JP2011098563A - Transparent conductive film - Google Patents

Transparent conductive film Download PDF

Info

Publication number
JP2011098563A
JP2011098563A JP2010187453A JP2010187453A JP2011098563A JP 2011098563 A JP2011098563 A JP 2011098563A JP 2010187453 A JP2010187453 A JP 2010187453A JP 2010187453 A JP2010187453 A JP 2010187453A JP 2011098563 A JP2011098563 A JP 2011098563A
Authority
JP
Japan
Prior art keywords
layer
refractive index
transparent conductive
film thickness
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010187453A
Other languages
Japanese (ja)
Other versions
JP5408075B2 (en
Inventor
Yuko Kato
祐子 加藤
Takayuki Nojima
孝之 野島
Sukemasa Morita
祐誠 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2010187453A priority Critical patent/JP5408075B2/en
Priority to CN201010503538.6A priority patent/CN102034565B/en
Priority to TW099133481A priority patent/TWI460742B/en
Priority to KR1020100096493A priority patent/KR101700250B1/en
Publication of JP2011098563A publication Critical patent/JP2011098563A/en
Application granted granted Critical
Publication of JP5408075B2 publication Critical patent/JP5408075B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive film suppressing coloring of transmission light and having a low haze value and a high total light transmittance. <P>SOLUTION: The transparent conductive film is formed by laminating a high refractive index layer, a low refractive index layer and a tin-doped indium oxide layer (ITO layer) in this order from the surface of a polyester film. The high refractive index layer is formed of metal oxide particles and an ultraviolet curable binder, and has a refractive index in the wavelength 400 nm of light being 1.63-1.86 and a film thickness of 40-90 nm. The low refractive index layer has a refractive index in the wavelength 400 nm of light being 1.33-1.53 and a film thickness of 10-50 nm. The ITO layer has a refractive index in the wavelength 400 nm of light being 1.85-2.35 and a film thickness of 5-50 nm. It is preferable to laminate a hard coat layer with a film thickness of 1.0-10.0 μm between the polyester film and the high refractive index layer. A functional layer may be formed on the surface, opposite to the ITO layer, of the polyester film. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えばタッチパネル等に用いられ、透過光の着色を抑え、全光線透過率に優れた透明導電性フィルムに関する。   The present invention relates to a transparent conductive film which is used for, for example, a touch panel and the like and suppresses coloring of transmitted light and is excellent in total light transmittance.

現在、画像表示部に直接触れることにより、情報を入力できるデバイスとしてタッチパネルが用いられている。このタッチパネルは光を透過する入力装置を液晶表示装置、CRT等の各種ディスプレイ上に配置されるものであり、代表的な形式として、透明電極基板2枚を透明電極層が向かい合うように配置された抵抗膜式タッチパネルや、透明電極層と指の間に生じる電流容量の変化を利用した静電容量タイプのタッチパネルがある。   Currently, a touch panel is used as a device that can input information by directly touching an image display unit. In this touch panel, an input device that transmits light is arranged on various displays such as a liquid crystal display device and a CRT. As a typical form, two transparent electrode substrates are arranged so that transparent electrode layers face each other. There are a resistive film type touch panel and a capacitance type touch panel using a change in current capacity generated between a transparent electrode layer and a finger.

抵抗膜式タッチパネルや静電容量タイプのタッチパネルの透明電極基板として、ガラス板、透明樹脂板や各種の熱可塑性高分子フィルム等の基材上に、酸化錫を含有するインジウム酸化物(錫ドープ酸化インジウム、ITO)や酸化亜鉛等の金属酸化物による透明導電層を積層したものが一般的に用いられている。このようにして得られた透明電極基板は、金属酸化物層の反射及び吸収に由来する可視光短波長領域の透過率の低下による、黄色の呈色が見られることが多い。そのため、タッチパネルの下に配置される表示装置の発色を正確に表現することが難しいという問題があった。   Indium oxide containing tin oxide (tin-doped oxidation) on a substrate such as a glass plate, transparent resin plate or various thermoplastic polymer films as a transparent electrode substrate for resistive touch panels and capacitive touch panels A laminate in which a transparent conductive layer made of a metal oxide such as indium, ITO) or zinc oxide is laminated is generally used. The transparent electrode substrate thus obtained often shows a yellow color due to a decrease in transmittance in the visible light short wavelength region due to reflection and absorption of the metal oxide layer. For this reason, there is a problem that it is difficult to accurately express the color of the display device arranged under the touch panel.

この問題を解決するために、透明導電層を多層光学膜と組み合わせた透明導電性積層体が提案されている(特許文献1を参照)。この透明導電性積層体においては、多層光学膜として、異なる屈折率の層が積層されているが、多層光学膜の構成要素として、金属アルコキシドの加水分解物が使用されていることから、透過色の黄色の着色を抑える効果とヘイズ値を低くすることの両立が不十分であった。   In order to solve this problem, a transparent conductive laminate in which a transparent conductive layer is combined with a multilayer optical film has been proposed (see Patent Document 1). In this transparent conductive laminate, layers having different refractive indexes are laminated as a multilayer optical film. However, since a hydrolyzate of metal alkoxide is used as a component of the multilayer optical film, the transparent color The effect of suppressing the yellow coloring of the toner and the reduction of the haze value were insufficient.

特開2000−301648号公報JP 2000-301648 A

そこで、本発明の目的とするところは、透過光の着色を抑え、ヘイズ値が低く、全光線透過率の高い透明導電性フィルムを提供することにある。   Accordingly, an object of the present invention is to provide a transparent conductive film that suppresses coloring of transmitted light, has a low haze value, and has a high total light transmittance.

前記の目的を達成するために、第1の発明の透明導電性フィルムは、ポリエステルフィルムの表面から順に、高屈折率層、低屈折率層及び錫ドープ酸化インジウム層(ITO層)が積層されて構成されている。そして、高屈折率層は、金属酸化物微粒子と紫外線硬化性バインダーとより形成され、光の波長400nmにおける屈折率が1.63〜1.86、膜厚が40〜90nmであり、低屈折率層は、光の波長400nmにおける屈折率が1.33〜1.53、膜厚が10〜50nmであり、錫ドープ酸化インジウム層は、光の波長400nmにおける屈折率が1.85〜2.35、膜厚が5〜50nmであることを特徴とする。   In order to achieve the above object, the transparent conductive film of the first invention has a high refractive index layer, a low refractive index layer, and a tin-doped indium oxide layer (ITO layer) laminated in order from the surface of the polyester film. It is configured. The high refractive index layer is formed of metal oxide fine particles and an ultraviolet curable binder, has a refractive index of 1.63 to 1.86 at a light wavelength of 400 nm, a film thickness of 40 to 90 nm, and a low refractive index. The layer has a refractive index of 1.33 to 1.53 at a light wavelength of 400 nm and a film thickness of 10 to 50 nm, and the tin-doped indium oxide layer has a refractive index of 1.85 to 2.35 at a light wavelength of 400 nm. The film thickness is 5 to 50 nm.

第2の発明の透明導電性フィルムは、第1の発明において、ポリエステルフィルムと高屈折率層との間に、膜厚1.0〜10.0μmのハードコート層が積層されている。
第3の発明の透明導電性フィルムは、第1又は第2の発明において、ポリエステルフィルムの錫ドープ酸化インジウム層の反対面に機能層が形成されている。
In the transparent conductive film of the second invention in the first invention, a hard coat layer having a film thickness of 1.0 to 10.0 μm is laminated between the polyester film and the high refractive index layer.
In the transparent conductive film of the third invention, in the first or second invention, a functional layer is formed on the opposite surface of the tin-doped indium oxide layer of the polyester film.

第4の発明の透明導電性フィルムは、第3の発明において、機能層は、ハードコート層、防眩層、指紋なじみ層又は自己修復層である。
第5の発明の透明導電性フィルムは、第4の発明において、機能層としてのハードコート層が滑性を有するハードコート層であって、膜厚が1.0〜10.0μm、平均粒子径が膜厚の10〜60%である透光性微粒子を0.5〜30質量%含む易滑ハードコート層である。
In the transparent conductive film of the fourth invention, in the third invention, the functional layer is a hard coat layer, an antiglare layer, a fingerprint familiar layer or a self-healing layer.
The transparent conductive film of the fifth invention is a hard coat layer in which the hard coat layer as a functional layer has lubricity in the fourth invention, and the film thickness is 1.0 to 10.0 μm, the average particle diameter Is an easy-sliding hard coat layer containing 0.5 to 30% by mass of translucent fine particles having a thickness of 10 to 60%.

第6の発明の透明導電性フィルムは、第4の発明において、機能層としてのハードコート層又は防眩層の上にさらに反射防止層が積層されている。   In the transparent conductive film of the sixth invention according to the fourth invention, an antireflection layer is further laminated on the hard coat layer or antiglare layer as the functional layer.

本発明によれば、次のような効果を発揮することができる。
第1の発明の透明導電性フィルムでは、高屈折率層は光の波長400nmにおける屈折率が1.63〜1.86、膜厚が40〜90nmであり、低屈折率層は光の波長400nmにおける屈折率が1.33〜1.53、膜厚が10〜50nmであり、ITO層は光の波長400nmにおける屈折率が1.85〜2.35、膜厚が5〜50nmに設定されている。このように、高屈折率層、低屈折率層及びITO層の屈折率を、光の波長400nmにおける屈折率に基づいて適切に設定することにより、透明導電性フィルムの透過光の黄色味を抑えることができると同時に、透過率を上げることができる。従って、第1の発明の透明導電性フィルムによれば、透過光の着色を抑え、ヘイズ値が低く、全光線透過率を高めることができる。
According to the present invention, the following effects can be exhibited.
In the transparent conductive film of the first invention, the high refractive index layer has a refractive index of 1.63 to 1.86 and a film thickness of 40 to 90 nm at a light wavelength of 400 nm, and the low refractive index layer has a light wavelength of 400 nm. The ITO layer has a refractive index of 1.33 to 1.53 and a film thickness of 10 to 50 nm. The ITO layer has a refractive index of 1.85 to 2.35 at a light wavelength of 400 nm and a film thickness of 5 to 50 nm. Yes. Thus, by appropriately setting the refractive indexes of the high refractive index layer, the low refractive index layer, and the ITO layer based on the refractive index at a light wavelength of 400 nm, the yellowness of the transmitted light of the transparent conductive film is suppressed. At the same time, the transmittance can be increased. Therefore, according to the transparent conductive film of 1st invention, coloring of transmitted light can be suppressed, haze value is low, and total light transmittance can be raised.

ここで、屈折率には波長分散性があり、短波長領域では屈折率が高くなる傾向がある。一般に、各層の屈折率調整では、ナトリウムのD線(光の波長589nm)の値を用いることが多いが、本発明の中間層及びITO層のように金属酸化物微粒子を含む層においては、屈折率の波長分散の影響が大きくなる。黄色味を抑えるには光の波長400nmの透過率制御が重要であるため、波長589nmの屈折率で各層の屈折率を調整した場合、光の波長400nmの透過率を十分に調整することはできなくなり、黄色味低減効果が十分に得られない。本発明では、光の波長400nmの屈折率を使用して各層を設計するため、効果が最大となる。   Here, the refractive index has wavelength dispersion, and the refractive index tends to increase in the short wavelength region. Generally, in adjusting the refractive index of each layer, the value of sodium D-line (wavelength of light of 589 nm) is often used, but in the layer containing metal oxide fine particles such as the intermediate layer and ITO layer of the present invention, the refractive The effect of chromatic dispersion on the rate increases. In order to suppress yellowness, it is important to control the transmittance of light with a wavelength of 400 nm. Therefore, when the refractive index of each layer is adjusted with a refractive index of 589 nm, the transmittance of light with a wavelength of 400 nm can be sufficiently adjusted. The yellowness reduction effect is not sufficiently obtained. In the present invention, since each layer is designed using a refractive index of light having a wavelength of 400 nm, the effect is maximized.

以下、本発明を具体化した実施形態について詳細に説明する。
〔透明導電性フィルム〕
本実施形態の透明導電性フィルムは、ポリエステルフィルムの表面から順に、高屈折率層、低屈折率層及び錫ドープ酸化インジウム層(ITO層)が積層されて構成されている。そして、高屈折率層は、金属酸化物微粒子と紫外線(UV)硬化性バインダーとより形成され、光の波長400nmにおける屈折率が1.63〜1.86であり、膜厚が40〜90nmである。また、低屈折率層は、光の波長400nmにおける屈折率が1.33〜1.53であり、膜厚が10〜50nmである。さらに、ITO層は、光の波長400nmにおける屈折率が1.85〜2.35、膜厚が5〜50nmである。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments embodying the present invention will be described in detail.
[Transparent conductive film]
The transparent conductive film of this embodiment is configured by laminating a high refractive index layer, a low refractive index layer, and a tin-doped indium oxide layer (ITO layer) in order from the surface of the polyester film. The high refractive index layer is formed of metal oxide fine particles and an ultraviolet (UV) curable binder, and has a refractive index of 1.63-1.86 at a light wavelength of 400 nm and a film thickness of 40-90 nm. is there. The low refractive index layer has a refractive index of 1.33 to 1.53 at a light wavelength of 400 nm and a film thickness of 10 to 50 nm. Further, the ITO layer has a refractive index of 1.85 to 2.35 at a wavelength of 400 nm and a film thickness of 5 to 50 nm.

