆う側面視L字状の端部カバー23が取り付けられている。
この場合、端部カバー23は、エアスライダ部22,22の+Y側の端面及び上面の+Y端部(エアスライダ部22,22間の空間を含む)を覆い、端部カバー23は、エアスライダ部22,22の−Y側の端面及び上面の−Y端部(エアスライダ部22,22間の空間を含む)を覆う。このため、レチクルRの載置された空間は、前後左右の四方を、端部カバー23、23及びエアスライダ部22,22によって囲まれている。
また、エアスライダ部22,22の上面は、図6に示されるように、それぞれ、後述する温度調整装置アッセンブリ200を構成する板状部材から成る保持部材87aの下面のX軸方向の両端部に固定された一対のガイド部材87c,87bの下面と僅かな間隙を挟んで対向している。保持部材87aは、天板80の下面に形成された所定深さの矩形の凹部80bの内部にその上半部が位置する状態で、凹部80bのXY平面に平行な内部底面に平行に配置されている。
保持部材87aのX軸方向の中央部でY軸方向の中央部近傍には、図示は省略されているが、照明光ILの通路となる所定面積の開口(天板80の開口80aより大きな開口)が少なくとも1つ形成されている。保持部材87aの下面のY軸方向の両端部には、一対のガイド部材87c,87bにそれぞれ挟まれる状態で、温度調整装置86,86が、固定されている(図5参照)。温度調整装置86,86は、それぞれの下面がレチクルステージRST上に保持されたレチクルRの上面と対向し得る。エアスライダ部22,22の上面には、図6に示されるように、ガイド部材87c,87bにそれぞれ対向して、複数の気体静圧軸受202が、少なくともY軸方向の両端部を含む複数箇所に固定されている。各気体静圧軸受202では、加圧気体として、クリーンドライエア(CDA)、窒素、又はヘリウムなどの希ガスなどが用いられる。
温度調整装置86,86の下面とレチクルRの上面及びエアスライダ部22,22(端部カバー23,23)との間には、それぞれ所定のクリアランス、例えば数μm〜数mm(最大でも3mm)のクリアランスが形成されている。これにより、本実施形態では、レチクルRの上面側に、そのレチクルRの上面、端部カバー23、23、エアスライダ部22,22、ガイド部材87c,87b、温度調整装置86,86、天板80、及びパージカバー82、並びに照明ユニットIOPの下端(射出端)に位置する光透過窓部材によって区画されたほぼ気密状態の空間181(図5参照)が形成されている。
天板80の開口80aのY軸方向の一側と他側の内壁面に、それぞれ、空間181内にパージガスを供給するための供給口84と空間181内の気体を排気するための排気口84が設けられている(図5参照)。これらの供給口84及び排気口84は、一例としてX軸方向に延びるラインスリット状に形成されている。パージガスとしては、例えばクリーンドライエア(CDA)が用いられる。すなわち、空間181の内部ガス(空気)が、CDAでパージされている。CDAは、レチクル(マスク)のヘイズ生成反応加速物質である水蒸気を含む割合が、通常の空気に比べて極端に小さい。空間181は、ほぼ気密状態のパージ室となっている。以下では、この空間を第1のパージ空間181と呼ぶ。
また、レチクルステージ定盤RBSと投影光学系PLとの間は、図4(B)及び図5に示されるように、非接触シールの一種であるラビリンスシールLBを介してシールされている。ラビリンスシールLBは、開口RBSaの周囲を取り囲む状態で、レチクルステージ定盤RBSと投影光学系PLとの間に取り付けられている。この場合、ラビリンスシールLBは、レチクルステージ定盤RBSの下面に開口RBSaの周囲を取り囲む状態でその上端が固定された環状の上部材と、該上部材に非接触で係合し、上面部材60を取り囲む状態でその下面が投影光学系PLの上面に固定された下部材とを有している。上部材は、−Z方向から見て同心でかつ多重の突起部を有し、下部材は、上部材より僅かに外側に位置し、上部材に非接触で係合する+Z方向から見て同心でかつ多重の突起部を有する。ただし、2つの突起部は、レチクルステージ定盤RBSが微小駆動されても、互いに接触することなく、常時非接触で係合する。
このため、本実施形態では、図4(B)に示されるように、レチクルR及びレチクルステージ本体22と、レチクルステージ定盤RBSの開口RBSaの内壁面と、投影光学系PLの上面と、ラビリンスシールLBとで区画されたほぼ気密状態の空間182が形成されている。この空間182の内部にレチクルステージ定盤RBSの開口RBSaの内壁面の一部に設けられた吹き出し口192からCDAが供給され、不図示の排気口を介して外部に排気されている。すなわち、空間182の内部ガス(空気)が、CDAでパージされている。空間182は、ほぼ気密状態のパージ室となっている。以下では、この空間を第2のパージ空間182と呼ぶ。
さらに、本実施形態では、図5に示されるように、レチクルステージRSTの周囲は、照明光ILの照射領域の近傍を除いて、カウンタマス18、天板80、及びレチクルステージ定盤RBSにより囲まれ、ほぼ気密状態の空間183が形成されている。天板80の下面のY軸方向の一側及び他側の端部近傍には、それぞれ、供給口84、排気口84が設けられている(図5参照)。供給口84、排気口84は、一例としてX軸方向に延びるラインスリット状に形成されている。供給口84から空間183内にパージガス(クリーンドライエア(CDA))が供給され、空間183内の気体が排気口84から外部に排気されている。すなわち、空間183の内部ガス(空気)が、CDAでパージされている。空間183は、ほぼ気密状態のパージ室となっている。以下では、この空間を第3のパージ空間183と呼ぶ。
第1のパージ空間181は、独立に気密空間とされている第3のパージ空間183(及び第2のパージ空間181)に囲まれている、すなわち2重にパージされていることにより、外部からの不純物ガスの浸入が防止されている。
