JP5780034B2 - Color tone correction film and transparent conductive film using the same - Google Patents

Color tone correction film and transparent conductive film using the same Download PDF

Info

Publication number
JP5780034B2
JP5780034B2 JP2011162907A JP2011162907A JP5780034B2 JP 5780034 B2 JP5780034 B2 JP 5780034B2 JP 2011162907 A JP2011162907 A JP 2011162907A JP 2011162907 A JP2011162907 A JP 2011162907A JP 5780034 B2 JP5780034 B2 JP 5780034B2
Authority
JP
Japan
Prior art keywords
film
layer
transparent conductive
color
color tone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011162907A
Other languages
Japanese (ja)
Other versions
JP2013025737A (en
Inventor
寛 田代
寛 田代
孝之 野島
孝之 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2011162907A priority Critical patent/JP5780034B2/en
Publication of JP2013025737A publication Critical patent/JP2013025737A/en
Application granted granted Critical
Publication of JP5780034B2 publication Critical patent/JP5780034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、タッチパネル用の色調補正フィルム、及びその両面に透明導電層を備えた透明導電性フィルムに関する。   The present invention relates to a color correction film for a touch panel, and a transparent conductive film having a transparent conductive layer on both sides thereof.

現在、画像表示部に直接触れることにより、情報を入力できるデバイスとしてタッチパネルが広く用いられている。タッチパネルは光を透過する入力装置を液晶表示装置等のディスプレイ画面上に配置したものであり、代表的な形式として、透明電極と指との間に生じる電流容量の変化を利用した静電容量式タッチパネルがある。   Currently, touch panels are widely used as devices capable of inputting information by directly touching an image display unit. A touch panel is an input device that transmits light on a display screen such as a liquid crystal display device. As a typical form, a capacitive type that utilizes the change in current capacity that occurs between a transparent electrode and a finger. There is a touch panel.

前記静電容量式タッチパネルには、通常、透明電極として2枚の透明導電性フィルムが用いられており、透明基材フィルム上に透明導電層が積層された一対の透明導電性フィルムは透明基材フィルム同士が向かい合うように粘着層を介して貼り合せられている。タッチパネル用の透明導電性フィルムとしては、透明基材フィルム上に、酸化錫を含有するインジウム酸化物(錫ドープ酸化インジウム、ITO)や酸化亜鉛等の金属酸化物による透明導電層を積層したものが一般的に用いられている。このような透明導電性フィルムは、金属酸化物層の反射及び吸収に由来する可視光短波長領域の透過率の低下により、全光線透過率が低下すると同時に、黄色の呈色が見られることが多い。そのため、タッチパネルの下に配置される表示装置の発色を正確に表現することが難しいという問題があった。   In the capacitive touch panel, normally, two transparent conductive films are used as transparent electrodes, and a pair of transparent conductive films in which a transparent conductive layer is laminated on a transparent base film are transparent base materials. It is bonded through an adhesive layer so that the films face each other. As a transparent conductive film for a touch panel, a transparent conductive film made of metal oxide such as indium oxide containing tin oxide (tin-doped indium oxide, ITO) or zinc oxide is laminated on a transparent base film. Commonly used. Such a transparent conductive film may have a yellow coloration at the same time that the total light transmittance is reduced due to a decrease in transmittance in the short wavelength region of visible light derived from reflection and absorption of the metal oxide layer. Many. For this reason, there is a problem that it is difficult to accurately express the color of the display device arranged under the touch panel.

この問題を解決するために、透明導電層を多層光学膜と組み合わせた透明導電性フィルムが提案されている(特許文献1参照)。特許文献1の透明導電性フィルムは、直接もしくはハードコート層等の一層以上の層を介して基材側から順に、中間屈折率層、透明導電層の構成であると共に、中間屈折率層の光学膜厚が100〜175nm、屈折率が1.7〜1.85であることにより透過光の着色低減効果を実現している。しかし、静電容量式タッチパネル用の透明電極として2枚の前記透明導電性フィルムを使用した場合、粘着層及び2枚の基材による光の吸収により全光線透過率が低下する課題があった。   In order to solve this problem, a transparent conductive film in which a transparent conductive layer is combined with a multilayer optical film has been proposed (see Patent Document 1). The transparent conductive film of Patent Document 1 has a configuration of an intermediate refractive index layer and a transparent conductive layer, either directly or sequentially from the substrate side through one or more layers such as a hard coat layer, and the optical properties of the intermediate refractive index layer. When the film thickness is 100 to 175 nm and the refractive index is 1.7 to 1.85, the effect of reducing transmitted light coloring is realized. However, when two transparent conductive films are used as transparent electrodes for a capacitive touch panel, there is a problem that the total light transmittance is reduced due to light absorption by the adhesive layer and the two base materials.

特開2004−47456号公報JP 2004-47456 A

そこで、本発明の目的とするところは、透過光の着色を抑え、全光線透過率の高い透明導電性フィルム、及びその下地フィルムとして用いられる色調補正フィルムを提供することにある。   Accordingly, an object of the present invention is to provide a transparent conductive film that suppresses coloring of transmitted light and has a high total light transmittance, and a color tone correction film used as a base film thereof.

第1の発明は、透明基材フィルムの両面にハードコート層が積層されており、前記両ハードコート層上に色調補正層が積層されている静電容量式タッチパネル用の色調補正フィルムであり、前記両ハードコート層は、波長400nmの光に対する屈折率が1.51〜1.61、膜厚が1〜10μmであり、前記両色調補正層は、金属酸化物微粒子と活性エネルギー線硬化型樹脂からなり、波長400nmの光に対する屈折率が1.62〜1.91、膜厚が65〜110nmであることを特徴とする。

1st invention is the color correction film for electrostatic capacitance type touch panels by which the hard-coat layer is laminated | stacked on both surfaces of the transparent base film, and the color-tone correction layer is laminated | stacked on both the said hard-coat layers, The two hard coat layers have a refractive index of 1.51 to 1.61 and a film thickness of 1 to 10 μm with respect to light having a wavelength of 400 nm, and the two color tone correction layers include metal oxide fine particles and an active energy ray curable resin. And having a refractive index of 1.62 to 1.91 and a film thickness of 65 to 110 nm for light having a wavelength of 400 nm.

第2の発明は、第1の発明に係る色調補正フィルムの前記両色調補正層上に錫ドープ酸化インジウム層が積層された透明導電性フィルムであり、前記両錫ドープ酸化インジウム層は、波長400nmの光に対する屈折率が1.85〜2.35、膜厚が5〜50nmであることを特徴とする。   2nd invention is a transparent conductive film by which the tin dope indium oxide layer was laminated | stacked on the said both color tone correction layer of the color tone correction film which concerns on 1st invention, The said both tin dope indium oxide layer has a wavelength of 400 nm. The refractive index with respect to light is 1.85 to 2.35, and the film thickness is 5 to 50 nm.