以下に、この透明導電性フィルムの構成要素について順に説明する。
<ポリエステルフィルム>
ポリエステルフィルムは透明基材であり、ポリエチレンテレフタレート(PET)樹脂で代表されるポリエステル系樹脂である。ポリエステルフィルムの膜厚は通常25〜400μm、好ましくは35〜250μmである。
<高屈折率層>
高屈折率層は金属酸化物微粒子と、紫外線硬化性バインダーとを混合してなる高屈折率層用塗液を紫外線硬化させた硬化物により形成される。金属酸化物微粒子としては、酸化チタン及び酸化ジルコニウムが好ましい。酸化チタン及び酸化ジルコニウムの光の波長400nmにおける屈折率は製法によって異なるが、2.0〜3.0であることが好ましい。また、紫外線硬化性バインダーとしては、(メタ)アクリロイル基を有する多官能モノマー、オリゴマー及び重合体が挙げられ、光の波長400nmにおける屈折率が1.4〜1.7であることが好ましい。
Below, the component of this transparent conductive film is demonstrated in order.
<Polyester film>
The polyester film is a transparent substrate and is a polyester resin represented by polyethylene terephthalate (PET) resin. The film thickness of the polyester film is usually 25 to 400 μm, preferably 35 to 250 μm.
<High refractive index layer>
The high refractive index layer is formed by a cured product obtained by ultraviolet curing a coating solution for a high refractive index layer obtained by mixing metal oxide fine particles and an ultraviolet curable binder. As the metal oxide fine particles, titanium oxide and zirconium oxide are preferable. The refractive index of light of titanium oxide and zirconium oxide at a wavelength of 400 nm varies depending on the production method, but is preferably 2.0 to 3.0. Moreover, as a ultraviolet curable binder, the polyfunctional monomer, oligomer, and polymer which have a (meth) acryloyl group are mentioned, It is preferable that the refractive index in wavelength 400nm of light is 1.4-1.7.

高屈折率層の塗液は乾燥硬化後の硬化膜について光の波長400nmにおける屈折率が1.63〜1.86、好ましくは1.66〜1.86になるように調整する。さらに、高屈折率層の乾燥硬化後の膜厚は40〜90nm、好ましくは45〜90nmになるように塗布後硬化される。屈折率及び膜厚がこれらの範囲外では、JIS Z 8729に規定されているL*a*b表色系における透過色の前記b*の値が大きくなってしまい、透明導電性フィルムの透過色の黄色味が明瞭に認識されるようになる。また、高屈折率層の屈折率が1.86より大きい場合には、塗膜中の粒子の割合が多くなり、ヘイズ値が上昇してしまう。高屈折率層の膜厚が上記の範囲外では、前記b*の値が大きくなってしまい、透明導電性フィルムの透過色の黄色味の着色が明瞭に認識されるようになる。
<低屈折率層>
低屈折率層の材料としては、平均粒子径が10〜100nmの無機微粒子と活性エネルギー線硬化型樹脂とを混合した塗液を、塗布、硬化させた層である。無機微粒子としては、コロイダルシリカや中空シリカ微粒子が挙げられる。活性エネルギー線硬化型樹脂としては、例えば(メタ)アクリロイル基を有する多官能モノマー、オリゴマー及び重合体が挙げられる。
The coating solution for the high refractive index layer is adjusted so that the refractive index at a light wavelength of 400 nm is 1.63-1.86, preferably 1.66-1.86 for the cured film after drying and curing. Further, the high refractive index layer is cured after coating so that the film thickness after drying and curing is 40 to 90 nm, preferably 45 to 90 nm. When the refractive index and the film thickness are outside these ranges, the b * value of the transmitted color in the L * a * b color system defined in JIS Z 8729 becomes large, and the transmitted color of the transparent conductive film The yellowish taste is clearly recognized. Moreover, when the refractive index of a high refractive index layer is larger than 1.86, the ratio of the particle | grains in a coating film will increase, and a haze value will rise. When the film thickness of the high refractive index layer is out of the above range, the value of b * becomes large, and the yellowish coloring of the transparent color of the transparent conductive film is clearly recognized.
<Low refractive index layer>
The material of the low refractive index layer is a layer obtained by applying and curing a coating liquid in which inorganic fine particles having an average particle diameter of 10 to 100 nm and an active energy ray-curable resin are mixed. Examples of the inorganic fine particles include colloidal silica and hollow silica fine particles. Examples of the active energy ray-curable resin include polyfunctional monomers, oligomers, and polymers having a (meth) acryloyl group.

低屈折率層の塗液は、乾燥硬化後の硬化膜について光の波長400nmにおける屈折率が1.33〜1.53になるように調整する。この屈折率が1.33より小さい場合、低屈折率層の塗液中における中空シリカ微粒子等の割合が増えるため、塗膜が脆くなるとともに、製膜を良好に行うことができなくなる。その一方、屈折率が1.53より大きい場合、透過色についてb*の値が大きくなってしまい、透明導電性フィルムの透過色の黄色味の着色が明瞭に認識されるようになる。   The coating liquid for the low refractive index layer is adjusted so that the refractive index at a light wavelength of 400 nm of the cured film after drying and curing is 1.33 to 1.53. When this refractive index is smaller than 1.33, the ratio of hollow silica fine particles and the like in the coating liquid of the low refractive index layer increases, so that the coating film becomes brittle and film formation cannot be performed satisfactorily. On the other hand, when the refractive index is larger than 1.53, the value of b * becomes large for the transmitted color, and the yellowish color of the transmitted color of the transparent conductive film is clearly recognized.

乾燥硬化後の膜厚は10〜50nm、好ましくは15〜45nmになるように塗布後硬化される。この膜厚がこれらの範囲外では透過色の前記b*の値が大きくなってしまい、透明導電性フィルムの透過色の黄色味の着色が明瞭に認識されるようになる。
<高屈折率層及び低屈折率層の形成方法>
ポリエステルフィルム上に設けられる高屈折率層及び低屈折率層の形成方法は従来公知の方法でよく、特に制限されない。例えばドライコーティング法、ウェットコーティング法等の方法を採ることができる。生産性及び製造コストの面より、特にウェットコーティング法が好ましい。ウェットコーティング法としては公知の方法で良く、例えばロールコート法、スピンコート法、ディップコート法などが代表的な方法として挙げられる。その中でロールコート法等、連続的に層を形成できる方法が生産性の点より好ましい。
<ITO層>
低屈折率層の上に積層されるITO層は、光の波長400nmにおける屈折率が1.85〜2.35であり、好ましくは1.90〜2.30である。屈折率がこの範囲を外れると、透明導電性フィルムの透過色が着色を呈し、透過率も低下する。また、ITO層の乾燥硬化後の膜厚は5〜50nmであり、好ましくは20〜30nmである。この膜厚が5nmより薄い場合には、均一に成膜することが難しく、安定した抵抗が得られなくなる。その一方、膜厚が50nmより厚い場合には、ITO層自身による光の吸収が強くなり、黄色味低減効果が薄れる。このITO層の製膜方法は特に制限されず、例えば蒸着法、スパッタリング法、イオンプレーティング法、CVD法(化学蒸着法)又はメッキ法を採用できる。これらの中では、層の厚み制御の観点より蒸着法及びスパッタリング法が特に好ましい。尚、ITO層を形成した後、必要に応じて100〜200℃の範囲内でアニール処理を施して結晶化することができる。具体的には、高い温度で結晶化するとITO層の屈折率は小さくなる傾向を示す。従って、ITO層の屈折率の調整は、アニール処理の温度と時間を制御することで調整可能である。
<ハードコート層>
ポリエステルフィルムと高屈折率層との間には、ハードコート層を形成することができる。ハードコート層としては、例えばテトラエトキシシラン等の反応性珪素化合物と、活性エネルギー線硬化型樹脂とを混合してなるハードコート層用塗液を紫外線硬化させた硬化物が挙げられる。活性エネルギー線硬化型樹脂としては、例えば単官能(メタ)アクリレート、多官能(メタ)アクリレートなどが挙げられる。これらのうち生産性及び硬度を両立させる観点より、鉛筆硬度(評価法:JIS−K5600−5−4)がH以上となる活性エネルギー線硬化型樹脂を含む組成物の重合硬化物であることが好ましい。
It is cured after coating so that the film thickness after drying and curing is 10 to 50 nm, preferably 15 to 45 nm. If the film thickness is outside these ranges, the b * value of the transmitted color becomes large, and the yellow color of the transmitted color of the transparent conductive film is clearly recognized.
<Method of forming high refractive index layer and low refractive index layer>
The formation method of the high refractive index layer and the low refractive index layer provided on the polyester film may be a conventionally known method and is not particularly limited. For example, methods such as a dry coating method and a wet coating method can be employed. The wet coating method is particularly preferable in terms of productivity and manufacturing cost. As the wet coating method, a known method may be used. For example, a roll coating method, a spin coating method, a dip coating method, etc. may be mentioned as representative methods. Among them, a method capable of continuously forming a layer such as a roll coating method is preferred from the viewpoint of productivity.
<ITO layer>
The ITO layer laminated on the low refractive index layer has a refractive index of 1.85 to 2.35 at a light wavelength of 400 nm, preferably 1.90 to 2.30. When the refractive index is out of this range, the transparent color of the transparent conductive film is colored and the transmittance is also lowered. Further, the thickness of the ITO layer after drying and curing is 5 to 50 nm, preferably 20 to 30 nm. When this film thickness is thinner than 5 nm, it is difficult to form a uniform film, and stable resistance cannot be obtained. On the other hand, when the film thickness is thicker than 50 nm, the light absorption by the ITO layer itself becomes strong and the yellowing reduction effect is diminished. The method for forming the ITO layer is not particularly limited, and for example, a vapor deposition method, a sputtering method, an ion plating method, a CVD method (chemical vapor deposition method), or a plating method can be employed. Among these, the vapor deposition method and the sputtering method are particularly preferable from the viewpoint of controlling the layer thickness. In addition, after forming an ITO layer, it can crystallize by giving an annealing process within the range of 100-200 degreeC as needed. Specifically, when crystallization is performed at a high temperature, the refractive index of the ITO layer tends to decrease. Therefore, the refractive index of the ITO layer can be adjusted by controlling the annealing temperature and time.
<Hard coat layer>
A hard coat layer can be formed between the polyester film and the high refractive index layer. As a hard-coat layer, the hardened | cured material which hardened the coating liquid for hard-coat layers formed by mixing reactive silicon compounds, such as tetraethoxysilane, and active energy ray hardening-type resin, for example is mentioned. Examples of the active energy ray-curable resin include monofunctional (meth) acrylate and polyfunctional (meth) acrylate. Among these, from the viewpoint of achieving both productivity and hardness, it is a polymerization cured product of a composition containing an active energy ray-curable resin having a pencil hardness (evaluation method: JIS-K5600-5-4) of H or higher. preferable.

そのような活性エネルギー線硬化型樹脂を含む組成物としては特に限定されるものではないが、例えば公知の活性エネルギー線硬化型樹脂を2種類以上混合したもの、紫外線硬化性ハードコート材として市販されているもの、或いはこれら以外に本発明の効果を損なわない範囲において、その他の成分をさらに添加したものを用いることができる。その乾燥硬化後の膜厚は1.0〜10.0μmが好ましく、屈折率は1.45〜1.60であることが好ましい。膜厚が1.0μmより薄い場合には、鉛筆硬度がH未満になるため好ましくない。一方、膜厚が10μmより厚い場合には、硬化収縮によるカールが強くなるとともに、不必要に厚くなり、生産性や作業性が低下するため好ましくない。   The composition containing such an active energy ray-curable resin is not particularly limited. For example, a mixture of two or more known active energy ray-curable resins, or a commercially available ultraviolet curable hard coat material. In addition, those having other components added thereto may be used as long as the effects of the present invention are not impaired. The dry-cured film thickness is preferably 1.0 to 10.0 μm, and the refractive index is preferably 1.45 to 1.60. When the film thickness is less than 1.0 μm, the pencil hardness is less than H, which is not preferable. On the other hand, when the film thickness is larger than 10 μm, curling due to curing shrinkage becomes strong and becomes unnecessarily thick, which is not preferable because productivity and workability are lowered.