本実施形態では、第1〜第3のパージ空間181〜183のそれぞれに、パージガスの供給口と排気口とが設けられ、しかも、第1、第3のパージ空間181,183では、供給口及び排気口が、それぞれ、各空間内部のY軸方向(走査方向)の一端近傍、他端近傍に配置されている。このため、パージガスが、例えば、供給口84から供給され、第1のパージ空間181内を流れ、排気口84から排気される。同様に、供給口84からパージガスが供給され、第3のパージ空間183内を第1のXY駆動リニアモータ(可動子30Aと固定子40A)及び第2のXY駆動リニアモータ(可動子30Bと固定子40B)の間隙を介して流れ、排気口84から排気される。
図6に拡大して示されるように、天板80の下面側の凹部80bのX軸方向の一側と他側の内壁面に近接して、Y軸方向に延びる一対の固定子87E,87Dが配置されている。固定子87E,87Dは、ともに、吊り下げ支持部材及び防振装置(いずれも不図示)を介して、天板80の下面に吊り下げ支持されている。固定子87E,87Dは、互いに対向する面にY軸方向の凹部が形成されたXZ断面U字状の形状を有する。一対の固定子87E,87Dの間に、前述した保持部材87aが配置されている。保持部材87aの+X側の面には、Y軸方向の両端部に、それぞれ、固定子87E(の凹部)に非接触で係合する可動子86A,86Aが突設されている(図5参照)。また、保持部材87aの−X側の面には、Y軸方向の中央部に、固定子87D(の凹部)に非接触で係合する可動子86Bが突設されている(図6参照)。
可動子86A,86Aのそれぞれと、固定子87Eとによって、Y軸方向及びZ軸方向の推力を発生するYZリニアモータ204A,204Aが構成されている。同様に、可動子86Bと固定子87Dとによって、Y軸方向及びZ軸方向の推力を発生するYZリニアモータ204Bが構成されている。3つのYZリニアモータ204A,204A、及び204Bによって、温度調整装置アッセンブリ200を、Y軸、Z軸、θx、及びθyの各方向に駆動する温度調整装置駆動系206(図10参照)が構成されている。温度調整装置駆動系206は、主制御装置50によって制御される。
温度調整装置アッセンブリ200は、図5に示されるように、保持部材87aと、該保持部材87a下面にそれぞれ固定された2つの温度調整装置86,86、前述した一対のガイド部材87c,87b、一対のギャップセンサ87、87及びブロック208等を含む。
温度調整装置86,86は、図5に示されるように、全体として厚さの薄い直方体状の形状を有し、X軸方向の長さ(幅)は、互いに等しく、レチクルRのパターン領域のX軸方向の長さ(幅)より長い(例えば、図6参照)。−Y側に位置する一方の温度調整装置86のY軸方向の長さは、レチクルRのパターン領域の長さより長く、かつ他方の温度調整装置86のY軸方向の長さより長い(図5参照)。温度調整装置86,86は、本実施形態では、温度調整装置86を代表的に取りあげて図7に示されるように、XY方向に2次元配列された複数のペルチェ素子300から成るペルチェアレイによってそれぞれ構成されている。温度調整装置86,86は、図10に示されるように、温調コントローラ28に接続されている。温調コントローラ28は、不図示の温度センサからのモニタ信号に基づいて、温度調整装置86,86(ペルチェアレイ)を構成する各ペルチェ素子に供給される電流量を調整することにより、各ペルチェ素子の温度(温度調整状態)を、調整する。温調コントローラ28は、主制御装置50に接続されている。ここで、温度調整装置86,86(ペルチェアレイ)を構成する各ペルチェ素子300を、アクチュエータ(ボイスコイルモータ又は駆動素子)により、Z軸方向(各ペルチェ素子のPN接合面に直交する方向)に駆動可能に構成しても良く、この場合には、各ペルチェ素子の温度のみならず、各ペルチェ素子とレチクルR上面との間隔(クリアランス)を制御することで各ペルチェ素子によるレチクルRの温度調整状態を調整することができ、温度調整装置86,86によるレチクルRの温度調整率分布を調整することもできる。これにより、温度調整装置86,86の温度制御の応答が速くなるだけでなく、レチクルRの表面の温度分布が一様になるように適切な温度制御が可能になる。
温度調整装置86,86は、図5に示されるように、保持部材87aのY軸方向の中心が、投影光学系PLの光軸上にほぼ一致する位置にあるとき、開口80aを挟んで+Y側及び−Y側にそれぞれ位置するような位置関係で、保持部材87aの下面に固定されている。温度調整装置86,86の配置をこのようにしたのは、走査露光時に、温度調整装置駆動系206により、保持部材87aをY軸方向に駆動して、温度調整装置86,86を図5に示される位置(以下、この図5に示される温度調整装置アッセンブリ200の位置を通常使用位置と呼ぶ)に位置決めすることにより、レチクルステージRSTの走査方向の往復移動端の近傍、すなわち、レチクルステージRSTの速度がゼロとなる結果レチクルRと温度調整装置86又は温度調整装置86とが対向する時間が最も長くなる位置に、温度調整装置86,86による温度調整領域を設定するためである。これにより、走査露光と並行して、レチクルRを効率良く温度調整することが可能となる。ここで、温度調整装置86,86の温度調整面が設定された領域が温度調整領域になるものとしているが、このことは、予め設定された温度調整領域に合わせて温度調整装置86,86の温度調整面を一致させるように温度調整装置86,86を位置決めしていることに他ならない。
一対のギャップセンサ87、87は、保持部材87aの下面の温度調整装置86の−Y側の位置にそれぞれ固定されている。一対のギャップセンサ87、87は、レチクルRの上面に対向可能な位置に、X軸方向に所定間隔で配置されている。ギャップセンサとしては、静電容量センサ、光学式センサ等を用いることができる。一対のギャップセンサ87、87は、レチクルRが対向したときに、レチクルR上面とのギャップ(Z軸方向の距離)をそれぞれ計測する。ギャップセンサ87、87は、主制御装置50に接続されている。ギャップセンサ87、87の使用方法については後述する。
ブロック208は、図5に示されるように、保持部材87aの下面の温度調整装置86の+Y側の位置に固定されている。ブロック208は、X軸方向に関しては、一対のガイド部材87c,87bによって挟まれている。ブロック208と温度調整装置86とを組み合わせることで、温度調整装置86とほぼ同形状の立体が構成される。