本発明の透明導電性フィルムは、1枚の透明基材フィルムの両面に色調補正層及び錫ドープ酸化インジウム層を備えているため、1枚の透明導電性フィルムでタッチパネル用の透明電極を構成することができる。一般的なタッチパネル用の透明電極においては、透明基材フィルムの一面に色調補正層及び錫ドープ酸化インジウム層(透明導電層)が積層された透明導電性フィルムを2枚張り合わせて構成されているため、本発明の透明導電性フィルムを用いることによって透明基材フィルムを1枚減らすことが可能となる。そのため、透明基材フィルムに起因する透過光の着色を抑え、且つ、全光線透過率を向上することが出来る。また、本発明の色調補正フィルムを用いることにより、容易に上記透明導電性フィルムを作成することができる。   Since the transparent conductive film of this invention is equipped with the color correction layer and the tin dope indium oxide layer on both surfaces of the transparent substrate film of 1 sheet, it comprises the transparent electrode for touchscreens with 1 transparent conductive film. be able to. Since a transparent electrode for a general touch panel is composed of two transparent conductive films in which a color tone correction layer and a tin-doped indium oxide layer (transparent conductive layer) are laminated on one surface of a transparent base film. By using the transparent conductive film of the present invention, one transparent substrate film can be reduced. Therefore, coloring of the transmitted light resulting from the transparent substrate film can be suppressed, and the total light transmittance can be improved. Moreover, the said transparent conductive film can be easily produced by using the color tone correction film of this invention.

更に、本発明の透明導電性フィルムでは、色調補正層は波長400nmの光に対する屈折率が1.62〜1.91、膜厚が65〜110nmであり、錫ドープ酸化インジウム層は、波長400nmの光に対する屈折率が1.85〜2.35、膜厚が5〜50nmに設定されている。このように、色調補正層及び錫ドープ酸化インジウム層の屈折率及び膜厚を適切に設定することにより、透過光の着色を抑えることができる。   Furthermore, in the transparent conductive film of the present invention, the color tone correction layer has a refractive index of 1.62 to 1.91 and a film thickness of 65 to 110 nm with respect to light having a wavelength of 400 nm, and the tin-doped indium oxide layer has a wavelength of 400 nm. The refractive index with respect to light is set to 1.85 to 2.35, and the film thickness is set to 5 to 50 nm. Thus, coloring of transmitted light can be suppressed by appropriately setting the refractive index and the film thickness of the color tone correction layer and the tin-doped indium oxide layer.

尚、本発明における膜厚とは、物理膜厚のことであり、光学膜厚ではない。続いて、波長400nmの光に対する屈折率を用いる理由を説明する。屈折率には波長分散性があり、短波長領域では屈折率が高くなる傾向がある。一般に、各層の屈折率調整では、ナトリウムのD線(光の波長589nm)の値を用いることが多いが、本発明の色調補正層及び錫ドープ酸化インジウム層のように金属酸化物微粒子を含む層においては、屈折率の波長分散の影響が大きくなる。黄色味を抑えるには波長400nmの透過率制御が重要であるため、波長589nmの屈折率で各層の屈折率を調整した場合、波長400nmの透過率を十分に調整することは出来なくなり、黄色味低減効果が十分に得られない。本願では、波長400nmの屈折率を使用して各層を設計することで、透過光の着色を抑える効果が最大となる。   In addition, the film thickness in this invention is a physical film thickness, and is not an optical film thickness. Next, the reason for using the refractive index for light having a wavelength of 400 nm will be described. The refractive index has wavelength dispersion, and the refractive index tends to increase in the short wavelength region. Generally, in adjusting the refractive index of each layer, the value of sodium D-line (wavelength of light of 589 nm) is often used, but a layer containing metal oxide fine particles such as the color tone correction layer and tin-doped indium oxide layer of the present invention. In this case, the influence of the wavelength dispersion of the refractive index becomes large. Since it is important to control the transmittance at a wavelength of 400 nm in order to suppress yellowness, when the refractive index of each layer is adjusted with the refractive index at a wavelength of 589 nm, the transmittance at a wavelength of 400 nm cannot be sufficiently adjusted. The reduction effect cannot be obtained sufficiently. In the present application, the effect of suppressing the coloring of transmitted light is maximized by designing each layer using a refractive index having a wavelength of 400 nm.

<色調補正フィルム>
本実施形態の色調補正フィルムは、透明基材フィルムの両面にハードコート層及び色調補正層が順に積層された構成である。すなわち、色調補正フィルムは、上から色調補正層(1)、ハードコート層(1)、透明基材フィルム、ハードコート層(2)、色調補正層(2)が順に積層した構成である。以下に、この色調補正フィルムの構成要素について順に説明する。
<Color tone correction film>
The color tone correction film of this embodiment has a configuration in which a hard coat layer and a color tone correction layer are sequentially laminated on both surfaces of a transparent substrate film. That is, the color tone correction film has a configuration in which the color tone correction layer (1), the hard coat layer (1), the transparent base film, the hard coat layer (2), and the color tone correction layer (2) are laminated in order from the top. Below, the component of this color tone correction film is demonstrated in order.

<透明基材フィルム>
透明基材フィルムはポリエステルフィルムからなり、例えばポリエチレンテレフタレート(PET)樹脂を使用できる。透明基材フィルムの膜厚は通常25〜400μm程度、好ましくは25〜188μm程度である。なお、透明基材フィルムがPET樹脂で形成された場合、波長400nmの光に対する透明基材フィルムの屈折率は1.72である。
<Transparent substrate film>
The transparent substrate film is made of a polyester film, and for example, a polyethylene terephthalate (PET) resin can be used. The film thickness of the transparent substrate film is usually about 25 to 400 μm, preferably about 25 to 188 μm. In addition, when a transparent base film is formed with PET resin, the refractive index of the transparent base film with respect to light with a wavelength of 400 nm is 1.72.

<ハードコート層>
透明基材フィルムの両面には、表面硬度を向上するためにハードコート層が設けられている。また、従来の透明導電性フィルムをタッチパネル用の透明電極として用いた場合、互いに貼り合わされる2枚の透明導電性フィルムがそれぞれ透明基材フィルムを有しているため、2枚の透明基材フィルムにより十分な強度が保証されている。一方、本発明の透明導電性フィルムを透明電極として用いた場合、透明導電性フィルムは1枚しか用いられない。そのため、透明基材フィルムが2枚から1枚に減少することにより透明電極の強度が低下することが危惧されるが、本発明の透明導電性フィルムはハードコート層を有することによって十分な強度を保つことができる。
<Hard coat layer>
Hard coat layers are provided on both sides of the transparent substrate film in order to improve the surface hardness. In addition, when a conventional transparent conductive film is used as a transparent electrode for a touch panel, since the two transparent conductive films bonded to each other have a transparent base film, two transparent base films As a result, sufficient strength is guaranteed. On the other hand, when the transparent conductive film of the present invention is used as a transparent electrode, only one transparent conductive film is used. For this reason, there is a concern that the strength of the transparent electrode may be reduced by reducing the transparent substrate film from two to one, but the transparent conductive film of the present invention maintains a sufficient strength by having a hard coat layer. be able to.