また、ハードコート層の形成方法は特に限定されず、通常行われている塗布方法、例えばロールコート法、スピンコート法、ディップコート法、バーコート法、グラビアコート法等のいかなる方法も採用される。
<機能層>
ポリエステルフィルムの反対面には、機能層を設けることができる。この機能層は、透明導電性フィルムに所定の機能を付与できるいずれの機能層も適用することができる。機能層は、例えばハードコート層、指紋なじみ層、防眩層、自己修復層などである。ハードコート層は従来公知のものでよく、特に制限されない。
Further, the method for forming the hard coat layer is not particularly limited, and any conventional method such as a roll coating method, a spin coating method, a dip coating method, a bar coating method, or a gravure coating method is adopted. .
<Functional layer>
A functional layer can be provided on the opposite surface of the polyester film. As this functional layer, any functional layer that can give a predetermined function to the transparent conductive film can be applied. The functional layer is, for example, a hard coat layer, a fingerprint familiar layer, an antiglare layer, a self-healing layer, or the like. The hard coat layer may be a conventionally known one and is not particularly limited.

指紋なじみ層は、透明導電性フィルムの表面に付着した指紋(生体由来脂質成分)に対してなじみ性(親和性)を示す層である。例えば、単官能重合体、ビニル基や(メタ)アクリロイル基を有するオリゴマー及びビニル基や(メタ)アクリロイル基を有する重合体の中から1種又は2種以上が選択して使用され、それらの有機溶媒溶液を塗布、乾燥して紫外線硬化させた層である。   The fingerprint familiar layer is a layer showing familiarity (affinity) to the fingerprint (biologically derived lipid component) attached to the surface of the transparent conductive film. For example, one type or two or more types selected from monofunctional polymers, oligomers having a vinyl group or (meth) acryloyl group, and polymers having a vinyl group or (meth) acryloyl group may be used. It is a layer that has been applied with a solvent solution, dried, and cured by UV.

防眩層は、蛍光灯などの外部光源から照射された光線を表面凹凸により散乱させ、光の反射を低減する層である。この防眩層は、熱硬化性樹脂、紫外線硬化性樹脂等の活性エネルギー線硬化型樹脂に粒子径が数μmの球形又は不定形の無機又は有機微粒子を分散した塗液を、或いは粒子を用いないで凹凸を形成することが可能なポリマーを含有した塗液を、塗布、硬化させた層である。   The antiglare layer is a layer that reduces light reflection by scattering light rays emitted from an external light source such as a fluorescent lamp by surface irregularities. This antiglare layer uses a coating liquid in which spherical or irregular inorganic or organic fine particles having a particle diameter of several μm are dispersed in an active energy ray curable resin such as a thermosetting resin or an ultraviolet curable resin, or a particle. This is a layer obtained by applying and curing a coating liquid containing a polymer capable of forming irregularities without being formed.

自己修復層は、ペン入力時の透明導電性フィルム表面での筆記感を向上させ、自己修復性、すなわち一度生じた凹み痕が経時的に消失して元の形状に戻る性質を有する層である。自己修復層を形成する樹脂としては、紫外線硬化性又は熱硬化性の不飽和アクリル系樹脂、ウレタン変性(メタ)アクリレート等の不飽和ポリウレタン系樹脂、不飽和ポリエステル系樹脂等が用いられる。   The self-healing layer is a layer that improves the writing feeling on the surface of the transparent conductive film at the time of pen input and has a property of self-healing, that is, a dent mark once generated disappears over time and returns to its original shape. . As the resin for forming the self-healing layer, an ultraviolet curable or thermosetting unsaturated acrylic resin, an unsaturated polyurethane resin such as urethane-modified (meth) acrylate, an unsaturated polyester resin, or the like is used.

機能層としてのハードコート層として、滑性を有するハードコート層(以下、滑性ハードコート層ともいう)を使用することができる。滑性ハードコート層は、膜厚が1.0〜10.0μm、平均粒子径が膜厚の10〜60%である透光性微粒子を0.5〜30質量%含む層である。透光性微粒子により、ハードコート層表面に細かな凹凸が形成され、良好な巻き取り性機能が発現される。滑性ハードコート層の膜厚は、より好ましくは3〜6μmである。この膜厚が1.0μmより薄いとハードコート性機能が損なわれる可能性があり、10.0μmより厚いと巻き取り性機能が損なわれる可能性がある。   As the hard coat layer as the functional layer, a hard coat layer having lubricity (hereinafter, also referred to as “slidable hard coat layer”) can be used. The lubricious hard coat layer is a layer containing 0.5 to 30% by mass of translucent fine particles having a film thickness of 1.0 to 10.0 μm and an average particle diameter of 10 to 60% of the film thickness. Due to the light-transmitting fine particles, fine irregularities are formed on the surface of the hard coat layer, and a good winding property is exhibited. The film thickness of the lubricious hard coat layer is more preferably 3 to 6 μm. If this film thickness is less than 1.0 μm, the hard coat function may be impaired, and if it is greater than 10.0 μm, the roll-up function may be impaired.

滑性ハードコート層は、紫外線硬化性バインダーと透光性微粒子とを含有し、必要により添加剤を含有するハードコート層用塗液に紫外線を照射して硬化させることにより形成される。紫外線硬化性バインダーの材料は特に限定されず、例えば単官能(メタ)アクリレート、多官能(メタ)アクリレート及びテトラエトキシシラン等の反応性珪素化合物などの硬化物が挙げられる。   The lubricious hard coat layer contains an ultraviolet curable binder and translucent fine particles, and is formed by irradiating an ultraviolet ray onto a hard coat layer coating liquid containing an additive as necessary to cure. The material of the ultraviolet curable binder is not particularly limited, and examples thereof include cured products such as monofunctional (meth) acrylates, polyfunctional (meth) acrylates, and reactive silicon compounds such as tetraethoxysilane.

透光性微粒子は、ハードコート層における表面の凹凸形成による巻き取り性機能を発現するためのものである。該透光性微粒子は、任意の材料を用いることができる。そのような透光性微粒子としては、例えばシリカのほか、塩化ビニル、(メタ)アクリル単量体、スチレン及びエチレンから選択される少なくとも1種の単量体を重合して得られる重合体などから形成される。透光性微粒子の平均粒子径は、ハードコート層の膜厚の好ましくは10〜60%、より好ましくは20〜50%である。この平均粒子径がハードコート層の膜厚の10%より小さい場合及び60%より大きい場合には、巻取り性機能が損なわれるおそれがある。ハードコート層の膜厚に対しての透光性微粒子の平均粒子径(a)は、以下の式(1)によって求めることができる。   The translucent fine particles are for expressing a roll-up function by forming irregularities on the surface of the hard coat layer. Any material can be used for the translucent fine particles. Examples of such translucent fine particles include silica, a polymer obtained by polymerizing at least one monomer selected from vinyl chloride, (meth) acrylic monomer, styrene, and ethylene. It is formed. The average particle diameter of the translucent fine particles is preferably 10 to 60%, more preferably 20 to 50% of the film thickness of the hard coat layer. When this average particle diameter is smaller than 10% of the film thickness of the hard coat layer and larger than 60%, the roll-up function may be impaired. The average particle diameter (a) of the translucent fine particles with respect to the thickness of the hard coat layer can be obtained by the following formula (1).

a=〔(透光性微粒子の平均粒子径)/(ハードコート層の膜厚)〕×100(%)
・・・式(1)
透光性微粒子の含有量は、ハードコート層用塗液に対して好ましくは0.5〜20質量%、より好ましくは0.5〜10質量%、特に好ましくは3〜5質量%である。ハードコート層は添加剤を含んでいてもよく、そのような添加剤としてシリコーン系添加剤が用いられる。該シリコーン系添加剤としてはポリエーテル変性ポリジメチルシロサンが挙げられ、具体的にはビックケミー・ジャパン(株)製のBYK330、BYK331、BYK346が挙げられる。滑性ハードコート層の形成方法は特に限定されず、通常行われている塗布方法、例えばロールコート法、スピンコート法、ディップコート法、バーコート法、グラビアコート法等のいかなる方法も採用される。
a = [(average particle diameter of translucent fine particles) / (film thickness of hard coat layer)] × 100 (%)
... Formula (1)
The content of the translucent fine particles is preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass, and particularly preferably 3 to 5% by mass with respect to the coating liquid for the hard coat layer. The hard coat layer may contain an additive, and a silicone-based additive is used as such an additive. Examples of the silicone-based additive include polyether-modified polydimethylsiloxane, and specific examples include BYK330, BYK331, and BYK346 manufactured by Big Chemie Japan. The method for forming the lubricious hard coat layer is not particularly limited, and any conventional method such as roll coating, spin coating, dip coating, bar coating, or gravure coating may be employed. .

前記ハードコート層や防眩層(以下、支持層という)の上には反射防止層や防眩性反射防止層を形成することができる。該反射防止層は、蛍光灯などの外部光源から照射された光線を、光の干渉により低減する層である。屈折率が1.5〜1.6の支持層上に反射防止層を一層で形成する場合には、支持層よりも屈折率が低い、例えば屈折率が1.3〜1.5の低屈折率層を一層積層して形成される。前記支持層上に反射防止層を二層で形成する場合には、支持層よりも屈折率が高い、例えば屈折率が1.6〜1.8の高屈折率層、さらにその上に高屈折率層よりも屈折率が低い低屈折率層をそれぞれ積層して形成される。   An antireflection layer or an antiglare antireflection layer can be formed on the hard coat layer or the antiglare layer (hereinafter referred to as a support layer). The antireflection layer is a layer that reduces light emitted from an external light source such as a fluorescent lamp by light interference. When an antireflection layer is formed as a single layer on a support layer having a refractive index of 1.5 to 1.6, the refractive index is lower than that of the support layer, for example, a low refractive index of 1.3 to 1.5. The rate layer is formed by laminating one layer. When the antireflection layer is formed in two layers on the support layer, the refractive index is higher than that of the support layer, for example, a high refractive index layer having a refractive index of 1.6 to 1.8, and a high refractive index thereon. Each of the low refractive index layers having a lower refractive index than the refractive index layer is laminated.

この低屈折率層は、平均粒子径が10〜100nmの無機微粒子と活性エネルギー線硬化型樹脂とを混合した塗液を、塗布、硬化させた層である。無機微粒子としては、コロイダルシリカや中空シリカ微粒子が挙げられ、活性エネルギー線硬化型樹脂としては、例えば(メタ)アクリロイル基を有する多官能モノマー、オリゴマー及び重合体が挙げられる。   This low refractive index layer is a layer obtained by applying and curing a coating liquid obtained by mixing inorganic fine particles having an average particle diameter of 10 to 100 nm and an active energy ray-curable resin. Examples of the inorganic fine particles include colloidal silica and hollow silica fine particles, and examples of the active energy ray-curable resin include polyfunctional monomers, oligomers, and polymers having a (meth) acryloyl group.

高屈折率層は、平均粒子径が10〜100nmの金属酸化物微粒子と活性エネルギー線硬化型樹脂とを混合した塗液を、塗布、硬化させた層である。金属酸化物微粒子としては、錫ドープ酸化インジウム、酸化チタン、酸化ジルコニウム等が挙げられ、活性エネルギー線硬化型樹脂としては、例えば(メタ)アクリロイル基を有する多官能モノマー、オリゴマー及び重合体が挙げられる。   The high refractive index layer is a layer obtained by applying and curing a coating liquid in which metal oxide fine particles having an average particle diameter of 10 to 100 nm and an active energy ray-curable resin are mixed. Examples of the metal oxide fine particles include tin-doped indium oxide, titanium oxide, and zirconium oxide. Examples of the active energy ray-curable resin include polyfunctional monomers, oligomers, and polymers having a (meth) acryloyl group. .

防眩性反射防止層は、防眩性と反射防止性の機能を合わせ持った層であり、上記防眩層上に反射防止層を積層することにより形成される。
これらの機能層は、各々単独で用いることができ、或いはそれらを適宜組み合わせて用いることもできる。
The antiglare antireflection layer is a layer having both antiglare and antireflection functions, and is formed by laminating an antireflection layer on the antiglare layer.
These functional layers can be used alone or in combination as appropriate.

