JP2012026339A - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP2012026339A
JP2012026339A JP2010164756A JP2010164756A JP2012026339A JP 2012026339 A JP2012026339 A JP 2012026339A JP 2010164756 A JP2010164756 A JP 2010164756A JP 2010164756 A JP2010164756 A JP 2010164756A JP 2012026339 A JP2012026339 A JP 2012026339A
Authority
JP
Japan
Prior art keywords
injection
fuel
pressure
parameter
command signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010164756A
Other languages
Japanese (ja)
Other versions
JP5024430B2 (en
Inventor
Ko Komatsu
航 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010164756A priority Critical patent/JP5024430B2/en
Priority to DE102011051814.2A priority patent/DE102011051814B4/en
Priority to CN201110211152.2A priority patent/CN102345524B/en
Publication of JP2012026339A publication Critical patent/JP2012026339A/en
Application granted granted Critical
Publication of JP5024430B2 publication Critical patent/JP5024430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2416Interpolation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection control device capable of accurately controlling an actual injection state.SOLUTION: The fuel injection control device includes a parameter acquisition means 33a acquiring the parameter (for instance, injection end time R4) of an injection rate waveform showing the variation of an injection rate based on the detection value of a fuel pressure sensor, a learning means 33b storing as learning values the injection command signal (for instance, energization period Tq) outputted to a fuel injection valve and the parameter R4 corresponding to the signal, a memory 32 (storage means) stored with a model waveform M3 showing that the parameter R4 varies periodically with a variation of the injection command signal Tq, and an interpolation means 33c calculating the injection command signal Tq situated between the learning values and the value of the parameter R4 situated at the signal by interpolating the learning values using the model waveform M3.

Description

本発明は、内燃機関の燃料噴射弁から燃料を噴射させることに伴い生じる燃料圧力の変化を燃圧センサで検出し、検出した圧力波形に基づき燃料噴射状態を制御する燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device that detects a change in fuel pressure caused by injecting fuel from a fuel injection valve of an internal combustion engine with a fuel pressure sensor and controls a fuel injection state based on the detected pressure waveform.

内燃機関の出力トルク及びエミッション状態を精度良く制御するには、燃料噴射弁から噴射される燃料の噴射量及び噴射開始時期等、その噴射状態を精度良く制御することが重要である。   In order to accurately control the output torque and the emission state of the internal combustion engine, it is important to accurately control the injection state such as the injection amount of fuel injected from the fuel injection valve and the injection start timing.

そこで特許文献1,2等には、コモンレールの吐出口から燃料噴射弁の噴孔に至るまでの燃料供給経路内で噴射に伴い生じる燃料圧力の変化を燃圧センサで検出している。燃圧センサにより検出される圧力の波形(圧力波形)は、噴射率の変化を表す噴射率波形と相関が高いため、圧力波形に基づけば噴射率波形を推定でき、ひいては噴射終了時期や噴射量等の噴射状態の把握が可能となる。   Therefore, in Patent Documents 1 and 2 and the like, a fuel pressure sensor detects a change in fuel pressure caused by injection in the fuel supply path from the discharge opening of the common rail to the injection hole of the fuel injection valve. The pressure waveform detected by the fuel pressure sensor (pressure waveform) has a high correlation with the injection rate waveform representing the change in the injection rate. Therefore, the injection rate waveform can be estimated based on the pressure waveform. It is possible to grasp the injection state.

これによれば、燃料噴射弁へ出力した噴射指令信号と実際の噴射状態(噴射率波形)との関係を学習することができ、この学習値に基づき次回からの噴射指令信号を設定すれば、噴射状態を所望する状態に精度良く制御できる。   According to this, the relationship between the injection command signal output to the fuel injection valve and the actual injection state (injection rate waveform) can be learned, and if the injection command signal from the next time is set based on this learning value, The injection state can be accurately controlled to a desired state.

特開2010−3004号公報JP 2010-3004 A 特開2009−57924号公報JP 2009-57924 A

上記学習に関し、本発明者は燃料噴射弁への通電期間(噴射指令信号)に対応する、噴射終了時期(噴射率波形のパラメータ)の値を学習値として記憶更新していくことを検討した。すると、通電期間と噴射終了時期との関係は単純な比例関係ではなく、図4(a)中の実線に例示する如く周期的に変化することが分かった。そのため、例えば学習領域A1〜A5の各々の学習値G1〜G5を図4(a)中の一点鎖線に示す如く線形補間してしまうと、実際の通電期間−噴射終了時期の関係からずれた関係に基づき通電期間を設定することとなり、噴射終了時期を精度良く制御できなくなる。   Regarding the learning, the present inventor has considered storing and updating the value of the injection end timing (parameter of the injection rate waveform) corresponding to the energization period (injection command signal) to the fuel injection valve as the learning value. Then, it was found that the relationship between the energization period and the injection end timing is not a simple proportional relationship, but periodically changes as illustrated by the solid line in FIG. Therefore, for example, if the learning values G1 to G5 of the learning regions A1 to A5 are linearly interpolated as indicated by the one-dot chain line in FIG. 4A, the relationship deviated from the actual energization period-injection end timing relationship Therefore, the energization period is set based on this, and the injection end timing cannot be controlled accurately.

ちなみに、通電期間−噴射終了時期の関係が図4(a)中の実線の如く周期的に変化する原因について、本発明者は次のように考察した。例えば図1に例示する燃料噴射弁10の場合には、ボデー11内に、噴孔11bへ燃料を流通させる高圧通路11a、及び高圧通路11aから分岐して燃圧センサ20へ燃料を流通させる分岐通路11eが形成されている。そして、燃料噴射に伴い噴孔11bで生じた燃圧変化の脈動は、高圧通路11aを伝播していくが、その脈動の一部は分岐通路11e内にて共振する。この共振が原因で、通電期間−噴射終了時期の関係は周期的に変化すると考えられる。   Incidentally, the present inventor considered as follows why the relationship between the energization period and the injection end timing periodically changes as indicated by the solid line in FIG. For example, in the case of the fuel injection valve 10 illustrated in FIG. 1, a high-pressure passage 11 a that circulates fuel to the injection hole 11 b and a branch passage that diverges from the high-pressure passage 11 a and circulates fuel to the fuel pressure sensor 20. 11e is formed. The pulsation of the fuel pressure change generated in the nozzle hole 11b due to the fuel injection propagates through the high-pressure passage 11a, but a part of the pulsation resonates in the branch passage 11e. It is considered that the relationship between the energization period and the injection end timing changes periodically due to this resonance.

また、図5に例示する如く、高圧通路11aの近傍に燃圧センサ200を取り付けて分岐通路11eを廃止した燃料噴射弁であっても、例えばフィルタ17が取り付けられる大径通路11fにて脈動の共振が生じることに起因して、通電期間−噴射終了時期の関係は周期的に変化する。   Further, as illustrated in FIG. 5, even in a fuel injection valve in which the fuel pressure sensor 200 is attached in the vicinity of the high-pressure passage 11a and the branch passage 11e is abolished, for example, pulsation resonance occurs in the large-diameter passage 11f to which the filter 17 is attached. Due to the occurrence of this, the relationship between the energization period and the injection end timing changes periodically.

また、このような周期的な変化は、図4に例示する通電期間と噴射終了時期との関係に限って現れるものではなく、例えば、通電期間と噴射量(噴射率波形の面積)との関係、通電開始時期と噴射開始時期(噴射率上昇開始時期)との関係等、噴射指令信号と噴射率波形のパラメータとの関係であれば現れる。   Further, such a periodic change does not appear only in the relationship between the energization period and the injection end timing illustrated in FIG. 4, for example, the relationship between the energization period and the injection amount (area of the injection rate waveform). If there is a relationship between the injection command signal and the parameter of the injection rate waveform, such as the relationship between the energization start timing and the injection start timing (injection rate increase start timing).

本発明は、上記課題を解決するためになされたものであり、その目的は、燃料の噴射状態を精度良く制御することを図った、燃料噴射制御装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel injection control device designed to accurately control the fuel injection state.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、内燃機関で燃焼させる燃料を噴孔から噴射する燃料噴射弁と、前記噴孔から燃料を噴射させることに伴い前記噴孔に至るまでの燃料供給経路内で生じる燃料圧力の変化を検出する燃圧センサと、を備えた燃料噴射システムに適用されることを前提とする。   According to the first aspect of the present invention, a fuel injection valve that injects fuel to be burned in an internal combustion engine from an injection hole, and fuel that is generated in a fuel supply path from the injection hole to the injection hole as fuel is injected from the injection hole It is assumed that the present invention is applied to a fuel injection system including a fuel pressure sensor that detects a change in pressure.