ハードコート層の材料としては従来公知のものでよく、特に制限されない。例えば、テトラエトキシシラン等の反応性珪素化合物と、活性エネルギー線硬化型樹脂とを混合してなるハードコート層用塗液を紫外線(UV)硬化させた硬化物が挙げられる。活性エネルギー線硬化型樹脂としては、例えば単官能(メタ)アクリレート、多官能(メタ)アクリレートなどが挙げられる。これらのうち生産性及び硬度を両立させる観点より、鉛筆硬度(評価法:JIS−K5600−5−4)がH以上となる活性エネルギー線硬化型樹脂を含む組成物の硬化物であることが好ましい。そのような活性エネルギー線硬化型樹脂を含む組成物としては、例えば、公知の活性エネルギー線硬化型樹脂を2種類以上混合したもの、紫外線硬化性ハードコート材として市販されているもの、あるいはこれら以外に本発明の効果を損なわない範囲において、その他の成分をさらに添加したものを用いることができる。なお、「(メタ)アクリレート」とは、アクリレート及びメタクリレートを指す。   The material for the hard coat layer may be a conventionally known material and is not particularly limited. For example, the hardened | cured material which hardened the coating liquid for hard-coat layers formed by mixing reactive silicon compounds, such as tetraethoxysilane, and an active energy ray hardening-type resin is mentioned. Examples of the active energy ray-curable resin include monofunctional (meth) acrylate and polyfunctional (meth) acrylate. Among these, from the viewpoint of achieving both productivity and hardness, a cured product of a composition containing an active energy ray-curable resin having a pencil hardness (evaluation method: JIS-K5600-5-4) of H or higher is preferable. . Examples of the composition containing such an active energy ray-curable resin include, for example, a mixture of two or more known active energy ray-curable resins, a commercially available ultraviolet curable hard coat material, or other than these In the range where the effects of the present invention are not impaired, those further added with other components can be used. “(Meth) acrylate” refers to acrylate and methacrylate.

波長400nmの光に対するハードコート層の屈折率は、1.51〜1.61となるように調整される。屈折率が1.51未満の場合、透明基材フィルムとハードコート層との屈折率差が大きくなり、干渉ジマが発生するため好ましくない。屈折率が1.61よりも大きい場合、屈折率を大きくするためにハードコート層へ高屈折率材料を多量に添加する必要があるが、多量に添加した高屈折率材料に起因する光の吸収や散乱が生じ、色調補正に悪影響となるため好ましくない。またハードコート層の乾燥硬化後の膜厚は、1〜10μmである。膜厚が1μmより薄い場合は、鉛筆硬度がH未満になるため好ましくない。膜厚が10μmより厚い場合は、硬化収縮によるカールが強くなるとともに、不必要に厚くなり、生産性や作業性が低下するため好ましくない。   The refractive index of the hard coat layer with respect to light having a wavelength of 400 nm is adjusted to be 1.51 to 1.61. When the refractive index is less than 1.51, the difference in refractive index between the transparent substrate film and the hard coat layer is increased, and interference jitter is generated, which is not preferable. When the refractive index is larger than 1.61, it is necessary to add a large amount of a high refractive index material to the hard coat layer in order to increase the refractive index. However, light absorption caused by the high refractive index material added in a large amount is required. And scattering occur, which adversely affects the color tone correction. The film thickness of the hard coat layer after drying and curing is 1 to 10 μm. When the film thickness is thinner than 1 μm, the pencil hardness is less than H, which is not preferable. When the film thickness is thicker than 10 μm, curling due to curing shrinkage becomes strong and becomes unnecessarily thick, which is not preferable because productivity and workability are lowered.

本実施形態の色調補正フィルムは、2つのハードコート層、すなわちハードコート層(1)及びハードコート層(2)を有しているが、これら2つのハードコート層の膜厚及び屈折率は、相互に同一であっても良いし、異なっていても良い。   The color tone correction film of this embodiment has two hard coat layers, that is, a hard coat layer (1) and a hard coat layer (2). The film thickness and refractive index of these two hard coat layers are as follows: They may be the same or different from each other.

<色調補正層>
色調補正層は、金属酸化物微粒子と、活性エネルギー線硬化型樹脂とを混合してなる色調補正層用塗液を活性エネルギー線(例えば紫外線、電子線)により硬化させた硬化物からなる。金属酸化物微粒子としては、酸化チタン及び酸化ジルコニウムが好ましい。波長400nmの光に対する酸化チタン及び酸化ジルコニウムの屈折率は製法によって異なるが、1.9〜3.0であることが好ましい。また、バインダーとして用いられる活性エネルギー線硬化型樹脂は、波長400nmの光に対する屈折率が1.4〜1.7であることが好ましい。活性エネルギー線硬化型樹脂としては、例えば単官能(メタ)アクリレート、多官能(メタ)アクリレートなどが挙げられる。
<Color correction layer>
The color tone correction layer is made of a cured product obtained by curing a color tone correction layer coating liquid obtained by mixing metal oxide fine particles and an active energy ray-curable resin with active energy rays (for example, ultraviolet rays or electron beams). As the metal oxide fine particles, titanium oxide and zirconium oxide are preferable. The refractive index of titanium oxide and zirconium oxide for light with a wavelength of 400 nm varies depending on the production method, but is preferably 1.9 to 3.0. The active energy ray-curable resin used as the binder preferably has a refractive index of 1.4 to 1.7 with respect to light having a wavelength of 400 nm. Examples of the active energy ray-curable resin include monofunctional (meth) acrylate and polyfunctional (meth) acrylate.

色調補正層は、金属酸化物微粒子及び活性エネルギー線硬化型樹脂が適宜選択されることによって、波長400nmの光に対する屈折率が1.62〜1.91になるように形成される。さらに、色調補正層の乾燥硬化後の膜厚は65〜110nmであることが必要である。色調補正層の屈折率が1.62未満の場合は、JIS Z 8729に規定されているL*a*b表色系における透過色のb*の値が大きくなってしまい、透明導電性フィルムの透過色の黄色味が明瞭に認識されるようになる。また、色調補正層の屈折率が1.91より大きい場合は、塗膜中の粒子の割合が多くなり、ヘイズが上昇してしまうため全光線透過率が低下する。色調補正層の膜厚が上記の範囲外では、b*の値が大きくなってしまい、透明導電性フィルムの透過色の黄色味の着色が明瞭に認識されるようになる。   The color tone correction layer is formed so that the refractive index with respect to light having a wavelength of 400 nm is 1.62 to 1.91 by appropriately selecting the metal oxide fine particles and the active energy ray-curable resin. Furthermore, the film thickness of the color tone correction layer after drying and curing needs to be 65 to 110 nm. When the refractive index of the color tone correction layer is less than 1.62, the b * value of the transmitted color in the L * a * b color system defined in JIS Z 8729 becomes large, and the transparent conductive film The transmitted yellow color is clearly recognized. Moreover, when the refractive index of a color tone correction layer is larger than 1.91, the ratio of the particle | grains in a coating film will increase, and since haze will raise, a total light transmittance will fall. When the film thickness of the color tone correction layer is outside the above range, the value of b * becomes large, and the yellowish coloring of the transparent color of the transparent conductive film is clearly recognized.

本実施形態の色調補正フィルムは、2つの色調補正層、すなわち色調補正層(1)及び色調補正層(2)を有しているが、これら2つの色調補正層の膜厚及び屈折率は、相互に同一であっても良いし、異なっていても良い。   The color correction film of the present embodiment has two color correction layers, that is, a color correction layer (1) and a color correction layer (2). The film thickness and refractive index of these two color correction layers are as follows. They may be the same or different from each other.