このようにして構成された温度調整装置アッセンブリ200は、レチクル交換位置にあるレチクルステージRST上のレチクルRに温度調整装置86が対向する第1位置(−Y側の移動限界位置)と第2位置(+Y側の移動限界位置)との間で、温度調整装置駆動系206によりY軸方向に関して駆動可能である。
さらに、本実施形態に係るレチクルステージ装置20には、温度調整装置86,86のレチクルRへ接触を防止するための接触防止装置が設けられている。本実施形態の接触防止装置は、エアスライダ部22,22の上面にガイド部材87c,87bにそれぞれ対向して固定された前述の複数の気体静圧軸受202を含んで構成されている。この複数の気体静圧軸受202を走査露光時などのレチクルステージRSTの走査方向の駆動時に常時ON状態に設定しておくことで、各気体静圧軸受202からは、加圧気体(CDA)がガイド部材87c,87bに向かって噴出される。これにより、ガイド部材87c,87bと複数の気体静圧軸受202の軸受面との間に加圧気体の膜が形成される。そして、レチクルステージRST上のレチクルRと温度調整装置86,86との距離が所定の限界距離になると、ガイド部材87c,87bと複数の気体静圧軸受202の軸受面との間の上記の加圧気体の静圧(いわゆる隙間内圧力)が、ガイド部材87c,87b、及び温度調整装置86,86等の保持部材87aに取り付けられた各部材と保持部材87aとの自重による下向きの力とつりあい、保持部材87aとこれに取り付けられた各部材との全体が、エアスライダ部22,22上に所定のクリアランスを介して支持される。これにより、温度調整装置86,86とレチクルステージRST上のレチクルRとの離間距離が限界距離以上の距離に保たれ、温度調整装置86,86のレチクルRへの接触が防止される。
エアスライダ部22,22の底面には、図4(B)に示されるように、それぞれ、グレーティングRG1,RG2がY軸方向のほぼ全長に渡って延接されている(図8参照)。グレーティングRG1,RG2のそれぞれの表面には、X軸方向及びY軸方向を周期方向とする2次元グレーティングが形成されている。
投影光学系PLの最上面には、図8に示されるような中央に矩形の開口PLaが形成された平面視六角形の上面部材60が、固定されている(図4(B)参照)。開口PLaは、レチクルRのパターン面を透過し、レチクルステージ定盤RBSの開口RBSaを透過した照明光ILの光路(通路)となる。上面部材60の上面のX軸方向の両端部(開口PLaの両側)に各3つのエンコーダヘッド72,73,74、及び77,78,79が固定されている。エンコーダヘッド72,77は開口PLaの+Y側の角部近傍に、エンコーダヘッド74,79は−Y側の角部近傍に、エンコーダヘッド73,78は開口PLaの中心(すなわち投影光学系PLの光軸)と同じY位置に、配置されている。
各3つのエンコーダヘッド72,73,74、及び77,78,79は、それぞれ、前述したグレーティングRG1,RG2に対向している。
本実施形態では、エンコーダヘッド72〜74,77〜79として、グレーティング(計測面)に平行な一方向(グレーティングの一周期方向)と、計測面に垂直な方向との二方向を計測方向とする2次元エンコーダヘッドが採用されている。かかるヘッドの一例は、例えば米国特許第7,561,280号明細書などに開示されている。
ここで、4つのエンコーダヘッド72,74,77,79はY軸方向とZ軸方向とを計測方向とし、2つのエンコーダヘッド73,78はX軸方向とZ軸方向とを計測方向とする。
エンコーダヘッド72,73,74は、図4(B)に示されるように、レチクルステージ定盤RBSの開口RBSaを介して、レチクルステージRST(エアスライダ部22)の底面のグレーティングRG1に計測ビームを下方から照射し、グレーティングRG1にて発生する複数の回折光を受光して、それぞれの計測方向に関するグレーティングRG1(すなわちレチクルステージRSTのエアスライダ部22)の位置情報を求める(計測する)。これらのエンコーダヘッド72,73,74から第1エンコーダシステム71(図10参照)が構成され、その計測情報は主制御装置50(図10参照)に送られている。
エンコーダヘッド77,78,79は、上述のエンコーダヘッド72,73,74と同様に、レチクルステージ定盤RBSの開口RBSaを介して、レチクルステージRST(エアスライダ部22)の底面のグレーティングRG2に計測ビームを下方から照射し、グレーティングRG2にて発生する複数の回折光を受光して、それぞれの計測方向に関するグレーティングRG2(すなわちレチクルステージRSTのエアスライダ部22)の位置情報を求める(計測する)。これらのエンコーダヘッド77,78,79から第2エンコーダシステム76(図10参照)が構成され、その計測情報は主制御装置50(図10参照)に送られる。
主制御装置50は、第1及び第2エンコーダシステム71,76(エンコーダヘッド72〜74,77〜79)の計測情報に基づいて、投影光学系PLの中心(光軸)を基準とするレチクルステージRSTの6自由度方向に関する位置情報を求める(算出する)。主制御装置50は、その結果に基づいて、前述のレチクルステージ駆動系340を介して、レチクルステージRSTを駆動(制御)する。なお、第1及び第2エンコーダシステム71,76を含んで、レチクルエンコーダシステム70が構成されている(図10参照)。
なお、レチクルエンコーダシステム70と独立に、レチクルステージRSTの位置情報を計測するレチクル干渉計システム(不図示)が設けられている。レチクル干渉計システム(不図示)は、レチクルエンコーダシステム70の計測範囲外にレチクルステージRSTが移動する際、あるいはレチクルエンコーダシステム70のバックアップ用などとして補助的に使用される。