以下に、製造例、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明するが、本発明はそれら実施例の範囲に限定されるものではない。なお、各層の屈折率は以下のように測定した。
<屈折率の測定方法>
(1)屈折率1.63のPETフィルム〔商品名「A4100」、東洋紡績(株)製〕上に、ディップコーター〔杉山元理化学機器(株)製〕により、各層用塗液をそれぞれ乾燥硬化後の膜厚で100〜500nm程度になるように層の厚さを調製して塗布した。
(2)乾燥後、紫外線照射装置〔岩崎電気(株)製〕により窒素雰囲気下で120W高圧水銀灯を用いて、400mJの紫外線を照射して硬化した。硬化後のPETフィルム裏面をサンドペーパーで荒らし、黒色塗料で塗りつぶしたものを反射分光膜厚計〔「FE-3000」、大塚電子(株)製〕により、反射スペクトルを測定した。
(3)反射スペクトルより読み取った反射率から、下記に示すn-Cauchyの波長分散式(式1)の定数を求め、光の波長400nmにおける屈折率を求めた。
Hereinafter, the embodiment will be described more specifically with reference to production examples, examples and comparative examples, but the present invention is not limited to the scope of these examples. The refractive index of each layer was measured as follows.
<Measurement method of refractive index>
(1) The coating liquid for each layer is dried and cured with a dip coater (manufactured by Sugiyama Motochemical Co., Ltd.) on a PET film (trade name “A4100”, manufactured by Toyobo Co., Ltd.) having a refractive index of 1.63. The thickness of the layer was adjusted and applied so that the later film thickness was about 100 to 500 nm.
(2) After drying, the film was cured by irradiating with 400 mJ ultraviolet rays using a 120 W high-pressure mercury lamp in a nitrogen atmosphere by an ultraviolet irradiation device (manufactured by Iwasaki Electric Co., Ltd.). The back surface of the cured PET film was roughened with sandpaper, and the reflection spectrum was measured with a reflection spectral film thickness meter [“FE-3000”, manufactured by Otsuka Electronics Co., Ltd.].
(3) From the reflectance read from the reflection spectrum, the constant of the wavelength dispersion formula (Formula 1) of n-Cauchy shown below was determined, and the refractive index at a wavelength of 400 nm was determined.

N(λ)=a/λ+b/λ+c ・・・(式1)
a、b、c:波長分散定数
<屈折率の測定方法>
(1)屈折率1.63のPETフィルム〔商品名「A4100」、東洋紡績(株)製〕を100℃で1時間予備乾燥を行った後、PETフィルム上にインジウム:錫=10:1(質量比)のITOターゲットを用いてスパッタリングを行い、実膜厚20nmの透明導電層としての錫ドープ酸化インジウム層(ITO層)を形成し、透明導電性フィルムを作製した。
(2)この透明導電性フィルム裏面をサンドペーパーで荒らし、黒色塗料で塗りつぶしたものを反射分光膜厚計〔「FE-3000」、大塚電子(株)製〕により、反射スペクトルを測定した。
(3)反射スペクトルより読み取った反射率から、上記式(1)を用いて、光の波長400nmにおける屈折率を求めた。
N (λ) = a / λ 4 + b / λ 2 + c (Formula 1)
a, b, c: chromatic dispersion constant <refractive index measurement method>
(1) A PET film having a refractive index of 1.63 (trade name “A4100”, manufactured by Toyobo Co., Ltd.) was preliminarily dried at 100 ° C. for 1 hour, and then indium: tin = 10: 1 on the PET film. Sputtering was performed using an ITO target of (mass ratio) to form a tin-doped indium oxide layer (ITO layer) as a transparent conductive layer having an actual film thickness of 20 nm, thereby producing a transparent conductive film.
(2) The back surface of the transparent conductive film was roughened with sandpaper, and the black paint was used to measure the reflection spectrum with a reflection spectral film thickness meter [“FE-3000”, manufactured by Otsuka Electronics Co., Ltd.].
(3) From the reflectance read from the reflection spectrum, the refractive index at a wavelength of 400 nm of light was obtained using the above formula (1).

なお、実施例及び比較例に記載の各層の屈折率は、前段の屈折率の測定方法から求めた屈折率である。
<全光線透過率、ヘイズ値の測定方法>
ヘイズメーター〔「NDH2000」、日本電色工業(株)製〕により全光線透過率(%)及びヘイズ値(%)を測定した。
<透過色の測定方法>
色差計〔「SQ−2000」、日本電色工業(株)製〕を用いて透過色、b*を測定した。このb*は、JIS Z 8729に規定されているL*a*b表色系における値である。
<巻き取り性の評価方法>
両面ハードコート(HC)フィルムをロール状に巻き取り、目視で観察することにより、フィルムの巻き取り性を下記に示す評価基準によって評価した。
In addition, the refractive index of each layer described in Examples and Comparative Examples is a refractive index obtained from the refractive index measurement method in the previous stage.
<Measurement method of total light transmittance and haze value>
The total light transmittance (%) and haze value (%) were measured with a haze meter [“NDH2000”, manufactured by Nippon Denshoku Industries Co., Ltd.].
<Measurement method of transmitted color>
The transmission color and b * were measured using a color difference meter [“SQ-2000”, manufactured by Nippon Denshoku Industries Co., Ltd.]. This b * is a value in the L * a * b color system defined in JIS Z 8729.
<Evaluation method of winding property>
The double-sided hard coat (HC) film was wound into a roll and visually observed to evaluate the film winding property according to the following evaluation criteria.

◎:巻きじわ及びへこみなどの凹凸状変形が全くない。
○:巻きじわ又はへこみなどの凹凸状変形がほとんどない。
×:巻きじわ又はへこみなどの凹凸状変形が大きい。
〔製造例1、ハードコート層用塗液(HC−1)の調製〕
ジペンタエリスリトールヘキサアクリレート80質量部、トリアクリル酸テトラメチロールメタン20質量部、1,6−ビス(3−アクリロイルオキシー2−ヒドロキシプロピルオキシ)ヘキサン20質量部、光重合開始剤[商品名:IRGACURE184、チバ・スペシャリティ・ケミカルズ(株)製]4質量部及びイソブチルアルコール100質量部を混合してハードコート層用塗液(HC−1)を調製した。
〔製造例2、高屈折率層用塗液(H−1)の調製〕
平均粒子径が0.02μmの酸化ジルコニウム微粒子を79質量部、1分子中にアクリロイル基を6個有するウレタンアクリレート〔分子量1400、日本合成化学工業(株)製、紫光UV7600B〕21質量部及び光重合開始剤〔商品名「IRGACURE 184」、チバ・スペシャリティ・ケミカルズ(株)製〕5質量部を混合し、メチルエチルケトンで上記固形分が10質量%になるように希釈し、高屈折率層用塗液(H−1)を調製した。
〔製造例3、高屈折率層用塗液(H−2)の調製〕
平均粒子径が0.02μmの酸化ジルコニウム微粒子を72質量部、1分子中にアクリロイル基を6個有するウレタンアクリレート〔分子量1400、日本合成化学工業(株)製、紫光UV7600B〕28質量部及び光重合開始剤〔商品名「IRGACURE 184」、チバ・スペシャリティ・ケミカルズ(株)製〕5質量部を混合し、メチルエチルケトンで上記固形分が10質量%になるように希釈し、高屈折率層用塗液(H−2)を調製した。
〔製造例4、高屈折率層用塗液(H−3)の調製〕
平均粒子径が0.02μmの酸化ジルコニウム微粒子を86質量部、1分子中にアクリロイル基を6個有するウレタンアクリレート〔分子量1400、日本合成化学工業(株)製、紫光UV7600B〕14質量部及び光重合開始剤〔商品名「IRGACURE 184」、チバ・スペシャリティ・ケミカルズ(株)製〕5質量部を混合した後、メチルエチルケトンで上記固形分が10質量%になるように希釈し、高屈折率層用塗液(H−3)を調製した。
〔製造例5、高屈折率層用塗液(H−4)の調製〕
平均粒子径が0.02μmの酸化ジルコニウム微粒子を67質量部、1分子中にアクリロイル基を6個有するウレタンアクリレート〔分子量1400、日本合成化学工業(株)製、紫光UV7600B〕33質量部及び光重合開始剤〔商品名「IRGACURE 184」、チバ・スペシャリティ・ケミカルズ(株)製〕5質量部を混合した後、メチルエチルケトンで上記固形分が10質量%になるように希釈し、高屈折率層用塗液(H−4)を調製した。
〔製造例6、高屈折率層用塗液(H−5)の調製〕
平均粒子径が0.02μmの酸化ジルコニウム微粒子を58質量部、1分子中にアクリロイル基を6個有するウレタンアクリレート〔分子量1400、日本合成化学工業(株)製、紫光UV7600B〕42質量部及び光重合開始剤〔商品名「IRGACURE 184」、チバ・スペシャリティ・ケミカルズ(株)製〕5質量部を混合し、メチルエチルケトンで上記固形分が10質量%になるように希釈し、高屈折率層用塗液(H−5)を調製した。
〔製造例7、高屈折率層用塗液(H−6)の調製〕
平均粒子径が0.02μmの酸化ジルコニウム微粒子を94質量部、1分子中にアクリロイル基を6個有するウレタンアクリレート〔分子量1400、日本合成化学工業(株)製、紫光UV7600B〕6質量部及び光重合開始剤〔商品名「IRGACURE 184」、チバ・スペシャリティ・ケミカルズ(株)製〕5質量部を混合した後、メチルエチルケトンで上記固形分が10質量%になるように希釈し、高屈折率層用塗液(H−6)を調製した。
〔製造例9、低屈折率層用塗液(L−1)の調製〕
ジペンタエリスリトールヘキサアクリレート10質量部、シリカ微粒子分散液〔商品名「XBA−ST」、日産化学(株)製〕90質量部、イソプロピルアルコール900質量部、光重合開始剤〔商品名「IRGACURE 907」、チバ・スペシャリティ・ケミカルズ(株)製〕5質量部を混合し、低屈折率層用塗液(L−1)を調製した。
〔製造例10、変性中空シリカ微粒子(ゾル)の調製〕
中空シリカゾル〔触媒化成工業(株)製、商品名:ELECOM NY-1001S1V、イソプロピルアルコールによる中空シリカゾルの25質量%分散液、平均粒子径60nm〕2000質量部、γ―アクリロイルオキシプロピルトリメトキシシラン〔信越化学工業(株)製、KBM5103〕70質量部及び蒸留水80質量部を混合して変性中空シリカ微粒子(ゾル)(平均粒子径:60nm)を調製した。
〔製造例11、低屈折率層用塗液(L−2)の調製〕
パーフルオロ−(1,1,9,9−テトラヒドロ−5,8−ビスフルオロメチル−4,ジオキサ−1−ノネン)−9−オールを104質量部と、ビス(2,2,3,3,4,4,5,5,6,6,7,7,−ドデカフルオロヘプタノイル)パーオキサイドの8質量%パーフルオロヘキサン溶液11質量部と重合反応によりヒドロキシル基含有フッ素アリエーテル重合体(数平均分子量72000、質量平均分子量118,000)を得た。
(Double-circle): There is no uneven | corrugated deformation, such as a winding wrinkle and a dent.
○: There is almost no uneven deformation such as winding or dent.
X: Uneven shape deformation such as winding or dent is large.
[Production Example 1, Preparation of Hard Coat Layer Coating Liquid (HC-1)]
80 parts by mass of dipentaerythritol hexaacrylate, 20 parts by mass of tetramethylolmethane triacrylate, 20 parts by mass of 1,6-bis (3-acryloyloxy-2-hydroxypropyloxy) hexane, a photopolymerization initiator [trade name: IRGACURE184, Ciba Specialty Chemicals Co., Ltd.] 4 parts by mass and isobutyl alcohol 100 parts by mass were mixed to prepare a hard coat layer coating solution (HC-1).
[Production Example 2, Preparation of Coating Solution for High Refractive Index Layer (H-1)]
79 parts by mass of zirconium oxide fine particles having an average particle size of 0.02 μm, 21 parts by mass of urethane acrylate having a molecular weight of 1400 and six acryloyl groups in one molecule (Molecular weight 1,400, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., purple light UV7600B) and photopolymerization 5 parts by weight of an initiator (trade name “IRGACURE 184”, manufactured by Ciba Specialty Chemicals Co., Ltd.) is mixed, diluted with methyl ethyl ketone so that the solid content becomes 10% by weight, and a coating solution for a high refractive index layer (H-1) was prepared.
[Production Example 3, Preparation of High Refractive Index Layer Coating Liquid (H-2)]
72 parts by mass of zirconium oxide fine particles having an average particle diameter of 0.02 μm, urethane acrylate having 6 acryloyl groups in one molecule [molecular weight 1400, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., purple light UV7600B] and photopolymerization 5 parts by weight of an initiator (trade name “IRGACURE 184”, manufactured by Ciba Specialty Chemicals Co., Ltd.) is mixed, diluted with methyl ethyl ketone so that the solid content becomes 10% by weight, and a coating solution for a high refractive index layer (H-2) was prepared.
[Production Example 4, Preparation of Coating Solution for High Refractive Index Layer (H-3)]
86 parts by mass of zirconium oxide fine particles having an average particle size of 0.02 μm, 14 parts by mass of urethane acrylate (molecular weight 1400, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., purple light UV7600B) having 6 acryloyl groups in one molecule and photopolymerization After mixing 5 parts by mass of an initiator (trade name “IRGACURE 184”, manufactured by Ciba Specialty Chemicals Co., Ltd.), the mixture is diluted with methyl ethyl ketone so that the solid content becomes 10% by mass, and then coated for a high refractive index layer. A liquid (H-3) was prepared.
[Production Example 5, Preparation of coating liquid for high refractive index layer (H-4)]
67 parts by mass of zirconium oxide fine particles having an average particle size of 0.02 μm, 33 parts by mass of urethane acrylate having a molecular weight of 1400 and six acryloyl groups in one molecule (Molecular weight 1,400, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., purple light UV7600B) and photopolymerization After mixing 5 parts by mass of an initiator (trade name “IRGACURE 184”, manufactured by Ciba Specialty Chemicals Co., Ltd.), the mixture is diluted with methyl ethyl ketone so that the solid content becomes 10% by mass, and then coated for a high refractive index layer. A liquid (H-4) was prepared.
[Production Example 6, Preparation of High Refractive Index Layer Coating Liquid (H-5)]
58 parts by mass of zirconium oxide fine particles having an average particle size of 0.02 μm and 42 parts by mass of urethane acrylate having a molecular weight of 1400 and 6 acryloyl groups in one molecule [Molecular weight 1,400, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., purple light UV7600B] and photopolymerization 5 parts by weight of an initiator (trade name “IRGACURE 184”, manufactured by Ciba Specialty Chemicals Co., Ltd.) is mixed, diluted with methyl ethyl ketone so that the solid content becomes 10% by weight, and a coating solution for a high refractive index layer (H-5) was prepared.
[Production Example 7, Preparation of High Refractive Index Layer Coating Liquid (H-6)]
94 parts by mass of zirconium oxide fine particles having an average particle size of 0.02 μm, 6 parts by mass of urethane acrylate having 6 acryloyl groups in one molecule [molecular weight 1400, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., purple light UV7600B] and photopolymerization After mixing 5 parts by mass of an initiator (trade name “IRGACURE 184”, manufactured by Ciba Specialty Chemicals Co., Ltd.), the mixture is diluted with methyl ethyl ketone so that the solid content becomes 10% by mass, and then coated for a high refractive index layer. A liquid (H-6) was prepared.
[Production Example 9, Preparation of Coating Solution for Low Refractive Index Layer (L-1)]
Dipentaerythritol hexaacrylate 10 parts by mass, silica fine particle dispersion [trade name “XBA-ST”, manufactured by Nissan Chemical Co., Ltd.] 90 parts by weight, isopropyl alcohol 900 parts by weight, photopolymerization initiator [trade name “IRGACURE 907” Ciba Specialty Chemicals Co., Ltd.] 5 parts by mass were mixed to prepare a coating solution for low refractive index layer (L-1).
[Production Example 10, Preparation of modified hollow silica fine particles (sol)]
Hollow silica sol [manufactured by Catalyst Kasei Kogyo Co., Ltd., trade name: ELECOM NY-1001S1V, 25 mass% dispersion of hollow silica sol with isopropyl alcohol, average particle size 60 nm] 2000 parts by mass, γ-acryloyloxypropyltrimethoxysilane [Shin-Etsu Chemical Industry Co., Ltd. KBM5103] 70 parts by mass and distilled water 80 parts by mass were mixed to prepare modified hollow silica fine particles (sol) (average particle size: 60 nm).
[Production Example 11, Preparation of Coating Solution for Low Refractive Index Layer (L-2)]
104 parts by mass of perfluoro- (1,1,9,9-tetrahydro-5,8-bisfluoromethyl-4, dioxa-1-nonene) -9-ol and bis (2,2,3,3, 4,4,5,5,6,6,7,7-dodecafluoroheptanoyl) peroxide 11% by mass of perfluorohexane solution and hydroxyl group-containing fluorine aliether polymer (number average) Molecular weight 72,000, mass average molecular weight 118,000) were obtained.

