JP2012025065A - Transparent conductive film - Google Patents

Transparent conductive film Download PDF

Info

Publication number
JP2012025065A
JP2012025065A JP2010166896A JP2010166896A JP2012025065A JP 2012025065 A JP2012025065 A JP 2012025065A JP 2010166896 A JP2010166896 A JP 2010166896A JP 2010166896 A JP2010166896 A JP 2010166896A JP 2012025065 A JP2012025065 A JP 2012025065A
Authority
JP
Japan
Prior art keywords
layer
transparent conductive
conductive film
refractive index
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010166896A
Other languages
Japanese (ja)
Other versions
JP5659601B2 (en
Inventor
Yuko Kato
祐子 加藤
Takayuki Nojima
孝之 野島
Tatsunori Kato
辰徳 加藤
Sukemasa Morita
祐誠 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2010166896A priority Critical patent/JP5659601B2/en
Publication of JP2012025065A publication Critical patent/JP2012025065A/en
Application granted granted Critical
Publication of JP5659601B2 publication Critical patent/JP5659601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive film with a suppressed coloring of transmitted light.SOLUTION: The transparent conductive film includes a hard coat layer, an intermediate layer and a tin-doped indium oxide layer laminated on one surface of a polyester film. The intermediate layer is formed of fine particles of a metal oxide and an ultraviolet curing binder, has refraction of 1.66-1.86 with light of 400 nm in wavelength and is 80-110 nm in film thickness. The ITO (tin-doped indium oxide) layer has refraction of 1.85-2.35 with the light of 400 nm in wavelength and is 5-50 nm in film thickness. Moreover, a functional layer may be formed in the opposite surface to the tin-doped indium oxide layer on the polyester film.

Description

本発明は、例えばタッチパネル等に用いられ、透過光の着色を抑える透明導電性フィルムに関する。   The present invention relates to a transparent conductive film that is used for, for example, a touch panel and suppresses coloring of transmitted light.

現在、画像表示部に直接触れることにより、情報を入力できるデバイスとしてタッチパネルが用いられている。このタッチパネルは光を透過する入力装置を液晶表示装置、CRT等の各種ディスプレイ上に配置されるものであり、代表的な形式として、透明電極基板2枚を透明電極層が向かい合うように配置された抵抗膜式タッチパネルや、透明電極層と指の間に生じる電流容量の変化を利用した静電容量タイプのタッチパネルがある。   Currently, a touch panel is used as a device that can input information by directly touching an image display unit. In this touch panel, an input device that transmits light is arranged on various displays such as a liquid crystal display device and a CRT. As a typical form, two transparent electrode substrates are arranged so that transparent electrode layers face each other. There are a resistive film type touch panel and a capacitance type touch panel using a change in current capacity generated between a transparent electrode layer and a finger.

抵抗膜式タッチパネルや静電容量タイプのタッチパネルの透明電極基板として、ガラス板、透明樹脂板や各種の熱可塑性高分子フィルム等の基材上に、酸化錫を含有するインジウム酸化物(錫ドープ酸化インジウム、ITO)や酸化亜鉛等の金属酸化物による透明導電層を積層したものが一般的に用いられている。このようにして得られた透明電極基板は、金属酸化物層の反射及び吸収に由来する可視光短波長領域の透過率の低下により、全光線透過率が低下すると同時に、黄色の呈色が見られることが多い。そのため、タッチパネルの下に配置される表示装置の発色を正確に表現することが難しいという問題があった。   Indium oxide containing tin oxide (tin-doped oxidation) on a substrate such as a glass plate, transparent resin plate or various thermoplastic polymer films as a transparent electrode substrate for resistive touch panels and capacitive touch panels A laminate in which a transparent conductive layer made of a metal oxide such as indium, ITO) or zinc oxide is laminated is generally used. The transparent electrode substrate thus obtained shows a yellow coloration simultaneously with a decrease in the total light transmittance due to a decrease in the transmittance in the visible short wavelength region derived from the reflection and absorption of the metal oxide layer. It is often done. For this reason, there is a problem that it is difficult to accurately express the color of the display device arranged under the touch panel.

光の透過率が低下する問題を解決するために、透明導電層と基材との間に、基材及び透明導電層よりも屈折率が高い誘電体薄膜を挿入する方法が提案されている(特許文献1を参照)。この方法によれば、基材及び透明導電層よりも屈折率の高い誘電体薄膜を挿入することによって透明性が向上し、全光線の透過率を向上させる効果が得られた。   In order to solve the problem that the light transmittance is reduced, a method of inserting a dielectric thin film having a higher refractive index than the base material and the transparent conductive layer between the transparent conductive layer and the base material has been proposed ( (See Patent Document 1). According to this method, transparency was improved by inserting a dielectric thin film having a higher refractive index than that of the base material and the transparent conductive layer, and the effect of improving the transmittance of all light rays was obtained.

特開平6-218864号公報Japanese Unexamined Patent Publication No. 6-18864

しかしながら、特許文献1に係る発明においては、可視光短波長領域の透過率が十分に向上されていないため、フィルムの透過光が黄色を呈色する問題は解決されていない。
そこで、本発明の目的のするところは、透明導電性フィルムの透過色の黄色味を抑える透明導電性フィルムを提供することにある。
However, in the invention according to Patent Document 1, since the transmittance in the visible light short wavelength region is not sufficiently improved, the problem that the transmitted light of the film turns yellow is not solved.
Accordingly, an object of the present invention is to provide a transparent conductive film that suppresses the yellowness of the transmitted color of the transparent conductive film.

上記課題を解決するために、本発明は次の手段を採る。
第1の発明の透明導電性フィルムは、ポリエステルフィルム基材の一面から、ハードコート層、中間層、および錫ドープ酸化インジウム層が順に積層された透明導電性フィルムであって前記中間層は、金属酸化物微粒子と紫外線硬化性バインダーとより形成され、かつ波長400nmの光の屈折率が1.66〜1.86、膜厚が80〜110nmであり、前記錫ドープ酸化インジウム層は、波長400nmの光の屈折率が1.85〜2.35、膜厚が5〜50nmであることを特徴とする。
In order to solve the above problems, the present invention employs the following means.
The transparent conductive film of the first invention is a transparent conductive film in which a hard coat layer, an intermediate layer, and a tin-doped indium oxide layer are laminated in order from one surface of a polyester film substrate, and the intermediate layer is made of a metal The tin-doped indium oxide layer is formed of oxide fine particles and an ultraviolet curable binder, and has a refractive index of light of 1.66 to 1.86 and a film thickness of 80 to 110 nm. The refractive index of light is 1.85 to 2.35, and the film thickness is 5 to 50 nm.

第2の発明の透明導電性フィルムは、第1の発明において、前記ポリエステルフィルム基材の他面に機能を付与する機能層が積層されていることを特徴とする。   The transparent conductive film of the second invention is characterized in that, in the first invention, a functional layer imparting a function is laminated on the other surface of the polyester film substrate.