さらに、本実施形態では、図9(A)に示されるようなレチクル搬送系140が設けられている。レチクル搬送系140は、レチクルRの上面の複数箇所を吸着保持して上下動する上下動部材44と、該上下動部材44をZ軸方向に駆動する駆動系46とを有する。レチクル搬送系140は、図9(A)に示されるように、シャッタ88の上方にその位置が固定的に設定されていても良いが、本実施形態では、レチクル搬送系140は、それ自体が、搬送アームのように自在に移動可能である。前者の場合には、上下動部材44に吸着させるためにレチクルを搬送する搬送部材が別に必要になる。レチクル搬送系140は、主制御装置50に接続されている(図10参照)。
図10には、本実施形態の露光装置100の制御系を中心的に構成する主制御装置50の入出力関係が、ブロック図にて示されている。主制御装置50は、CPU(中央演算処理装置)、ROM(リード・オンリ・メモリ)、RAM(ランダム・アクセス・メモリ)等から成るいわゆるマイクロコンピュータ(又はワークステーション)を含み、装置全体を統括して制御する。
次に、上述のようにして構成された露光装置100による露光動作の流れについて簡単に説明する。
まず、主制御装置50の管理の下、以下の手順でレチクルRがレチクルステージRST上へロードされる。レチクルのロードに際しては、図9(A)に示されるように、レチクルステージRSTは、レチクル交換位置で待機している。また、このとき、温度調整装置アッセンブリ200は、レチクルの交換の際に邪魔にならない位置、例えば前述の通常使用位置に、温度調整装置駆動系206によって移動されている。また、このとき、温度調整装置駆動系206によって温度調整装置アッセンブリ200は、温度調整装置86,86の温度調整面が、XY平面に平行になり、かつ所定のZ位置に位置する基準状態に、Z位置及びチルトがリセットされている。
そして、レチクルRを保持したレチクル搬送系140が、図9(A)中の白抜き矢印で示さるように+Y方向に移動してレチクルRをレチクル交換位置の上方まで搬送すると、天板80に設けられたシャッタ88が開き、搬出入口88aが開放される。次いで、レチクル搬送系140の全体が所定量下方に移動した後、上下動部材44が、駆動系46によって下降駆動されることで、レチクルRが上下動部材44からレチクルステージRST上へ渡される(図9(B)参照)。これと前後して、シャッタ88が閉じ、第3のパージ空間183がほぼ気密状態となり、その内部のCDAによるパージが開始される。
そして、クランパ91,92によりレチクルRがレチクルステージ本体22の板状部22に固定され、前述のバキュームチャック95,96によるレチクルRの吸着が開始される。これにより、レチクルRのレチクルステージ上へのロードが終了する。
次に、主制御装置50により、レチクルアライメント系(不図示)及びアライメント系ALG(図10参照)等を用いて、例えば米国特許第5,646,413号明細書などに開示される所定の手順に従ってレチクルアライメント、アライメント系ALGのベースライン計測等が行われる。これと前後して、不図示のウエハローダによってウエハステージWST上へのウエハWのロードが行われる。この後、主制御装置50により、例えば米国特許第4,780,617号明細書などに開示されているEGA(エンハンスト・グローバル・アライメント)等のウエハアライメントが実行され、ウエハアライメントの終了後、通常のスキャナと同様のステップ・アンド・スキャン方式の露光動作が行なわれる。
主制御装置50は、露光動作中、レチクルステージ定盤RBSが所定の状態を維持するように、定盤干渉計240の計測結果に基づいて上述したXボイスコイルモータ66X,Yボイスコイルモータ66Yを制御するとともに、Zエンコーダ81の計測結果に基づいてZボイスコイルモータ66Zを制御してレチクルステージ定盤RBSのZ軸方向及びθx、θy方向に関する位置を調整することにより、間接的にレチクルRのZ軸方向及びθx、θy方向に関する位置を調整する。
また、露光動作にあたって、主制御装置50の管理の下、ウエハステージWSTとレチクルステージRSTとがY軸方向に相対駆動されるが、その際には、主制御装置50は、レチクルエンコーダシステム70の計測結果に基づいて、レチクルステージ駆動系340を制御し、レチクルステージRSTを駆動する。このとき、レチクルステージRSTが、Y軸方向に関して所定の範囲内で往復移動するが、この移動中も、パージ空間181〜183において、その気密状態が維持され、CDAパージが効果的に行われる。
さらに、ステップ・アンド・スキャン方式の露光動作では、レチクルR(レチクルステージRST)が、走査方向(Y軸方向)に往復移動し、この際に、温度調整装置86,86(設定された温度調整領域)に対して相対移動する。このとき、レチクルRの温度調整が行われるが、この温度調整が効率良く行われるように、露光動作の開始に先立って、主制御装置50により、次のようにして、温度調整装置86,86の温度調整面とレチクルRの上面(パターン面と反対側の面)との間隔が、所望の状態、例えば一定になるように調整される。
すなわち、レチクルRを前述のようにしてレチクルステージRST上にロード後、主制御装置50は、レチクルアライメントのため、レチクルステージRSTを+Y方向に駆動する。このとき、温度調整装置アッセンブリ200は、前述の通常使用位置でかつ前述の基準状態にZ位置及びチルトがリセットされている。このため、レチクルステージRSTを+Y方向の移動中に、主制御装置50は、レチクルRの上面の+Y側端部が、一対のギャップセンサ87,87に対向した第1の時点で、ギャップセンサ87,87の計測値を読み込み、そのときのレチクルエンコーダシステム70の計測値に対応付けてメモリに記憶する。また、主制御装置50は、第1の時点から所定時間経過した第2の時点で、ギャップセンサ87,87の計測値を読み込み、そのときのレチクルエンコーダシステム70の計測値に対応付けてメモリに記憶する。
そして、主制御装置50は、第1の時点、第2の時点で得られた情報に基づいて、所定の演算を行うことで、レチクルRの上面のXY平面に対する傾斜(θx、θy)及びZ軸方向の位置を求め、この求めた結果に基づいて、温度調整装置駆動系206を介して温度調整装置アッセンブリ200のZ軸、θx、θyの各方向の位置を調整することで、温度調整装置86,86の温度調整面とレチクルRの上面との間隔(クリアランス)が所望の状態、例えば一定になるように調整する。これにより、走査露光時にも温度調整装置86,86の温度調整面とレチクルRの上面とが、一定の離間距離(例えば20〜50μm)に維持されることとなる。