次に、ヒドロキシル基含有フッ素アリエーテル重合体、メチルエチルケトン43質量部、ピリジン1質量部及びα−フルオロアクリル酸フルオライド1質量部より重合性二重結合を有する含フッ素反応性重合体溶液(固形分13質量%、α−フルオロアクリロイル基への水酸基の導入率40モル%)を調製した。この含フッ素反応重合体溶液40質量部と、前記変性中空シリカ微粒子60質量部と、光重合開始剤〔チバスペシャリティケミカルズ(株)製、イルガキュア907〕2質量部と、イソプロピルアルコール2000質量部とを混合して低屈折率層用塗液(L−2)を調製した。
〔製造例12、低屈折率層用塗液(L−3)の調製〕
前記変性中空シリカ微粒子60質量部と、ジペンタエリスリトールヘキサアクリレート40質量部と、光重合開始剤〔チバスペシャリティケミカルズ(株)製、イルガキュア907〕2質量部と、イソプロピルアルコール2000質量部とを混合して低屈折率層用塗液(L−3)を調製した。
〔製造例13、低屈折率層用塗液(L−4)の調製〕
シリカ微粒子分散液〔商品名「XBA−ST」、日産化学(株)製〕5質量部と、アクリロイル基をもつ多官能バインダー〔商品名「HIC−GL」、共栄社化学(株)製〕95質量部と、光重合開始剤〔チバスペシャリティケミカルズ(株)製、イルガキュア907〕2質量部と、イソプロピルアルコール2000質量部とを混合して低屈折率層用塗液(L−4)を調製した。
〔製造例14、ハードコート層用塗液(HC−A1)の調製〕
ジペンタエリスリトールヘキサアクリレート95質量部、平均粒子径0.5μmのアクリル樹脂微粒子(屈折率1.495)5質量部、メチルエチルケトン100質量部、光重合開始剤〔商品名:「IRGACURE184」、チバジャパン(株)製〕4質量部を混合してハードコート層用塗液(HC−A1)を調製した。
〔製造例15、ハードコート層用塗液(HC−A2)の調製〕
ジペンタエリスリトールヘキサアクリレート97質量部、平均粒子径1.5μmのアクリル樹脂微粒子(屈折率1.495)3質量部、メチルエチルケトン100質量部、光重合開始剤〔商品名:「IRGACURE184」、チバジャパン(株)製〕4質量部を混合してハードコート層用塗液(HC−A2)を調製した。
(実施例1−1)
製造例1で調製したハードコート層用塗液(HC−1)をロールコーターにて、厚さ125μmのPETフィルム上に、乾燥硬化後の膜厚が4μmになるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、ハードコート処理PETフィルムを作製した。
Next, a fluorine-containing reactive polymer solution (solid content 13) having a polymerizable double bond from hydroxyl group-containing fluorine aliether polymer, 43 parts by mass of methyl ethyl ketone, 1 part by mass of pyridine and 1 part by mass of α-fluoroacrylic acid fluoride. Mass%, introduction ratio of hydroxyl group to α-fluoroacryloyl group 40 mol%). 40 parts by mass of this fluorine-containing reaction polymer solution, 60 parts by mass of the modified hollow silica fine particles, 2 parts by mass of a photopolymerization initiator [manufactured by Ciba Specialty Chemicals Co., Ltd., Irgacure 907], and 2000 parts by mass of isopropyl alcohol The mixture was mixed to prepare a coating solution for low refractive index layer (L-2).
[Production Example 12, Preparation of Coating Solution for Low Refractive Index Layer (L-3)]
60 parts by mass of the modified hollow silica fine particles, 40 parts by mass of dipentaerythritol hexaacrylate, 2 parts by mass of a photopolymerization initiator [manufactured by Ciba Specialty Chemicals Co., Ltd., Irgacure 907] and 2000 parts by mass of isopropyl alcohol are mixed. Thus, a coating solution for low refractive index layer (L-3) was prepared.
[Production Example 13, Preparation of Coating Solution for Low Refractive Index Layer (L-4)]
Silica fine particle dispersion [trade name “XBA-ST”, manufactured by Nissan Chemical Co., Ltd.] 5 parts by mass and polyfunctional binder having acryloyl group [trade name “HIC-GL”, manufactured by Kyoeisha Chemical Co., Ltd.] 95 mass Part, a photopolymerization initiator [manufactured by Ciba Specialty Chemicals Co., Ltd., Irgacure 907] and 2000 parts by mass of isopropyl alcohol were mixed to prepare a coating solution for low refractive index layer (L-4).
[Production Example 14, Preparation of Hard Coat Layer Coating Liquid (HC-A1)]
95 parts by mass of dipentaerythritol hexaacrylate, 5 parts by mass of acrylic resin fine particles (refractive index 1.495) having an average particle size of 0.5 μm, 100 parts by mass of methyl ethyl ketone, photopolymerization initiator [trade name: “IRGACURE184”, Ciba Japan ( Co., Ltd.] 4 parts by mass were mixed to prepare a hard coat layer coating solution (HC-A1).
[Production Example 15, Preparation of Hard Coat Layer Coating Liquid (HC-A2)]
97 parts by mass of dipentaerythritol hexaacrylate, 3 parts by mass of acrylic resin fine particles (refractive index: 1.495) having an average particle size of 1.5 μm, 100 parts by mass of methyl ethyl ketone, a photopolymerization initiator [trade name: “IRGACURE184”, Ciba Japan ( Co., Ltd.] 4 parts by mass were mixed to prepare a hard coat layer coating solution (HC-A2).
(Example 1-1)
The hard coat layer coating solution (HC-1) prepared in Production Example 1 was applied on a 125 μm thick PET film with a roll coater so that the film thickness after drying and curing was 4 μm, and a 120 W high pressure mercury lamp. A hard coat-treated PET film was produced by curing by irradiating with 400 mJ of ultraviolet rays.

該ハードコート処理PETフィルム上に、高屈折率層用塗液H−1を用い、ロールコーターにて乾燥後の膜厚が60nmになるように塗布後、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、高屈折率層を形成した。高屈折率層の上へ、低屈折率層用塗液L―1を用い、ロールコーターにて乾燥後の膜厚が20nmになるように塗布後、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、低屈折率層を形成し、色調補正フィルムを作製した。   The hard coat-treated PET film is coated with the coating solution H-1 for a high refractive index layer so that the film thickness after drying with a roll coater is 60 nm, and then irradiated with 400 mJ ultraviolet rays with a 120 W high-pressure mercury lamp. Then, a high refractive index layer was formed by curing. On top of the high refractive index layer, the low refractive index layer coating liquid L-1 is used, and after coating with a roll coater such that the film thickness after drying is 20 nm, ultraviolet light of 400 mJ is irradiated with a 120 W high pressure mercury lamp. By curing, a low refractive index layer was formed and a color tone correction film was produced.

該色調補正フィルムの裏面に製造例1で調製したハードコート層用塗液(HC−1)をロールコーターにて、乾燥硬化後の膜厚が4μmになるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射し、硬化させることにより、両面にハードコート層が積層されている色調補正フィルムを作製した。   The hard coat layer coating liquid (HC-1) prepared in Production Example 1 was applied to the back surface of the color tone correction film with a roll coater so that the film thickness after drying and curing was 4 μm, and a 120 W high-pressure mercury lamp. A color tone correction film having a hard coat layer laminated on both sides was produced by irradiating and curing 400 mJ ultraviolet rays.