第3の発明の透明導電性フィルムは、第2の発明において、前記機能層は、ハードコート層、防眩層、指紋なじみ層又は自己修復層から選ばれる一種または二種以上の組み合わせであることを特徴とする。   In the transparent conductive film of the third invention, in the second invention, the functional layer is one or a combination of two or more selected from a hard coat layer, an antiglare layer, a fingerprint familiar layer or a self-healing layer. It is characterized by.

第4の発明の透明導電性フィルムは、第3の発明において、前記機能層はハードコート層又は防眩層であり、前記機能層の外面に反射防止層が積層されていることを特徴とする。   The transparent conductive film of the fourth invention is characterized in that, in the third invention, the functional layer is a hard coat layer or an antiglare layer, and an antireflection layer is laminated on the outer surface of the functional layer. .

本発明によれば、次のような効果を発揮することができる。
本発明の透明導電性フィルムでは、中間層は波長400nmの光の屈折率が1.66〜1.86、および膜厚が80〜110nmであり、錫ドープ酸化インジウム層は波長400nmの光の屈折率が1.85〜2.35、膜厚が5〜50nmに設定されている。このように、中間層、錫ドープ酸化インジウム層の屈折率、膜厚を適切に設定することにより、透過光の黄色味を抑えることができる。
ここで、屈折率には波長分散性があり、短波長領域では屈折率が高くなる傾向がある。一般に、各層の屈折率調整では、ナトリウムのD線(光の波長589nm)の値を用いることが多いが、本発明の中間層及び錫ドープ酸化インジウム層のように金属酸化物微粒子を含む層においては、屈折率の波長分散の影響が大きくなる。黄色味を抑えるには波長400nmの透過率制御が重要であるため、波長589nmの屈折率で各層の屈折率を調整した場合、波長400nmの透過率を十分に調整することは出来なくなり、黄色味低減効果が十分に得られない。本願では、波長400nmの屈折率を使用して各層を設計するため、透過光の黄色味を抑える効果が最大となる。
According to the present invention, the following effects can be exhibited.
In the transparent conductive film of the present invention, the intermediate layer has a light refractive index of 1.66 to 1.86 and a film thickness of 80 to 110 nm, and the tin-doped indium oxide layer has a light refractive index of 400 nm. The rate is set to 1.85 to 2.35, and the film thickness is set to 5 to 50 nm. Thus, the yellowness of transmitted light can be suppressed by appropriately setting the refractive index and film thickness of the intermediate layer and the tin-doped indium oxide layer.
Here, the refractive index has wavelength dispersion, and the refractive index tends to increase in the short wavelength region. Generally, in adjusting the refractive index of each layer, the value of sodium D-line (wavelength of light 589 nm) is often used, but in the layer containing metal oxide fine particles such as the intermediate layer and tin-doped indium oxide layer of the present invention. The influence of wavelength dispersion on the refractive index becomes large. Since it is important to control the transmittance at a wavelength of 400 nm in order to suppress yellowness, when the refractive index of each layer is adjusted with the refractive index at a wavelength of 589 nm, the transmittance at a wavelength of 400 nm cannot be sufficiently adjusted. The reduction effect cannot be obtained sufficiently. In the present application, since each layer is designed using a refractive index having a wavelength of 400 nm, the effect of suppressing the yellowness of transmitted light is maximized.

以下、本発明を具体化した実施形態について詳細に説明する。
<透明導電性フィルム>
本実施形態の透明導電性フィルムは、ポリエステルフィルムの一面から順に、ハードコート層、中間層、錫ドープ酸化インジウム層(以下、ITO層と称す)が積層されて構成されている。そして、中間層は、金属酸化物微粒子と紫外線硬化性バインダーとより形成され、かつ光の波長400nmにおける屈折率が1.66〜1.86であり、膜厚が80〜110nmである。また、ITO層は、光の波長400nmにおける屈折率が1.85〜2.35、膜厚が5〜50nmである。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments embodying the present invention will be described in detail.
<Transparent conductive film>
The transparent conductive film of this embodiment is formed by laminating a hard coat layer, an intermediate layer, and a tin-doped indium oxide layer (hereinafter referred to as an ITO layer) in order from one surface of a polyester film. The intermediate layer is formed of metal oxide fine particles and an ultraviolet curable binder, and has a refractive index of 1.66 to 1.86 at a light wavelength of 400 nm and a film thickness of 80 to 110 nm. The ITO layer has a refractive index of 1.85 to 2.35 at a light wavelength of 400 nm and a film thickness of 5 to 50 nm.

以下に、この透明導電性フィルムの構成要素について順に説明する。
<ポリエステルフィルム基材>
ポリエステルフィルム基材はポリエステルフィルムからなり、例えばポリエチレンテレフタレート(PET)樹脂を使用できる。ポリエステルフィルムの膜厚は通常25〜400μm程度、好ましくは35〜250μm程度である。
Below, the component of this transparent conductive film is demonstrated in order.
<Polyester film substrate>
A polyester film base material consists of a polyester film, for example, can use a polyethylene terephthalate (PET) resin. The film thickness of the polyester film is usually about 25 to 400 μm, preferably about 35 to 250 μm.

<ハードコート層>
ハードコート層の材料としては従来公知のものでよく、特に制限されない。ハードコート層としては、例えば、テトラエトキシシラン等の反応性珪素化合物と、活性エネルギー線硬化型樹脂とを混合してなるハードコート用塗液を紫外線(UV)硬化させた硬化物が挙げられる。活性エネルギー線硬化型樹脂としては、例えば単官能(メタ)アクリレート、多官能(メタ)アクリレートなどが挙げられる。これらのうち生産性及び硬度を両立させる観点より、鉛筆硬度(評価法:JIS−K5600−5−4)がH以上となる活性エネルギー線硬化型樹脂を含む組成物の重合硬化物であることが好ましい。そのような活性エネルギー線硬化型樹脂を含む組成物としては特に限定されるものではないが、例えば、公知の活性エネルギー線硬化型樹脂を2種類以上混合したもの、紫外線硬化性ハードコート材として市販されているもの、あるいはこれら以外に本発明の効果を損なわない範囲において、その他の成分をさらに添加したものを用いることができる。
ハードコート層の光の波長400nmにおける屈折率は、1.45〜1.60となるように調整されることが好ましい。また乾燥硬化後の膜厚は、1.0〜10μmが好ましい。膜厚が1.0μmより薄い場合は、鉛筆硬度がH未満になるため好ましくない。膜厚が10μmより厚い場合は、硬化収縮によるカールが強くなるとともに、不必要に厚くなり、生産性や作業性が低下するため好ましくない。
<Hard coat layer>
The material for the hard coat layer may be a conventionally known material and is not particularly limited. As a hard-coat layer, the hardened | cured material which hardened the coating liquid for hard-coats formed by mixing reactive silicon compounds, such as tetraethoxysilane, and active energy ray hardening-type resin, for example with an ultraviolet-ray (UV) is mentioned. Examples of the active energy ray-curable resin include monofunctional (meth) acrylate and polyfunctional (meth) acrylate. Among these, from the viewpoint of achieving both productivity and hardness, it is a polymerization cured product of a composition containing an active energy ray-curable resin having a pencil hardness (evaluation method: JIS-K5600-5-4) of H or higher. preferable. The composition containing such an active energy ray-curable resin is not particularly limited. For example, a mixture of two or more known active energy ray-curable resins, commercially available as an ultraviolet curable hard coat material In addition, these can be used as long as they do not impair the effects of the present invention.
It is preferable to adjust the refractive index of the light of the hard coat layer at a wavelength of 400 nm to be 1.45 to 1.60. The film thickness after drying and curing is preferably 1.0 to 10 μm. When the film thickness is thinner than 1.0 μm, the pencil hardness is less than H, which is not preferable. When the film thickness is thicker than 10 μm, curling due to curing shrinkage becomes strong and becomes unnecessarily thick, which is not preferable because productivity and workability are lowered.