<ハードコート層及び色調補正層の形成>
ハードコート層は、透明基材フィルムにハードコート層用塗液を塗布した後に、活性エネルギー線照射により硬化することで形成される。一方、色調補正層は、形成されたハードコート層上に色調補正層用塗液を塗布した後に、活性エネルギー線照射により硬化することで形成される。ハードコート層用塗液、色調補正層用塗液の塗布方法は特に制限されず、例えばロールコート法、スピンコート法、ディップコート法、スプレーコート法、バーコート法、ナイフコート法、ダイコート法、インクジェット法、グラビアコート法等公知のいかなる方法も採用できる。また、活性エネルギー線の種類は特に制限されないが、利便性等の観点から紫外線を用いることが好ましい。尚、密着性を向上させるために、予め透明基材フィルム表面にコロナ放電処理等の前処理を施すことも可能である。
<Formation of hard coat layer and color correction layer>
The hard coat layer is formed by applying a hard coat layer coating liquid to a transparent base film and then curing the active coat by irradiation with active energy rays. On the other hand, the color tone correction layer is formed by applying a color tone correction layer coating liquid on the formed hard coat layer and then curing it by irradiation with active energy rays. The coating method for the hard coat layer coating solution and the color tone correction layer coating solution is not particularly limited. For example, the roll coating method, spin coating method, dip coating method, spray coating method, bar coating method, knife coating method, die coating method, Any known method such as an inkjet method or a gravure coating method can be employed. The type of active energy ray is not particularly limited, but it is preferable to use ultraviolet rays from the viewpoint of convenience and the like. In addition, in order to improve adhesiveness, it is also possible to perform pre-treatments such as corona discharge treatment on the surface of the transparent substrate film in advance.

<透明導電性フィルム>
透明導電性フィルムは、色調補正フィルムの色調補正層上に錫ドープ酸化インジウム層を積層した構成である。すなわち、透明導電性フィルムは、上から錫ドープ酸化インジウム層(1)、色調補正層(1)、ハードコート層(1)、透明基材フィルム、ハードコート層(2)、色調補正層(2)、錫ドープ酸化インジウム層(2)が順に積層した構成である。
<Transparent conductive film>
The transparent conductive film has a structure in which a tin-doped indium oxide layer is laminated on the color correction layer of the color correction film. That is, the transparent conductive film includes a tin-doped indium oxide layer (1), a color tone correction layer (1), a hard coat layer (1), a transparent base film, a hard coat layer (2), and a color tone correction layer (2 ) And a tin-doped indium oxide layer (2) are sequentially laminated.

透明導電性フィルムの透過光の着色は、JIS Z 8729に規定されるLab表色系のb*で評価でき、好ましくは−2≦b*≦2、より好ましくは−1≦b*≦1である。b*>2の場合、透明導電性フィルムが黄色に着色して見えるため好ましくない。一方、b*<−2の場合、透明導電性フィルムが青色に着色して見えるため好ましくない。   The color of transmitted light of the transparent conductive film can be evaluated by b * of the Lab color system defined in JIS Z 8729, preferably −2 ≦ b * ≦ 2, more preferably −1 ≦ b * ≦ 1. is there. In the case of b *> 2, the transparent conductive film appears to be colored yellow, which is not preferable. On the other hand, when b * <− 2, the transparent conductive film appears to be colored blue, which is not preferable.

<錫ドープ酸化インジウム層(ITO層)>
色調補正層の上に積層される錫ドープ酸化インジウム層(ITO層)は、透明導電層であり、波長400nmの光に対する屈折率が1.85〜2.35、膜厚が5〜50nmである。屈折率がこの範囲を外れると、色調補正層との光学干渉が適切に作用しなくなるため、透明導電性フィルムの透過色が着色を呈し、全光線透過率も低下する。また、ITO層の屈折率は色調補正層の屈折率よりも大きいことが好ましい。膜厚が5nmより薄い場合は、均一に成膜することが難しく、安定した抵抗が得られないため好ましくない。また、膜厚が50nmより厚い場合は、ITO層自身による光の吸収が強くなり、透過色の着色低減効果が薄れると共に、全光線透過率が小さくなる傾向があるため好ましくない。
<Tin-doped indium oxide layer (ITO layer)>
The tin-doped indium oxide layer (ITO layer) laminated on the color correction layer is a transparent conductive layer, and has a refractive index of 1.85 to 2.35 and a film thickness of 5 to 50 nm with respect to light having a wavelength of 400 nm. . If the refractive index is out of this range, the optical interference with the color tone correction layer does not work properly, so that the transparent color of the transparent conductive film is colored and the total light transmittance is also lowered. The refractive index of the ITO layer is preferably larger than the refractive index of the color tone correction layer. When the film thickness is less than 5 nm, it is difficult to form a uniform film, and a stable resistance cannot be obtained. On the other hand, when the film thickness is thicker than 50 nm, the absorption of light by the ITO layer itself becomes strong, the effect of reducing the coloring of the transmitted color is diminished, and the total light transmittance tends to decrease, which is not preferable.

<錫ドープ酸化インジウム層の形成>
錫ドープ酸化インジウム層の製膜方法は、特に限定されず、例えば蒸着法、スパッタリング法、イオンプレーティング法、CVD法を採用できる。これらの中では、層の厚み制御の観点より蒸着法及びスパッタリング法が特に好ましい。尚、錫ドープ酸化インジウム層を形成した後、必要に応じて、100℃〜200℃の範囲内でアニール処理を施して結晶化することができる。具体的には、高い温度で結晶化すると錫ドープ酸化インジウム層の屈折率は小さくなる傾向を示す。従って、錫ドープ酸化インジウム層の屈折率は、アニール処理の温度と時間を制御することで調整可能である。
<Formation of tin-doped indium oxide layer>
The method for forming the tin-doped indium oxide layer is not particularly limited, and for example, a vapor deposition method, a sputtering method, an ion plating method, or a CVD method can be employed. Among these, the vapor deposition method and the sputtering method are particularly preferable from the viewpoint of controlling the layer thickness. In addition, after forming a tin dope indium oxide layer, it can crystallize by giving an annealing process within the range of 100 to 200 degreeC as needed. Specifically, when crystallization is performed at a high temperature, the refractive index of the tin-doped indium oxide layer tends to decrease. Accordingly, the refractive index of the tin-doped indium oxide layer can be adjusted by controlling the annealing temperature and time.

本実施形態の透明導電性フィルムは、2つの錫ドープ酸化インジウム層、すなわち錫ドープ酸化インジウム層(1)及び錫ドープ酸化インジウム層(2)を有しているが、これら2つの錫ドープ酸化インジウム層の膜厚及び屈折率は、相互に同一であっても良いし、異なっていても良い。   The transparent conductive film of this embodiment has two tin-doped indium oxide layers, that is, a tin-doped indium oxide layer (1) and a tin-doped indium oxide layer (2). The film thickness and refractive index of the layers may be the same or different from each other.

以下に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明するが、本発明はそれら実施例の範囲に限定されるものではない。また、各例における、屈折率、透過色、全光線透過率は下記に示す方法により測定した。   Hereinafter, the embodiment will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the scope of these examples. Further, the refractive index, transmitted color, and total light transmittance in each example were measured by the following methods.