ここで、通常レチクル毎に厚み誤差(例えば100μm)があるため、主制御装置50は、少なくともレチクルを交換する毎に、上述のようにして温度調整装置86,86の位置と傾斜を調整することとしている。
また、本実施形態では、露光が終了したウエハを新しいウエハに交換する際に、レチクルステージRSTの退避位置にて、温度調整装置86を用いてレチクルRを温度調整することもできる。退避位置は、例えば、レチクル交換位置(又はその近傍)に設定されているものとする。
露光が終了すると、主制御装置50は、図11に示されるように、レチクルステージRSTを−Y方向(黒塗り矢印の方向)に駆動して退避位置に位置決めすると同時に、温度調整装置駆動系206を介して温度調整装置アッセンブリ200を−Y方向に駆動して、温度調整装置86を退避位置に位置決めされたレチクルR上に位置決めする。ウエハの交換が終了するまで(あるいはウエハアライメント等の露光前処理が終了するまで)、温度調整装置86をレチクルRに近接させてレチクルRを温度調整する。
ここで、主制御装置50は、前述した手法によりギャップセンサ87、87の計測値に基づいて、温度調整装置駆動系206を介して温度調整装置アッセンブリ200をZ軸方向に駆動して、温度調整装置86をレチクルRに所定距離まで近接させる。このように、一方の温度調整装置86は、停止しているレチクルRの温度調整にも用いるため、その温度調整面の大きさを、レチクルRと同程度の大きさ(レチクルRのパターン面の全面を含む大きさ)に設定している。すなわち、停止しているレチクルRのパターン面の全域に対向可能な面積に設定している。ただし、停止しているレチクルRの温度調整に用いない場合には、走査露光時におけるレチクルRの往復移動を通して、レチクルRのパターン面の全域が温度調整装置86,86に対向する面積(Y軸方向の長さ)にすれば良い。
レチクルRの温度調整が終了すると、主制御装置50は、温度調整装置アッセンブリ200を、前述の通常使用位置に戻す。
上述のように、本実施形態の露光装置100では、ウエハ交換時のレチクル温度調整と、上述の露光時のレチクル温度調整とを併用することにより、より効率良くレチクルRを温度調整することが可能となる。
以上説明したように、本実施形態の露光装置100によると、主制御装置50によりギャップセンサ87,87による計測情報(温度調整領域についてレチクルRの温度調整装置に対向する側の面(パターン面と反対側の面)のXY平面に直交する方向(Z軸方向)及びXY平面に対する傾斜方向(θx及びθy方向)の位置情報)に基づいて温度調整装置駆動系206が制御され、これによりレチクルRを保持したレチクルステージRSTの走査方向の移動中に、レチクルRの温度調整装置86,86に対向する側の面と温度調整装置86,86とのクリアランスが調整される。従って、温度調整装置86,86との接触によるレチクルRの損傷を事前に回避することができるとともに、走査露光中にも温度調整するので、ウエハ交換中などの限られた時間に温度調整を行う場合と異なり、急激な温度調整は不要である。従って、温度調整装置86,86により雰囲気の温度変化を招くことなくレチクルRを十分に温度調整(例えば冷却)することができるで、その温度調整されたレチクルのパターンを精度良くウエハ上に転写することができる。
なお、上記実施形態では、ウエハ交換時に、温度調整装置86を用いて退避位置に停止しているレチクルRを温度調整することもできるとしたが、別の温度調整装置を退避位置に設置し、それを用いて停止しているレチクルRを温度調整することとしても良い。係る場合、ウエハ交換時に用いられる温度調整装置のみ、レチクルRのパターン面と同程度の面積の温度調整面を有することとし、露光時に用いられる温度調整装置86,86は、往復移動を通してレチクルRのパターン面の全域が対向する面積(Y軸方向の長さ)の温度調整面を有することとする。
なお、上記実施形態では、レチクルRをY軸方向に移動させてX軸方向に離れて配置された一対のギャップセンサ87,87でレチクルRの上面とのギャップを計測することで、レチクルRの上面のZ軸、θx、及びθy方向の位置情報を計測する場合について例示したが、これに限らず、例えばレチクルRの上面の同一直線上にない少なくとも3点でレチクルRの上面とのギャップを計測することで、レチクルRの上面のZ軸、θx、及びθy方向の位置情報を求めても良い。勿論、ギャップセンサによらず、他のセンサでレチクルRの上面のZ軸、θx、及びθy方向の位置情報を直接的に計測しても良い。あるいは、レチクルRを保持するレチクルステージRSTのZ軸、θx、及びθy方向の位置情報を、エンコーダ又は干渉計等で計測することで、レチクルRの上面のZ軸、θx、及びθy方向の位置情報を間接的に求めても良い。
また、上記実施形態では、露光時に、開口80a(照明光ILの照射領域)の±Y側にそれぞれ配置された2つの温度調整装置86,86(2つの温度調整領域)を用いて往復移動するレチクルRを温度調整することとしたが、一方の温度調整装置86又は86のみを用いてレチクルRを温度調整することとしても良い。すなわち照明光ILの照射領域のY軸方向の一側にのみ温度調整領域を設定しても良い。
また、上記実施形態において、保持部材87aの一部、例えば前述した所定面積の開口が照明光ILの照射領域よりY軸方向に長い場合に、その開口内に計測部材を配置しても良い。この場合の計測部材としては、例えば照明光学系の波面収差を計測する波面収差計測器などが代表的に挙げられる。勿論、そのような計測部材を、前述のブロック208の位置に配置しても良い。主制御装置50が、温度調整装置駆動系206を介して保持部材87aをY軸方向に駆動することで、計測部材を照明光の照射領域に位置決めすることができる。
また、上記実施形態では、保持部材87aと一体的に2つの温度調整装置86,86が、Y軸方向のみならず、Z軸方向、θx方向及びθy方向に駆動されるものとしたが、これに限らず、Y軸方向を含むXY平面内でのみ移動可能な保持部材に、それぞれZ軸方向、θx方向及びθy方向に移動可能な2つの温度調整装置を取り付けても良い。この場合、2つの温度調整装置を個別にZ軸方向、θx方向及びθy方向に駆動することができる。