<中間層>
中間層は金属酸化物微粒子と、紫外線(UV)硬化性バインダーとを混合してなる中間層用塗液をUV硬化させた硬化物により形成される。金属酸化物微粒子としては、酸化チタン及び酸化ジルコニウムが好ましい。酸化チタン及び酸化ジルコニウムの光の波長400nmにおける屈折率は製法によって異なるが、2.0〜3.0であることが好ましい。また、紫外線硬化性バインダーは、波長400nmにおける光の屈折率が1.4〜1.7であることが好ましい。紫外線硬化性バインダーとしては、例えば単官能(メタ)アクリレート、多官能(メタ)アクリレートなどが挙げられる。
<Intermediate layer>
The intermediate layer is formed of a cured product obtained by UV curing an intermediate layer coating liquid obtained by mixing metal oxide fine particles and an ultraviolet (UV) curable binder. As the metal oxide fine particles, titanium oxide and zirconium oxide are preferable. The refractive index of light of titanium oxide and zirconium oxide at a wavelength of 400 nm varies depending on the production method, but is preferably 2.0 to 3.0. The ultraviolet curable binder preferably has a light refractive index of 1.4 to 1.7 at a wavelength of 400 nm. Examples of the ultraviolet curable binder include monofunctional (meth) acrylate and polyfunctional (meth) acrylate.

中間層は金属酸化物微粒子及び紫外線硬化性バインダーを混合し、波長400nmにおける光の屈折率が1.66〜1.86になるように形成される。さらに、中間層の乾燥硬化後の膜厚は80〜110nmであることが必要である。中間層の屈折率が1.66未満の場合は、JIS Z 8729に規定されているL*a*b表色系における透過色のb*の値が大きくなってしまい、透明導電性フィルムの透過色の黄色味が明瞭に認識されるようになる。また、中間層の屈折率が1.86より大きい場合は、塗膜中の粒子の割合が多くなり、ヘイズが上昇してしまう。中間層の膜厚が上記の範囲外では、b*の値が大きくなってしまい、透明導電性フィルムの透過色の黄色味の着色が明瞭に認識されるようになる。   The intermediate layer is formed so that the metal oxide fine particles and the ultraviolet curable binder are mixed and the refractive index of light at a wavelength of 400 nm is 1.66 to 1.86. Furthermore, the film thickness of the intermediate layer after drying and curing needs to be 80 to 110 nm. When the refractive index of the intermediate layer is less than 1.66, the b * value of the transmitted color in the L * a * b color system defined in JIS Z 8729 becomes large, and the transparent conductive film transmits light. The yellowish color is clearly recognized. Moreover, when the refractive index of an intermediate | middle layer is larger than 1.86, the ratio of the particle | grains in a coating film will increase, and a haze will raise. When the film thickness of the intermediate layer is out of the above range, the value of b * becomes large, and the yellowish coloring of the transparent color of the transparent conductive film is clearly recognized.

ポリエステルフィルム上に設けられるハードコート層及び、中間層の形成方法は従来公知の方法でよく、特に制限されないが、生産性及び製造コストの面より、特にウェットコーティング法が好ましい。ウェットコーティング法としては公知の方法で良く、例えばロールコート法、スピンコート法、ディップコート法、グラビアコート法などが代表的な方法として挙げられる。その中でロールコート法、グラビアコート法等、連続的に層を形成できる方法が生産性の点より好ましい。   The method for forming the hard coat layer and the intermediate layer provided on the polyester film may be a conventionally known method and is not particularly limited, but the wet coating method is particularly preferable from the viewpoint of productivity and production cost. As the wet coating method, a known method may be used, and examples thereof include a roll coating method, a spin coating method, a dip coating method, and a gravure coating method. Among them, a method capable of continuously forming a layer such as a roll coating method and a gravure coating method is preferable from the viewpoint of productivity.

<錫ドープ酸化インジウム層(ITO層)>
中間層の上に積層される錫ドープ酸化インジウム層(ITO層)は、波長400nmにおける光の屈折率が1.85〜2.35、膜厚が5〜50nmである。屈折率がこの範囲を外れると、中間層との光学干渉が適切に作用しなくなるため、透明導電性フィルムの透過色が着色を呈し、全光線透過率も低下する。また、ITO層の膜厚は5〜50nmであることが好ましい。膜厚が5nmより薄い場合は、均一に成膜することが難しく、安定した抵抗が得られないため好ましくない。また膜厚が50nmより厚い場合は、ITO層自身による光の吸収が強くなり、黄色味低減効果が薄れるため好ましくない。この錫ドープ酸化インジウム層(ITO層)の製膜方法は、特に限定されず、例えば蒸着法、スパッタリング法、イオンプレーティング法、CVD法、めっき法を採用できる。これらの中では、層の厚み制御の観点より蒸着法及びスパッタリング法が特に好ましい。尚、錫ドープ酸化インジウム層を形成した後、必要に応じて、100℃〜200℃の範囲内でアニール処理を施して結晶化することができる。具体的には、高い温度で結晶化すると錫ドープ酸化インジウム層の屈折率は小さくなる傾向を示す。従って、錫ドープ酸化インジウム層の屈折率は、アニール処理の温度と時間を制御することで調整可能である。
<Tin-doped indium oxide layer (ITO layer)>
The tin-doped indium oxide layer (ITO layer) laminated on the intermediate layer has a light refractive index of 1.85 to 2.35 and a film thickness of 5 to 50 nm at a wavelength of 400 nm. If the refractive index is out of this range, the optical interference with the intermediate layer does not work properly, so that the transparent conductive film is colored and the total light transmittance is also lowered. Moreover, it is preferable that the film thickness of an ITO layer is 5-50 nm. When the film thickness is less than 5 nm, it is difficult to form a uniform film, and a stable resistance cannot be obtained. On the other hand, when the film thickness is greater than 50 nm, light absorption by the ITO layer itself becomes strong and the yellowing reduction effect is reduced, which is not preferable. The method for forming the tin-doped indium oxide layer (ITO layer) is not particularly limited, and for example, a vapor deposition method, a sputtering method, an ion plating method, a CVD method, or a plating method can be employed. Among these, the vapor deposition method and the sputtering method are particularly preferable from the viewpoint of controlling the layer thickness. In addition, after forming a tin dope indium oxide layer, it can crystallize by giving an annealing process within the range of 100 to 200 degreeC as needed. Specifically, when crystallization is performed at a high temperature, the refractive index of the tin-doped indium oxide layer tends to decrease. Accordingly, the refractive index of the tin-doped indium oxide layer can be adjusted by controlling the annealing temperature and time.