<屈折率(ITO層以外の層)>
(1)波長400nmの光に対する屈折率1.72のPETフィルム(商品名「A4100」、東洋紡績株式会社製)上に、ディップコーター(杉山元理化学機器株式会社製)により、各層用塗液をそれぞれ乾燥硬化後の膜厚で100〜500nm程度になるように層の厚さを調整して塗布した。
(2)乾燥後、紫外線照射装置(岩崎電気株式会社製)により窒素雰囲気下で120W高圧水銀灯を用いて、400mJの紫外線を照射して硬化した。硬化後のPETフィルム裏面をサンドペーパーで荒らし、黒色塗料で塗りつぶしたものを反射分光膜厚計(「FE-3000」、大塚電子株式会社製)により、反射スペクトルを測定した。
(3)反射スペクトルより読み取った反射率から、下記に示すn-Cauchyの波長分散式(式1)の定数を求め、光の波長400nmにおける屈折率を求めた。
N(λ)=a/λ+b/λ+c (式1)
(N:屈折率、λ:波長、a、b、c:波長分散定数)
<Refractive index (layers other than ITO layer)>
(1) On a PET film (trade name “A4100”, manufactured by Toyobo Co., Ltd.) having a refractive index of 1.72 with respect to light having a wavelength of 400 nm, a coating solution for each layer is formed by a dip coater (manufactured by Sugiyama Motochemical Co., Ltd.). The thickness of the layer was adjusted and applied so that the film thickness after drying and curing was about 100 to 500 nm.
(2) After drying, it was cured by irradiating with 400 mJ ultraviolet rays using a 120 W high-pressure mercury lamp in a nitrogen atmosphere by an ultraviolet irradiation device (manufactured by Iwasaki Electric Co., Ltd.). The back surface of the cured PET film was roughened with sandpaper, and the reflection spectrum was measured with a reflection spectral film thickness meter (“FE-3000”, manufactured by Otsuka Electronics Co., Ltd.).
(3) From the reflectance read from the reflection spectrum, the constant of the wavelength dispersion formula (Formula 1) of n-Cauchy shown below was determined, and the refractive index at a wavelength of 400 nm was determined.
N (λ) = a / λ 4 + b / λ 2 + c (Formula 1)
(N: refractive index, λ: wavelength, a, b, c: chromatic dispersion constant)

<屈折率(ITO層)>
(1)波長400nmの光に対する屈折率1.72のPETフィルム(商品名「A4100」、東洋紡績株式会社製)に、PETフィルム上にインジウム:錫=10:1のITOターゲットを用いてスパッタリングを行い、実膜厚20nmの透明導電層としての錫ドープ酸化インジウム層(ITO層)を形成し、下記実施例および比較例のそれぞれの条件でアニーリングを施し、透明導電性フィルムを作製した。
(2)上記透明導電性フィルム裏面をサンドペーパーで荒らし、黒色塗料で塗りつぶしたものを反射分光膜厚計(「FE-3000」、大塚電子株式会社製)により、反射スペクトルを測定した。
(3)反射スペクトルより読み取った反射率から、上記(式1)を用いて、光の波長400nmにおける屈折率を求めた。
なお、表1に記載の各層の屈折率は、上記屈折率測定用サンプルから求めた屈折率である。
<Refractive index (ITO layer)>
(1) Sputtering is performed on a PET film (trade name “A4100”, manufactured by Toyobo Co., Ltd.) having a refractive index of 1.72 with respect to light having a wavelength of 400 nm, using an ITO target of indium: tin = 10: 1 on the PET film. Then, a tin-doped indium oxide layer (ITO layer) as a transparent conductive layer having an actual film thickness of 20 nm was formed, and annealing was performed under the conditions of the following Examples and Comparative Examples to produce a transparent conductive film.
(2) The reflection spectrum was measured with a reflection spectral film thickness meter (“FE-3000”, manufactured by Otsuka Electronics Co., Ltd.) after roughening the back surface of the transparent conductive film with sandpaper and painting with a black paint.
(3) From the reflectance read from the reflection spectrum, the refractive index at a wavelength of 400 nm of light was obtained using the above (Formula 1).
In addition, the refractive index of each layer of Table 1 is a refractive index calculated | required from the said sample for refractive index measurement.

<透過色>
色差計(「SQ−2000」、日本電色工業株式会社製)を用いて透明導電性フィルムの透過色、b*を測定した。このb*は、JIS Z 8729に規定されているL*a*b表色系における値である。
<Transparent color>
Using a color difference meter (“SQ-2000”, manufactured by Nippon Denshoku Industries Co., Ltd.), the transmitted color and b * of the transparent conductive film were measured. This b * is a value in the L * a * b color system defined in JIS Z 8729.

<全光線透過率>
ヘイズメーター(「NDH2000」、日本電色工業株式会社製)により透明導電性フィルムの全光線透過率(%)を測定した。
<Total light transmittance>
The total light transmittance (%) of the transparent conductive film was measured with a haze meter (“NDH2000”, manufactured by Nippon Denshoku Industries Co., Ltd.).

〔ハードコート層用塗液(HC−1)の調製〕
ジペンタエリスリトールヘキサアクリレート96質量部、光重合開始剤[商品名:IRGACURE184、チバ・スペシャリティ・ケミカルズ(株)製]4質量部及びイソブチルアルコール100質量部を混合してハードコート層用塗液(HC−1)を調製した。ハードコート層用塗液(HC−1)を用いて形成されるハードコート層の屈折率は1.52であった。
[Preparation of hard coat layer coating solution (HC-1)]
96 parts by mass of dipentaerythritol hexaacrylate, photopolymerization initiator [trade name: IRGACURE 184, manufactured by Ciba Specialty Chemicals Co., Ltd.] and 100 parts by mass of isobutyl alcohol were mixed to prepare a coating liquid for hard coat layer (HC -1) was prepared. The refractive index of the hard coat layer formed using the hard coat layer coating solution (HC-1) was 1.52.

〔ハードコート層用塗液(HC−2)の調製〕
ジペンタエリスリトールヘキサアクリレート96質量部、アクリル微粒子[商品名:MA−150、綜研化学(株)製]5質量部、光重合開始剤[商品名:IRGACURE184、チバ・スペシャリティ・ケミカルズ(株)製]4質量部及びイソブチルアルコール100質量部を混合してハードコート層用塗液(HC−2)を調製した。ハードコート層用塗液(HC−2)を用いて形成されるハードコート層の屈折率は1.53であった。
[Preparation of hard coat layer coating solution (HC-2)]
96 parts by mass of dipentaerythritol hexaacrylate, 5 parts by mass of acrylic fine particles [trade name: MA-150, manufactured by Soken Chemical Co., Ltd.], photopolymerization initiator [trade name: IRGACURE 184, manufactured by Ciba Specialty Chemicals Co., Ltd.] 4 parts by mass and 100 parts by mass of isobutyl alcohol were mixed to prepare a hard coat layer coating solution (HC-2). The refractive index of the hard coat layer formed using the hard coat layer coating solution (HC-2) was 1.53.

〔色調補正層用塗液の調製〕
色調補正層用塗液として次の原料を使用し、各原料を表1に記載した組成で混合して、色調補正層用塗液M−1〜M−5を調製した。尚、表1中の数値はwt%である。得られた色調補正層用塗液M−1〜M−5を用いて形成される色調補正層の屈折率を測定した。その結果を表1に示す。
[Preparation of coating solution for color tone correction layer]
The following raw materials were used as the color correction layer coating liquid, and the respective raw materials were mixed in the composition described in Table 1 to prepare color correction layer coating liquids M-1 to M-5. The numerical values in Table 1 are wt%. The refractive index of the color tone correction layer formed using the obtained coating liquids M-1 to M-5 for the color tone correction layer was measured. The results are shown in Table 1.

金属酸化物微粒子:平均粒子径が0.02μmの酸化ジルコニウム微粒子
平均粒子径が0.02μmの酸化チタン微粒子
活性エネルギー線硬化型樹脂:6官能ウレタンアクリレート(日本合成化学工業(株)製紫光UV−7600B)
光重合開始剤:チバ・スペシャルティ・ケミカルズ(株)製IRGACURE184(I−184)
溶媒:メチルイソブチルケトン

Figure 0005780034
Metal oxide fine particles: Zirconium oxide fine particles having an average particle size of 0.02 μm
Titanium oxide fine particles having an average particle size of 0.02 μm Active energy ray-curable resin: Hexafunctional urethane acrylate (purple UV-7600B manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
Photopolymerization initiator: IRGACURE 184 (I-184) manufactured by Ciba Specialty Chemicals
Solvent: methyl isobutyl ketone
Figure 0005780034

(実施例1−1)
厚さ125μmのPETフィルムの一面に、ハードコート層用塗液(HC−1)をバーコーターにて塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、乾燥硬化後の膜厚が2.5μmのハードコート層(1)を形成した。続いて、PETフィルムの他面にハードコート層用塗液(HC−2)をバーコーターにて塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、乾燥硬化後の膜厚が2.5μmのハードコート層(2)を形成した。
上記ハードコート層(1)上に、色調補正層用塗液(M−1)をバーコーターにて塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、乾燥硬化後の膜厚が95nmの色調補正層(1)を形成した。続いて、ハードコート層(2)上に、色調補正層用塗液(M−1)をバーコーターにて塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、乾燥硬化後の膜厚が95nmの色調補正層(2)を形成し、色調補正フィルム(S−1)を作成した。
(Example 1-1)
A coating liquid for hard coat layer (HC-1) is applied to one surface of a PET film having a thickness of 125 μm with a bar coater, and cured by irradiating with 400 mJ ultraviolet rays with a 120 W high-pressure mercury lamp. A hard coat layer (1) having a thickness of 2.5 μm was formed. Subsequently, a hard coat layer coating solution (HC-2) is applied to the other surface of the PET film with a bar coater, and cured by irradiating with 400 mJ of ultraviolet light with a 120 W high-pressure mercury lamp, whereby the film after dry curing is obtained. A hard coat layer (2) having a thickness of 2.5 μm was formed.
On the hard coat layer (1), the coating liquid for color tone correction layer (M-1) is applied with a bar coater and cured by irradiating with 400 mJ of ultraviolet light with a 120 W high-pressure mercury lamp. A color tone correction layer (1) having a thickness of 95 nm was formed. Subsequently, the coating liquid for color tone correction layer (M-1) is applied on the hard coat layer (2) with a bar coater, and cured by irradiating with 400 mJ ultraviolet rays with a 120 W high pressure mercury lamp, thereby drying and curing. A color tone correction layer (2) having a film thickness of 95 nm later was formed to produce a color tone correction film (S-1).

(実施例1−2)
色調補正層(2)の乾燥硬化後の膜厚を65nmにする以外は、実施例1−1と同様にして、色調補正フィルム(S−2)を作製した。
(Example 1-2)
A color correction film (S-2) was produced in the same manner as in Example 1-1 except that the film thickness after drying and curing of the color correction layer (2) was 65 nm.

(実施例1−3)
色調補正層(2)の乾燥硬化後の膜厚を110nmにする以外は、実施例1−1と同様にして、色調補正フィルム(S−3)を作製した。
(Example 1-3)
A color correction film (S-3) was produced in the same manner as in Example 1-1 except that the film thickness after drying and curing of the color correction layer (2) was changed to 110 nm.

(実施例1−4)
色調補正層(2)の色調補正層用塗液をM−2とし、乾燥硬化後の膜厚を90nmにする以外は、実施例1−1と同様にして、色調補正フィルム(S−4)を作製した。
(Example 1-4)
The color correction film (S-4) is the same as Example 1-1 except that the color correction layer coating liquid of the color correction layer (2) is M-2 and the film thickness after drying and curing is 90 nm. Was made.

(実施例1−5)
色調補正層(2)の色調補正層用塗液をM−3とし、乾燥硬化後の膜厚を100nmにする以外は、実施例1−1と同様にして、色調補正フィルム(S−5)を作製した。
(Example 1-5)
The color correction film (S-5) is the same as Example 1-1 except that the color correction layer coating liquid of the color correction layer (2) is M-3 and the film thickness after drying and curing is 100 nm. Was made.

(実施例1−6)
色調補正層(1)の色調補正層用塗液をM−2とし、乾燥硬化後の膜厚を90nmとし、更に、色調補正層(2)の色調補正層用塗液をM−3とし、乾燥硬化後の膜厚を100nmとした以外は、実施例1−1と同様にして、色調補正フィルム(S−6)を作製した。
(Example 1-6)
The color correction layer coating liquid of the color correction layer (1) is M-2, the film thickness after drying and curing is 90 nm, and the color correction layer coating liquid of the color correction layer (2) is M-3. A color correction film (S-6) was produced in the same manner as in Example 1-1 except that the film thickness after drying and curing was 100 nm.

(実施例1−7)
ハードコート層(1)及びハードコート層(2)のハードコート層用塗液を、HC−3[商品名:ルシフラールNAB−2000、日本ペイント(株)製] とした以外は、実施例1−1と同様にして、色調補正フィルム(S−7)を作製した。なお、ハードコート層用塗液(HC−3)を用いて形成されるハードコート層の屈折率は1.54であった。
(Example 1-7)
Example 1 except that the hard coat layer coating solution for the hard coat layer (1) and the hard coat layer (2) was HC-3 [trade name: Lucifar NAB-2000, manufactured by Nippon Paint Co., Ltd.] In the same manner as in No. 1, a color tone correction film (S-7) was produced. The refractive index of the hard coat layer formed using the hard coat layer coating solution (HC-3) was 1.54.

実施例1−1〜1−7で得られた色調補正フィルムの性質を表2に示す。

Figure 0005780034
Table 2 shows the properties of the color tone correction films obtained in Examples 1-1 to 1-7.
Figure 0005780034

(実施例2−1)
上記色調補正フィルム(S−1)の色調補正層(1)上にインジウム:錫=10:1のITOターゲットを用いてスパッタリングを行うことにより、膜厚が20nmの錫ドープ酸化インジウム層(ITO層)(1)を形成し、ついで、色調補正層(2)上にインジウム:錫=10:1のITOターゲットを用いてのスパッタリングを行うことにより、膜厚が20nmの錫ドープ酸化インジウム層(2)を形成し、150℃、30分のアニール処理を施し、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色b*、全光線透過率を前記方法で測定した。その結果を下記表3に示す。
(Example 2-1)
By sputtering using an ITO target of indium: tin = 10: 1 on the color correction layer (1) of the color correction film (S-1), a tin-doped indium oxide layer (ITO layer having a thickness of 20 nm) ) (1) is formed, and then a tin-doped indium oxide layer (2) having a film thickness of 20 nm is formed on the color correction layer (2) by sputtering using an ITO target of indium: tin = 10: 1. ) And an annealing treatment at 150 ° C. for 30 minutes to produce a transparent conductive film. About the obtained transparent conductive film, the transmission color b * and the total light transmittance were measured by the said method. The results are shown in Table 3 below.