なお、上記実施形態において、ガイド部材87c、87bに対向する気体静圧軸受202に代えて、例えば回転ローラ等を、エアスライダ部22,22の上面に対向してガイド部材87c、87bに設けることとしても良い。温度調整装置86,86がレチクルステージRST上のレチクルRに限界距離より接近すると、回転ローラがエアスライダ部22,22の上面に接触して、温度調整装置アッセンブリ200がエアスライダ部22,22上に接触支持される。これにより、温度調整装置86,86とレチクルステージRST上のレチクルRとの間に限界距離より大きい離間距離が保たれ、温度調整装置86,86のレチクルRへの接触が回避される。
また、上記実施形態では、パージ空間181〜183が、ともにCDAでパージされる場合について説明したが、これに限らず、それぞれのパージ空間181〜183で用いるパージガスの種類を異ならせても良い。また、パージガスとしては、CDAのように水蒸気を含む割合が通常の空気に比べて小さいガスを用いても良いが、これに限らず、ヘイズ原因物質、例えば硫酸アンモニウム又は炭酸アンモニウム、炭化水素、カルボン酸、シアヌル酸、又は他の炭素を含有する分子などの分子状汚染物質を含まず、かつ照明光ILを殆ど吸収しない、窒素やヘリウムなどの希ガスを、パージガスとして用いても良い。
なお、上述の実施形態では、露光装置が、液体(水)を介さずにウエハWの露光を行うドライタイプの露光装置である場合について説明したが、これに限らず、例えば国際公開第99/49504号、欧州特許出願公開第1,420,298号明細書、国際公開第2004/055803号、米国特許第6,952,253号明細書などに開示されているように、投影光学系とウエハとの間に照明光の光路を含む液浸空間を形成し、投影光学系及び液浸空間の液体を介して照明光でウエハを露光する露光装置であっても良い。また、例えば米国特許出願公開第2008/0088843号明細書などに開示される、液浸露光装置などにも、上記実施形態を適用することができる。
また、上記実施形態では、露光装置が、ステップ・アンド・スキャン方式等の走査型露光装置である場合について説明したが、これに限らず、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の縮小投影露光装置、プロキシミティー方式の露光装置、又はミラープロジェクション・アライナーなどにも上記実施形態は適用することができる。さらに、例えば米国特許第6,590,634号明細書、米国特許第5,969,441号明細書、米国特許第6,208,407号明細書などに開示されているように、複数のウエハステージを備えたマルチステージ型の露光装置にも上記実施形態を適用できる。また、例えば国際公開第2005/074014号などに開示されているように、ウエハステージとは別に、計測部材(例えば、基準マーク、及び/又はセンサなど)を含む計測ステージを備える露光装置にも上記実施形態は適用が可能である。
また、上記実施形態の露光装置における投影光学系の倍率は縮小系のみならず等倍及び拡大系のいずれでも良いし、投影光学系は屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、その投影像は倒立像及び正立像のいずれでも良い。
また、照明光ILとしては、ArFエキシマレーザ光(波長193nm)に限らず、F2レーザ光(波長157nm)などの他の真空紫外光は勿論、KrFエキシマレーザ光(波長248nm)などの遠紫外光、あるいは超高圧水銀ランプからの紫外域の輝線(波長436nmのg線、波長365nmのi線等)を用いることも可能である。また、真空紫外光としては、例えば米国特許第7,023,610号明細書などに開示されているように、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外域に波長変換した高調波を用いても良い。
さらに、例えば米国特許第6,611,316号明細書などに開示されているように、2つのレチクルパターンを投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも上記実施形態を適用することができる。
なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものではなく、ガラスプレート、セラミック基板、あるいはマスクブランクスなど、他の物体でも良い。
また、上記実施形態の露光装置は、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
半導体素子などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した実施形態の露光装置(パターン形成装置)及びその露光方法によりマスク(レチクル)のパターンをウエハに転写するリソグラフィステップ、露光されたウエハを現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ウエハ上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。
本発明の露光装置は、被露光物体上にパターンを転写するのに適している。また、本発明のデバイス製造方法は、マイクロデバイスの製造に適している。
50…主制御装置、70…エンコーダシステム、86,86…温度調整装置、87,87…ギャップセンサ、100…露光装置、202…気体静圧軸受、206…レチクル温度調整装置駆動系、R…レチクル、IL…照明光、W…ウエハ、RST…レチクルステージ。

Claims (23)

  1. パターンが形成されたマスクを照明光で照明して前記マスクと物体とを同期して走査方向に移動し、前記パターンを前記物体上に転写する露光装置であって、
    前記マスクを保持して前記走査方向である所定平面内の一軸方向に移動する移動体と;