そして、前記燃圧センサの検出値に基づき、噴射率の変化を表した噴射率波形のパラメータを取得するパラメータ取得手段と、前記燃料噴射弁へ出力された噴射指令信号及びその信号に対応する前記パラメータを学習値として記憶する学習手段と、前記噴射指令信号の変化に伴い前記パラメータが周期的に変化することを表したモデル波形が記憶された記憶手段と、前記噴射指令信号及びその信号に対応する前記パラメータの値を、前記モデル波形を用いて前記学習値を補間して算出する補間手段と、を備えることを特徴とする。   Then, based on the detection value of the fuel pressure sensor, parameter acquisition means for acquiring a parameter of an injection rate waveform representing a change in injection rate, an injection command signal output to the fuel injection valve, and the parameter corresponding to the signal Corresponding to the injection command signal and its signal, learning means for storing the value as a learning value, storage means for storing a model waveform representing that the parameter periodically changes as the injection command signal changes Interpolating means for interpolating the learning value using the model waveform to calculate the parameter value.

本発明者は、「噴射指令信号が変化すると噴射率波形のパラメータは周期的に変化する」との知見を得た。そこで上記発明では、噴射指令信号の変化に伴いパラメータが周期的に変化することを表したモデル波形を、試験等により予め取得しておき、記憶手段に記憶しておく。そして、学習値間に位置する噴射指令信号及びパラメータの値については、記憶させておいたモデル波形を用いて学習値を補間して算出する。よって、学習値間に位置する噴射指令信号とパラメータの関係を高精度で算出することができるので、この算出結果に基づき噴射指令信号を設定すれば、実際の噴射状態を所望する状態に精度良く制御できる。   The inventor has obtained the knowledge that “when the injection command signal changes, the parameter of the injection rate waveform changes periodically”. Therefore, in the above invention, a model waveform representing that the parameter periodically changes with a change in the injection command signal is acquired in advance by a test or the like and stored in the storage means. The injection command signal and the parameter value located between the learning values are calculated by interpolating the learning value using the stored model waveform. Therefore, since the relationship between the injection command signal located between the learning values and the parameter can be calculated with high accuracy, if the injection command signal is set based on the calculation result, the actual injection state is accurately set to a desired state. Can be controlled.

請求項2記載の発明では、前記記憶手段は、前記燃料噴射弁へ供給される燃料の供給圧に応じて異なる波形に設定された複数種類の前記モデル波形を記憶しており、前記補間手段は、前記供給圧に応じた前記モデル波形を用いて前記補間を実施することを特徴とする。   According to a second aspect of the present invention, the storage means stores a plurality of types of the model waveforms set in different waveforms according to the supply pressure of the fuel supplied to the fuel injection valve, and the interpolation means The interpolation is performed using the model waveform corresponding to the supply pressure.

本発明者は、「噴射指令信号の変化に伴うパラメータの変化は、燃料噴射弁へ供給される燃料の供給圧に応じて異なるパターンの変化になる」といった事実を、各種試験を実施したことにより見出した。この点を鑑みた上記発明では、供給圧に応じたモデル波形を用いて補間するので、学習値間の噴射指令信号とパラメータとの関係をより一層高精度で算出できる。   The inventor has conducted various tests on the fact that “the change in the parameter accompanying the change in the injection command signal changes in a different pattern depending on the supply pressure of the fuel supplied to the fuel injection valve”. I found it. In the above invention in view of this point, since the interpolation is performed using the model waveform corresponding to the supply pressure, the relationship between the injection command signal and the parameter between the learning values can be calculated with higher accuracy.

請求項3記載の発明では、前記記憶手段は、燃料温度に応じて異なる波形に設定された複数種類の前記モデル波形を記憶しており、前記補間手段は、前記燃料温度に応じた前記モデル波形を用いて前記補間を実施することを特徴とする。   According to a third aspect of the present invention, the storage means stores a plurality of types of model waveforms set in different waveforms according to fuel temperature, and the interpolation means stores the model waveform according to the fuel temperature. The interpolation is performed using the above.

本発明者は、「噴射指令信号の変化に伴うパラメータの変化は、燃料温度に応じて異なるパターンの変化になる」といった事実を、各種試験を実施したことにより見出した。この点を鑑みた上記発明では、燃料温度に応じたモデル波形を用いて補間するので、学習値間の噴射指令信号とパラメータとの関係をより一層高精度で算出できる。   The present inventor has found the fact that “a change in the parameter accompanying a change in the injection command signal changes in a different pattern depending on the fuel temperature” by performing various tests. In the above invention in view of this point, since the interpolation is performed using the model waveform corresponding to the fuel temperature, the relationship between the injection command signal and the parameter between the learning values can be calculated with higher accuracy.

請求項4記載の発明では、前記燃料噴射弁は、前記噴孔を開閉する弁体、及び前記弁体を内部に収容するとともに前記燃圧センサが取り付けられたボデーを有して構成されており、前記ボデーには、前記噴孔、前記噴孔へ燃料を流通させる高圧通路、及び前記高圧通路から分岐して前記燃圧センサへ燃料を流通させる分岐通路が形成されていることを特徴とする。   In the invention according to claim 4, the fuel injection valve is configured to have a valve body that opens and closes the nozzle hole, and a body in which the valve body is housed and the fuel pressure sensor is attached. The body is formed with the injection hole, a high-pressure passage through which fuel flows to the injection hole, and a branch passage branched from the high-pressure passage and through which fuel flows to the fuel pressure sensor.

このような構成の燃料噴射弁の場合、燃料噴射に伴い噴孔で生じた燃圧変化の脈動は高圧通路を伝播していくが、その脈動の一部は分岐通路内にて共振し、この共振が原因で、噴射指令信号の変化に対する噴射率波形パラメータの周期的な変化は顕著になる。よって、このような周期的な変化が顕著に現れる燃料噴射弁に、モデル波形を用いて補間するといった上記各発明を適用すれば、学習値間の噴射指令信号とパラメータとの関係を高精度で算出できるといった上述の効果が顕著に発揮される。   In the case of such a fuel injection valve, the pulsation of the fuel pressure change generated in the nozzle hole due to fuel injection propagates through the high-pressure passage, but part of the pulsation resonates in the branch passage, and this resonance Therefore, the periodic change of the injection rate waveform parameter with respect to the change of the injection command signal becomes remarkable. Therefore, if the above inventions such as interpolation using a model waveform are applied to the fuel injection valve in which such a periodic change is noticeable, the relationship between the injection command signal and the parameter between the learning values can be accurately determined. The above-described effect that it can be calculated is remarkably exhibited.

請求項5記載の発明では、前記パラメータは、燃料噴射が終了して噴射率がゼロになる噴射終了時期、燃料噴射終了に伴い噴射率が低下を開始する時期、及び燃料噴射終了に伴い噴射率が低下する傾きの少なくとも1つであることを特徴とする。   According to a fifth aspect of the present invention, the parameters include an injection end timing at which the fuel injection ends and the injection rate becomes zero, a timing at which the injection rate starts to decrease with the end of fuel injection, and an injection rate with the end of fuel injection. Is at least one of the slopes of decrease.