(実施例2−2)
色調補正フィルムを(S−2)とした以外は、実施例2−1と同様の方法にて透明導電性フィルムを作製した。
(Example 2-2)
A transparent conductive film was produced in the same manner as in Example 2-1, except that the color tone correction film was changed to (S-2).

(実施例2−3)
色調補正フィルムを(S−3)とした以外は、実施例2−1と同様の方法にて透明導電性フィルムを作製した。
(Example 2-3)
A transparent conductive film was produced in the same manner as in Example 2-1, except that the color tone correction film was changed to (S-3).

(実施例2−4)
色調補正フィルムを(S−4)とした以外は、実施例2−1と同様の方法にて透明導電性フィルムを作製した。
(Example 2-4)
A transparent conductive film was produced in the same manner as in Example 2-1, except that the color tone correction film was changed to (S-4).

(実施例2−5)
色調補正フィルムを(S−5)とした以外は、実施例2−1と同様の方法にて透明導電性フィルムを作製した。
(Example 2-5)
A transparent conductive film was produced in the same manner as in Example 2-1, except that the color tone correction film was changed to (S-5).

(実施例2−6)
色調補正フィルムを(S−6)とした以外は、実施例2−1と同様の方法にて透明導電性フィルムを作製した。
(Example 2-6)
A transparent conductive film was produced in the same manner as in Example 2-1, except that the color tone correction film was changed to (S-6).

(実施例2−7)
色調補正フィルムを(S−7)とした以外は、実施例2−1と同様の方法にて透明導電性フィルムを作製した。
(Example 2-7)
A transparent conductive film was produced in the same manner as in Example 2-1, except that the color tone correction film was changed to (S-7).

(実施例2−8)
錫ドープ酸化インジウム層(1)及び錫ドープ酸化インジウム層(2)の膜厚を30nmとし、アニール処理を150℃、60分とした以外は、実施例2−1と同様にして、色調補正フィルム及び透明導電性フィルムを作製した。
(Example 2-8)
A color correction film in the same manner as in Example 2-1, except that the thickness of the tin-doped indium oxide layer (1) and the tin-doped indium oxide layer (2) was 30 nm and the annealing treatment was 150 ° C. for 60 minutes. And the transparent conductive film was produced.

(実施例2−9)
アニール処理を100℃、60分とした以外は、実施例2−1と同様にして、色調補正フィルム及び透明導電性フィルムを作製した。
(Example 2-9)
A color tone correction film and a transparent conductive film were produced in the same manner as in Example 2-1, except that the annealing treatment was performed at 100 ° C. for 60 minutes.

Figure 0005780034
Figure 0005780034

(比較例1−1)
厚さ125μmのPETフィルム上にハードコート層用塗液(HC−1)をバーコーターにて塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、乾燥硬化後の膜厚が2.5μmのハードコート層を形成した。次に、ハードコート層上に、色調補正層用塗液(M−1)をバーコーターにて塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化することにより、乾燥硬化後の膜厚が95nmの色調補正層を形成し、色調補正フィルムを作製した。次に、色調補正フィルムの色調補正層上に、インジウム:錫=10:1のITOターゲットを用いてスパッタリングを行い透明導電層としての錫ドープ酸化インジウム層を形成し、150℃、30分のアニール処理を施し、透明導電性フィルムを作製した。得られた透明導電性フィルム2枚を、透明性接着剤転写テープ[商品名:8146−2、住友スリーエム(株)製]を介してPETフィルム同士が面するように貼合し、比較例1−1の透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色b*、全光線透過率を上記方法で測定した。その結果を表4に示す。

Figure 0005780034
(Comparative Example 1-1)
The coating film for hard coat layer (HC-1) is coated on a 125 μm-thick PET film with a bar coater, and cured by irradiating with a 120 W high-pressure mercury lamp by irradiating with 400 mJ of ultraviolet rays to obtain a film thickness after drying and curing. A hard coat layer having a thickness of 2.5 μm was formed. Next, a coating solution for color tone correction layer (M-1) is applied onto the hard coat layer with a bar coater, and cured by irradiating with 400 mJ of ultraviolet light with a 120 W high-pressure mercury lamp, whereby the film after drying and curing is applied. A color tone correction layer having a thickness of 95 nm was formed to produce a color tone correction film. Next, on the color correction layer of the color correction film, sputtering is performed using an ITO target of indium: tin = 10: 1 to form a tin-doped indium oxide layer as a transparent conductive layer, and annealed at 150 ° C. for 30 minutes. The transparent electroconductive film was produced by processing. The two transparent conductive films obtained were bonded so that the PET films face each other through a transparent adhesive transfer tape [trade name: 8146-2, manufactured by Sumitomo 3M Limited], and Comparative Example 1 -1 transparent conductive film was produced. About the obtained transparent conductive film, the transmission color b * and the total light transmittance were measured by the said method. The results are shown in Table 4.
Figure 0005780034

(比較例2−1)
色調補正層(2)の乾燥硬化後の膜厚を120nmとした以外は、実施例1−1と同様にして、色調補正フィルム(S−8)を作製した。
(Comparative Example 2-1)
A color correction film (S-8) was produced in the same manner as in Example 1-1 except that the film thickness after drying and curing of the color correction layer (2) was 120 nm.

(比較例2−2)
色調補正層(2)の乾燥硬化後の膜厚を55nmとした以外は、実施例1−1と同様にして、色調補正フィルム(S−9)を作製した。
(Comparative Example 2-2)
A color correction film (S-9) was produced in the same manner as in Example 1-1 except that the film thickness after drying and curing of the color correction layer (2) was 55 nm.

(比較例2−3)
色調補正層(2)の色調補正層用塗液をM−4とした以外は、実施例1−1と同様にして、色調補正フィルム(S−10)を作製した。
(Comparative Example 2-3)
A color correction film (S-10) was produced in the same manner as in Example 1-1 except that the color correction layer coating liquid for the color correction layer (2) was M-4.

(比較例2−4)
色調補正層(2)の色調補正層用塗液をM−5とした以外は、実施例1−1と同様にして、色調補正フィルム(S−11)を作製した。
(Comparative Example 2-4)
A color correction film (S-11) was produced in the same manner as in Example 1-1 except that the color correction layer coating liquid for the color correction layer (2) was M-5.

比較例2−1〜2−4で得られた色調補正フィルムの性質を表5に示す。

Figure 0005780034
Table 5 shows the properties of the color tone correction films obtained in Comparative Examples 2-1 to 2-4.
Figure 0005780034

(比較例3−1)
色調補正フィルムを(S−8)とした以外は、実施例2−1と同様の方法にて透明導電性フィルムを作製した。
(Comparative Example 3-1)
A transparent conductive film was produced in the same manner as in Example 2-1, except that the color correction film was changed to (S-8).

(比較例3−2)
色調補正フィルムを(S−9)とした以外は、実施例2−1と同様の方法にて透明導電性フィルムを作製した。
(Comparative Example 3-2)
A transparent conductive film was produced in the same manner as in Example 2-1, except that the color tone correction film was (S-9).

(比較例3−3)
色調補正フィルムを(S−10)とした以外は、実施例2−1と同様の方法にて透明導電性フィルムを作製した。
(Comparative Example 3-3)
A transparent conductive film was produced in the same manner as in Example 2-1, except that the color tone correction film was changed to (S-10).