    前記一軸方向に関して前記照明光の照射領域の少なくとも一側に設定された温度調整領域に対応して配置され、前記温度調整領域において前記移動体に保持された前記マスクに対向して前記マスクを温度調整する温度調整装置と;
    前記温度調整領域について前記マスクの前記温度調整装置に対向する側の面の前記所定平面に直交する方向及び前記所定平面に対する傾斜方向の位置情報を計測する計測装置と;
    前記温度調整装置を前記所定平面に直交する方向及び前記所定平面に対する傾斜方向に駆動する駆動装置と;
    前記計測装置による計測情報に基づいて前記駆動装置を制御することにより、前記マスクの前記温度調整装置に対向する側の面と前記温度調整装置とのクリアランスを調整する制御装置とを備える露光装置。
  2. 前記計測装置は、前記マスクの前記温度調整装置に対向する側の面の前記所定平面に直交する方向及び前記所定平面に対する傾斜方向の位置情報を、直接的に計測する請求項1に記載の露光装置。
  3. 前記計測装置は、前記移動体の前記所定平面に直交する方向及び前記所定平面に対する傾斜方向の位置情報を計測することで、前記マスクの前記温度調整装置に対向する側の面の前記所定平面に直交する方向及び前記所定平面に対する傾斜方向の位置情報を間接的に計測する請求項1に記載の露光装置。
  4. 前記温度調整領域は、前記パターンの転写のための前記移動体の移動時において、前記マスクと前記温度調整装置とが対向する時間の長さに基づいて設定される請求項1〜3のいずれか一項に記載の露光装置。
  5. 前記温度調整領域は、前記移動時に前記移動体の前記一軸方向の速度が零となる位置における前記マスクの少なくとも一部の領域を含む領域に設定される請求項1〜4のいずれか一項に記載の露光装置。
  6. 前記制御装置は、前記パターンの転写が終了した前記物体の交換中に待機位置で待機している前記マスクを、前記照射領域の一側に配置された前記温度調整装置を制御して温度調整する請求項1〜5のいずれか一項に記載の露光装置。
  7. 前記制御装置は、前記移動体上の前記マスクの交換中、前記温度調整装置を前記一軸方向に駆動して前記マスク交換の障碍とならない位置に退避させる請求項1〜6のいずれか一項に記載の露光装置。
  8. 前記温度調整領域は、前記一軸方向に関して前記照明光の照射領域の一側と他側に設定され、前記温度調整装置は、前記温度調整領域の設定に対応して前記照射領域の前記一側と他側に少なくとも各1つ配置される請求項1〜6のいずれか一項に記載の露光装置。
  9. 前記照射領域の一側に設定される前記温度調整領域は、前記パターンの転写が終了した前記物体の交換中に前記マスクが待機する待機位置をも含み、
    前記制御装置は、前記物体の交換中、前記待機位置にある前記マスクを前記照射領域の一側に配置された前記温度調整装置を制御して温度調整する請求項8に記載の露光装置。
  10. 少なくとも前記照射領域の一側に配置された前記温度調整装置は、前記マスクの全面に一度に対向可能な大きさ及び形状の温度調整面を有する請求項9に記載の露光装置。
  11. 前記照射領域の前記一側と他側に配置された少なくとも2つの温度調整装置は、前記一軸方向に関して移動する同一の保持部材に固定されており、
    前記駆動装置は、前記保持部材を前記所定平面に直交する方向及び前記所定平面に対する傾斜方向、並びに前記一軸方向に駆動する請求項8〜10のいずれか一項に記載の露光装置。
  12. 前記保持部材には、計測部材がさらに固定されており、
    前記制御装置は、前記保持部材を前記一軸方向に駆動して、前記計測部材を前記照明光の照射領域に位置決めする請求項11に記載の露光装置。
  13. 前記制御装置は、前記物体の交換中、前記保持部材を前記一軸方向に駆動して、前記照射領域の一側に配置された前記温度調整装置を、前記待機位置にある前記マスクに対向させる請求項11に記載の露光装置。
  14. 前記制御装置は、前記移動体上の前記マスクの交換が行われるマスク交換中、前記保持部材を前記一軸方向に駆動して前記マスク交換の障碍とならない位置に前記温度調整装置を退避させる請求項11〜13のいずれか一項に記載の露光装置。
  15. 前記温度調整装置は、温度調整面を多数に分割した分割区画領域毎に温度調整状態を変更可能であり、
    前記制御装置は、前記計測装置による計測情報に基づいて、前記多数の分割区画領域のそれぞれに対応する前記温度調整領域内の部分毎に前記温度調整状態を調整する請求項1〜14のいずれか一項に記載の露光装置。
  16. 前記温度調整装置は、温度調整面を多数に分割した分割区画領域毎に温度調整状態を変更可能であり、
    前記制御装置は、前記マスクの温度分布に対応して前記多数の分割区画領域のそれぞれに対応する前記温度調整領域内の部分毎に前記温度調整状態を調整する請求項1〜15のいずれか一項に記載の露光装置。
  17. 前記温度調整装置は、該温度調整装置の表面に沿って配列され、前記所定平面に直交する方向に駆動可能な複数のペルチェ素子を有し、
    前記制御装置は、前記複数のペルチェ素子のそれぞれと前記マスクの前記温度調整装置に対向する側の面とのクリアランスと、記複数のペルチェ素子の温度との少なくとも一方を制御することにより、前記マスクの温度調整率分布を調整する請求項15又は16に記載の露光装置。
  18. 前記マスクと前記温度調整装置との接触を防止する接触防止装置をさらに備える請求項1〜17のいずれか一項に記載の露光装置。
  19. 前記接触防止装置は、前記マスクと前記温度調整装置とが所定の限界距離より接近することを阻止する接近阻止部材を含む請求項18に記載の露光装置。
  20. 前記接近阻止部材は、前記マスクと前記温度調整装置との間隔が所定の限界距離に達したとき、前記移動体に当接する回転ローラを含む請求項19に記載の露光装置。
  21. 前記接近阻止部材は、前記マスクと前記温度調整装置との間隔が所定の限界距離に達したとき、加圧気体の静圧により前記クリアランスを維持する気体静圧軸受を含む請求項19に記載の露光装置。
  22. 前記温度調整装置は、前記移動体に保持される前記マスク上の前記照明光の照射領域部分を含むパージガスで満たされたパージ空間を区画する区画部材の一部を兼ねる請求項1〜21のいずれか一項に記載の露光装置。