この両面にハードコート層が積層されている色調補正フィルムを100℃で1時間予備乾燥を行った後、インジウム:錫=10:1(質量比)のITOターゲットを用いてスパッタリングを行い、低屈折率層上に、実膜厚30nmの透明導電層としてのITO層を形成し、150℃で30分間アニール処理を施し、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
(実施例1−2)
高屈折率層用塗液H−2を使用する以外は、実施例1−1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
(実施例1−3)
高屈折率層の乾燥硬化後の膜厚を65nm、低屈折率層の乾燥硬化後の膜厚を25nm、ITO層の膜厚を25nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
(実施例1−4)
低屈折率層の乾燥硬化後の膜厚を15nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
(実施例1−5)
低屈折率層の乾燥硬化後の膜厚を45nm、ITO層の膜厚を25nmにする以外は、実施例1−1と同様にして、透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
(実施例1−6)
高屈折率層の乾燥硬化後の膜厚を65nm、低屈折率層用塗液L−2を使用し、低屈折率層の乾燥硬化後の膜厚を30nm、ITO層の膜厚を25nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表1に示した。
(実施例1−7)
高屈折率層の乾燥硬化後の膜厚を65nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を30nm、ITO層の膜厚を25nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(実施例1−8)
高屈折率層の乾燥硬化後の膜厚を45nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を30nm、ITO層の膜厚を25nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(実施例1−9)
高屈折率層の乾燥硬化後の膜厚を90nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を25nm、ITO層の膜厚を20nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(実施例1−10)
高屈折率層用塗液H−3を使用し、高屈折率層の乾燥硬化後の膜厚を65nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を30nm、ITO層の膜厚を25nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(実施例1−11)
高屈折率層用塗液H−4を使用し、高屈折率層の乾燥硬化後の膜厚を65nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を30nm、ITO層の膜厚を20nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(実施例1−12)
高屈折率層の乾燥硬化後の膜厚を65nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を30nm、ITO層のスパッタリング後のアニール処理を150℃、60分間行う以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(実施例1−13)
高屈折率層の乾燥硬化後の膜厚を65nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を25nm、ITO層の膜厚を25nm、ITO層のスパッタリング後のアニール処理を100℃、60分間行う以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(実施例1−14)
高屈折率用塗液H−4を使用し、高屈折率層の乾燥硬化後の膜厚を55nm、低屈折率層の乾燥硬化後の膜厚を30nm、ITO層の膜厚を20nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表2に示した。
(比較例1−1)
高屈折率層用塗液H−5を使用する以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表3に示した。
(比較例1−2)
高屈折率層の乾燥硬化後の膜厚を65nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を60nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表3に示した。
(比較例1−3)
高屈折率層の乾燥硬化後の膜厚を65nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を5nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表3に示した。
(比較例1−4)
高屈折率層用塗液H−6を使用し、高屈折率層の乾燥硬化後の膜厚を65nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を30nm、ITO層の膜厚を20nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表3に示した。
(比較例1−5)
高屈折率層の乾燥硬化後の膜厚を100nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を30nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表3に示した。
(比較例1―6)
高屈折率層の乾燥硬化後の膜厚を20nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を30nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表3に示した。
(比較例1−7)
高屈折率層の乾燥硬化後の膜厚を20nm、低屈折率層用塗液L−3を使用し、低屈折率層の乾燥硬化後の膜厚を25nm、ITOの膜厚を70nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表3に示した。
(比較例1−8)
高屈折率層の乾燥硬化後の膜厚を70nm、低屈折率層用塗液L−4を使用し、低屈折率層の乾燥硬化後の膜厚を30nmにする以外は、実施例1−1と同様にして透明導電性フィルムを作製した。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表3に示した。
This color tone correction film having hard coat layers laminated on both sides is preliminarily dried at 100 ° C. for 1 hour, and then sputtered using an ITO target of indium: tin = 10: 1 (mass ratio) to reduce low refraction. On the rate layer, an ITO layer as a transparent conductive layer having an actual film thickness of 30 nm was formed and annealed at 150 ° C. for 30 minutes to produce a transparent conductive film. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.
(Example 1-2)
A transparent conductive film was produced in the same manner as in Example 1-1 except that the high refractive index layer coating liquid H-2 was used. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.
(Example 1-3)
Transparent in the same manner as in Example 1-1 except that the film thickness after drying and curing of the high refractive index layer is 65 nm, the film thickness after drying and curing of the low refractive index layer is 25 nm, and the film thickness of the ITO layer is 25 nm. A conductive film was prepared. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.
(Example 1-4)
A transparent conductive film was produced in the same manner as in Example 1-1 except that the film thickness after drying and curing of the low refractive index layer was changed to 15 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.
(Example 1-5)
A transparent conductive film was produced in the same manner as in Example 1-1 except that the film thickness after drying and curing of the low refractive index layer was 45 nm and the film thickness of the ITO layer was 25 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.
(Example 1-6)
The film thickness after drying and curing of the high refractive index layer is 65 nm, the coating liquid L-2 for low refractive index layer is used, the film thickness after drying and curing of the low refractive index layer is 30 nm, and the film thickness of the ITO layer is 25 nm. A transparent conductive film was produced in the same manner as in Example 1-1 except that. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 1.
(Example 1-7)
The film thickness after drying and curing of the high refractive index layer is 65 nm, the coating liquid L-3 for low refractive index layer is used, the film thickness after drying and curing of the low refractive index layer is 30 nm, and the film thickness of the ITO layer is 25 nm. A transparent conductive film was produced in the same manner as in Example 1-1 except that. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.
(Example 1-8)
The film thickness after drying and curing of the high refractive index layer is 45 nm, the coating liquid L-3 for low refractive index layer is used, the film thickness after drying and curing of the low refractive index layer is 30 nm, and the film thickness of the ITO layer is 25 nm. A transparent conductive film was produced in the same manner as in Example 1-1 except that. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.
(Example 1-9)
The film thickness after drying and curing of the high refractive index layer is 90 nm, the coating liquid L-3 for low refractive index layer is used, the film thickness after drying and curing of the low refractive index layer is 25 nm, and the film thickness of the ITO layer is 20 nm. A transparent conductive film was produced in the same manner as in Example 1-1 except that. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.
(Example 1-10)
After the high refractive index layer coating liquid H-3 is used, the film thickness after drying and curing of the high refractive index layer is 65 nm, and the low refractive index layer coating liquid L-3 is used and after the low refractive index layer is dried and cured. A transparent conductive film was produced in the same manner as in Example 1-1 except that the film thickness was 30 nm, and the film thickness of the ITO layer was 25 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.
(Example 1-11)
After the high refractive index layer coating liquid H-4 is used, the film thickness after drying and curing of the high refractive index layer is 65 nm, and the low refractive index layer coating liquid L-3 is used and after the low refractive index layer is dried and cured. A transparent conductive film was produced in the same manner as in Example 1-1 except that the thickness of the ITO layer was 30 nm and the thickness of the ITO layer was 20 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.
(Example 1-12)
The film thickness after drying and curing of the high refractive index layer is 65 nm, the coating liquid L-3 for low refractive index layer is used, the film thickness after drying and curing of the low refractive index layer is 30 nm, and the annealing treatment after sputtering of the ITO layer. A transparent conductive film was produced in the same manner as in Example 1-1 except that was carried out at 150 ° C. for 60 minutes. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.
(Example 1-13)
The film thickness after drying and curing of the high refractive index layer is 65 nm, the coating liquid L-3 for low refractive index layer is used, the film thickness after drying and curing of the low refractive index layer is 25 nm, the film thickness of the ITO layer is 25 nm, A transparent conductive film was produced in the same manner as in Example 1-1 except that the annealing treatment after sputtering of the ITO layer was performed at 100 ° C. for 60 minutes. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.
(Example 1-14)
Using the high refractive index coating liquid H-4, the film thickness after drying and curing of the high refractive index layer is 55 nm, the film thickness after drying and curing of the low refractive index layer is 30 nm, and the film thickness of the ITO layer is 20 nm. Except for the above, a transparent conductive film was produced in the same manner as in Example 1-1. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 2.
(Comparative Example 1-1)
A transparent conductive film was produced in the same manner as in Example 1-1 except that the coating liquid H-5 for high refractive index layer was used. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 3.
(Comparative Example 1-2)
Example 1 except that the film thickness after drying and curing of the high refractive index layer is 65 nm, the coating liquid L-3 for low refractive index layer is used, and the film thickness after drying and curing of the low refractive index layer is 60 nm. In the same manner as in Example 1, a transparent conductive film was produced. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 3.
(Comparative Example 1-3)
Example 1 except that the film thickness after drying and curing of the high refractive index layer is 65 nm, the coating liquid L-3 for low refractive index layer is used, and the film thickness after drying and curing of the low refractive index layer is 5 nm. In the same manner as in Example 1, a transparent conductive film was produced. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 3.
(Comparative Example 1-4)
After the high refractive index layer coating liquid H-6 is used, the film thickness after drying and curing of the high refractive index layer is 65 nm, and the low refractive index layer coating liquid L-3 is used and after the low refractive index layer is dried and cured. A transparent conductive film was produced in the same manner as in Example 1-1 except that the thickness of the ITO layer was 30 nm and the thickness of the ITO layer was 20 nm. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 3.
(Comparative Example 1-5)
Example 1 except that the film thickness after drying and curing of the high refractive index layer is 100 nm, the coating liquid L-3 for low refractive index layer is used, and the film thickness after drying and curing of the low refractive index layer is 30 nm. In the same manner as in Example 1, a transparent conductive film was produced. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 3.
(Comparative Example 1-6)
Example 1 except that the film thickness after drying and curing of the high refractive index layer is 20 nm, the coating liquid L-3 for low refractive index layer is used, and the film thickness after drying and curing of the low refractive index layer is 30 nm. In the same manner as in Example 1, a transparent conductive film was produced. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 3.
(Comparative Example 1-7)
The film thickness after drying and curing of the high refractive index layer is 20 nm, the coating liquid L-3 for low refractive index layer is used, the film thickness after drying and curing of the low refractive index layer is 25 nm, and the film thickness of ITO is 70 nm. Except for the above, a transparent conductive film was produced in the same manner as in Example 1-1. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 3.
(Comparative Example 1-8)
Example 1 except that the film thickness after drying and curing of the high refractive index layer is 70 nm, the coating liquid L-4 for low refractive index layer is used, and the film thickness after drying and curing of the low refractive index layer is 30 nm. In the same manner as in Example 1, a transparent conductive film was produced. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 3.

Figure 2011098563
Figure 2011098563

Figure 2011098563
Figure 2011098563

Figure 2011098563
表1及び表2に示した結果より、実施例1−1〜1−14では高屈折率層が酸化ジルコニウム微粒子とウレタンアクリレートで形成されると共に、高屈折率層及び低屈折率層の屈折率と膜厚、さらにITO層の屈折率と膜厚が本発明で規定される範囲に設定されている。そのため、透過光の着色を十分に抑えることができると同時に、全光線透過率を高く、かつヘイズ値を抑制することができた。
Figure 2011098563
From the results shown in Table 1 and Table 2, in Examples 1-1 to 1-14, the high refractive index layer is formed of zirconium oxide fine particles and urethane acrylate, and the refractive indexes of the high refractive index layer and the low refractive index layer. Further, the refractive index and the film thickness of the ITO layer are set within the range defined by the present invention. Therefore, coloring of transmitted light can be sufficiently suppressed, and at the same time, the total light transmittance can be increased and the haze value can be suppressed.

一方、表3に示したように、比較例1−1では、高屈折率層の屈折率が本発明で規定されている範囲より小さいため、透過色b*の値が大きくなり、透過光が着色を呈し、さらに全光線透過率が低下する結果を招いた。比較例1−2では、低屈折率層の膜厚が本発明で規定されている範囲より大きいため、透過色b*の値が過大となり、透過色が着色を呈する結果となった。比較例1−3では、低屈折率層の膜厚が本発明で規定されている範囲より小さいため、透過色b*の絶対値が大きくなり、透過光が着色を呈し、さらに全光線透過率が低下する結果を招いた。   On the other hand, as shown in Table 3, in Comparative Example 1-1, since the refractive index of the high refractive index layer is smaller than the range defined in the present invention, the value of the transmitted color b * is increased, and the transmitted light is reduced. Coloring was caused, and the total light transmittance was lowered. In Comparative Example 1-2, since the film thickness of the low refractive index layer was larger than the range defined in the present invention, the value of the transmitted color b * was excessive, and the transmitted color was colored. In Comparative Example 1-3, since the film thickness of the low refractive index layer is smaller than the range defined in the present invention, the absolute value of the transmitted color b * is increased, the transmitted light is colored, and the total light transmittance is further increased. Resulted in a decline.

比較例1−4では、高屈折率層の屈折率が本発明で規定されている範囲より大きいため、透過色b*の絶対値が大きくなり、透過光が着色を呈する結果を示した。比較例1−5では、高屈折率層の膜厚が本発明で規定されている範囲より大きいため、透過色b*の値が大きくなり、透過色が着色を呈する結果となった。比較例1−6では、高屈折率層の膜厚が本発明で規定されている範囲より小さいため、透過色b*の値が大きくなり、透過光が着色を呈し、さらに全光線透過率が低下する結果を示した。比較例1−7では、ITO層の膜厚が本発明で規定されている範囲外であるため、透過色b*の値が過大となり、透過光が着色を呈し、また、全光線透過率が低下する結果を招いた。比較例1−8では、低屈折率層の屈折率が本発明で規定されている範囲より大きいことから、透過色b*の値が過大となり、透過光が着色を呈する結果となった。
(実施例2−1)
製造例1で調製したハードコート層用塗液(HC−1)をロールコーターにて、厚さ125μmのPETフィルム上に、乾燥硬化後の膜厚が2μmになるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、ハードコート処理PETフィルムを作製した。
In Comparative Example 1-4, since the refractive index of the high refractive index layer was larger than the range specified in the present invention, the absolute value of the transmitted color b * was increased, and the transmitted light was colored. In Comparative Example 1-5, since the film thickness of the high refractive index layer was larger than the range specified in the present invention, the value of the transmitted color b * was increased, and the transmitted color was colored. In Comparative Example 1-6, since the film thickness of the high refractive index layer is smaller than the range defined in the present invention, the value of the transmitted color b * is increased, the transmitted light is colored, and the total light transmittance is further increased. Decreased results were shown. In Comparative Example 1-7, since the thickness of the ITO layer is outside the range defined in the present invention, the value of the transmitted color b * is excessive, the transmitted light is colored, and the total light transmittance is Incurred results. In Comparative Example 1-8, since the refractive index of the low refractive index layer was larger than the range specified in the present invention, the value of the transmitted color b * was excessive, and the transmitted light was colored.
(Example 2-1)
The hard coat layer coating solution (HC-1) prepared in Production Example 1 was applied onto a 125 μm thick PET film with a roll coater so that the film thickness after drying and curing was 2 μm, and a 120 W high pressure mercury lamp. A hard coat-treated PET film was produced by curing by irradiating with 400 mJ of ultraviolet rays.