(比較例3−4)
色調補正フィルムを(S−11)とした以外は、実施例2−1と同様の方法にて透明導電性フィルムを作製した。
(Comparative Example 3-4)
A transparent conductive film was produced in the same manner as in Example 2-1, except that the color tone correction film was changed to (S-11).

(比較例3−5)
ITO層(2)の膜厚を70nmとした以外は、実施例2−1と同様にして透明導電性フィルムを作製した。
(Comparative Example 3-5)
A transparent conductive film was produced in the same manner as in Example 2-1, except that the thickness of the ITO layer (2) was 70 nm.

比較例3−1〜3−4で得られた透明導電性フィルムの透過率b*及び全光線透過率を上記方法で測定した。その結果を表6に示す。

Figure 0005780034
The transmittance b * and the total light transmittance of the transparent conductive films obtained in Comparative Examples 3-1 to 3-4 were measured by the above methods. The results are shown in Table 6.
Figure 0005780034

実施例2−1〜2−9では、ハードコート層及び色調補正層、錫ドープ酸化インジウム層の屈折率と膜厚が本発明で規定される範囲に設定されていることから、透過色b*の値が小さく、透明導電性フィルムの着色を十分に抑え、更に、優れた全光線透過率を実現することが出来た。
その一方、比較例1−1では、余分な粘着層及び透明基材フィルムを使用しているため、全光線透過率が悪い結果となった。比較例3−1〜3−5は、色調補正層、錫ドープ酸化インジウム層の屈折率、及び膜厚のいずれかが本発明で規定される範囲外に設定されているため、透過色b*の値が大きく、透明導電性フィルムが着色する結果となった。
In Examples 2-1 to 2-9, since the refractive index and the film thickness of the hard coat layer, the color tone correction layer, and the tin-doped indium oxide layer are set within the range defined by the present invention, the transmitted color b * The color of the transparent conductive film was sufficiently suppressed, and an excellent total light transmittance could be realized.
On the other hand, in Comparative Example 1-1, since an extra adhesive layer and a transparent substrate film were used, the total light transmittance was poor. In Comparative Examples 3-1 to 3-5, any one of the color tone correction layer, the refractive index of the tin-doped indium oxide layer, and the film thickness is set outside the range defined by the present invention. As a result, the transparent conductive film was colored.

Claims (2)

透明基材フィルムの両面にハードコート層が積層されており、前記両ハードコート層上に色調補正層が積層されている静電容量式タッチパネル用の色調補正フィルムであって、
前記両ハードコート層は、波長400nmの光に対する屈折率が1.51〜1.61、膜厚が1〜10μmであり、
前記両色調補正層は、金属酸化物微粒子と活性エネルギー線硬化型樹脂からなり、波長400nmの光に対する屈折率が1.62〜1.91、膜厚が65〜110nmである色調補正フィルム。
A hard coat layer is laminated on both sides of the transparent substrate film, and a color tone correction film for a capacitive touch panel in which a color tone correction layer is laminated on both the hard coat layers,
Both the hard coat layers have a refractive index of 1.51 to 1.61 with respect to light having a wavelength of 400 nm and a film thickness of 1 to 10 μm.
The color tone correction layer is a color tone correction film comprising metal oxide fine particles and an active energy ray-curable resin, having a refractive index of 1.62 to 1.91 and a film thickness of 65 to 110 nm with respect to light having a wavelength of 400 nm.
請求項1記載の色調補正フィルムの前記両色調補正層上に錫ドープ酸化インジウム層が積層された透明導電性フィルムであって、
前記両錫ドープ酸化インジウム層は、波長400nmの光に対する屈折率が1.85〜2.35、膜厚が5〜50nmである透明導電性フィルム。
A transparent conductive film in which a tin-doped indium oxide layer is laminated on the both color correction layers of the color correction film according to claim 1,
The both tin-doped indium oxide layers are transparent conductive films having a refractive index of 1.85 to 2.35 and a film thickness of 5 to 50 nm with respect to light having a wavelength of 400 nm.
JP2011162907A 2011-07-26 2011-07-26 Color tone correction film and transparent conductive film using the same Active JP5780034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162907A JP5780034B2 (en) 2011-07-26 2011-07-26 Color tone correction film and transparent conductive film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162907A JP5780034B2 (en) 2011-07-26 2011-07-26 Color tone correction film and transparent conductive film using the same

Publications (2)

Publication Number Publication Date
JP2013025737A JP2013025737A (en) 2013-02-04
JP5780034B2 true JP5780034B2 (en) 2015-09-16

Family

ID=47783973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162907A Active JP5780034B2 (en) 2011-07-26 2011-07-26 Color tone correction film and transparent conductive film using the same

Country Status (1)

Country Link
JP (1) JP5780034B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380149B (en) * 2012-07-31 2016-06-22 日油株式会社 Tint correction film and use its transparent and electrically conductive film
JP6136376B2 (en) * 2013-03-05 2017-05-31 日油株式会社 Color tone correction film and transparent conductive film using the same
JP6487178B2 (en) * 2014-10-20 2019-03-20 三井化学株式会社 Laminate
JP6052330B2 (en) * 2015-04-24 2016-12-27 Tdk株式会社 Transparent conductor, manufacturing method thereof, and touch panel
KR20230146071A (en) 2021-03-19 2023-10-18 가부시끼가이샤 구레하 Conductive piezoelectric laminated film and manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572507B2 (en) * 2002-05-23 2010-11-04 日油株式会社 Transparent conductive material and touch panel
JP2004152727A (en) * 2002-11-01 2004-05-27 Toyo Metallizing Co Ltd Transparent conductive film
JP5408075B2 (en) * 2009-10-06 2014-02-05 日油株式会社 Transparent conductive film

Also Published As

Publication number Publication date
JP2013025737A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5408075B2 (en) Transparent conductive film
US7901746B2 (en) Transparent conductive film and touch panel
JP5780034B2 (en) Color tone correction film and transparent conductive film using the same
JP6010992B2 (en) Transparent conductive film
JP2013099924A (en) Color tone correction film and transparent conductive film using the same
KR101761463B1 (en) Color tone correction film and transparent conductive film using same
JP5691279B2 (en) Transparent conductive film
JP2017015971A (en) Color tone correction film and transparent conductive film using the same
JP5987466B2 (en) Color tone correction film and transparent conductive film using the same
JP6136320B2 (en) Color tone correction film and transparent conductive film using the same
JP6337600B2 (en) Color tone correction film and transparent conductive film using the same
JP5659601B2 (en) Transparent conductive film
JP2013237244A (en) Color tone correction film and transparent conductive film using the same
JP6405902B2 (en) Color tone correction film and transparent conductive film using the same
JP6136376B2 (en) Color tone correction film and transparent conductive film using the same
JP6136339B2 (en) Color tone correction film and transparent conductive film using the same
JP2016024385A (en) Color tone correction film and transparent conductive film obtained by using the same
TWI495897B (en) Color correction film and transparent conductive film using the same
JP6241127B2 (en) Color tone correction film and transparent conductive film using the same
JP2014035352A (en) Color tone correction film and transparent conductive film using the same
JP2016090963A (en) Color tone correction film, and transparent conductive film using the same
JP2017016022A (en) Color tone correction film and transparent conductive film using the same
JP2016030416A (en) Tone correction film and transparent conductive film using the same
JP2016022686A (en) Color tone correction film and transparent conductive film using the same
JP2016090962A (en) Color tone correction film, and transparent conductive film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5780034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250