先述した分岐通路内等で生じる共振は、燃料噴射に伴い噴孔で生じた燃圧変化の脈動が共振場所にまで伝播された後に生じるものである。そのため、噴射率波形のうち噴射開始直後の部分の波形に関するパラメータ(例えば噴射開始時期、最大噴射率到達時期、噴射率上昇の傾き等)よりも、噴射終了に伴い噴射率が低下していく部分の波形に関するパラメータ(例えば噴射終了時期、噴射率低下開始時期、噴射率低下の傾き)の方が、噴射指令信号の変化に対する噴射率波形パラメータの周期的な変化は顕著に現れる。よって、このような周期的な変化が顕著に現れるパラメータを適用した上記発明によれば、学習値間の噴射指令信号とパラメータとの関係を高精度で算出できるといった上述の効果が顕著に発揮される。   The resonance that occurs in the above-described branch passage or the like occurs after the pulsation of the fuel pressure change generated in the nozzle hole due to fuel injection is propagated to the resonance location. Therefore, the portion of the injection rate waveform in which the injection rate decreases with the end of injection from parameters related to the waveform immediately after the start of injection (for example, the injection start time, the maximum injection rate arrival time, the injection rate increase slope, etc.) With respect to the waveform parameters (for example, the injection end timing, the injection rate lowering start timing, and the injection rate lowering slope), the periodic change in the injection rate waveform parameter with respect to the change in the injection command signal appears more markedly. Therefore, according to the above-described invention to which the parameter in which such a periodic change is remarkably applied is applied, the above-described effect that the relationship between the injection command signal between the learning values and the parameter can be calculated with high accuracy is remarkably exhibited. The

本発明の一実施形態にかかる燃料噴射制御装置が適用される、燃料噴射システムの概略を示す図。The figure which shows the outline of the fuel-injection system with which the fuel-injection control apparatus concerning one Embodiment of this invention is applied. 図1に示すECUが噴射指令信号を設定するよう機能している時の状態を示す機能ブロック図。The functional block diagram which shows a state when ECU shown in FIG. 1 is functioning to set an injection command signal. (a)は図1に示す燃料噴射弁への噴射指令信号、(b)は噴射指令信号に伴い生じる燃料噴射率の変化を表す噴射率波形、(c)は図1に示す燃圧センサによる検出値に基づく圧力波形を示す図。(A) is an injection command signal to the fuel injection valve shown in FIG. 1, (b) is an injection rate waveform representing a change in the fuel injection rate caused by the injection command signal, and (c) is detected by the fuel pressure sensor shown in FIG. The figure which shows the pressure waveform based on a value. (a)は、図3の噴射指令信号設定手段が用いる指令マップM2を示し、(b)〜(d)は、図3の補間手段が用いるモデル波形M3を示す。(A) shows the command map M2 used by the injection command signal setting means of FIG. 3, and (b) to (d) show the model waveform M3 used by the interpolation means of FIG. 本発明が適用される燃料噴射弁の変形例を示す図。The figure which shows the modification of the fuel injection valve to which this invention is applied.

以下、本発明に係る燃料噴射状態検出装置を具体化した一実施形態を図面に基づいて説明する。本実施形態の燃料噴射状態検出装置は、車両用のエンジン(内燃機関)に搭載されたものであり、当該エンジンには、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。   Hereinafter, an embodiment embodying a fuel injection state detection device according to the present invention will be described with reference to the drawings. The fuel injection state detection device according to the present embodiment is mounted on a vehicle engine (internal combustion engine), and compression auto-ignition is performed by injecting high-pressure fuel into a plurality of cylinders # 1 to # 4. It assumes a diesel engine that burns.

図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、各々の燃料噴射弁10に搭載された燃圧センサ20、及び車両に搭載された電子制御装置であるECU30等を示す模式図である。   FIG. 1 is a schematic diagram showing a fuel injection valve 10 mounted on each cylinder of the engine, a fuel pressure sensor 20 mounted on each fuel injection valve 10, an ECU 30 that is an electronic control device mounted on a vehicle, and the like. is there.

先ず、燃料噴射弁10を含むエンジンの燃料噴射システムについて説明する。燃料タンク40内の燃料は、高圧ポンプ41(燃料ポンプ)によりコモンレール42(蓄圧容器)に圧送されて蓄圧され、各気筒の燃料噴射弁10(#1〜#4)へ分配供給される。複数の燃料噴射弁10(#1〜#4)は、予め設定された順番で燃料の噴射を順次行う。なお、高圧ポンプ41にはプランジャポンプが用いられているため、プランジャの往復動に同期して間欠的に燃料は圧送される。   First, an engine fuel injection system including the fuel injection valve 10 will be described. The fuel in the fuel tank 40 is pumped and stored in the common rail 42 (pressure accumulator) by a high pressure pump 41 (fuel pump), and is distributed and supplied to the fuel injection valves 10 (# 1 to # 4) of each cylinder. The plurality of fuel injection valves 10 (# 1 to # 4) sequentially inject fuel in a preset order. Since the plunger pump is used as the high-pressure pump 41, the fuel is intermittently pumped in synchronism with the reciprocating movement of the plunger.

燃料噴射弁10は、以下に説明するボデー11、ニードル形状の弁体12及びアクチュエータ13等を備えて構成されている。ボデー11は、内部に高圧通路11aを形成するとともに、燃料を噴射する噴孔11bを形成する。弁体12は、ボデー11内に収容されて噴孔11bを開閉する。   The fuel injection valve 10 includes a body 11, a needle-shaped valve body 12, an actuator 13, and the like described below. The body 11 forms a high-pressure passage 11a inside and a nozzle hole 11b for injecting fuel. The valve body 12 is accommodated in the body 11 and opens and closes the nozzle hole 11b.

ボデー11内には弁体12に背圧を付与する背圧室11cが形成されており、高圧通路11a及び低圧通路11dは背圧室11cと接続されている。高圧通路11a及び低圧通路11dと背圧室11cとの連通状態は制御弁14により切り替えられており、電磁コイルやピエゾ素子等のアクチュエータ13へ通電して制御弁14を図1の下方へ押し下げ作動させると、背圧室11cは低圧通路11dと連通して背圧室11c内の燃料圧力は低下する。その結果、弁体12へ付与される背圧力が低下して弁体12は開弁作動する。一方、アクチュエータ13への通電をオフして制御弁14を図1の上方へ作動させると、背圧室11cは高圧通路11aと連通して背圧室11c内の燃料圧力は上昇する。その結果、弁体12へ付与される背圧力が上昇して弁体12は閉弁作動する。   A back pressure chamber 11c for applying a back pressure to the valve body 12 is formed in the body 11, and the high pressure passage 11a and the low pressure passage 11d are connected to the back pressure chamber 11c. The communication state between the high pressure passage 11a and the low pressure passage 11d and the back pressure chamber 11c is switched by the control valve 14, and the actuator 13 such as an electromagnetic coil or a piezoelectric element is energized to push the control valve 14 downward in FIG. As a result, the back pressure chamber 11c communicates with the low pressure passage 11d and the fuel pressure in the back pressure chamber 11c decreases. As a result, the back pressure applied to the valve body 12 decreases and the valve body 12 opens. On the other hand, when the power supply to the actuator 13 is turned off and the control valve 14 is operated upward in FIG. 1, the back pressure chamber 11c communicates with the high pressure passage 11a and the fuel pressure in the back pressure chamber 11c increases. As a result, the back pressure applied to the valve body 12 rises and the valve body 12 is closed.

したがって、ECU30がアクチュエータ13への通電を制御することで、弁体12の開閉作動が制御される。これにより、コモンレール42から高圧通路11aへ供給された高圧燃料は、弁体12の開閉作動に応じて噴孔11bから噴射される。例えばECU30は、エンジン出力軸の回転速度及びエンジン負荷等に基づき、噴射開始時期、噴射終了時期及び噴射量等の目標噴射状態を算出し、算出した目標噴射状態となるようアクチュエータ13へ噴射指令信号を出力して、燃料噴射弁10の作動を制御する。   Therefore, the ECU 30 controls the energization of the actuator 13 so that the opening / closing operation of the valve body 12 is controlled. Thereby, the high-pressure fuel supplied from the common rail 42 to the high-pressure passage 11 a is injected from the injection hole 11 b according to the opening / closing operation of the valve body 12. For example, the ECU 30 calculates a target injection state such as an injection start timing, an injection end timing, and an injection amount based on the rotation speed of the engine output shaft, the engine load, and the like, and sends an injection command signal to the actuator 13 so that the calculated target injection state is obtained. Is output to control the operation of the fuel injection valve 10.

図2に示すように、ECU30は、アクセル操作量等から算出されるエンジン負荷やエンジン回転速度に基づき目標噴射状態を算出する手段(目標噴射状態算出手段31)を有する。例えば、エンジン負荷及びエンジン回転速度に対応する最適噴射状態(噴射段数、噴射開始時期、噴射終了時期、噴射量等)を噴射状態マップM1にして、メモリ32に予め記憶させておく。そして、現時点でのエンジン負荷及びエンジン回転速度に基づき、噴射状態マップM1を参照して目標噴射状態を算出する。   As shown in FIG. 2, the ECU 30 has means (target injection state calculation means 31) for calculating a target injection state based on the engine load and engine speed calculated from the accelerator operation amount and the like. For example, the optimal injection state (the number of injection stages, the injection start timing, the injection end timing, the injection amount, etc.) corresponding to the engine load and the engine rotation speed is stored in the memory 32 in advance as the injection state map M1. Then, based on the current engine load and engine speed, the target injection state is calculated with reference to the injection state map M1.

さらにECU30は、算出した目標噴射状態に基づき噴射指令信号t1、t2、Tqを設定する手段(噴射指令信号設定手段33)を有する。例えば、目標噴射状態に対応する噴射指令信号を指令マップM2にして、メモリ32に予め記憶させておく。そして、算出した目標噴射状態に基づき、指令マップM2を参照して噴射指令信号を設定する。以上により、エンジン負荷及びエンジン回転速度に応じた噴射指令信号が設定され、ECU30から燃料噴射弁10へ出力される。   Further, the ECU 30 has means (injection command signal setting means 33) for setting the injection command signals t1, t2, and Tq based on the calculated target injection state. For example, the injection command signal corresponding to the target injection state is set to the command map M2 and stored in the memory 32 in advance. Then, based on the calculated target injection state, an injection command signal is set with reference to the command map M2. Thus, the injection command signal corresponding to the engine load and the engine rotation speed is set and output from the ECU 30 to the fuel injection valve 10.

ここで、噴孔11bの磨耗等、燃料噴射弁10の経年劣化に起因して、噴射指令信号に対する実際の噴射状態は変化していく。そこで、後に詳述するように燃圧センサ20により検出された圧力波形に基づき燃料の噴射率波形を演算して噴射状態を検出し、検出した噴射状態(噴射率波形のパラメータ)と出力した噴射指令信号(パルスオン時期t1、パルスオフ時期t2及び通電期間Tq)との相関関係を学習し、その学習結果に基づき、指令マップM2に記憶された噴射指令信号を補正する。これにより、実噴射状態が目標噴射状態に一致するよう、燃料噴射状態を高精度で制御できる。   Here, the actual injection state with respect to the injection command signal changes due to deterioration of the fuel injection valve 10 such as wear of the injection hole 11b. Therefore, as will be described in detail later, the fuel injection rate waveform is calculated based on the pressure waveform detected by the fuel pressure sensor 20, the injection state is detected, and the detected injection state (parameter of the injection rate waveform) and the output injection command are output. The correlation between the signals (pulse-on timing t1, pulse-off timing t2, and energization period Tq) is learned, and the injection command signal stored in the command map M2 is corrected based on the learning result. Thus, the fuel injection state can be controlled with high accuracy so that the actual injection state matches the target injection state.

但し、目標噴射状態に対応する噴射指令信号の学習値が存在しない場合には、既存する複数の学習値を補間して目標噴射状態に対応する噴射指令信号を算出することが必要となる。この補間手法については後に詳述する。   However, when there is no learning value of the injection command signal corresponding to the target injection state, it is necessary to calculate an injection command signal corresponding to the target injection state by interpolating a plurality of existing learning values. This interpolation method will be described in detail later.

次に、燃圧センサ20のハード構成について図1を用いて説明する。燃圧センサ20は、以下に説明するステム21(起歪体)、圧力センサ素子22及びモールドIC23等を備えて構成されている。ステム21はボデー11に取り付けられており、ステム21に形成されたダイヤフラム部21aが高圧通路11aを流通する高圧燃料の圧力を受けて弾性変形する。圧力センサ素子22はダイヤフラム部21aに取り付けられており、ダイヤフラム部21aで生じた弾性変形量に応じて圧力検出信号を出力する。   Next, the hardware configuration of the fuel pressure sensor 20 will be described with reference to FIG. The fuel pressure sensor 20 includes a stem 21 (distortion body), a pressure sensor element 22, a mold IC 23, and the like described below. The stem 21 is attached to the body 11, and the diaphragm portion 21a formed on the stem 21 is elastically deformed by receiving the pressure of the high-pressure fuel flowing through the high-pressure passage 11a. The pressure sensor element 22 is attached to the diaphragm portion 21a, and outputs a pressure detection signal in accordance with the amount of elastic deformation generated in the diaphragm portion 21a.

モールドIC23は、圧力センサ素子22から出力された圧力検出信号を増幅する増幅回路や、圧力検出信号を送信する送信回路等の電子部品を樹脂モールドして形成されており、ステム21とともに燃料噴射弁10に搭載されている。ボデー11上部にはコネクタ15が設けられており、コネクタ15に接続されたハーネス16により、モールドIC23及びアクチュエータ13とECU30とはそれぞれ電気接続される。そして、増幅された圧力検出信号はECU30に送信されて、ECU30が有する受信回路により受信される。この送受信にかかる通信処理は、各気筒の燃圧センサ20毎に実施される。   The mold IC 23 is formed by resin molding electronic components such as an amplification circuit that amplifies the pressure detection signal output from the pressure sensor element 22 and a transmission circuit that transmits the pressure detection signal. 10 is installed. A connector 15 is provided on the upper portion of the body 11, and the mold IC 23, the actuator 13, and the ECU 30 are electrically connected by a harness 16 connected to the connector 15. The amplified pressure detection signal is transmitted to the ECU 30 and received by a receiving circuit included in the ECU 30. This communication process for transmission / reception is performed for each fuel pressure sensor 20 of each cylinder.

ここで、噴孔11bから燃料の噴射を開始することに伴い高圧通路11a内の燃料の圧力(燃圧)は低下し、噴射を終了することに伴い燃圧は上昇する。つまり、燃圧の変化と噴射率(単位時間当たりに噴射される噴射量)の変化とは相関があり、燃圧変化から噴射率変化(実噴射状態)を検出できると言える。そして、検出した実噴射状態が目標噴射状態となるよう、先述した指令マップM2中の噴射指令信号を補正する。これにより、噴射状態を精度良く制御できる。   Here, the fuel pressure (fuel pressure) in the high-pressure passage 11a decreases with the start of fuel injection from the nozzle hole 11b, and the fuel pressure increases with the end of injection. That is, it can be said that the change in the fuel pressure and the change in the injection rate (injection amount injected per unit time) have a correlation, and the change in the injection rate (actual injection state) can be detected from the change in the fuel pressure. Then, the injection command signal in the command map M2 described above is corrected so that the detected actual injection state becomes the target injection state. Thereby, the injection state can be controlled with high accuracy.

次に、燃料噴射中の燃料噴射弁10に搭載された燃圧センサ20により検出された圧力の波形である検出波形と、その燃料噴射弁10にかかる燃料噴射率の変化を表した噴射率波形との相関について、図3を用いて説明する。   Next, a detection waveform that is a waveform of the pressure detected by the fuel pressure sensor 20 mounted on the fuel injection valve 10 during fuel injection, and an injection rate waveform that represents a change in the fuel injection rate applied to the fuel injection valve 10 The correlation will be described with reference to FIG.

図3(a)は、燃料噴射弁10のアクチュエータ13へECU30から出力される噴射指令信号を示しており、この指令信号のパルスオンによりアクチュエータ13が通電作動して噴孔11bが開弁する。つまり、噴射指令信号のパルスオン時期t1により噴射開始が指令され、パルスオフ時期t2により噴射終了が指令される。よって、指令信号の通電期間(噴射指令期間Tq)により噴孔11bの開弁時間を制御することで、噴射量Qを制御している。   FIG. 3A shows an injection command signal output from the ECU 30 to the actuator 13 of the fuel injection valve 10. When the command signal is turned on, the actuator 13 is energized to open the nozzle hole 11b. That is, the injection start is commanded by the pulse-on timing t1 of the injection command signal, and the injection end is commanded by the pulse-off timing t2. Therefore, the injection amount Q is controlled by controlling the valve opening time of the nozzle hole 11b according to the energization period of the command signal (injection command period Tq).

図3(b)は、上記噴射指令に伴い生じる噴孔11bからの燃料噴射率の変化(噴射率波形)を示し、図3(c)は、燃料噴射中の燃料噴射弁10に設けられた燃圧センサ20により検出された、噴射率の変化に伴い生じる検出圧力の変化(圧力波形)を示す。   FIG. 3B shows a change (injection rate waveform) of the fuel injection rate from the injection hole 11b caused by the injection command, and FIG. 3C is provided in the fuel injection valve 10 during fuel injection. The change (pressure waveform) of the detected pressure which arises with the change of the injection rate detected by the fuel pressure sensor 20 is shown.

圧力波形と噴射率波形とは以下に説明する相関があるため、検出された圧力波形から噴射率波形を推定(検出)することができる。すなわち、先ず、図3(a)に示すように噴射開始指令がなされたt1時点の後、噴射率がR1の時点で上昇を開始して噴射が開始される。一方、検出圧力は、R1の時点で噴射率が上昇を開始してから遅れ時間C1が経過した時点で、変化点P1にて下降を開始する。その後、R2の時点で噴射率が最大噴射率に到達したことに伴い、検出圧力の下降は変化点P2にて停止する。次に、R3の時点で噴射率が下降を開始してから遅れ時間C3が経過した時点で、検出圧力は変化点P3にて上昇を開始する。その後、R4の時点で噴射率がゼロになり実際の噴射が終了したことに伴い、検出圧力の上昇は変化点P5にて停止する。   Since the pressure waveform and the injection rate waveform have a correlation described below, the injection rate waveform can be estimated (detected) from the detected pressure waveform. That is, first, as shown in FIG. 3A, after the time point t1 when the injection start command is made, the injection rate starts increasing at the time point R1, and the injection is started. On the other hand, the detected pressure starts decreasing at the change point P1 when the delay time C1 elapses after the injection rate starts increasing at the time R1. Thereafter, as the injection rate reaches the maximum injection rate at the time of R2, the decrease in the detected pressure stops at the change point P2. Next, when the delay time C3 elapses after the injection rate starts decreasing at the time point R3, the detected pressure starts increasing at the change point P3. Thereafter, as the injection rate becomes zero at the time point R4 and the actual injection ends, the increase in the detected pressure stops at the change point P5.

以上説明したように、圧力波形と噴射率波形とは相関が高い。そして、噴射率波形には、噴射開始時期(R1出現時期)や、噴射終了時期(R4出現時期)、噴射量(図3(b)中の網点部分の面積)、最大噴射率Rh、噴射率上昇速度Rα,噴射率下降速度Rβが表されているので、圧力波形から噴射率波形を推定することで噴射状態を検出できる。   As explained above, the correlation between the pressure waveform and the injection rate waveform is high. The injection rate waveform includes an injection start time (R1 appearance time), an injection end time (R4 appearance time), an injection amount (area of a halftone dot portion in FIG. 3B), a maximum injection rate Rh, and an injection. Since the rate increase speed Rα and the injection rate decrease speed Rβ are represented, the injection state can be detected by estimating the injection rate waveform from the pressure waveform.

噴射率波形の推定手法についてより詳細に説明すると、上述した噴射開始時期R1、最大噴射率到達時期R2、噴射率低下開始時期R3、噴射終了時期R4、噴射量等のパラメータが特定されれば、台形形状の噴射率波形を特定することができる。つまり、圧力波形から上記各種パラメータを算出すれば噴射率波形を算出できる。   The injection rate waveform estimation method will be described in more detail. If parameters such as the injection start timing R1, the maximum injection rate arrival timing R2, the injection rate decrease start timing R3, the injection end timing R4, and the injection amount are specified, A trapezoidal injection rate waveform can be identified. That is, the injection rate waveform can be calculated by calculating the various parameters from the pressure waveform.

具体例を列挙すると、例えば、検出した圧力波形中に変化点P1,P2が出現した時期を検出し、その検出時期から遅れ時間C1,C3を減算して、噴射開始時期R1及び噴射率低下開始時期R3を算出する。また、圧力下降速度Pα及び上昇速度Pβを検出し、その検出値を所定の変換値で変換して、噴射率上昇速度Rα及び噴射率下降速度Rβを算出する。また、圧力最大降下量P1−P2を検出し、その検出値を所定の変換値で変換して、最大噴射率Rhを算出する。また、上述の如く算出した噴射率低下開始時期R3及び噴射率下降速度Rβに基づき噴射終了時期R4を算出する。   For example, when the change points P1 and P2 appear in the detected pressure waveform are detected, the delay times C1 and C3 are subtracted from the detected timing, and the injection start timing R1 and the injection rate decrease start are detected. Time R3 is calculated. Further, the pressure decrease rate Pα and the increase rate Pβ are detected, and the detected values are converted by a predetermined conversion value to calculate the injection rate increase rate Rα and the injection rate decrease rate Rβ. Further, the maximum pressure drop amount P1-P2 is detected, and the detected value is converted with a predetermined conversion value to calculate the maximum injection rate Rh. Further, the injection end timing R4 is calculated based on the injection rate decrease start timing R3 and the injection rate decrease speed Rβ calculated as described above.

なお、このようにして検出した圧力波形に基づき噴射率波形のパラメータを算出して取得する手段(パラメータ取得手段33a)は、図2に示す如く噴射指令信号設定手段33が有する。さらに、噴射指令信号設定手段33が有する学習手段33bは、噴射率波形のパラメータ算出に用いた圧力波形に対応する噴射指令信号と、算出した前記パラメータとを関連付けする。そして、関連付けられた噴射指令信号及びパラメータである学習値を、指令マップM2に記憶して更新させる。   The injection command signal setting means 33 has means (parameter acquisition means 33a) for calculating and acquiring parameters of the injection rate waveform based on the pressure waveform thus detected, as shown in FIG. Further, the learning means 33b included in the injection command signal setting means 33 associates the calculated parameter with the injection command signal corresponding to the pressure waveform used for calculating the parameter of the injection rate waveform. Then, the associated injection command signal and the learned value that is a parameter are stored in the command map M2 and updated.

図4(a)は、指令マップM2の一例を示しており、噴射指令信号が通電期間Tqであり、噴射率波形のパラメータが噴射終了時期R4である場合の例である。マップM2を構成する通電期間Tqは複数の学習領域A1〜A5に分割されており、学習領域A1〜A5毎に学習値G1〜G5(つまり学習領域の通電期間に対応する噴射終了時期R4)が記憶されている。例えば、算出したパラメータが学習領域A3に該当する場合には、そのパラメータと関連付けられた噴射指令信号を学習領域A3の学習値として記憶させる。   FIG. 4A shows an example of the command map M2, which is an example when the injection command signal is the energization period Tq and the parameter of the injection rate waveform is the injection end timing R4. The energization period Tq constituting the map M2 is divided into a plurality of learning areas A1 to A5, and the learning values G1 to G5 (that is, the injection end timing R4 corresponding to the energization period of the learning area) are obtained for each learning area A1 to A5. It is remembered. For example, when the calculated parameter corresponds to the learning region A3, the injection command signal associated with the parameter is stored as the learning value of the learning region A3.

ここで、通電期間Tqが長いほど噴射終了時期R4は単純に遅くなるという訳ではなく、図4(a)中の実線に例示する如く、Tq−R4特性は周期的に脈動しながら変化する。そのため、例えば学習領域A1〜A5の各々の学習値G1〜G5を図4(a)中の一点鎖線に示す如く線形補間してしまうと、噴射指令信号設定手段33は、実際の通電期間−噴射終了時期の関係からずれた関係に基づき通電期間Tqを設定することとなり、噴射終了時期R4を精度良く制御できなくなる。   Here, as the energization period Tq is longer, the injection end timing R4 is not simply delayed, and the Tq-R4 characteristic changes while periodically pulsating, as illustrated by the solid line in FIG. Therefore, for example, if the learning values G1 to G5 of the learning regions A1 to A5 are linearly interpolated as indicated by the alternate long and short dash line in FIG. 4A, the injection command signal setting means 33 performs the actual energization period-injection. The energization period Tq is set based on the relationship deviating from the relationship of the end timing, and the injection end timing R4 cannot be accurately controlled.

そこで本実施形態では、通電期間Tqの変化に伴い噴射終了時期R4が脈動変化することを表したモデル波形M3(図4(b)(c)(d)参照)を試験等により予め取得しておき、メモリ32(記憶手段)に予め記憶させている。なお、実際の脈動変化の波形は、コモンレール42から燃料噴射弁10へ供給される燃料の圧力(供給圧)、及び燃料温度に応じて異なる波形になる。そこで本実施形態では、供給圧及び燃料温度に応じて異なる波形に設定された、複数種類のモデル波形M3をメモリ32に記憶させている。   Therefore, in the present embodiment, a model waveform M3 (see FIGS. 4B, 4C, and 4D) indicating that the injection end timing R4 changes in pulsation with the change in the energization period Tq is acquired in advance by a test or the like. The data is stored in advance in the memory 32 (storage means). Note that the actual pulsation change waveform varies depending on the pressure (supply pressure) of the fuel supplied from the common rail 42 to the fuel injection valve 10 and the fuel temperature. Therefore, in the present embodiment, a plurality of types of model waveforms M3 set in different waveforms according to the supply pressure and the fuel temperature are stored in the memory 32.

例えば、燃料温度が高いほど脈動の周期T10が長くなるように、図4(c)の如くモデル波形M3を設定している。また、供給圧が高いほど脈動の周期T10が短くなるように、図4(d)の如くモデル波形M3を設定している。因みに、燃料温度及び供給圧と脈動周期T10との関係を、本発明者は次のように考察した。   For example, the model waveform M3 is set as shown in FIG. 4C so that the pulsation period T10 becomes longer as the fuel temperature is higher. Further, the model waveform M3 is set as shown in FIG. 4D so that the pulsation period T10 is shortened as the supply pressure is increased. Incidentally, the present inventor considered the relationship between the fuel temperature and supply pressure and the pulsation cycle T10 as follows.

高圧通路11a及び分岐通路11eを含む燃料供給経路内において、燃料の音速及び体積弾性係数には以下の関係式(1)(2)が成り立つ。   In the fuel supply path including the high-pressure passage 11a and the branch passage 11e, the following relational expressions (1) and (2) are established for the acoustic velocity and bulk modulus of the fuel.

a=√(K/ρ)・・・(1)
K=Kc+α×P+β×T・・・(2)
a:供給経路内の音速、K:燃料の体積弾性係数、ρ:燃料の密度、Kc:定数(燃料の種類によって決まる)、α:定数(プラスの値)、β:定数(マイナスの値)、P:燃料圧力、T:燃料温度。
a = √ (K / ρ) (1)
K = Kc + α × P + β × T (2)
a: sound velocity in the supply path, K: bulk modulus of fuel, ρ: density of fuel, Kc: constant (determined by the type of fuel), α: constant (positive value), β: constant (negative value) , P: fuel pressure, T: fuel temperature.

そして、これらの関係式(1)(2)から次のことが言える。すなわち、燃料圧力P(供給圧に相当)が高いほど、体積弾性係数Kが大きくなるので、音速aが速くなる。よって、脈動周期T10が短くなる。また、燃料温度Tが高いほど、体積弾性係数Kが小さくなるので、音速aが遅くなる。よって、脈動周期T10が長くなる。   The following can be said from these relational expressions (1) and (2). That is, the higher the fuel pressure P (corresponding to the supply pressure), the larger the bulk modulus K, and the higher the speed of sound a. Therefore, the pulsation cycle T10 is shortened. Further, the higher the fuel temperature T is, the smaller the bulk modulus K becomes, so the sound speed a becomes slower. Therefore, the pulsation cycle T10 becomes long.

メモリ32に記憶させる複数種類のモデル波形M3は、上記関係式(1)(2)等を用いた数値解析により得られた波形であってもよいし、試験により得られた波形であってもよい。なお、図4(b)〜(d)に例示するモデル波形M3は振幅が同じであるが、振幅の異なる複数種類のモデル波形M3をメモリ32に記憶させるようにしてもよい。   The plurality of types of model waveforms M3 stored in the memory 32 may be waveforms obtained by numerical analysis using the relational expressions (1), (2), etc., or may be waveforms obtained by testing. Good. Although the model waveforms M3 illustrated in FIGS. 4B to 4D have the same amplitude, a plurality of types of model waveforms M3 having different amplitudes may be stored in the memory 32.

図2の説明に戻り、噴射指令信号設定手段33が有する補間手段33cは、先ず、燃温センサ(図示せず)により検出された燃料温度、及び燃圧センサ20により検出された供給圧を取得する。なお、非噴射気筒の燃圧センサ20の検出値を供給圧として取得するか、或いは、噴射気筒の燃圧センサ20の検出値のうち噴射開始直前の検出値を供給圧として取得すればよい。そして、複数種類のモデル波形M3のうち、取得した燃料温度及び供給圧に最も近い条件(燃料温度及び供給圧)のモデル波形M3を選択する。   Returning to the description of FIG. 2, the interpolation means 33 c included in the injection command signal setting means 33 first acquires the fuel temperature detected by the fuel temperature sensor (not shown) and the supply pressure detected by the fuel pressure sensor 20. . The detection value of the non-injection cylinder fuel pressure sensor 20 may be acquired as the supply pressure, or the detection value of the injection cylinder fuel pressure sensor 20 immediately before the start of injection may be acquired as the supply pressure. Then, a model waveform M3 having a condition (fuel temperature and supply pressure) closest to the acquired fuel temperature and supply pressure is selected from the plurality of types of model waveforms M3.

次に、選択したモデル波形M3を指令マップM2に合わせ込む。具体的には、モデル波形M3と複数の学習値G1〜G5とのずれ量の総和が最小となるよう最小二乗法による演算を実施して、モデル波形M3の位相を指令マップM2に関連付けする(図4(a)中の実線参照)。そして、関連付けしたモデル波形M3中の、目標噴射終了時期R4(目標噴射状態)に対応する通電期間Tqを算出する。これにより、噴射終了時期R4に対する通電期間Tqを、位相が関連付けされたモデル波形M3を用いて学習値G1〜G5を補間して算出することができる。   Next, the selected model waveform M3 is adjusted to the command map M2. Specifically, the calculation by the least square method is performed so that the sum of the deviation amounts between the model waveform M3 and the plurality of learning values G1 to G5 is minimized, and the phase of the model waveform M3 is associated with the command map M2 ( (See the solid line in FIG. 4A). Then, an energization period Tq corresponding to the target injection end timing R4 (target injection state) in the associated model waveform M3 is calculated. Thereby, the energization period Tq for the injection end timing R4 can be calculated by interpolating the learning values G1 to G5 using the model waveform M3 associated with the phase.

ちなみに、図2に示す目標噴射状態算出手段31、パラメータ取得手段33a、学習手段33b、及び補間手段33cは、ECU30が有するマイクロコンピュータ(図示せず)により機能するものである。   Incidentally, the target injection state calculation means 31, the parameter acquisition means 33a, the learning means 33b, and the interpolation means 33c shown in FIG. 2 function by a microcomputer (not shown) included in the ECU 30.

また、図4の例では、学習対象である噴射指令信号が通電期間Tqであり、学習対象である噴射率波形のパラメータが噴射終了時期R4である場合について説明したが、例えば噴射指令信号に関し、パルスオン時期t1やパルスオフ時期t2を学習対象としてもよい。また、噴射率波形のパラメータに関し、噴射開始時期R1、最大噴射率到達時期R2、噴射率低下開始時期R3、噴射量、噴射率上昇速度Rα、噴射率下降速度Rβを学習対象としてもよい。   In the example of FIG. 4, the case where the injection command signal as the learning target is the energization period Tq and the parameter of the injection rate waveform as the learning target is the injection end timing R4 has been described. The pulse-on time t1 and the pulse-off time t2 may be learned. Further, regarding the parameters of the injection rate waveform, the injection start timing R1, the maximum injection rate arrival timing R2, the injection rate decrease start timing R3, the injection amount, the injection rate increase rate Rα, and the injection rate decrease rate Rβ may be learned.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)噴射指令信号の変化に伴い噴射率波形のパラメータが脈動変化することを表したモデル波形M3を、試験等により予め取得しておき、メモリ32に記憶しておく。そして、目標噴射状態が学習値間に相当する場合には、記憶させておいたモデル波形M3の位相を学習値G1〜G5に基づき指令マップM2に関連付けし、関連付けしたモデル波形M3を用いて、目標噴射状態に対応する噴射指令信号を学習値G1〜G5を補間して算出する。そのため、目標噴射状態に対応する噴射指令信号を高精度で算出することができ、実際の噴射状態と目標噴射状態とのずれを小さくできる。   (1) A model waveform M3 representing that the parameter of the injection rate waveform changes in pulsation with the change of the injection command signal is acquired in advance by a test or the like and stored in the memory 32. When the target injection state corresponds to the learning value, the phase of the stored model waveform M3 is associated with the command map M2 based on the learning values G1 to G5, and the associated model waveform M3 is used. An injection command signal corresponding to the target injection state is calculated by interpolating learning values G1 to G5. Therefore, the injection command signal corresponding to the target injection state can be calculated with high accuracy, and the deviation between the actual injection state and the target injection state can be reduced.

(2)供給圧及び燃料温度に応じて異なる波形に設定された複数種類のモデル波形M3をメモリ32に記憶させており、その時々の供給圧及び燃料温度に応じたモデル波形M3を用いて噴射指令信号を補間して算出するので、噴射指令信号をより一層高精度で算出できる。   (2) A plurality of types of model waveforms M3 set in different waveforms according to the supply pressure and the fuel temperature are stored in the memory 32, and injection is performed using the model waveforms M3 corresponding to the supply pressure and the fuel temperature at that time. Since the command signal is calculated by interpolation, the injection command signal can be calculated with higher accuracy.

(3)ところで、燃料噴射に伴い噴孔11bで生じた燃圧変化の脈動は高圧通路11aを伝播していくが、分岐通路11eが形成された図1に示す燃料噴射弁10の場合には、その脈動の一部は分岐通路11e内にて共振し、この共振が原因で、噴射指令信号の変化に対する噴射率波形パラメータの脈動変化は顕著になる。よって、このような脈動変化が顕著に現れる燃料噴射弁10に、モデル波形M3を用いて補間するといった本実施形態によれば、「学習値間の目標噴射状態に対する噴射指令信号を高精度で算出できる」といった上述の効果が顕著に発揮される。   (3) By the way, the pulsation of the fuel pressure change generated in the injection hole 11b accompanying the fuel injection propagates through the high pressure passage 11a. In the case of the fuel injection valve 10 shown in FIG. 1 in which the branch passage 11e is formed, A part of the pulsation resonates in the branch passage 11e, and due to this resonance, the pulsation change of the injection rate waveform parameter with respect to the change of the injection command signal becomes remarkable. Therefore, according to the present embodiment in which the fuel injection valve 10 in which such a pulsation change appears noticeably is interpolated using the model waveform M3, “the injection command signal for the target injection state between the learning values is calculated with high accuracy. The above-mentioned effect “can be done” is remarkably exhibited.

(4)先述した分岐通路11e内等で生じる共振は、燃料噴射に伴い噴孔11bで生じた燃圧変化の脈動が共振場所(分岐通路11e)にまで伝播された後に生じるものである。そのため、噴射率波形のうち噴射開始直後の部分の波形に関するパラメータ(例えば噴射開始時期R1、噴射率上昇終了時期R2、噴射率上昇の傾きRα等)よりも、噴射終了に伴い噴射率が低下していく部分の波形に関するパラメータ(例えば噴射終了時期R4、噴射率低下開始時期R3、噴射率低下の傾きRβ等)の方が、噴射指令信号の変化に対する噴射率波形パラメータの脈動変化は顕著に現れる。よって、このような脈動変化が顕著に現れるパラメータを適用した場合、「学習値間の目標噴射状態に対する噴射指令信号を高精度で算出できる」といった上述の効果が顕著に発揮される。   (4) The resonance generated in the above-described branch passage 11e or the like occurs after the pulsation of the fuel pressure change generated in the injection hole 11b due to fuel injection is propagated to the resonance place (the branch passage 11e). Therefore, the injection rate decreases with the end of injection, compared to parameters related to the waveform immediately after the start of injection in the injection rate waveform (for example, the injection start timing R1, the injection rate increase end timing R2, the injection rate increase slope Rα, etc.). The pulsation change of the injection rate waveform parameter with respect to the change of the injection command signal appears more noticeably in the parameters related to the waveform of the going portion (for example, the injection end timing R4, the injection rate decrease start timing R3, the injection rate decrease slope Rβ, etc.) . Therefore, when a parameter in which such a pulsation change appears remarkably is applied, the above-described effect of “the injection command signal for the target injection state between the learning values can be calculated with high accuracy” is remarkably exhibited.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・図1に示す上記実施形態では、高圧通路11aから分岐する分岐通路11eをボデー11内部に形成し、分岐通路11eの先端位置に燃圧センサ20を取り付けている。そして、分岐通路11eからステム21に導入された燃料の圧力変化を圧力センサ素子22で検出するよう構成された燃料噴射弁10に本発明を適用させている。   In the embodiment shown in FIG. 1, the branch passage 11e branched from the high-pressure passage 11a is formed inside the body 11, and the fuel pressure sensor 20 is attached to the tip position of the branch passage 11e. The present invention is applied to the fuel injection valve 10 configured to detect the pressure change of the fuel introduced into the stem 21 from the branch passage 11e by the pressure sensor element 22.

これに対し、図5に示す如く、分岐通路11e及びステム21を廃止して、圧力センサ素子22をボデー11に直接取り付けるよう構成した燃料噴射弁10Aに本発明を適用させてもよい。この場合、ボデー11に薄肉部11gを形成し、高圧通路11a内の燃圧により生じた薄肉部11gの弾性変形(ひずみ量)を圧力センサ素子22で検出すればよい。   In contrast, as shown in FIG. 5, the present invention may be applied to a fuel injection valve 10 </ b> A configured such that the branch passage 11 e and the stem 21 are eliminated and the pressure sensor element 22 is directly attached to the body 11. In this case, the thin part 11g is formed in the body 11, and the elastic deformation (strain amount) of the thin part 11g caused by the fuel pressure in the high pressure passage 11a may be detected by the pressure sensor element 22.

図5に示すように分岐通路11eが形成されていない燃料噴射弁10Aであっても、例えば、フィルタ17が取り付けられる大径通路11fにて脈動の共振が生じ、この共振に起因して、噴射指令信号の変化に対する噴射率波形パラメータの脈動変化が生じる場合がある。よって、このような脈動変化が生じる燃料噴射弁10Aであれば、本発明を適用させる技術的意義がある。   Even in the fuel injection valve 10A in which the branch passage 11e is not formed as shown in FIG. 5, for example, pulsation resonance occurs in the large-diameter passage 11f to which the filter 17 is attached. There may be a pulsation change in the injection rate waveform parameter with respect to a change in the command signal. Therefore, the fuel injection valve 10A in which such a pulsation change occurs has technical significance to which the present invention is applied.

・図4に示す上記実施形態では、通電期間Tqを複数の学習領域A1〜A5に均等に分割しているが、不均一に分割するようにしてもよい。例えば、脈動の振幅が大きい領域や脈動の周波数が大きい領域を他の領域に比べて小さい学習領域となるよう分割すれば、脈動の状態を補間に精度良く反映させることができ、好適である。   In the above embodiment shown in FIG. 4, the energization period Tq is equally divided into the plurality of learning regions A1 to A5, but may be divided non-uniformly. For example, it is preferable to divide a region where the amplitude of pulsation is large or a region where the frequency of pulsation is large into a learning region that is smaller than other regions, so that the state of pulsation can be accurately reflected in the interpolation.

・図1に示す上記実施形態では、燃圧センサ20を燃料噴射弁10に搭載しているが、本発明にかかる燃圧センサはコモンレール42の吐出口42aから噴孔11bに至るまでの燃料供給経路内の燃圧を検出するよう配置された燃圧センサであればよい。よって、例えばコモンレール42と燃料噴射弁10とを接続する高圧配管42bに燃圧センサを搭載してもよい。つまり、コモンレール42及び燃料噴射弁10を接続する高圧配管42bと、ボデー11内の高圧通路11aとが「燃料供給経路」に相当する。   In the above embodiment shown in FIG. 1, the fuel pressure sensor 20 is mounted on the fuel injection valve 10, but the fuel pressure sensor according to the present invention is in the fuel supply path from the discharge port 42a of the common rail 42 to the injection hole 11b. Any fuel pressure sensor may be used so long as it detects the fuel pressure. Therefore, for example, a fuel pressure sensor may be mounted on the high-pressure pipe 42 b that connects the common rail 42 and the fuel injection valve 10. That is, the high-pressure pipe 42b connecting the common rail 42 and the fuel injection valve 10 and the high-pressure passage 11a in the body 11 correspond to the “fuel supply path”.

10…燃料噴射弁、11b…噴孔、20…燃圧センサ、32…メモリ(記憶手段)、33a…パラメータ取得手段、33b…学習手段、33c…補間手段。   DESCRIPTION OF SYMBOLS 10 ... Fuel injection valve, 11b ... Injection hole, 20 ... Fuel pressure sensor, 32 ... Memory (memory | storage means), 33a ... Parameter acquisition means, 33b ... Learning means, 33c ... Interpolation means.

Claims (5)

内燃機関で燃焼させる燃料を噴孔から噴射する燃料噴射弁と、前記噴孔から燃料を噴射させることに伴い前記噴孔に至るまでの燃料供給経路内で生じる燃料圧力の変化を検出する燃圧センサと、を備えた燃料噴射システムに適用され、
前記燃圧センサの検出値に基づき、噴射率の変化を表した噴射率波形のパラメータを取得するパラメータ取得手段と、
前記燃料噴射弁へ出力された噴射指令信号及びその信号に対応する前記パラメータを学習値として記憶する学習手段と、
前記噴射指令信号の変化に伴い前記パラメータが変化することを表したモデル波形が記憶された記憶手段と、
前記噴射指令信号及びその信号に対応する前記パラメータの値を、前記モデル波形を用いて前記学習値を補間して算出する補間手段と、
を備えることを特徴とする燃料噴射制御装置。
A fuel injection valve that injects fuel to be burned in an internal combustion engine from an injection hole, and a fuel pressure sensor that detects a change in fuel pressure that occurs in the fuel supply path up to the injection hole as fuel is injected from the injection hole And applied to a fuel injection system comprising
Based on the detection value of the fuel pressure sensor, parameter acquisition means for acquiring a parameter of an injection rate waveform representing a change in injection rate;
Learning means for storing an injection command signal output to the fuel injection valve and the parameter corresponding to the signal as a learning value;
Storage means for storing a model waveform representing that the parameter changes with a change in the injection command signal;
Interpolation means for calculating the injection command signal and the value of the parameter corresponding to the signal by interpolating the learning value using the model waveform;
A fuel injection control device comprising:
前記記憶手段は、前記燃料噴射弁へ供給される燃料の供給圧に応じて異なる波形に設定された複数種類の前記モデル波形を記憶しており、
前記補間手段は、前記供給圧に応じた前記モデル波形を用いて前記補間を実施することを特徴とする請求項1に記載の燃料噴射制御装置。
The storage means stores a plurality of types of model waveforms set in different waveforms according to the supply pressure of fuel supplied to the fuel injection valve,
The fuel injection control device according to claim 1, wherein the interpolation means performs the interpolation using the model waveform corresponding to the supply pressure.
前記記憶手段は、燃料温度に応じて異なる波形に設定された複数種類の前記モデル波形を記憶しており、
前記補間手段は、前記燃料温度に応じた前記モデル波形を用いて前記補間を実施することを特徴とする請求項1又は2に記載の燃料噴射制御装置。
The storage means stores a plurality of types of model waveforms set to different waveforms according to fuel temperature,
The fuel injection control device according to claim 1, wherein the interpolation unit performs the interpolation using the model waveform corresponding to the fuel temperature.
前記燃料噴射弁は、前記噴孔を開閉する弁体、及び前記弁体を内部に収容するとともに前記燃圧センサが取り付けられたボデーを有して構成されており、
前記ボデーには、前記噴孔、前記噴孔へ燃料を流通させる高圧通路、及び前記高圧通路から分岐して前記燃圧センサへ燃料を流通させる分岐通路が形成されていることを特徴とする請求項1〜3のいずれか1つに記載の燃料噴射制御装置。
The fuel injection valve is configured to have a valve body that opens and closes the nozzle hole, and a body in which the valve body is housed and the fuel pressure sensor is attached.
The said body is formed with the said injection hole, the high-pressure passage which distribute | circulates fuel to the said injection hole, and the branch passage which branches from the said high-pressure passage and distribute | circulates fuel to the said fuel pressure sensor, It is characterized by the above-mentioned. The fuel-injection control apparatus as described in any one of 1-3.
前記パラメータは、燃料噴射が終了して噴射率がゼロになる噴射終了時期、燃料噴射終了に伴い噴射率が低下を開始する時期、及び燃料噴射終了に伴い噴射率が低下する傾きの少なくとも1つであることを特徴とする請求項1〜4のいずれか1つに記載の燃料噴射制御装置。   The parameter is at least one of an injection end time at which the fuel injection is finished and the injection rate becomes zero, a timing at which the injection rate starts to decrease with the end of fuel injection, and a slope at which the injection rate decreases with the end of fuel injection. The fuel injection control device according to claim 1, wherein the fuel injection control device is a fuel injection control device.
JP2010164756A 2010-07-22 2010-07-22 Fuel injection control device Active JP5024430B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010164756A JP5024430B2 (en) 2010-07-22 2010-07-22 Fuel injection control device
DE102011051814.2A DE102011051814B4 (en) 2010-07-22 2011-07-13 Fuel injection control
CN201110211152.2A CN102345524B (en) 2010-07-22 2011-07-20 Controller for fuel injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010164756A JP5024430B2 (en) 2010-07-22 2010-07-22 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2012026339A true JP2012026339A (en) 2012-02-09
JP5024430B2 JP5024430B2 (en) 2012-09-12

Family

ID=45544531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010164756A Active JP5024430B2 (en) 2010-07-22 2010-07-22 Fuel injection control device

Country Status (3)

Country Link
JP (1) JP5024430B2 (en)
CN (1) CN102345524B (en)
DE (1) DE102011051814B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241897A (en) * 2012-05-21 2013-12-05 Denso Corp Characteristic obtaining method for fuel injection valve
JP2013253479A (en) * 2012-06-05 2013-12-19 Denso Corp Fuel injection control device
JP2015014249A (en) * 2013-07-05 2015-01-22 株式会社デンソー Fuel injection state estimation device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392277B2 (en) * 2011-02-16 2014-01-22 株式会社デンソー Fuel injection control device
JP5394432B2 (en) * 2011-04-01 2014-01-22 株式会社日本自動車部品総合研究所 Fuel state estimation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052414A (en) * 2007-08-23 2009-03-12 Denso Corp Fuel injection control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136942A (en) * 1997-07-15 1999-02-09 Nissan Motor Co Ltd Fuel supply system of internal combustion engine
JP4118652B2 (en) * 2002-02-20 2008-07-16 株式会社デンソー Accumulated fuel injection system
JP4491376B2 (en) * 2005-04-27 2010-06-30 トヨタ自動車株式会社 Internal combustion engine knock determination device
JP4428427B2 (en) 2007-08-31 2010-03-10 株式会社デンソー Fuel injection characteristic detecting device and fuel injection command correcting device
JP4631937B2 (en) * 2008-06-18 2011-02-16 株式会社デンソー Learning device and fuel injection system
JP4998521B2 (en) 2009-06-19 2012-08-15 株式会社デンソー Learning device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052414A (en) * 2007-08-23 2009-03-12 Denso Corp Fuel injection control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241897A (en) * 2012-05-21 2013-12-05 Denso Corp Characteristic obtaining method for fuel injection valve
JP2013253479A (en) * 2012-06-05 2013-12-19 Denso Corp Fuel injection control device
JP2015014249A (en) * 2013-07-05 2015-01-22 株式会社デンソー Fuel injection state estimation device

Also Published As

Publication number Publication date
CN102345524A (en) 2012-02-08
DE102011051814A1 (en) 2012-05-16
DE102011051814B4 (en) 2018-03-08
CN102345524B (en) 2014-05-28
JP5024430B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5195842B2 (en) Pressure reducing valve controller
EP2031225B1 (en) Fuel injection device and fuel injection system
EP2031224B1 (en) Fuel injection device, fuel injection system, and method for determining malfunction of the same
JP5278398B2 (en) Fuel injection state detection device
US9127612B2 (en) Fuel-injection-characteristics learning apparatus
JP5003796B2 (en) Fuel injection state detection device
JP5024430B2 (en) Fuel injection control device
JP4911199B2 (en) Fuel condition detection device
JP2012215157A (en) Apparatus of estimating fuel state
JP5723244B2 (en) Fuel injection control device
JP4998521B2 (en) Learning device
JP2013007341A (en) Fuel-injection-condition estimating apparatus
JP6040877B2 (en) Fuel injection state estimation device
JP5293765B2 (en) Fuel injection state estimation device
JP5067461B2 (en) Fuel injection state detection device
JP5126296B2 (en) Fuel injection state detection device
JP5218536B2 (en) Control device
JP5168325B2 (en) Fuel injection state detection device
JP5240283B2 (en) Noise diagnosis device for fuel injection system
JP6028603B2 (en) Fuel injection state estimation device
JP5392277B2 (en) Fuel injection control device
JP6507982B2 (en) Fuel injection state detection device
JP4238043B2 (en) Fuel injection control device for internal combustion engine
JP5928380B2 (en) Engine fuel injection control device
JP4061982B2 (en) Fuel injection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5024430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250