このハードコート処理PETフィルム裏面に製造例13で調製したハードコート層用塗液(HC−A1)をロールコーターにて、乾燥硬化後の膜厚が2μmになるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射し、硬化させることにより、両面ハードコートフィルムを作製した。得られた両面ハードコートフィルムの巻き取り性を評価したところ◎であった。上記両面ハードコートフィルムのハードコート層上に、実施例1−1と同様に、高屈折率層、手屈折率層及びITO層を形成し、透明導電性フィルムを得た。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表4に示した。
(実施例2−2)
製造例1で調製したハードコート層用塗液(HC−1)をロールコーターにて、厚さ125μmのPETフィルム上に、乾燥硬化後の膜厚が4μmになるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、ハードコート処理PETフィルムを作製した。このハードコート処理PETフィルム裏面に製造例13で調製したハードコート層用塗液(HC−A2)をロールコーターにて、乾燥硬化後の膜厚が4μmになるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射し、硬化させることにより、両面ハードコートフィルムを作製した。
The hard coat-treated PET film was coated on the back side with a hard coat layer coating solution (HC-A1) prepared in Production Example 13 with a roll coater so that the film thickness after drying and curing was 2 μm. A double-sided hard coat film was prepared by irradiating and curing 400 mJ ultraviolet rays. It was (double-circle) when the winding property of the obtained double-sided hard coat film was evaluated. A high refractive index layer, a hand refractive index layer, and an ITO layer were formed on the hard coat layer of the double-sided hard coat film in the same manner as in Example 1-1 to obtain a transparent conductive film. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 4.
(Example 2-2)
The hard coat layer coating solution (HC-1) prepared in Production Example 1 was applied on a 125 μm thick PET film with a roll coater so that the film thickness after drying and curing was 4 μm, and a 120 W high pressure mercury lamp. A hard coat-treated PET film was produced by curing by irradiating with 400 mJ of ultraviolet rays. The hard coat-treated PET film was coated with the hard coat layer coating solution (HC-A2) prepared in Production Example 13 on a back surface of the hard coat treatment PET film so that the film thickness after drying and curing was 4 μm. A double-sided hard coat film was prepared by irradiating and curing 400 mJ ultraviolet rays.

得られた両面ハードコートフィルムの巻き取り性を評価したところ○であった。この両面ハードコートフィルムの片面上に、実施例1−1と同様にして、高屈折率層、低屈折率層及びITO層を形成し、透明導電性フィルムを得た。得られた透明導電性フィルムについて、透過色の色調(b*)、全光線透過率(%)及びヘイズ値(%)を前記方法で測定し、それらの結果を表4に示した。
(比較例2−1)
製造例1で調製したハードコート層用塗液(HC−1)をロールコーターにて、厚さ125μmのPETフィルム上に、乾燥硬化後の膜厚が4μmになるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより、ハードコート処理PETフィルムを作製した。このハードコート処理PETフィルムの裏面に製造例1で調製したハードコート層用塗液(HC−1)をロールコーターにて、乾燥硬化後の膜厚が4μmになるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射し、硬化させることにより、両面ハードコートフィルムを作製した。得られた両面ハードコートフィルムの巻き取り性を評価したところ×であった。
It was (circle) when the winding property of the obtained double-sided hard coat film was evaluated. On one side of this double-sided hard coat film, a high refractive index layer, a low refractive index layer and an ITO layer were formed in the same manner as in Example 1-1 to obtain a transparent conductive film. About the obtained transparent conductive film, the color tone (b *), total light transmittance (%), and haze value (%) of the transmitted color were measured by the above-mentioned methods, and the results are shown in Table 4.
(Comparative Example 2-1)
The hard coat layer coating solution (HC-1) prepared in Production Example 1 was applied on a 125 μm thick PET film with a roll coater so that the film thickness after drying and curing was 4 μm, and a 120 W high pressure mercury lamp. A hard coat-treated PET film was produced by curing by irradiating with 400 mJ of ultraviolet rays. A hard coat layer coating liquid (HC-1) prepared in Production Example 1 was applied to the back surface of this hard coat treated PET film with a roll coater so that the film thickness after drying and curing was 4 μm, and a 120 W high pressure mercury lamp. A double-sided hard coat film was produced by irradiating with 400 mJ of ultraviolet light and curing. It was x when the winding property of the obtained double-sided hard coat film was evaluated.

Figure 2011098563
表4に示した結果より、実施例2−1及び2−2では、ハードコート層に透光性微粒子が適切な量含まれることによって、両面ハードコートの巻き取り性がよくなった。また、滑性ハードコート層を用いた場合でも、透過色b*の値や全光線透過率は変化しなかった。一方、比較例2−1では、ハードコート層に透光性微粒子が適切な量含まれていないため、両面ハードコートフィルムの巻き取り性が悪く、巻きじわ及びフィルムに凹凸が発生し、高屈折率層と低屈折率層を積層させることができなかった。
Figure 2011098563
From the results shown in Table 4, in Examples 2-1 and 2-2, the appropriate amount of the light-transmitting fine particles was contained in the hard coat layer, so that the winding property of the double-sided hard coat was improved. Further, even when the slipping hard coat layer was used, the value of the transmitted color b * and the total light transmittance were not changed. On the other hand, in Comparative Example 2-1, since the hard coat layer does not contain an appropriate amount of translucent fine particles, the winding property of the double-sided hard coat film is poor, wrinkles and irregularities occur in the film, and high The refractive index layer and the low refractive index layer could not be laminated.

Claims (6)

ポリエステルフィルムの表面から順に、高屈折率層、低屈折率層及び錫ドープ酸化インジウム層が積層された透明導電性フィルムであって、
高屈折率層は、金属酸化物微粒子と紫外線硬化性バインダーとより形成され、光の波長400nmにおける屈折率が1.63〜1.86、膜厚が40〜90nmであり、低屈折率層は、光の波長400nmにおける屈折率が1.33〜1.53、膜厚が10〜50nmであり、錫ドープ酸化インジウム層は、光の波長400nmにおける屈折率が1.85〜2.35、膜厚が5〜50nmであることを特徴とする透明導電性フィルム。
In order from the surface of the polyester film, a transparent conductive film in which a high refractive index layer, a low refractive index layer and a tin-doped indium oxide layer are laminated,
The high refractive index layer is formed of metal oxide fine particles and an ultraviolet curable binder, and has a refractive index of 1.63 to 1.86 and a film thickness of 40 to 90 nm at a light wavelength of 400 nm. The refractive index at a light wavelength of 400 nm is 1.33 to 1.53, the film thickness is 10 to 50 nm, and the tin-doped indium oxide layer has a refractive index of 1.85 to 2.35 at a light wavelength of 400 nm. A transparent conductive film having a thickness of 5 to 50 nm.
ポリエステルフィルムと高屈折率層との間に、膜厚1.0〜10.0μmのハードコート層が積層されている請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein a hard coat layer having a film thickness of 1.0 to 10.0 μm is laminated between the polyester film and the high refractive index layer. ポリエステルフィルムの錫ドープ酸化インジウム層の反対面に機能層が形成されている請求項1又は請求項2に記載の透明導電性フィルム。 The transparent conductive film of Claim 1 or Claim 2 with which the functional layer is formed in the opposite surface of the tin dope indium oxide layer of a polyester film. 機能層は、ハードコート層、防眩層、指紋なじみ層又は自己修復層である請求項3に記載の透明導電性フィルム。 The transparent conductive film according to claim 3, wherein the functional layer is a hard coat layer, an antiglare layer, a fingerprint familiar layer or a self-healing layer. 機能層としてのハードコート層が滑性を有するハードコートであって、膜厚が1.0〜10.0μm、平均粒子径が膜厚の10〜60%である透光性微粒子を0.5〜30質量%含むことを特徴とする請求項4に記載の透明導電性フィルム。 The hard coat layer as the functional layer is a hard coat having lubricity, and the translucent fine particles having a film thickness of 1.0 to 10.0 μm and an average particle diameter of 10 to 60% of the film thickness are 0.5 The transparent conductive film according to claim 4, comprising ˜30 mass%. 機能層としてのハードコート層又は防眩層の上にさらに反射防止層が積層されている請求項4に記載の透明導電性フィルム。 The transparent conductive film of Claim 4 by which the antireflection layer is further laminated | stacked on the hard-coat layer or anti-glare layer as a functional layer.
JP2010187453A 2009-10-06 2010-08-24 Transparent conductive film Expired - Fee Related JP5408075B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010187453A JP5408075B2 (en) 2009-10-06 2010-08-24 Transparent conductive film
CN201010503538.6A CN102034565B (en) 2009-10-06 2010-09-30 Transparent conductive film
TW099133481A TWI460742B (en) 2009-10-06 2010-10-01 Transparent conductive film
KR1020100096493A KR101700250B1 (en) 2009-10-06 2010-10-04 Transparent conductive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009232448 2009-10-06
JP2009232448 2009-10-06
JP2010187453A JP5408075B2 (en) 2009-10-06 2010-08-24 Transparent conductive film

Publications (2)

Publication Number Publication Date
JP2011098563A true JP2011098563A (en) 2011-05-19
JP5408075B2 JP5408075B2 (en) 2014-02-05

Family

ID=44190136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187453A Expired - Fee Related JP5408075B2 (en) 2009-10-06 2010-08-24 Transparent conductive film

Country Status (2)