  23. 請求項1〜22のいずれか一項に記載の露光装置を用いて前記物体上に前記パターンを転写することと;
    前記パターンが転写された前記物体を現像することと;を含むデバイス製造方法。
JP2010165263A 2010-07-22 2010-07-22 露光装置及びデバイス製造方法 Pending JP2012028528A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010165263A JP2012028528A (ja) 2010-07-22 2010-07-22 露光装置及びデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010165263A JP2012028528A (ja) 2010-07-22 2010-07-22 露光装置及びデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2012028528A true JP2012028528A (ja) 2012-02-09

Family

ID=45781117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010165263A Pending JP2012028528A (ja) 2010-07-22 2010-07-22 露光装置及びデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2012028528A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529351A (ja) * 2012-09-25 2015-10-05 エーエスエムエル ネザーランズ ビー.ブイ. レチクル加熱を均一に保つレチクルヒータ
US9632433B2 (en) 2012-10-31 2017-04-25 Asml Holding N.V. Patterning device support, lithographic apparatus, and method of controlling patterning device temperature

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529351A (ja) * 2012-09-25 2015-10-05 エーエスエムエル ネザーランズ ビー.ブイ. レチクル加熱を均一に保つレチクルヒータ
US9632433B2 (en) 2012-10-31 2017-04-25 Asml Holding N.V. Patterning device support, lithographic apparatus, and method of controlling patterning device temperature
US9632434B2 (en) 2012-10-31 2017-04-25 Asml Holding N.V. Reticle cooling system in a lithographic apparatus
US9766557B2 (en) 2012-10-31 2017-09-19 Asml Holding N.V. Patterning device support, lithographic apparatus, and method of controlling patterning device temperature
US9977351B2 (en) 2012-10-31 2018-05-22 Asml Holding N.V. Patterning device support, lithographic apparatus, and method of controlling patterning device temperature

Similar Documents

Publication Publication Date Title
JP6008219B2 (ja) 露光装置及びデバイス製造方法
JP6183418B2 (ja) 露光装置及びデバイス製造方法
JP5804301B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP7379314B2 (ja) 計測システム及び基板処理システム、並びにデバイス製造方法
JP5773031B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
US7288859B2 (en) Wafer stage operable in a vacuum environment
JP5348628B2 (ja) 露光装置、露光方法及びデバイス製造方法
JP2011003891A (ja) 物体交換方法、露光方法、搬送システム及び露光装置、並びにデバイス製造方法
JP2013506973A (ja) 露光装置及びデバイス製造方法
JP5605768B2 (ja) 露光装置及びデバイス製造方法
JP5717045B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2012028530A (ja) 露光装置及びデバイス製造方法
JP2012028528A (ja) 露光装置及びデバイス製造方法
JP2014035349A (ja) 露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
JP2012028531A (ja) 露光装置及びデバイス製造方法
JP2012033922A (ja) 露光装置及びデバイス製造方法
JP6675580B2 (ja) 露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
JP2014204103A (ja) 移動体装置及び露光装置、並びにデバイス製造方法
JP2012089768A (ja) 露光装置及びデバイス製造方法