<機能層>
ポリエステルフィルムの他面には、フィルムに機能を付与する機能層を設けることができる。この機能層は、従来公知のものでよく、特に制限されない。該機能層は、例えば硬度向上を目的としたハードコート層、指紋なじみ層、自己修復層、防眩層、反射防止層又は防眩性反射防止層などである。
<Functional layer>
On the other surface of the polyester film, a functional layer that imparts a function to the film can be provided. This functional layer may be a conventionally known layer and is not particularly limited. The functional layer is, for example, a hard coat layer for improving hardness, a fingerprint familiar layer, a self-healing layer, an antiglare layer, an antireflection layer, or an antiglare antireflection layer.

指紋なじみ層は、透明導電性フィルムの裏面に付着した指紋(生体由来脂質成分)に対してなじみ性(親和性)を示す層であり、例えばアルキレンオキシド基や(メタ)アクリロイル基を有する多官能モノマー、オリゴマー及び重合体の中から1種又は2種以上を選択して使用され、それらの有機溶媒溶液を塗布、乾燥して紫外線硬化させた層である。   The fingerprint familiar layer is a layer showing familiarity (affinity) to the fingerprint (biologically derived lipid component) attached to the back surface of the transparent conductive film. For example, a multifunctional layer having an alkylene oxide group or a (meth) acryloyl group. It is a layer that is used by selecting one or more of monomers, oligomers, and polymers, and applying these organic solvent solutions, drying them, and curing them with ultraviolet rays.

自己修復層は、透明導電性フィルムの裏面へペン入力する際、筆記感を向上させ、自己修復性、すなわち一度生じた凹み痕が経時的に消失して元の形状に戻る性質を有する軟質樹脂からなる層である。自己修復層を形成する樹脂としては、紫外線硬化性又は熱硬化性の不飽和アクリル系樹脂、ウレタン変性(メタ)アクリレート等の不飽和ポリウレタン系樹脂、不飽和ポリエステル系樹脂等が用いられる。   The self-healing layer is a soft resin that improves writing feeling when pen is input to the back side of the transparent conductive film, and has self-healing properties, that is, a dent mark once generated disappears over time and returns to its original shape. It is the layer which consists of. As the resin for forming the self-healing layer, an ultraviolet curable or thermosetting unsaturated acrylic resin, an unsaturated polyurethane resin such as urethane-modified (meth) acrylate, an unsaturated polyester resin, or the like is used.

防眩層は、蛍光灯などの外部光源から照射された光線を表面凹凸により散乱させ、光の反射を低減する層である。防眩層は、熱硬化性樹脂や、紫外線硬化性樹脂等の活性エネルギー線硬化型樹脂に粒径が数μmの球形または不定形の無機又は有機微粒子を分散した塗液を、または、粒子を用いないで凹凸を形成することが可能なポリマーを含有した塗液を、塗布、硬化させた層である。   The antiglare layer is a layer that reduces light reflection by scattering light rays emitted from an external light source such as a fluorescent lamp by surface irregularities. The anti-glare layer is a coating liquid in which spherical or irregular inorganic or organic fine particles having a particle size of several μm are dispersed in a thermosetting resin or an active energy ray-curable resin such as an ultraviolet curable resin, or particles. It is a layer obtained by applying and curing a coating liquid containing a polymer that can form irregularities without using it.

反射防止層は、蛍光灯などの外部光源から照射された光線を、光の干渉により低減する層であり、ポリエステルフィルム上に直接積層する他、ポリエステルフィルムに積層されたハードコート層または防眩層等の他の機能層の外面に積層することができる。屈折率が1.5〜1.6の支持体上に反射防止層を一層で形成する場合は、支持体よりも屈折率が低い、例えば、屈折率が1.3〜1.5の低屈折率層を一層積層し形成される。前記支持体上に反射防止層を二層で形成する場合は、支持体よりも屈折率が高い、例えば、屈折率が1.6〜1.8の高屈折率層、更にその上層に、高屈折率層よりも屈折率が低い低屈折率層をそれぞれ積層し形成される。
低屈折率層は、平均粒子径が10〜100nmの無機微粒子と活性エネルギー線硬化型樹脂とを混合した塗液を、塗布、硬化させた層である。無機微粒子としては、コロイダルシリカや中空シリカ微粒子が挙げられ、活性エネルギー線硬化型樹脂としては、例えば(メタ)アクリロイル基を有する多官能モノマー、オリゴマー及び重合体が挙げられる。
高屈折率層は、平均粒子径が10〜100nmの金属酸化物微粒子と活性エネルギー線硬化型樹脂とを混合した塗液を、塗布、硬化させた層である。金属酸化物微粒子としては、錫ドープ酸化インジウム、酸化チタン、酸化ジルコニウム等が挙げられ、活性エネルギー線硬化型樹脂としては、例えば(メタ)アクリロイル基を有する多官能モノマー、オリゴマー及び重合体が挙げられる。
The antireflection layer is a layer that reduces light emitted from an external light source such as a fluorescent lamp by light interference. In addition to directly laminating on a polyester film, a hard coat layer or an antiglare layer laminated on the polyester film It can be laminated on the outer surface of other functional layers. When an antireflection layer is formed in a single layer on a support having a refractive index of 1.5 to 1.6, the refractive index is lower than that of the support, for example, a low refraction having a refractive index of 1.3 to 1.5. The rate layer is formed by layering one layer. When the antireflection layer is formed in two layers on the support, the refractive index is higher than that of the support, for example, a high refractive index layer having a refractive index of 1.6 to 1.8, and further, Each layer is formed by laminating low refractive index layers having a refractive index lower than that of the refractive index layer.
The low refractive index layer is a layer obtained by applying and curing a coating liquid obtained by mixing inorganic fine particles having an average particle diameter of 10 to 100 nm and an active energy ray curable resin. Examples of the inorganic fine particles include colloidal silica and hollow silica fine particles, and examples of the active energy ray-curable resin include polyfunctional monomers, oligomers, and polymers having a (meth) acryloyl group.
The high refractive index layer is a layer obtained by applying and curing a coating liquid in which metal oxide fine particles having an average particle diameter of 10 to 100 nm and an active energy ray-curable resin are mixed. Examples of the metal oxide fine particles include tin-doped indium oxide, titanium oxide, and zirconium oxide. Examples of the active energy ray-curable resin include polyfunctional monomers, oligomers, and polymers having a (meth) acryloyl group. .

防眩性反射防止層は、防眩性と反射防止性の機能を合わせ持った層であり、上記防眩層上に反射防止層を積層することにより形成される。
これらの機能層は、各種単独で用いることも出来、適時、組み合わせて用いることも出来る。
The antiglare antireflection layer is a layer having both antiglare and antireflection functions, and is formed by laminating an antireflection layer on the antiglare layer.
These functional layers can be used alone or in combination in a timely manner.

以下に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明するが、本発明はそれら実施例の範囲に限定されるものではない。
<屈折率の測定方法(ITO層以外の層)>
(1)屈折率1.63のPETフィルム(商品名「A4100」、東洋紡績株式会社製)上に、ディップコーター(杉山元理化学機器株式会社製)により、各層用塗液をそれぞれ乾燥硬化後の膜厚で100〜500nm程度になるように層の厚さを調製して塗布した。
(2)乾燥後、紫外線照射装置(岩崎電気株式会社製)により窒素雰囲気下で120W高圧水銀灯を用いて、400mJの紫外線を照射して硬化した。硬化後のPETフィルム裏面をサンドペーパーで荒らし、黒色塗料で塗りつぶしたものを反射分光膜厚計(「FE-3000」、大塚電子株式会社製)により、反射スペクトルを測定した。
(3)反射スペクトルより読み取った反射率から、下記に示すn-Cauchyの波長分散式(式1)の定数を求め、光の波長400nmにおける屈折率を求めた。
N(λ)=a/λ+b/λ+c (式1)
(N:屈折率、λ:波長、a、b、c:波長分散定数)
Hereinafter, the embodiment will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the scope of these examples.
<Measurement method of refractive index (layer other than ITO layer)>
(1) On a PET film (trade name “A4100”, manufactured by Toyobo Co., Ltd.) having a refractive index of 1.63, the coating liquid for each layer was dried and cured by a dip coater (produced by Sugiyama Motochemical Co., Ltd.). The thickness of the layer was adjusted and applied so that the film thickness was about 100 to 500 nm.
(2) After drying, it was cured by irradiating with 400 mJ ultraviolet rays using a 120 W high-pressure mercury lamp in a nitrogen atmosphere by an ultraviolet irradiation device (manufactured by Iwasaki Electric Co., Ltd.). The back surface of the cured PET film was roughened with sandpaper, and the reflection spectrum was measured with a reflection spectral film thickness meter (“FE-3000”, manufactured by Otsuka Electronics Co., Ltd.).
(3) From the reflectance read from the reflection spectrum, the constant of the wavelength dispersion formula (Formula 1) of n-Cauchy shown below was determined, and the refractive index at a wavelength of 400 nm was determined.
N (λ) = a / λ 4 + b / λ 2 + c (Formula 1)
(N: refractive index, λ: wavelength, a, b, c: chromatic dispersion constant)

<屈折率の測定方法(ITO層)>
(1)屈折率1.63のPETフィルム(商品名「A4100」、東洋紡績株式会社製)を100℃で1時間予備乾燥を行った後、PETフィルム上にインジウム:錫=10:1のITOターゲットを用いてスパッタリングを行い、実膜厚20nmの透明導電層としての錫ドープ酸化インジウム層(ITO層)を形成し、下記実施例および比較例のそれぞれの条件でアニーリングを施し、透明導電性フィルムを作製した。
(2)上記透明導電性フィルム裏面をサンドペーパーで荒らし、黒色塗料で塗りつぶしたものを反射分光膜厚計(「FE-3000」、大塚電子株式会社製)により、反射スペクトルを測定した。
(3)反射スペクトルより読み取った反射率から、上記式(1)を用いて、光の波長400nmにおける屈折率を求めた。
なお、表1に記載の各層の屈折率は、上記屈折率測定用サンプルから求めた屈折率である。
<Measurement method of refractive index (ITO layer)>
(1) A PET film (trade name “A4100”, manufactured by Toyobo Co., Ltd.) having a refractive index of 1.63 was preliminarily dried at 100 ° C. for 1 hour, and then indium: tin = 10: 1 ITO on the PET film. Sputtering is performed using a target to form a tin-doped indium oxide layer (ITO layer) as a transparent conductive layer having an actual film thickness of 20 nm, and annealing is performed under the conditions of the following examples and comparative examples. Was made.
(2) The reflection spectrum was measured with a reflection spectral film thickness meter (“FE-3000”, manufactured by Otsuka Electronics Co., Ltd.) after roughening the back surface of the transparent conductive film with sandpaper and painting with a black paint.
(3) From the reflectance read from the reflection spectrum, the refractive index at a wavelength of 400 nm of light was obtained using the above formula (1).
In addition, the refractive index of each layer of Table 1 is a refractive index calculated | required from the said sample for refractive index measurement.

<全光線透過率、ヘイズ値の測定方法>
ヘイズメーター(「NDH2000」、日本電色工業株式会社製)により全光線透過率(%)及びヘイズ値(%)を測定した。
<Measurement method of total light transmittance and haze value>
The total light transmittance (%) and haze value (%) were measured with a haze meter (“NDH2000”, manufactured by Nippon Denshoku Industries Co., Ltd.).

<透過色の測定方法>
色差計(「SQ−2000」、日本電色工業株式会社製)を用いて透過色、b*を測定した。このb*は、JIS Z 8729に規定されているL*a*b表色系における値である。
<Measurement method of transmitted color>
The transmission color and b * were measured using a color difference meter (“SQ-2000”, manufactured by Nippon Denshoku Industries Co., Ltd.). This b * is a value in the L * a * b color system defined in JIS Z 8729.

〔ハードコート層用塗液(HC)の調製〕
ジペンタエリスリトールヘキサアクリレート80質量部、トリアクリル酸テトラメチロールメタン20質量部、1,6−ビス(3−アクリロイルオキシー2−ヒドロキシプロピルオキシ)ヘキサン20質量部、光重合開始剤[商品名:IRGACURE184、チバ・スペシャリティ・ケミカルズ(株)製]4質量部及びイソブチルアルコール100質量部を混合してハードコート層用塗液(HC)を調製した。
[Preparation of hard coat layer coating solution (HC)]
80 parts by mass of dipentaerythritol hexaacrylate, 20 parts by mass of tetramethylolmethane triacrylate, 20 parts by mass of 1,6-bis (3-acryloyloxy-2-hydroxypropyloxy) hexane, a photopolymerization initiator [trade name: IRGACURE184, Ciba Specialty Chemicals Co., Ltd.] 4 parts by mass and isobutyl alcohol 100 parts by mass were mixed to prepare a hard coat layer coating solution (HC).

〔中間層用塗液(I−1)の調製〕
平均粒子径が0.02μmの酸化ジルコニウム微粒子を79質量部、1分子中にアクリロイル基を6個有するウレタンアクリレート(分子量1400、日本合成化学工業株式会社製、紫光UV7600B)21質量部及び光重合開始剤(商品名「IRGACURE 184」、チバ・スペシャリティ・ケミカルズ株式会社製)5質量部を混合した後、メチルエチルケトンで上記固形分が10質量%になるように希釈し、中間層用塗液(I−1)を調製した。
[Preparation of intermediate layer coating liquid (I-1)]
79 parts by mass of zirconium oxide fine particles with an average particle size of 0.02 μm, 21 parts by mass of urethane acrylate (molecular weight 1,400, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., Shigemitsu UV7600B) having 6 acryloyl groups in one molecule and photopolymerization started After mixing 5 parts by mass of an agent (trade name “IRGACURE 184”, manufactured by Ciba Specialty Chemicals Co., Ltd.), the mixture was diluted with methyl ethyl ketone so that the solid content was 10% by mass, and the intermediate layer coating solution (I- 1) was prepared.

〔中間層用塗液(I−2)の調製〕
平均粒子径が0.02μmの酸化ジルコニウム微粒子を86質量部、1分子中にアクリロイル基を6個有するウレタンアクリレート(分子量1400、日本合成化学工業株式会社製、紫光UV7600B)14質量部及び光重合開始剤(商品名「IRGACURE 184」、チバ・スペシャリティ・ケミカルズ株式会社製)5質量部を混合した後、メチルエチルケトンで上記固形分が10質量%になるように希釈し、中間層用塗液(I−2)を調製した。
[Preparation of intermediate layer coating liquid (I-2)]
86 parts by mass of zirconium oxide fine particles having an average particle size of 0.02 μm, 14 parts by mass of urethane acrylate (molecular weight 1400, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., Shigemitsu UV7600B) having 6 acryloyl groups in one molecule and photopolymerization started After mixing 5 parts by mass of an agent (trade name “IRGACURE 184”, manufactured by Ciba Specialty Chemicals Co., Ltd.), the mixture was diluted with methyl ethyl ketone so that the solid content was 10% by mass, and the intermediate layer coating solution (I- 2) was prepared.

〔中間層用塗液(I−3)の調製〕
平均粒子径が0.02μmの酸化ジルコニウム微粒子を67質量部、1分子中にアクリロイル基を6個有するウレタンアクリレート(分子量1400、日本合成化学工業株式会社製、紫光UV7600B)33質量部及び光重合開始剤(商品名「IRGACURE 184」、チバ・スペシャリティ・ケミカルズ株式会社製)5質量部を混合した後、メチルエチルケトンで上記固形分が10質量%になるように希釈し、中間層用塗液(I―3)を調製した。
[Preparation of coating liquid for intermediate layer (I-3)]
67 parts by mass of zirconium oxide fine particles having an average particle size of 0.02 μm, 33 parts by mass of urethane acrylate (molecular weight 1,400, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., purple light UV7600B) having 6 acryloyl groups in one molecule and initiation of photopolymerization After mixing 5 parts by mass of an agent (trade name “IRGACURE 184”, manufactured by Ciba Specialty Chemicals Co., Ltd.), the mixture was diluted with methyl ethyl ketone so that the solid content was 10% by mass, and an intermediate layer coating solution (I- 3) was prepared.

〔中間層用塗液(I−4)の調製〕
平均粒子径が0.02μmの酸化ジルコニウム微粒子を94質量部、1分子中にアクリロイル基を6個有するウレタンアクリレート(分子量1400、日本合成化学工業株式会社製、紫光UV7600B)6質量部及び光重合開始剤(商品名「IRGACURE 184」、チバ・スペシャリティ・ケミカルズ株式会社製)5質量部を混合した後、メチルエチルケトンで上記固形分が10質量%になるように希釈し、中間層用塗液(I―4)を調製した。
[Preparation of coating liquid for intermediate layer (I-4)]
94 parts by mass of zirconium oxide fine particles with an average particle size of 0.02 μm, 6 parts by mass of urethane acrylate (molecular weight 1400, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., purple light UV7600B) having 6 acryloyl groups in one molecule and initiation of photopolymerization After mixing 5 parts by mass of an agent (trade name “IRGACURE 184”, manufactured by Ciba Specialty Chemicals Co., Ltd.), the mixture was diluted with methyl ethyl ketone so that the solid content was 10% by mass, and an intermediate layer coating solution (I- 4) was prepared.

〔中間層用塗液(I−5)の調製〕
平均粒子径が0.02μmの酸化ジルコニウム微粒子を48質量部、1分子中にアクリロイル基を6個有するウレタンアクリレート(分子量1400、日本合成化学工業株式会社製、紫光UV7600B)52質量部及び光重合開始剤(商品名「IRGACURE 184」、チバ・スペシャリティ・ケミカルズ株式会社製)5質量部を混合した後、メチルエチルケトンで上記固形分が10質量%になるように希釈し、中間層用塗液(I―5)を調製した。
[Preparation of intermediate layer coating solution (I-5)]
48 parts by mass of zirconium oxide fine particles having an average particle diameter of 0.02 μm, 52 parts by mass of urethane acrylate (molecular weight 1400, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., purple light UV7600B) having 6 acryloyl groups in one molecule and initiation of photopolymerization After mixing 5 parts by mass of an agent (trade name “IRGACURE 184”, manufactured by Ciba Specialty Chemicals Co., Ltd.), the mixture was diluted with methyl ethyl ketone so that the solid content was 10% by mass, and an intermediate layer coating solution (I- 5) was prepared.

(実施例1)
ハードコート層用塗液(HC)をロールコーターにて、厚さ125μmのPETフィルム上に、乾燥硬化後の膜厚が4μmになるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、ハードコート処理PETフィルムを作製した。
上記ハードコート処理PETフィルムのハードコート層上に、中間層用塗液(I−1)をロールコーターにて、乾燥硬化後の膜厚が95nmになるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、PETフィルム上に中間層が積層された色調補正フィルムを形成した。
上記色調補正フィルムの裏面にハードコート層用塗液(HC−1)をロールコーターにて、乾燥硬化後の膜厚が4μmになるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射し、硬化させることにより、両面ハードコートが積層した色調補正フィルムを作製した。
上記両面ハードコート層が積層した色調補正フィルムを100℃で1時間予備乾燥を行った後、インジウム:錫=10:1のITOターゲットを用いて錫ドープ酸化インジウム層(ITO層)のスパッタリングを行い、実膜厚20nmの透明導電層としての錫ドープ酸化インジウム層(ITO層)を形成し、150℃、30分のアニール処理を施し、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
Example 1
The hard coat layer coating solution (HC) is applied onto a 125 μm thick PET film with a roll coater so that the film thickness after drying and curing is 4 μm, and irradiated with 400 mJ ultraviolet rays with a 120 W high pressure mercury lamp. Then, a hard coat-treated PET film was produced.
On the hard coat layer of the hard coat treated PET film, the intermediate layer coating solution (I-1) was applied with a roll coater so that the film thickness after drying and curing was 95 nm, and 400 mJ with a 120 W high pressure mercury lamp. The color tone correction film in which the intermediate layer was laminated on the PET film was formed by irradiating and curing the ultraviolet ray.
The hard coat layer coating solution (HC-1) is applied to the back surface of the color tone correction film with a roll coater so that the film thickness after drying and curing is 4 μm, and irradiated with 400 mJ ultraviolet rays with a 120 W high-pressure mercury lamp. By curing, a color tone correction film having a double-sided hard coat laminated thereon was produced.
The color tone correction film on which the double-sided hard coat layers are laminated is preliminarily dried at 100 ° C. for 1 hour, and then a tin-doped indium oxide layer (ITO layer) is sputtered using an ITO target of indium: tin = 10: 1. Then, a tin-doped indium oxide layer (ITO layer) as a transparent conductive layer having an actual film thickness of 20 nm was formed and annealed at 150 ° C. for 30 minutes to produce a transparent conductive film. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.

(実施例2)
中間層の乾燥硬化後の膜厚を80nmにする以外は、実施例1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
(Example 2)
A transparent conductive film was produced in the same manner as in Example 1 except that the film thickness after drying and curing of the intermediate layer was 80 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.

(実施例3)
中間層の乾燥硬化後の膜厚を100nmにする以外は、実施例1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
(Example 3)
A transparent conductive film was produced in the same manner as in Example 1 except that the film thickness after drying and curing of the intermediate layer was 100 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.

(実施例4)
中間層用塗液(I−2)を使用し、中間層の乾燥硬化後の膜厚を100nmにする以外は、実施例1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
Example 4
A transparent conductive film was produced in the same manner as in Example 1 except that the intermediate layer coating liquid (I-2) was used and the film thickness after drying and curing of the intermediate layer was 100 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.

(実施例5)
中間層用塗液(I−3)を使用し、中間層の乾燥硬化後の膜厚を90nmにする以外は、実施例1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
(実施例6)
ITO層の膜厚を30nm、ITOのスパッタリング後のアニール処理を150℃、60分にする以外は、実施例1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
(実施例7)
ITO層のスパッタリング後のアニール処理を100℃、60分にする以外は、実施例1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
(Example 5)
A transparent conductive film was produced in the same manner as in Example 1 except that the intermediate layer coating liquid (I-3) was used and the film thickness after drying and curing of the intermediate layer was 90 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.
(Example 6)
A transparent conductive film was produced in the same manner as in Example 1 except that the thickness of the ITO layer was 30 nm and the annealing treatment after sputtering of ITO was 150 ° C. for 60 minutes. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.
(Example 7)
A transparent conductive film was produced in the same manner as in Example 1 except that the annealing after sputtering of the ITO layer was performed at 100 ° C. for 60 minutes. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.

(比較例1)
中間層用塗液(I−4)を使用し、中間層の乾燥硬化後の膜厚を90nmにする以外は、実施例1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(Comparative Example 1)
A transparent conductive film was produced in the same manner as in Example 1 except that the intermediate layer coating liquid (I-4) was used and the film thickness after drying and curing of the intermediate layer was 90 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.

(比較例2)
中間層用塗液(I−5)を使用し、中間層の乾燥硬化後の膜厚を90nmにする以外は、実施例1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(Comparative Example 2)
A transparent conductive film was produced in the same manner as in Example 1 except that the intermediate layer coating solution (I-5) was used and the film thickness after drying and curing of the intermediate layer was 90 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.

(比較例3)
中間層の乾燥硬化後の膜厚を140nmにする以外は、実施例1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(Comparative Example 3)
A transparent conductive film was produced in the same manner as in Example 1 except that the film thickness after drying and curing of the intermediate layer was 140 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.

(比較例4)
中間層の乾燥硬化後の膜厚を30nmにする以外は、実施例1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(Comparative Example 4)
A transparent conductive film was produced in the same manner as in Example 1 except that the film thickness after drying and curing of the intermediate layer was changed to 30 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.

(比較例5)
ITO層の膜厚を70nmにする以外は、実施例1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(Comparative Example 5)
A transparent conductive film was produced in the same manner as in Example 1 except that the thickness of the ITO layer was 70 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.

Figure 2012025065
Figure 2012025065

Figure 2012025065
Figure 2012025065

表1に示した結果より、実施例1〜7では、中間層の屈折率と膜厚、さらにITO層の屈折率及び膜厚が本発明で規定される範囲に設定されている。そのため、透過色b*の値が小さくなり、透明フィルムの着色を十分に抑えることができた。その一方、表2に示した比較例1及び2では、中間層の屈折率が1.66〜1.86の範囲外であるため、ヘイズ値が高くなる、または透過色b*の値が大きくなり、透過光の着色が目立つという結果を招いた。表2に示した比較例3及び4では、中間層の膜厚が80〜110nmの範囲外であるため、透過色b*の値が大きくなり、透過光の着色が目立つという結果を招いた。表2に示した比較例5では、ITOの膜厚が5〜50nmの範囲外であるため、中間層との光学干渉が適切に作用しなくなるため、透明導電性フィルムの透過色が着色を呈し、全光線透過率も低下する結果を招いた。   From the results shown in Table 1, in Examples 1 to 7, the refractive index and the film thickness of the intermediate layer, and the refractive index and the film thickness of the ITO layer are set in the range defined by the present invention. For this reason, the value of the transmitted color b * was reduced, and coloring of the transparent film could be sufficiently suppressed. On the other hand, in Comparative Examples 1 and 2 shown in Table 2, since the refractive index of the intermediate layer is outside the range of 1.66 to 1.86, the haze value is increased or the value of the transmitted color b * is large. As a result, the transmitted light was noticeably colored. In Comparative Examples 3 and 4 shown in Table 2, since the film thickness of the intermediate layer is outside the range of 80 to 110 nm, the value of the transmitted color b * is increased, resulting in the conspicuous coloration of the transmitted light. In Comparative Example 5 shown in Table 2, since the ITO film thickness is outside the range of 5 to 50 nm, the optical interference with the intermediate layer does not work properly, so the transparent conductive film exhibits a colored transmission color. As a result, the total light transmittance was also lowered.

Claims (4)

ポリエステルフィルム基材の一面から、ハードコート層、中間層、および錫ドープ酸化インジウム層が順に積層された透明導電性フィルムであって、
前記中間層は、金属酸化物微粒子と紫外線硬化性バインダーとより形成され、かつ波長400nmの光の屈折率が1.66〜1.86、膜厚が80〜110nmであり、
前記錫ドープ酸化インジウム層は、波長400nmの光の屈折率が1.85〜2.35、膜厚が5〜50nmであることを特徴とする透明導電性フィルム。
From one surface of the polyester film substrate, a transparent conductive film in which a hard coat layer, an intermediate layer, and a tin-doped indium oxide layer are sequentially laminated,
The intermediate layer is formed of metal oxide fine particles and an ultraviolet curable binder, and has a refractive index of light having a wavelength of 400 nm of 1.66 to 1.86 and a film thickness of 80 to 110 nm.
The tin-doped indium oxide layer has a refractive index of light having a wavelength of 400 nm of 1.85 to 2.35 and a film thickness of 5 to 50 nm.
前記ポリエステルフィルム基材の他面に、機能を付与する機能層が積層されていることを特徴とする請求項1に記載の透明導電性フィルム。   The transparent conductive film according to claim 1, wherein a functional layer imparting a function is laminated on the other surface of the polyester film substrate. 前記機能層は、ハードコート層、防眩層、指紋なじみ層又は自己修復層から選ばれる一種または二種以上の組み合わせであることを特徴とする請求項2に記載の透明導電性フィルム。   3. The transparent conductive film according to claim 2, wherein the functional layer is one or a combination of two or more selected from a hard coat layer, an antiglare layer, a fingerprint familiar layer or a self-healing layer. 前記機能層はハードコート層又は防眩層であり、前記機能層の外面に反射防止層が積層されていることを特徴とする請求項3に記載の透明導電性フィルム。

4. The transparent conductive film according to claim 3, wherein the functional layer is a hard coat layer or an antiglare layer, and an antireflection layer is laminated on the outer surface of the functional layer.

JP2010166896A 2010-07-26 2010-07-26 Transparent conductive film Active JP5659601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010166896A JP5659601B2 (en) 2010-07-26 2010-07-26 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010166896A JP5659601B2 (en) 2010-07-26 2010-07-26 Transparent conductive film

Publications (2)

Publication Number Publication Date
JP2012025065A true JP2012025065A (en) 2012-02-09
JP5659601B2 JP5659601B2 (en) 2015-01-28

Family

ID=45778598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166896A Active JP5659601B2 (en) 2010-07-26 2010-07-26 Transparent conductive film

Country Status (1)

Country Link
JP (1) JP5659601B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073614A (en) * 2012-10-03 2014-04-24 Nof Corp Color tone correction film and transparent conductive film using the same, and transparent conductive adhesive film laminating transparent adhesive layer
JP2014073613A (en) * 2012-10-03 2014-04-24 Nof Corp Color tone correction film and transparent conductive film using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091706A (en) * 1999-07-16 2001-04-06 Asahi Glass Co Ltd Antidazzle and antireflection film and method for manufacturing the same
JP2003080624A (en) * 2001-09-07 2003-03-19 Nof Corp Transparent conducting material and touch panel
JP2004047456A (en) * 2002-05-23 2004-02-12 Nof Corp Transparent conductive material and touch panel
JP2004152727A (en) * 2002-11-01 2004-05-27 Toyo Metallizing Co Ltd Transparent conductive film
JP2004322380A (en) * 2003-04-22 2004-11-18 Nof Corp Transparent electroconductive material and touch panel
JP2007095660A (en) * 2005-07-29 2007-04-12 Toyobo Co Ltd Transparent conductive film or transparent conductive sheet, and touch panel using this
JP2007134293A (en) * 2005-11-07 2007-05-31 Hs Planning:Kk Transparent conductive film and manufacturing method of the same
JP2008098169A (en) * 2005-05-26 2008-04-24 Gunze Ltd Transparent planar body and transparent touch switch
JP2011098563A (en) * 2009-10-06 2011-05-19 Nof Corp Transparent conductive film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091706A (en) * 1999-07-16 2001-04-06 Asahi Glass Co Ltd Antidazzle and antireflection film and method for manufacturing the same
JP2003080624A (en) * 2001-09-07 2003-03-19 Nof Corp Transparent conducting material and touch panel
JP2004047456A (en) * 2002-05-23 2004-02-12 Nof Corp Transparent conductive material and touch panel
JP2004152727A (en) * 2002-11-01 2004-05-27 Toyo Metallizing Co Ltd Transparent conductive film
JP2004322380A (en) * 2003-04-22 2004-11-18 Nof Corp Transparent electroconductive material and touch panel
JP2008098169A (en) * 2005-05-26 2008-04-24 Gunze Ltd Transparent planar body and transparent touch switch
JP2007095660A (en) * 2005-07-29 2007-04-12 Toyobo Co Ltd Transparent conductive film or transparent conductive sheet, and touch panel using this
JP2007134293A (en) * 2005-11-07 2007-05-31 Hs Planning:Kk Transparent conductive film and manufacturing method of the same
JP2011098563A (en) * 2009-10-06 2011-05-19 Nof Corp Transparent conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073614A (en) * 2012-10-03 2014-04-24 Nof Corp Color tone correction film and transparent conductive film using the same, and transparent conductive adhesive film laminating transparent adhesive layer
JP2014073613A (en) * 2012-10-03 2014-04-24 Nof Corp Color tone correction film and transparent conductive film using the same

Also Published As

Publication number Publication date
JP5659601B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5408075B2 (en) Transparent conductive film
KR101700250B1 (en) Transparent conductive film
US7901746B2 (en) Transparent conductive film and touch panel
JP2012043693A (en) Transparent conductive film for dye sensitized solar cell
JP5521535B2 (en) Transparent conductive film
JP5691279B2 (en) Transparent conductive film
JP6010992B2 (en) Transparent conductive film
KR101761463B1 (en) Color tone correction film and transparent conductive film using same
JP5780034B2 (en) Color tone correction film and transparent conductive film using the same
US20050227090A1 (en) Reduced-reflection film having low-refractive-index layer
JP5659601B2 (en) Transparent conductive film
JP5987466B2 (en) Color tone correction film and transparent conductive film using the same
JP6337600B2 (en) Color tone correction film and transparent conductive film using the same
JP2017015971A (en) Color tone correction film and transparent conductive film using the same
JP2014151472A (en) Color tone correction film, and transparent conductive film prepared using the same
JP2013237244A (en) Color tone correction film and transparent conductive film using the same
JP6405902B2 (en) Color tone correction film and transparent conductive film using the same
JP6136376B2 (en) Color tone correction film and transparent conductive film using the same
JP6085974B2 (en) Transparent conductive film
JP2016024385A (en) Color tone correction film and transparent conductive film obtained by using the same
JP6136339B2 (en) Color tone correction film and transparent conductive film using the same
JP2014035352A (en) Color tone correction film and transparent conductive film using the same
JP6171299B2 (en) Transparent conductive film
JP2016022686A (en) Color tone correction film and transparent conductive film using the same
JP2017016022A (en) Color tone correction film and transparent conductive film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5659601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250