Country Link
JP (1) JP5408075B2 (en)
TW (1) TWI460742B (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025065A (en) * 2010-07-26 2012-02-09 Nof Corp Transparent conductive film
JP2013025737A (en) * 2011-07-26 2013-02-04 Nof Corp Tone correction film and transparent conductive film using the same
WO2013021965A1 (en) * 2011-08-11 2013-02-14 東レ株式会社 Laminate, transparent conductive laminate, touch panel, and method for producing laminate
JP2013099924A (en) * 2011-10-21 2013-05-23 Nof Corp Color tone correction film and transparent conductive film using the same
JP2013127546A (en) * 2011-12-19 2013-06-27 Panasonic Corp Anti-reflection film with transparent electrodes
WO2013125408A1 (en) * 2012-02-23 2013-08-29 日油株式会社 Color tone correction film and transparent conductive film using same
JP2013174787A (en) * 2012-02-27 2013-09-05 Panasonic Corp Optical member
JP2013180551A (en) * 2012-03-05 2013-09-12 Lintec Corp Film for laminating transparent electroconductive film, method for producing the same, and transparent electroconductive film
JP2013180556A (en) * 2012-03-05 2013-09-12 Lintec Corp Transparent electroconductive film and method for manufacturing the same
JP2013218200A (en) * 2012-04-11 2013-10-24 Nof Corp Color tone correction film and transparent conductive film using the same
JP2013237211A (en) * 2012-05-16 2013-11-28 Nof Corp Color tone correction film and transparent conductive film using the same
JP2013237244A (en) * 2012-05-17 2013-11-28 Nof Corp Color tone correction film and transparent conductive film using the same
CN103488369A (en) * 2013-09-17 2014-01-01 芜湖长信科技股份有限公司 Touch screen without chromatic aberration and method for manufacturing touch screen
WO2014020946A1 (en) * 2012-07-31 2014-02-06 日油株式会社 Color tone correction film and transparent conductive film obtained using same
JP2014035352A (en) * 2012-08-07 2014-02-24 Nof Corp Color tone correction film and transparent conductive film using the same
JP2014073614A (en) * 2012-10-03 2014-04-24 Nof Corp Color tone correction film and transparent conductive film using the same, and transparent conductive adhesive film laminating transparent adhesive layer
JP2014073613A (en) * 2012-10-03 2014-04-24 Nof Corp Color tone correction film and transparent conductive film using the same
JP2014078152A (en) * 2012-10-11 2014-05-01 Toray Advanced Film Co Ltd Base film of transparent conductive film for touch panel, and transparent conductive film for touch panel
JP2014140966A (en) * 2013-01-22 2014-08-07 Nof Corp Color tone correction film and transparent conductive film using the same
JP2014151472A (en) * 2013-02-06 2014-08-25 Nof Corp Color tone correction film, and transparent conductive film prepared using the same
JP2014159083A (en) * 2013-02-19 2014-09-04 Nof Corp Color tone correction film and transparent conductive film using the same
JP2014168929A (en) * 2013-03-05 2014-09-18 Nof Corp Color tone correction film, and transparent conductive film using the same
JP2014226882A (en) * 2013-05-24 2014-12-08 日油株式会社 Color tone correction film and transparent conductive film using the same
JP2015036867A (en) * 2013-08-12 2015-02-23 大日本印刷株式会社 Intermediate base material film for touch panel, lamination film for touch panel, and touch panel sensor
JP2015036212A (en) * 2013-08-13 2015-02-23 日油株式会社 Color tone correction film and transparent conductive film using the same
JP2015099710A (en) * 2013-11-19 2015-05-28 大日本印刷株式会社 Substrate for forming transparent conductive film, transparent conductive substrate, and touch panel
JP2015107557A (en) * 2013-12-03 2015-06-11 日油株式会社 Color tone correction film and transparent conductive film using the same
JP2015112811A (en) * 2013-12-12 2015-06-22 日油株式会社 Tone correction film and transparent conductive film using the same
CN104793826A (en) * 2015-05-01 2015-07-22 张家港康得新光电材料有限公司 Double-face hardened film and capacitance touch screen with double-face hardened film
JPWO2013140811A1 (en) * 2012-03-23 2015-08-03 凸版印刷株式会社 Antireflection film
US20150251393A1 (en) * 2012-11-30 2015-09-10 Fujifilm Corporation Transfer film, transparent laminate, method for producing transfer film, method for producing transparent laminate, capacitive input device, and image display device
CN104951169A (en) * 2015-07-10 2015-09-30 张家港康得新光电材料有限公司 Transparent conductive film and capacitive touch screen comprising same
CN104951164A (en) * 2015-07-10 2015-09-30 张家港康得新光电材料有限公司 Transparent conductive film and capacitive touch screen comprising same
CN104951163A (en) * 2015-07-10 2015-09-30 张家港康得新光电材料有限公司 Transparent conductive film and capacitive touch screen comprising same
KR20150108757A (en) 2014-03-18 2015-09-30 다이니폰 인사츠 가부시키가이샤 Conductive film and touch panel sensor
CN104951167A (en) * 2015-07-10 2015-09-30 张家港康得新光电材料有限公司 Transparent conductive film and capacitive touch screen comprising same
JP2015535859A (en) * 2012-09-03 2015-12-17 エルジー・ハウシス・リミテッドLg Hausys,Ltd. High refractive layer coating composition and transparent conductive film
JP2016087929A (en) * 2014-11-05 2016-05-23 日油株式会社 Color tone correction film, and transparent conductive film using the same
TWI554778B (en) * 2015-08-05 2016-10-21 Univ Kun Shan Touch panel structure
US20220269356A1 (en) * 2021-02-15 2022-08-25 Lintec Corporation Writing feel improving sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190554B1 (en) * 2011-10-05 2013-04-24 日東電工株式会社 Transparent conductive film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080624A (en) * 2001-09-07 2003-03-19 Nof Corp Transparent conducting material and touch panel
JP2004114355A (en) * 2002-09-24 2004-04-15 Lintec Corp Hard-coated film
JP2008098169A (en) * 2005-05-26 2008-04-24 Gunze Ltd Transparent planar body and transparent touch switch
JP2009076432A (en) * 2007-01-18 2009-04-09 Nitto Denko Corp Transparent conductive film, method for production thereof and touch panel therewith
JP2009123685A (en) * 2007-10-26 2009-06-04 Teijin Ltd Transparent conductive laminated body and touch panel
JP2010208169A (en) * 2009-03-11 2010-09-24 Gunze Ltd Transparent planar article and transparent touch switch
WO2010140275A1 (en) * 2009-06-03 2010-12-09 東洋紡績株式会社 Transparent conductive multilayer film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080624A (en) * 2001-09-07 2003-03-19 Nof Corp Transparent conducting material and touch panel
JP2004114355A (en) * 2002-09-24 2004-04-15 Lintec Corp Hard-coated film
JP2008098169A (en) * 2005-05-26 2008-04-24 Gunze Ltd Transparent planar body and transparent touch switch
JP2009076432A (en) * 2007-01-18 2009-04-09 Nitto Denko Corp Transparent conductive film, method for production thereof and touch panel therewith
JP2009123685A (en) * 2007-10-26 2009-06-04 Teijin Ltd Transparent conductive laminated body and touch panel
JP2010208169A (en) * 2009-03-11 2010-09-24 Gunze Ltd Transparent planar article and transparent touch switch
WO2010140275A1 (en) * 2009-06-03 2010-12-09 東洋紡績株式会社 Transparent conductive multilayer film

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025065A (en) * 2010-07-26 2012-02-09 Nof Corp Transparent conductive film
JP2013025737A (en) * 2011-07-26 2013-02-04 Nof Corp Tone correction film and transparent conductive film using the same
WO2013021965A1 (en) * 2011-08-11 2013-02-14 東レ株式会社 Laminate, transparent conductive laminate, touch panel, and method for producing laminate
JPWO2013021965A1 (en) * 2011-08-11 2015-03-05 東レ株式会社 Laminate, transparent conductive laminate, touch panel, and laminate production method
JP2013099924A (en) * 2011-10-21 2013-05-23 Nof Corp Color tone correction film and transparent conductive film using the same
JP2013127546A (en) * 2011-12-19 2013-06-27 Panasonic Corp Anti-reflection film with transparent electrodes
KR101761463B1 (en) * 2012-02-23 2017-07-25 니치유 가부시키가이샤 Color tone correction film and transparent conductive film using same
WO2013125408A1 (en) * 2012-02-23 2013-08-29 日油株式会社 Color tone correction film and transparent conductive film using same
JP5423926B1 (en) * 2012-02-23 2014-02-19 日油株式会社 Color tone correction film and transparent conductive film using the same
JP2013174787A (en) * 2012-02-27 2013-09-05 Panasonic Corp Optical member
JP2013180556A (en) * 2012-03-05 2013-09-12 Lintec Corp Transparent electroconductive film and method for manufacturing the same
KR20130101462A (en) 2012-03-05 2013-09-13 린텍 코포레이션 Transparent conductive film and method of producing the same
KR20130101461A (en) 2012-03-05 2013-09-13 린텍 코포레이션 Film for laminating transparent conductive coatings, method of producing the same, and transparent conductive film
JP2013180551A (en) * 2012-03-05 2013-09-12 Lintec Corp Film for laminating transparent electroconductive film, method for producing the same, and transparent electroconductive film
KR102036575B1 (en) 2012-03-05 2019-10-28 린텍 코포레이션 Film for laminating transparent conductive coatings, method of producing the same, and transparent conductive film
KR102035168B1 (en) 2012-03-05 2019-11-08 린텍 코포레이션 Transparent conductive film and method of producing the same
JPWO2013140811A1 (en) * 2012-03-23 2015-08-03 凸版印刷株式会社 Antireflection film
JP2013218200A (en) * 2012-04-11 2013-10-24 Nof Corp Color tone correction film and transparent conductive film using the same
JP2013237211A (en) * 2012-05-16 2013-11-28 Nof Corp Color tone correction film and transparent conductive film using the same
JP2013237244A (en) * 2012-05-17 2013-11-28 Nof Corp Color tone correction film and transparent conductive film using the same
WO2014020946A1 (en) * 2012-07-31 2014-02-06 日油株式会社 Color tone correction film and transparent conductive film obtained using same
JP2014035352A (en) * 2012-08-07 2014-02-24 Nof Corp Color tone correction film and transparent conductive film using the same
JP2015535859A (en) * 2012-09-03 2015-12-17 エルジー・ハウシス・リミテッドLg Hausys,Ltd. High refractive layer coating composition and transparent conductive film
JP2014073614A (en) * 2012-10-03 2014-04-24 Nof Corp Color tone correction film and transparent conductive film using the same, and transparent conductive adhesive film laminating transparent adhesive layer
JP2014073613A (en) * 2012-10-03 2014-04-24 Nof Corp Color tone correction film and transparent conductive film using the same
JP2014078152A (en) * 2012-10-11 2014-05-01 Toray Advanced Film Co Ltd Base film of transparent conductive film for touch panel, and transparent conductive film for touch panel
US20150251393A1 (en) * 2012-11-30 2015-09-10 Fujifilm Corporation Transfer film, transparent laminate, method for producing transfer film, method for producing transparent laminate, capacitive input device, and image display device
US10507630B2 (en) * 2012-11-30 2019-12-17 Fujifilm Corporation Transfer film, transparent laminate, method for producing transfer film, method for producing transparent laminate, capacitive input device, and image display device
US10336043B2 (en) 2012-11-30 2019-07-02 Fujifilm Corporation Transfer film, transparent laminate, method for producing transparent laminate, capacitive input device, and image display device
JP2014140966A (en) * 2013-01-22 2014-08-07 Nof Corp Color tone correction film and transparent conductive film using the same
JP2014151472A (en) * 2013-02-06 2014-08-25 Nof Corp Color tone correction film, and transparent conductive film prepared using the same
JP2014159083A (en) * 2013-02-19 2014-09-04 Nof Corp Color tone correction film and transparent conductive film using the same
JP2014168929A (en) * 2013-03-05 2014-09-18 Nof Corp Color tone correction film, and transparent conductive film using the same
JP2014226882A (en) * 2013-05-24 2014-12-08 日油株式会社 Color tone correction film and transparent conductive film using the same
JP2015036867A (en) * 2013-08-12 2015-02-23 大日本印刷株式会社 Intermediate base material film for touch panel, lamination film for touch panel, and touch panel sensor
JP2015036212A (en) * 2013-08-13 2015-02-23 日油株式会社 Color tone correction film and transparent conductive film using the same
CN103488369A (en) * 2013-09-17 2014-01-01 芜湖长信科技股份有限公司 Touch screen without chromatic aberration and method for manufacturing touch screen
JP2015099710A (en) * 2013-11-19 2015-05-28 大日本印刷株式会社 Substrate for forming transparent conductive film, transparent conductive substrate, and touch panel
JP2015107557A (en) * 2013-12-03 2015-06-11 日油株式会社 Color tone correction film and transparent conductive film using the same
JP2015112811A (en) * 2013-12-12 2015-06-22 日油株式会社 Tone correction film and transparent conductive film using the same
KR20150108757A (en) 2014-03-18 2015-09-30 다이니폰 인사츠 가부시키가이샤 Conductive film and touch panel sensor
US9652100B2 (en) 2014-03-18 2017-05-16 Dai Nippon Printing Co., Ltd. Electroconductive film comprising base material film and one or more functional layers configured to suppress variations of hue between different viewing angles
JP2016087929A (en) * 2014-11-05 2016-05-23 日油株式会社 Color tone correction film, and transparent conductive film using the same
CN104793826A (en) * 2015-05-01 2015-07-22 张家港康得新光电材料有限公司 Double-face hardened film and capacitance touch screen with double-face hardened film
CN104951169A (en) * 2015-07-10 2015-09-30 张家港康得新光电材料有限公司 Transparent conductive film and capacitive touch screen comprising same
CN104951167A (en) * 2015-07-10 2015-09-30 张家港康得新光电材料有限公司 Transparent conductive film and capacitive touch screen comprising same
CN104951163A (en) * 2015-07-10 2015-09-30 张家港康得新光电材料有限公司 Transparent conductive film and capacitive touch screen comprising same
CN104951164A (en) * 2015-07-10 2015-09-30 张家港康得新光电材料有限公司 Transparent conductive film and capacitive touch screen comprising same
TWI554778B (en) * 2015-08-05 2016-10-21 Univ Kun Shan Touch panel structure
US20220269356A1 (en) * 2021-02-15 2022-08-25 Lintec Corporation Writing feel improving sheet

Also Published As

Publication number Publication date
TWI460742B (en) 2014-11-11
TW201133515A (en) 2011-10-01
JP5408075B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5408075B2 (en) Transparent conductive film
KR101700250B1 (en) Transparent conductive film
US7901746B2 (en) Transparent conductive film and touch panel
JP2012043693A (en) Transparent conductive film for dye sensitized solar cell
JP4496726B2 (en) Low refractive index layer for anti-reflective material, anti-reflective material provided therewith, and use thereof
JP5521535B2 (en) Transparent conductive film
JP5691279B2 (en) Transparent conductive film
JP2015075886A (en) Laminate and touch panel sensor
JP4285059B2 (en) Transparent conductive material and touch panel
JP5423926B1 (en) Color tone correction film and transparent conductive film using the same
JP2013218200A (en) Color tone correction film and transparent conductive film using the same
JP5780034B2 (en) Color tone correction film and transparent conductive film using the same
JP2010186020A (en) Antiglare antireflection film
JP5659601B2 (en) Transparent conductive film
JP6337600B2 (en) Color tone correction film and transparent conductive film using the same
JP6405902B2 (en) Color tone correction film and transparent conductive film using the same
JP2013237244A (en) Color tone correction film and transparent conductive film using the same
JP2010169963A (en) Reflection preventing film
JP6596591B2 (en) Hard coat film with optical adjustment layer for transparent conductive film, and transparent conductive film
JP2016024385A (en) Color tone correction film and transparent conductive film obtained by using the same
JP2016090963A (en) Color tone correction film, and transparent conductive film using the same
JP6171299B2 (en) Transparent conductive film
JP6136339B2 (en) Color tone correction film and transparent conductive film using the same
JP2014168929A (en) Color tone correction film, and transparent conductive film using the same
JP2014035352A (en) Color tone correction film and transparent conductive film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130304

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130705

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5408075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees