JP2012014122A - 光モジュールおよび製造方法 - Google Patents

光モジュールおよび製造方法 Download PDF

Info

Publication number
JP2012014122A
JP2012014122A JP2010153324A JP2010153324A JP2012014122A JP 2012014122 A JP2012014122 A JP 2012014122A JP 2010153324 A JP2010153324 A JP 2010153324A JP 2010153324 A JP2010153324 A JP 2010153324A JP 2012014122 A JP2012014122 A JP 2012014122A
Authority
JP
Japan
Prior art keywords
circuit board
light receiving
light
signal light
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010153324A
Other languages
English (en)
Other versions
JP5505140B2 (ja
Inventor
Takashi Shiraishi
崇 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010153324A priority Critical patent/JP5505140B2/ja
Priority to US13/064,784 priority patent/US8805131B2/en
Publication of JP2012014122A publication Critical patent/JP2012014122A/ja
Application granted granted Critical
Publication of JP5505140B2 publication Critical patent/JP5505140B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】光モジュールを簡単に製造すること。
【解決手段】受光モジュール100は、伝送した信号光を出射する光導波路101と、透明な回路基板102と、回路基板102に接続された受光素子103と、を備えている。回路基板102は、信号光を透過させる透過部102aを隣接して囲み、透過部102aよりも屈折率が低い低屈折率部102bを有する。低屈折率部102bは、回路基板102を除去されることにより形成されている。透過部102aおよび低屈折率部102bは、透過部102aと低屈折率部102bとの界面102cにて信号光を反射させるよう形成されている。受光素子103は、回路基板102を透過した信号光を受光する受光部103aを回路基板102側に備えている。
【選択図】図1−1

Description

本発明は、光モジュールおよび製造方法に関する。
近年、サーバや高性能コンピュータの分野では、性能の向上によりCPUと外部インターフェースとを通信するI/O機能の伝送容量が増大している。一方で、従来の電気を使った高速伝送では、クロストークや配線密度の観点から、光電変換素子を配置し、光信号によって大容量伝送を可能とする光インターコネクト技術が検討されている。
光インターコネクト技術では、従来の基幹系の光通信と比較して小型であり、低コストに製造可能な小型の光モジュールが必要となる。このような光モジュールは、透明な材質を含む回路基板上に発光素子や受光素子のような光素子が実装され、光素子を実装した面とは反対側の面に光導波路が配置されたものが知られている。
こういった光モジュールとしては、より低コストに製造可能な構成とするため、ポリイミド等の薄膜からなる透明なFPC基板に光伝送素子を実装したものが知られている。そのような光モジュールを、たとえばサーバ内のプリント板に電気コネクタを介して設置することで、高速伝送な光通信が低コストに可能となる。
また、光インターコネクト技術分野では、20[Gbps]超の高速光伝送の要望が強まっている。そのため、高速で動作できる発光素子や受光素子が実装された光モジュールが用いられている。しかし、上述した光モジュールにおいては、受光素子や発光素子と、光導波路と、の間の信号光の結合損失が大きかった。
具体的には、光素子における発光部や受光部の口径と、光導波路における入射口や出射口の口径は必ずしも一致するものではなく、口径差が大きいほど外部に信号光が放射されるため、結合損失が大きい。特に、受光素子の受光部の口径は高性能であるほど小さく、たとえば、20[Gbps]以上の速度の光通信を実現する受光素子の受光部の受光径は30[μm]程度である。そのため、出射口の口径が50[μm]程度である一般的なマルチモード導波路を用いた場合、結合損失が大きい。
また、光導波路から出射される信号光、および発光素子の発光部から出射される信号光は、光素子と光導波路との間の距離が長いほど拡散するため、結合損失が大きくなる。これに対して、たとえば、信号光を集光する部材を回路基板に設けることで、信号光の拡散を抑制する技術が開示されている(たとえば、下記特許文献1〜3参照。)。
特開2004−241630号公報 特開2009−16707号公報 特開2006−47764号公報
しかしながら、上述した従来技術では、信号光の拡散を抑制する部材の製造工程が複雑であるため、光モジュールの製造を簡単におこなえないという問題がある。
開示の技術は、上述した問題点を解消するものであり、光モジュールを簡単に製造することを目的とする。
上述した課題を解決し、目的を達成するため、本発明にかかる光モジュールは、伝送した信号光を出射する光導波路と、前記光導波路から出射された信号光を透過させる回路基板であって、前記信号光を透過させる透過部を隣接して囲み、前記透過部よりも屈折率が低い低屈折率部を有する回路基板と、前記回路基板を透過した信号光を受光する受光部を前記回路基板側に備えた受光素子と、を備え、前記透過部と前記低屈折率部との界面にて前記信号光を前記受光素子側へ反射させる。
開示の技術によれば、光モジュールの製造を簡単にすることができるという効果を奏する。
実施の形態1にかかる受光モジュールを示す断面図である。 実施の形態1にかかる受光モジュールを示す拡大断面図である。 実施の形態1にかかる回路基板を示す上面図である。 実施の形態1にかかる回路基板を示す下面図である。 実施の形態1にかかる受光モジュールの製造工程の第1工程を示す説明図である。 実施の形態1にかかる受光モジュールの製造工程の第2工程を示す説明図である。 実施の形態1の第1の変形例の受光モジュールを示す断面図である。 実施の形態1の第2の変形例の受光モジュールを示す断面図である。 実施の形態2にかかる受光モジュールを示す断面図である。 実施の形態2にかかる回路基板を示す上面図である。 実施の形態2にかかる回路基板を示す下面図である。 実施の形態2にかかる受光モジュールの製造工程における第1工程を示す説明図である。 実施の形態2にかかる受光モジュールの製造工程における第2工程を示す説明図である。 実施の形態2の変形例の受光モジュールを示す断面図である。 実施の形態2の変形例の回路基板を示す上面図である。 実施の形態2の変形例の回路基板を示す下面図である。 実施の形態3にかかる受光モジュールを示す断面図である。 実施の形態3の変形例にかかる受光モジュールを示す断面図である。 実施の形態4にかかる発光モジュールを示す断面図である。 実施の形態4にかかる発光モジュールの製造工程の第1工程を示す説明図である。 実施の形態4にかかる発光モジュールの製造工程の第2工程を示す説明図である。 図1−1にかかる受光モジュールおよび図13に示した発光モジュールを実装した光伝送装置の上面図である。 図1−1にかかる受光モジュールおよび図13に示した発光モジュールを実装した光伝送装置の、受光モジュールを含む一部裁断側面図である。 図1−1にかかる受光モジュールおよび図13に示した発光モジュールを実装した光伝送装置の、発光モジュールを含む一部裁断側面図である。
以下に添付図面を参照して、開示技術の好適な実施の形態を詳細に説明する。
(実施の形態1)
(実施の形態1にかかる受光モジュールの構成について)
図1−1は、実施の形態1にかかる受光モジュールを示す断面図である。図1−1に示す実施の形態1にかかる受光モジュール100は、光導波路101と、透明な回路基板102と、受光素子103と、を備えた光モジュールである。
光導波路101は、信号光を伝送するとともに、回路基板102に対して信号光を出射する。光導波路101は、中心部のコア101aと、コア101aよりも屈折率が低く、コア101aの周囲に配置されるクラッド101bと、によって構成されている。これにより、コア101a内の信号光は、コア101aとクラッド101bとの界面にて全反射しながら伝送される。
光導波路101には、たとえば、エポキシ樹脂や、アクリレート樹脂を含むポリマー導波路が利用できる。たとえば、光導波路101として一般的なポリマー導波路を用いるものとし、光導波路101の厚さを100[μm]、コア101aの厚さを50[μm]とする。また、光導波路101にはミラー101cが設けられている。ミラー101cは、光導波路101内を伝送された信号光を回路基板102側に反射させるように構成されている。ミラー101cの傾斜角度は、たとえば、45[°]である。
回路基板102は、光導波路101から出射された信号光を透過させる位置に配置されている。たとえば、回路基板102は、ポリイミド薄膜を含むFPC(Flexible Printed Circuits)基板である。回路基板102の厚さは、たとえば、一般的なFPC基板の厚さである50[μm]とする。
回路基板102には、回路パターンとして、受光素子103側に信号電極104aが設けられている。信号電極104aには、受光素子103が接続されている。また、回路基板102の受光素子103とは反対側の面には、接地電極104bが設けられている。接地電極104bは、信号光を透過させる程度の大きさの開口部104cを有する。
回路基板102は、信号光を透過させる透過部102aと、透過部102aよりも屈折率が低い低屈折率部102bとを有する。低屈折率部102bは、空気層あるいは所定の低屈折率材質によりなる。透過部102aおよび低屈折率部102bは、透過部102aおよび低屈折率部102bの界面102cにて、光導波路101から出射された信号光を全反射させる全反射条件を満たすように形成されている。
受光素子103は、回路基板102を透過した信号光を受光する受光部103aを回路基板102側に備えている。受光素子103は、接続された信号電極104aから信号電流を伝送する機能を有する。受光部103aは、受光した信号光を信号電流に変換する。受光部103aは、たとえば、PD(Photo Diode)である。受光部103aの受光径は、たとえば、30[μm]程度である。受光部103aの受光面は、たとえば、円形である。
このように、受光モジュール100は、光導波路101内を伝送されて出射された信号光が、図中の光路(光軸)110に示すように、界面102cにて全反射され、透過部102aから受光素子103に対して出射されるように構成されている。これにより、光導波路101から出射された信号光の回路基板102透過時における拡散を抑制することができる。
また、透過部102aは、受光素子103側を上底面102d、光導波路101側を下底面102eとし、上底面102dの方が下底面102eよりも小さい面積を有する円錐台形に形成されている。このように、透過部102aの信号光の透過方向に垂直な方向の断面を、上底面102dに近づくほど小さくなるように形成することにより、透過部102aの下底面102eに入射された信号光は、透過部102aの上底面102dから集光されて出射される。
したがって、光導波路101から出射される信号光の出射面積に対して、受光素子103の受光部103aの面積が小さい場合においても、受光部103aの面積に合わせて集光することができ、結合効率を向上させることができる。
なお、透過部102aは、全反射条件を満たし、かつ、信号光の透過方向に対して垂直な断面の面積が、受光素子103に近いほど小さく形成されていればよく、円錐台形に限るものではない。たとえば、多角錐形のように上底面102dに近づくほど断面の面積が一定の割合で小さくなる形状であってもよいし、また、上底面102dに近づくほど断面の面積が不定の割合で小さくなる形状であってもよい。
また、このように、透過部102aの上底面102dを円形とすることにより、光導波路101から出射された信号光を円形に集光することができる。これにより、円形の受光部103aに対して信号光を低損失に結合させることができる。実施の形態1においては、透過部102aを円錐形とすることにより信号光を円形に集光させるものとしたが、これに限るものではない。
たとえば、透過部102aが円柱形状であっても、信号光を円形に集光することができ、円形の受光部103aに対して信号光を低損失に結合させることができる。また、受光部103aの受光面の形状が多角形である場合、受光部103aと同一の多角形の上底面102dを有する透過部102aを設けるものとしても、信号光を低損失に結合させることができる。
上述したように、透過部102aおよび低屈折率部102bは、光導波路101から出射された信号光を透過部102aおよび低屈折率部102bの界面102cにて全反射させる全反射条件を満たすように形成されている。ここで、全反射条件の具体例について説明する。
透過部102aおよび低屈折率部102bの界面102cにおける臨界角よりも、光導波路101から出射される信号光の界面102cに対する最大の入射角が大きいことが全反射条件である。透過部102aおよび低屈折率部102bの界面102cにおける臨界角θcは、透過部102aの屈折率をn1、低屈折率部102bの屈折率をn2とした場合、θc=arcsin(n2/n1)となる。
また、最大入射角θmaxは、光導波路101から出射される信号光の拡がり角をα[°]、透過部102aの円錐台の傾斜角度をβ[°]とした場合、θmax=90−β−α/2となる。
全反射条件を満たす一例として、コア101aの厚さを50[μm]、拡がり角αを21[°]、n1=1.7、n2=1.0、とすると、θc=36[°]である。これを満たすため、たとえば、回路基板102の厚さを50[μm]、透過部102aの上底面102dの直径を20〜50[μm]、透過部102aの下底面102eの直径を50〜100[μm]とする。
また、透過部102aは、底部が支持部102fを介して回路基板102に連続するよう形成されている。支持部102fは回路基板102の一部であるため、透過部102aを固定する固定部材を新たに設けなくてもよい。
図1−2は、実施の形態1にかかる受光モジュールを示す拡大断面図である。図1−2に示すように、実施の形態1にかかる受光モジュール100の透過部102a中を、光導波路101から出射された信号光が透過する。
信号光は、光路110上のミラー101cによって屈折され、拡がり角αをもって拡散する。拡散した信号光の光路120によると、まず、拡散された信号光は下底面102eから透過部102aに入射する。その後、拡散された信号光は界面102cにて受光部103a方向へ全反射し、上底面102dから出射する。これにより、拡散を抑制することができる。また、界面102cは傾斜を有するため、より効果的に拡散を抑制し、受光部103aに対して集光することができる。
図2−1は、実施の形態1にかかる回路基板を示す上面図である。図2−1に示すように、実施の形態1にかかる受光モジュール100の回路基板102上には、線状に形成された信号電極104aが設置されることにより回路パターンが形成されている。
図示するように信号電極104aは2本配置されている。信号電極104aのうち、一方はアノードとして受光素子103が接続される。また、信号電極104aのうち、他方はカソードとして受光素子103が接続される。
回路基板102には、円錐台形の透過部102aと、透過部102aの周囲に低屈折率部102bが形成されている。透過部102aの上底面102dは円形である。低屈折率部102bの底部は支持部102fである。このように、透過部102aは支持部102fによって固定されている。
図2−2は、実施の形態1にかかる回路基板を示す下面図である。実施の形態1にかかる受光モジュール100の回路基板102の下面は、接地電極104bが設けられており、信号電極104aとともにストリップライン構造を構成している。接地電極104bには、信号光を透過するように開口部104cが設けられている。
(実施の形態1にかかる受光モジュールの製造工程について)
図3−1は、実施の形態1にかかる受光モジュールの製造工程の第1工程を示す説明図である。図3−2は、実施の形態1にかかる受光モジュールの製造工程の第2工程を示す説明図である。
まず、図3−1に示すように、実施の形態1にかかる受光モジュール100の製造工程の第1工程として、ポリイミドの薄膜を含む回路基板102に回路パターンを作成する。具体的には、回路基板102に銅箔を配置することにより、信号電極104aおよび接地電極104bを形成する。
図3−1に示した第1工程の後、図3−2に示すように、実施の形態1にかかる受光モジュール100の製造工程の第2工程として、回路基板102にレジストパターン301を作成し、エッチングをおこなうことにより低屈折率部102bを形成する。
具体的には、回路基板102の信号電極104a側の面に輪状にくり抜かれたレジストパターン301を作成してエッチングをおこなうことにより、上底面102dの面積が下底面102eの面積よりも小さい円錐台形の透過部102aを形成する。また、第2工程においては、回路基板102を貫通させない程度の時間の管理によるエッチングをおこなう。これにより、回路基板102に透過部102aを固定支持する支持部102fを形成することができる。
なお、第2工程においては、回路基板102の接地電極104b側の面を保護するレジストパターン301を作成した上で、両面をエッチングしてもよい。また、信号電極104a側の面のみをエッチングしてもよい。エッチングは、溶解溶液を用いるウエットエッチングであってもよいし、ガスを用いるドライエッチングであってもよい。溶解溶液としては、たとえば、アルカリ溶液を用いることができる。
第2工程の後に、回路基板102に対し、光導波路101を実装するとともに、受光部103aを回路基板102側に向けて受光素子103を実装することにより、受光モジュール100を製造する。その際、透過部102aに信号光を出射する位置に光導波路101を実装する。また、透過部102aを透過した信号光を受光部103aによって受光可能な位置に受光素子103を実装する。また、その際、受光素子103は第1工程にて作成された回路パターンに接続される。
このように、回路パターンを作成した回路基板に受光素子および光導波路を設置する従来の受光モジュールを作成する従来の製造方法に、上述した第2工程を加える簡単な製造方法で受光モジュール100を作成することができる。また、特殊な加工技術を用いずとも第2工程をおこなうことが可能であり、製造コストを抑えることができる。すなわち、低損失な光結合を、製造が簡単な受光モジュール100において実現することができる。
本実施の形態においては、回路基板102に回路パターンを形成する第1工程をおこなった後に、エッチングにより透過部102aおよび低屈折率部102bを形成する第2工程をおこなうものとしたが、これに限るものではない。たとえば、エッチングによって透過部102aおよび低屈折率部102bを形成した後に、回路基板102に回路パターンを形成する工程をおこなうものであってもよい。
このように、受光モジュール100は、信号光を集光するマイクロレンズを回路基板に実装する技術(たとえば、上記特許文献1参照。)のような高い精度を要する製造工程をおこなわずとも、信号光の拡散を抑制することができる。
また、受光モジュール100は、信号光を集光する反射鏡を、開口した回路基板に備える技術(たとえば、上記特許文献2参照。)に比べ、少ない工程数にて製造が可能である。また、受光モジュール100は、信号光を集光する特殊な形状の光導波路を用いる技術(たとえば、上記特許文献3参照。)のような特殊な製造工程をおこなわずとも、信号光の拡散を抑制することができる。したがって、受光モジュール100は、簡単な製造が可能である。
(実施の形態1の第1の変形例)
図4は、実施の形態1の第1の変形例の受光モジュールを示す断面図である。実施の形態1の第1の変形例においては、実施の形態1にかかる受光モジュール100と同様の構成については、同一の符号を付して説明を省略する。図4に示す実施の形態1の第1の変形例の受光モジュール100は、図1−1にて上述した回路基板102を、透明なガラス基板401によって実現したものである。
受光モジュール100は、ガラス基板401の透過部102aの周囲が除去されることにより低屈折率部102bが形成されている。ガラス基板401の厚さは数100[μm]であり、FPC基板である回路基板102よりも厚さがある。そのため、ガラス基板401を用いた場合、回路基板102を用いた場合よりも透過部102aの傾きを緩く設けることが可能である。
これにより、ガラス基板401を用いた場合、光導波路101から出射される信号光の拡がり角が大きい場合においても、信号光を全反射させることができる。このように、ガラス基板401を用いた場合にも、透過部102aおよび低屈折率部102bを設けることにより、簡単な製造工程により、低損失な光結合を実現することができる。なお、ガラス基板401の透過部102aは、たとえばレーザ加工によって製造される。
(実施の形態1の第2の変形例)
図5は、実施の形態1の第2の変形例の受光モジュールを示す断面図である。実施の形態1の第2の変形例においては、実施の形態1にかかる受光モジュール100と同様の構成については、同一の符号を付して説明を省略する。
図5に示す実施の形態1の第2の変形例の受光モジュール100は、図1−1にて上述した光導波路101から、光ファイバ501および光コネクタ502に換えたものである。信号光を出射する光ファイバ501は、光コネクタ502によって回路基板102に接続されている。
光ファイバ501は、信号光を伝送し、透過部102a方向に信号光を出射するよう設置されている。これにより、光ファイバ501から出射された信号光は透過部102aに入射し、透過部102aおよび低屈折率部102bの界面102cにて全反射し、受光素子103へ出射される。したがって、受光部103a外へ放射される信号光を低減させることができる。このように、伝送した信号光を出射するものであれば、光導波路101の代わりにいずれのものを用いてもよい。
上述したように、実施の形態1にかかる受光モジュール100によれば、光導波路101から出射された信号光は、透過部102aと、回路基板102を除去されて形成された低屈折率部102bと、の界面102cを全反射し受光素子103に出射される。これにより、簡易な製造工程による受光モジュール100によって、受光部103a外への信号光の拡散を抑制することができる。すなわち、結合損失の低減による伝送性能の向上を、簡単に製造可能な受光モジュールにて実現することができる。
また、実施の形態1にかかる受光モジュール100によれば、透過部102aは、透過方向に垂直な断面の面積が受光素子103に近いほど小さくなるように形成されることにより、信号光を集光することができる。これにより、受光素子103の受光部103aが光導波路101から出射される信号光の出射範囲よりも小さい場合においても、結合損失を低減させることができる。
また、実施の形態1にかかる受光モジュール100は、受光素子103の受光部103aが円形であり、かつ、透過部102aの信号光の透過方向に対して垂直な断面が円形である構成とした。これにより、受光部103aの形状に合わせて円形に信号光を集光することが可能であり、より低損失な光結合を実現することができる。
また、実施の形態1にかかる受光モジュール100は、回路基板102から透過部102aの周囲を貫通させないように除去されることによって、低屈折率部102bが形成される構成とした。これにより、支持部102fを形成することができる。したがって、透過部102aを固定させるための工程を追加しなくても受光モジュール100を製造することができる。
なお、実施の形態1においては、低屈折率部102bは、回路基板102を一切貫通させずに形成されるものとしたが、透過部102aを固定させる支持部102fを形成することができればこれに限るものではない。たとえば、支持部102fを形成可能であれば、低屈折率部102bは、回路基板102の透過部102aの周囲の一部以外が貫通されて形成されるものでもよい。
また、実施の形態1にかかる受光モジュール100によれば、回路基板102はポリイミドの薄膜を含むFPC基板である構成とした。これにより、透過部102aおよび低屈折率部102bをエッチングによって安価に形成することが可能である。また、FPC基板はガラス基板に比べて薄く柔軟であるため設置場所を限定せず、集積が容易である。
また、低屈折率部102bは、回路基板102から除去された空間である構成とした。これにより、透過部102aよりも屈折率が低い物質を、回路基板102から除去された部分に充填する工程をおこなわなくてもよいため、製造が簡単である。また、受光モジュール100を軽量化することができる。
(実施の形態2)
(実施の形態2にかかる受光モジュールの構成について)
図6は、実施の形態2にかかる受光モジュールを示す断面図である。実施の形態2においては、実施の形態1にかかる受光モジュール100と同様の構成については、同一の符号を付して説明を省略する。
図6に示す実施の形態2にかかる受光モジュール100は、図1−1に上述した透過部102aが、回路基板102から隔離されて形成されている。また、図1−1に示した開口部104cは、透過部102aの下底面102eよりも小さく設けられている。これにより、回路基板102から隔離された透過部102aは、接地電極104bによって固定されている。
図7−1は、実施の形態2にかかる回路基板を示す上面図である。図7−1に示すように、実施の形態2にかかる受光モジュール100の回路基板102上には、円錐台形の透過部102aと、透過部102aの周囲に低屈折率部102bが形成されている。透過部102aは回路基板102から隔離されているため、低屈折率部102bの底部に接地電極104bが露出している。点線にて示す開口部104cは、下底面102eよりも小さい面積にて形成されている。このように、透過部102aは、接地電極104bによって固定されている。
図7−2は、実施の形態2にかかる回路基板を示す下面図である。実施の形態2にかかる受光モジュール100の回路基板102の下面は、信号光を透過させるための接地電極104bの開口部104cを有する。開口部104cは、透過部102aの下底面102eの面積よりも小さく、透過部102aを固定するように形成されている。
(実施の形態2にかかる受光モジュールの製造工程について)
図8−1は、実施の形態2にかかる受光モジュールの製造工程における第1工程を示す説明図である。図8−2は、実施の形態2にかかる受光モジュールの製造工程における第2工程を示す説明図である。
まず、図8−1に示すように、実施の形態2にかかる受光モジュール100の製造工程における第1工程として、ポリイミドの薄膜を含む回路基板102に、回路パターンを作成する。具体的には、回路基板102に銅箔を配置することにより、信号電極104aおよび接地電極104bを形成する。この際、透過部102aを固定できる程度の開口部104cを設けた接地電極104bを形成する。
図8−1に示した第1工程の後、図8−2に示すように、実施の形態2にかかる受光モジュール100の製造工程における第2工程として、回路基板102にレジストパターン301を作成してエッチングをおこなう。その際、回路基板102を貫通させる程度の時間を用いてエッチングをおこなうことにより、低屈折率部102bは、回路基板102の底部まで達し、透過部102aは、回路基板102から隔離される。
第2工程の後に、回路基板102に対し、光導波路101を実装するとともに、受光部103aを回路基板102側に向けて受光素子103を実装することにより、受光モジュール100を製造する。このように、実施の形態2にかかる受光モジュール100は、透過部102aを固定させる固定部材を作成する工程を追加しなくてもよく、かつ、厳密な時間管理をおこなわなくてもよいため、より簡単な製造が可能である。
(実施の形態2の変形例)
図9は、実施の形態2の変形例の受光モジュールを示す断面図である。実施の形態2の変形例においては、実施の形態1または2にかかる受光モジュール100と同様の構成については、同一の符号を付して説明を省略する。
図9に示す実施の形態2の変形例の受光モジュール100は、透過部102aが接地電極104bの一部にて固定されている。回路基板102がFPC基板のように軽い材質である場合、接地電極104bのうち少なくとも一部が透過部102aに接することにより、透過部102aを固定することができる。
図10−1は、実施の形態2の変形例の回路基板を示す上面図である。図10−1に示すように、実施の形態2の変形例の受光モジュール100の回路基板102上には、円錐台形の透過部102aが形成されており、透過部102aの周囲には低屈折率部102bが形成されている。透過部102aは回路基板102から隔離されているため、低屈折率部102bの底部には、突起した接地電極104bが露出する。このように、透過部102aは、開口部104cから突起した接地電極104bによって固定されている。
図10−2は、実施の形態2の変形例の回路基板を示す下面図である。図10−2に示すように、実施の形態2の変形例の受光モジュール100の回路基板102の下面には、接地電極104bの開口部104cから突起した接地電極104bが、透過部102aの下底面102eに触れることにより、透過部102aを固定している。このように、透過部102aの下底面102eに対して、少なくとも一部に接地電極104bが接していれば透過部102aの固定が可能である。
上述したように、実施の形態2にかかる受光モジュール100によれば、低屈折率部102bは、回路基板102の透過部102aの周囲を貫通されて除去されることにより形成され、接地電極104b上に固定される構成とした。これにより、エッチングにおいて時間管理をしなくてもよいため、より製造が簡単になる。
また、接地電極104bの一部を透過部102aの下底面102eに接触させることにより、透過部102aを固定させる構成とした。このように、透過部102aおよび接地電極104bの接触範囲を小さくすることにより、接地電極104bによる信号光の遮断を低減させることができる。
(実施の形態3)
(実施の形態3にかかる受光モジュールの構成について)
図11は、実施の形態3にかかる受光モジュールを示す断面図である。実施の形態3においては、実施の形態1または実施の形態2にかかる受光モジュール100と同様の構成については、同一の符号を付して説明を省略する。
図11に示すように、実施の形態3にかかる受光モジュール100は、実施の形態1にかかる受光モジュール100における回路基板102と光導波路101との間に、透明な回路基板1101を挟んで備えている。回路基板1101は、光導波路101から出射される信号光を透過する。また、回路基板1101は、たとえば、回路基板102と同様のFPC基板である。
このように回路基板を複数用いた多層基板構造の受光モジュールは、集積回路の高密度化を図るものである。回路基板1101は、光導波路101から出射された信号光を透過部102aまで透過させる際に信号光を遮断しない範囲に接地電極1102を配置している。接地電極1102は、信号光を透過させる程度の大きさの開口部1102aを有する。なお、不図示であるが、回路基板1101には信号電極が配置されている。
このような多層基板構造の受光モジュールにおいては、単一の回路基板によって形成される受光モジュールに比べ、光導波路101から受光素子103までの距離が長い。そのため、多層基板構造の受光モジュールの方が、単一の回路基板を用いた受光モジュールよりも、光導波路101から出射された信号光の拡散する量が多く、結合損失が大きい。
そこで、回路基板102の透過部102aの周囲に低屈折率部102bを設けることにより、回路基板1101内を拡散した信号光を回路基板102の透過部102aおよび低屈折率部102bによって集光することができる。そのため、多層基板を用いた受光モジュールにおいても、簡単な製造にて、結合損失を低減させることができる。
上述したように、実施の形態3にかかる受光モジュール100によれば、多層基板構造の受光モジュールにおいて、透過部102aの周囲に低屈折率部102bを有する回路基板102を備える構成とした。これにより、多層基板構造の受光モジュールにおいても、簡単な製造にて、低損失な光結合を実現することができる。
(実施の形態3の変形例)
図12は、実施の形態3の変形例にかかる受光モジュールを示す断面図である。実施の形態3の変形例においては、実施の形態1〜3にかかる受光モジュール100と同様の構成については、同一の符号を付して説明を省略する。図12に示すように、実施の形態3の変形例にかかる受光モジュール100は、回路基板102の光導波路101側に、回路基板1101を重ねて備えた多層基板構造の受光モジュールである。
回路基板1101は、信号光を透過させる透過部1101aと、透過部1101aの周囲に透過部1101aよりも屈折率が低い低屈折率部1101bと、を有する。低屈折率部1101bは、回路基板1101における透過部1101aの周囲を除去されることによって形成されている。
透過部1101aおよび低屈折率部1101bは、界面1101cにて光導波路101から出射された信号光を全反射させる全反射条件を満たすように形成されている。また、透過部1101aは、受光素子103側を上底面1101d、光導波路101側を下底面1101eとし、上底面1101dの方が下底面1101eよりも小さい面積を有する円錐台形に形成されている。
これにより、光導波路101から出射された信号光は、下底面1101eから透過部1101aに入射し、界面1101cにて全反射し、上底面1101dから出射される。そして、上底面1101dから出射された信号光は、下底面102eから透過部102aに入射し、界面102cにて全反射し、上底面102dから受光部103aに出射される。
このように、光導波路101から出射された信号光は、各回路基板102にて拡散を抑制される。そのため、多層基板構造の受光モジュール100においても、各回路基板に低屈折率部を設けることにより、より拡散を抑制することが可能である。また、図11に上述した多層基板構造の受光モジュール100よりもさらに低損失な光結合を実現することができる。また、実施の形態3における多層基板構造の受光モジュール100においては、二枚の回路基板を用いるものとしたが、回路基板の枚数はこれに限るものではない。
(実施の形態4)
(実施の形態4にかかる発光モジュールの構成について)
図13は、実施の形態4にかかる発光モジュールを示す断面図である。実施の形態4においては、実施の形態1〜3にかかる受光モジュール100と同様の構成については、同一の符号を付して説明を省略する。図13に示す実施の形態4にかかる発光モジュール1300は、発光素子1301と、透明な回路基板1302と、信号光を伝送する光導波路101と、を備えた光モジュールである。
発光素子1301は、電気信号から変換した信号光を出射する。また、発光素子1301は、信号光を発光する発光部1301aを回路基板1302側に備えている。また、発光部1301aは、たとえば、VCSEL(Vertical Cavity Surface Emitting Laser)などの半導体レーザである。
回路基板1302は、発光素子1301から出射された信号光を透過させる位置に配置されている。回路基板1302は、たとえばFPC基板である。また、回路基板1302の発光素子1301側の面には信号電極104aが設けられている。信号電極104aには、発光素子1301が接続されている。また、発光素子1301と反対側の面に接地電極104bが設けられている。
回路基板1302は、信号光を透過させる透過部1302aと、透過部1302aよりも屈折率が低い低屈折率部1302bとを有する。低屈折率部1302bは、透過部1302aを隣接して囲むように形成されている。透過部1302aおよび低屈折率部1302bは、透過部1302aおよび低屈折率部1302bの界面1302cにて、発光素子1301から出射された信号光を全反射させる全反射条件を満たすように形成されている。
このように、発光モジュール1300は、発光素子1301から出射された信号光が、図中の光路1310に示すように、界面1302cにて全反射され、透過部1302aから光導波路101に対して出射されるように構成されている。これにより、発光素子1301から出射された信号光の、回路基板1302透過時の拡散を抑制することができる。
また、低屈折率部1302bは、回路基板1302の透過部1302aの周囲を除去されることにより形成されている。したがって、低損失な光結合を、簡単に製造可能な発光モジュール1300によって実現することができる。
また、透過部1302aは、発光素子1301側を上底面1302d、光導波路101側を下底面1302eとし、下底面1302eの方が上底面1302dよりも小さい面積を有する円錐台形に形成されている。これにより、透過部1302aに入射された信号光は、透過部1302aの下底面1302eから集光されて出射される。
したがって、発光素子1301から出射される信号光の出射面積に対して、光導波路101のコア101aの入射可能範囲が小さい場合においても、光導波路101外へ放射される信号光を低減することができ、結合損失を低下させることができる。
なお、透過部1302aは、全反射条件を満たし、かつ、信号光の透過方向に対して垂直な断面の面積が、光導波路101に近いほど小さくなるよう形成されていればよく、円錐台形に限るものではない。たとえば、多角錐形のように下底面1302eに近づくほど断面の面積が一定の割合で小さくなる形状であってもよいし、また、下底面1302eに近づくほど断面の面積が不定の割合で小さくなる形状であってもよい。
また、低屈折率部1302bは、支持部1302fによって固定されている。支持部1302fは回路基板1302の一部であるため、発光モジュール1300は、透過部1302aを固定させる固定部材を設置する工程を追加することなく、簡易な製造工程にて、信号光の拡散の抑制を実現することができる。
また、実施の形態3に上述したように、透明な回路基板を複数用いた多層基板構造の光モジュールは、単一の回路基板を用いた発光モジュールより信号光の拡散が大きい。そのため、多層基板構造の発光モジュールにおいて、光導波路101に最も近い回路基板に透過部1302aおよび低屈折率部1302bを設けるものであってもよい。その場合、回路基板を透過する際に拡散された信号光を集光することができ、低損失な光結合を実現することができる。
また、多層基板構造の発光モジュールにおいて、各回路基板に透過部1302aおよび低屈折率部1302bを設けるものであってもよい。その場合、信号光の拡散を各回路基板によって抑制することが可能であるため、より低損失な光結合を実現することができる。
(実施の形態4にかかる受光モジュールの製造工程について)
図14−1は、実施の形態4にかかる発光モジュールの製造工程の第1工程を示す説明図である。図14−2は、実施の形態4にかかる発光モジュールの製造工程の第2工程を示す説明図である。
まず、図14−1に示すように、実施の形態4にかかる発光モジュール1300の製造工程の第1工程として、ポリイミドの薄膜を含む回路基板1302に回路パターンを形成する。具体的には、回路基板1302に銅箔を配置することにより、信号電極104aおよび接地電極104bを形成する。
図14−1に示した第1工程の後、図14−2に示すように、実施の形態4にかかる発光モジュール1300の製造工程の第2工程として、回路基板1302にレジストパターン301を作成し、エッチングをおこなうことにより低屈折率部1302bを形成する。
このとき、回路基板1302の接地電極104b側の面に輪状にくり抜かれたレジストパターン301を作成してエッチングをおこなうことにより、下底面1302eの面積が上底面1302dの面積よりも小さい円錐台形の透過部1302aを形成する。
また、第2工程においては、回路基板1302を貫通させない程度に精密な時間の管理によるエッチングをおこなう。これにより、透過部1302aを回路基板1302から隔離させずに形成することができる。
第2工程の後に、回路基板1302に対し、光導波路101を実装するとともに、発光部1301aを回路基板1302側に向けて発光素子1301を実装することにより、発光モジュール1300を製造する。その際、透過部1302aに信号光を出射する位置に発光素子1301を実装する。また、透過部1302aを透過した信号光が入射される位置に光導波路101を実装する。
このように、回路パターンを作成した回路基板に発光素子および光導波路を設置する従来の発光モジュールを作成する従来の製造方法に、上述した第2工程を加える簡易な製造方法で発光モジュール1300を作成することができる。また、特殊な加工技術を用いずとも第2工程をおこなうことが可能であり、製造コストを抑えることができる。すなわち、低損失な光結合を、製造が簡単な発光モジュール1300において実現することができる。
本実施の形態においては、回路基板1302に回路パターンを形成する第1工程をおこなった後に、エッチングにより透過部1302aおよび低屈折率部1302bを形成する第2工程をおこなうものとしたが、これに限るものではない。たとえば、エッチングによって透過部1302aおよび低屈折率部1302bを形成した後に、回路基板1302に回路パターンを形成する工程をおこなうものであってもよい。
なお、実施の形態4においては、実施の形態1と同様に、回路基板1302としてガラス基板を用いるものであってもよい。また、光導波路101の代わりに光ファイバを用いるものであってもよい。
(受光モジュールの実装例)
次に、上述した各実施の形態に示した受光モジュール100および発光モジュール1300を実装した光伝送装置の一例について説明する。なお、ここでは、図1−1に示した受光モジュール100および図13に示した発光モジュール1300を実装した光伝送装置について説明する。
図15−1は、図1−1にかかる受光モジュールおよび図13に示した発光モジュールを実装した光伝送装置の上面図である。また、図15−2は、図1−1にかかる受光モジュールおよび図13に示した発光モジュールを実装した光伝送装置の、受光モジュールを含む一部裁断側面図である。また、図15−3は、図1−1にかかる受光モジュールおよび図13に示した発光モジュールを実装した光伝送装置の、発光モジュールを含む一部裁断側面図である。
図15−1〜図15−3に示す光伝送装置1500は、電気信号を伝送するプリント基板1501上に、電気コネクタ1502を介して、回路基板102が接続されている。回路基板102の裏面には、信号光を伝送する光導波路101が接続されている。
また、回路基板102は、受光素子103が備えられている。このように、光伝送装置1500は、受光モジュール100が実装されている。また、回路基板102には、受光素子103からの電流を電圧に変換するためのTIA(Transimpedance Amplifier)1503と、が接続されている。
これにより、光伝送装置1500は、受光モジュール100によって受光した信号光を電気信号に変換し、電気信号をプリント基板によって伝送させる機能を有する。この際、図1−1に示したように透過部102aおよび低屈折率部102bを形成することにより低損失な光結合を実現し、簡単な製造にて高速な光伝送装置1500を実現することができる。
また、回路基板102上には、発光素子1301が備えられている。このように、光伝送装置1500は、発光モジュール1300が実装されている。また、回路基板102には、発光素子1301を駆動させるIC1504と、が接続されている。
これにより、光伝送装置1500は、発光モジュール1300によって電気信号を信号光に変換し、発光させる機能を有する。この際、図13に示したように透過部1302aおよび低屈折率部1302bを形成することにより低損失な光結合を実現し、簡単な製造にて高速な光伝送装置1500を実現することができる。
なお、図示は省略するが、光導波路101内のコア101aは、発光素子1301から出射された信号光を伝送するためのコアと、受光素子103に出射する信号光を伝送するためのコアと、が分離されて設けられている。また、図15−1および図15−2に示した光伝送装置1500は、図1−1に示した受光モジュール100を用いた一例であり、実施の形態1〜3に上述したいずれの受光モジュールを用いるものであってもよい。
なお、上述した回路基板102,1101,1302およびガラス基板401は透明であるものとしたが、少なくとも透過部102a,1101a,1302aが信号光を透過可能であればこれに限るものではない。たとえば、透過部102a,1101a,1302aのみが透明な回路基板102,1101,1302またはガラス基板401であってもよい。
以上説明したように、光モジュールおよび製造方法によれば、伝送効率性能の向上を、簡単な製造によって実現することができる。
上述した実施の形態に関し、さらに以下の付記を開示する。
(付記1)伝送した信号光を出射する光導波路と、
前記光導波路から出射された信号光を透過させる回路基板であって、前記信号光を透過させる透過部を隣接して囲み、前記透過部よりも屈折率が低い低屈折率部を有する回路基板と、
前記回路基板を透過した信号光を受光する受光部を前記回路基板側に備えた受光素子と、
を備え、
前記透過部と前記低屈折率部との界面にて前記信号光を前記受光素子側へ反射させることを特徴とする光モジュール。
(付記2)前記回路基板は回路パターンが形成され、
前記受光素子は、前記回路基板に形成された前記回路パターンに接続されていることを特徴とする付記1に記載の光モジュール。
(付記3)前記透過部における前記信号光の透過方向に対して垂直な断面は、前記受光素子に近いほど小さくなることを特徴とする付記1または2に記載の光モジュール。
(付記4)前記受光部の受光面は円形であり、
前記透過部における前記信号光の透過方向に対して垂直な断面は円形であることを特徴とする付記1〜3のいずれか一つに記載の光モジュール。
(付記5)前記透過部は、前記回路基板に支持部を介して固定されることを特徴とする付記1〜4のいずれか一つに記載の光モジュール。
(付記6)前記回路基板は、前記受光素子とは反対側の面に接地電極を有し、
前記低屈折率部は、前記回路基板の底部まで設けられ、
当該透過部は、前記回路基板に設けられる前記接地電極によって固定されることを特徴とする付記1〜4のいずれか一つに記載の光モジュール。
(付記7)前記回路基板の前記光導波路側に、前記光導波路から前記受光部へ出射される信号光を透過させる回路基板を重ねて備えることを特徴とする付記1〜6のいずれか一つに記載の光モジュール。
(付記8)前記回路基板を複数重ねて備え、
前記受光素子は、複数の前記透過部を透過した信号光を受光することを特徴とする付記1〜7のいずれか一つに記載の光モジュール。
(付記9)前記回路基板は、ポリイミド薄膜を含むFPC(Flexible Printed Circuits)基板であることを特徴とする付記1〜8のいずれか一つに記載の光モジュール。
(付記10)前記低屈折率部は、前記回路基板の一部を除去することにより形成された空気層であることを特徴とする付記1〜9のいずれか一つに記載の光モジュール。
(付記11)信号光を出射する発光素子と、
前記発光素子から出射された信号光を透過させる回路基板であって、前記信号光を透過させる透過部を隣接して囲み、前記透過部よりも屈折率が低い低屈折率部を有する回路基板と、
前記回路基板を透過した信号光が入射され、入射された信号光を伝送する光導波路と、
を備え、
前記透過部と前記低屈折率部との界面にて前記信号光を反射させることを特徴とする光モジュール。
(付記12)前記回路基板は回路パターンが形成され、
前記発光素子は、前記回路基板に形成された前記回路パターンに接続されていることを特徴とする付記11に記載の光モジュール。
(付記13)前記透過部における前記信号光の透過方向に対して垂直な断面は、前記光導波路に近いほど小さくなることを特徴とする付記11または12に記載の光モジュール。
(付記14)伝送した信号光を出射する光導波路と、前記光導波路から出射された信号光を透過させる回路基板と、前記回路基板を透過した信号光を受光する受光部を前記回路基板側に備えた受光素子と、を備えた光モジュールの製造方法であって、
前記回路基板に回路パターンを作成する回路作成工程と、
前記回路基板に、前記信号光を透過させる透過部を隣接して囲み、前記透過部よりも屈折率が低い低屈折率部を形成する形成工程と、
前記回路作成工程および前記形成工程の後に、前記回路基板に前記光導波路および前記受光素子を実装する実装工程と、
を含むことを特徴とする製造方法。
(付記15)前記実装工程では、前記回路作成工程にて前記回路基板に作成された回路パターンに前記受光素子を接続することを特徴とする付記14に記載の製造方法。
(付記16)前記形成工程では、前記回路基板における前記透過部の周囲を除去することにより前記低屈折率部を形成することを特徴とする付記14または15に記載の製造方法。
(付記17)前記形成工程では、前記透過部の周囲を少なくとも一部は貫通させずに除去することにより、前記低屈折率部を形成することを特徴とする付記14〜16のいずれか一つに記載の製造方法。
(付記18)前記回路基板は、前記受光素子とは反対側の面に接地電極を有し、
前記形成工程では、前記回路基板から前記透過部の周囲を貫通させて除去することにより、前記透過部を前記接地電極上に固定させるように前記低屈折率部を形成することを特徴とする付記14〜16のいずれか一つに記載の製造方法。
(付記19)信号光を出射する発光素子と、前記発光素子から出射された信号光を透過させる回路基板と、前記回路基板を透過した信号光が入射され、入射された信号光を伝送する光導波路と、を備えた光モジュールの製造方法であって、
前記回路基板に回路パターンを作成する回路作成工程と、
前記回路基板に、前記信号光を透過させる透過部を隣接して囲み、前記透過部よりも屈折率が低い低屈折率部を形成する形成工程と、
前記回路作成工程および前記形成工程の後に、前記回路基板に前記発光素子および前記光導波路を実装する実装工程と、
を含むことを特徴とする製造方法。
(付記20)前記実装工程では、前記回路作成工程にて前記回路基板に作成された回路パターンに前記発光素子を接続することを特徴とする付記19に記載の製造方法。
100 受光モジュール
101 光導波路
102,1101,1302 回路基板
102a,1302a 透過部
102b,1302b 低屈折率部
102c,1302c 界面
103 受光素子
103a 受光部
104b 接地電極
1300 発光モジュール
1301 発光素子
1301a 発光部

Claims (6)

  1. 伝送した信号光を出射する光導波路と、
    前記光導波路から出射された信号光を透過させる回路基板であって、前記信号光を透過させる透過部を隣接して囲み、前記透過部よりも屈折率が低い低屈折率部を有する回路基板と、
    前記回路基板を透過した信号光を受光する受光部を前記回路基板側に備えた受光素子と、
    を備え、
    前記透過部と前記低屈折率部との界面にて前記信号光を前記受光素子側へ反射させることを特徴とする光モジュール。
  2. 前記回路基板は回路パターンが形成され、
    前記受光素子は、前記回路基板に形成された前記回路パターンに接続されていることを特徴とする請求項1に記載の光モジュール。
  3. 前記透過部における前記信号光の透過方向に対して垂直な断面は、前記受光素子に近いほど小さくなることを特徴とする請求項1または2に記載の光モジュール。
  4. 伝送した信号光を出射する光導波路と、前記光導波路から出射された信号光を透過させる回路基板と、前記回路基板を透過した信号光を受光する受光部を前記回路基板側に備えた受光素子と、を備えた光モジュールの製造方法であって、
    前記回路基板に回路パターンを作成する回路作成工程と、
    前記回路基板に、前記信号光を透過させる透過部を隣接して囲み、前記透過部よりも屈折率が低い低屈折率部を形成する形成工程と、
    前記回路作成工程および前記形成工程の後に、前記回路基板に前記光導波路および前記受光素子を実装する実装工程と、
    を含むことを特徴とする製造方法。
  5. 前記形成工程では、前記透過部の周囲を少なくとも一部は貫通させずに除去することにより、前記低屈折率部を形成することを特徴とする請求項4に記載の製造方法。
  6. 前記回路基板は、前記受光素子とは反対側の面に接地電極を有し、
    前記形成工程では、前記回路基板から前記透過部の周囲を貫通させて除去することにより、前記透過部を前記接地電極上に固定させるように前記低屈折率部を形成することを特徴とする請求項4に記載の製造方法。
JP2010153324A 2010-07-05 2010-07-05 光モジュールおよび製造方法 Active JP5505140B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010153324A JP5505140B2 (ja) 2010-07-05 2010-07-05 光モジュールおよび製造方法
US13/064,784 US8805131B2 (en) 2010-07-05 2011-04-14 Optical module and fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010153324A JP5505140B2 (ja) 2010-07-05 2010-07-05 光モジュールおよび製造方法

Publications (2)

Publication Number Publication Date
JP2012014122A true JP2012014122A (ja) 2012-01-19
JP5505140B2 JP5505140B2 (ja) 2014-05-28

Family

ID=45399764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010153324A Active JP5505140B2 (ja) 2010-07-05 2010-07-05 光モジュールおよび製造方法

Country Status (2)

Country Link
US (1) US8805131B2 (ja)
JP (1) JP5505140B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137443A (ja) * 2013-01-16 2014-07-28 Fujitsu Ltd 光モジュールおよび光モジュールのモニタ方法
KR20180130725A (ko) * 2017-05-30 2018-12-10 삼성전자주식회사 반도체 발광소자 및 이를 이용한 led 모듈

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078882A (ja) * 2008-09-25 2010-04-08 Fuji Xerox Co Ltd 高分子光導波路およびその製造方法
JP6137777B2 (ja) * 2012-04-17 2017-05-31 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 半導体上の発光素子または受光素子と光導波路との間の光の接続損失を低減させることに役立つ、スペーサ樹脂パターンの設計
CN105849457A (zh) * 2013-10-28 2016-08-10 Next照明公司 线性灯替代物
CN106461881B (zh) * 2014-02-07 2018-11-09 法国国立工艺学院 制造垂直光耦合结构的过程
US9640741B1 (en) * 2015-11-01 2017-05-02 Artled Technology Corp. Concentrating lens of a light emitting diode lamp
JP6959731B2 (ja) * 2016-11-30 2021-11-05 日東電工株式会社 光電気混載基板
US10983000B2 (en) * 2017-10-06 2021-04-20 Heraeus Noblelight America Llc Light measuring probes, light measuring systems, and related methods
US10418510B1 (en) * 2017-12-22 2019-09-17 Facebook Technologies, Llc Mesa shaped micro light emitting diode with electroless plated N-contact

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10511780A (ja) * 1994-12-23 1998-11-10 アライドシグナル・インコーポレーテッド 少なくとも2の幾何学的に差異をつけたテーパー光学導波管を有する複数のユニットを含む光学装置
JP2000066064A (ja) * 1998-08-24 2000-03-03 Hitachi Ltd 光伝送素子、その製作方法および光伝送モジュール
JP2002182077A (ja) * 2000-12-18 2002-06-26 Shigeru Koshibe 光通信用受光装置
US6438296B1 (en) * 2000-05-22 2002-08-20 Lockhead Martin Corporation Fiber optic taper coupled position sensing module
US7121744B2 (en) * 2002-05-14 2006-10-17 Sony Corporation Optical link device
JP2008107781A (ja) * 2006-09-27 2008-05-08 Kyocera Corp 光伝送基板およびその製造方法、並びに光電子混載基板および光モジュール
JP2008158388A (ja) * 2006-12-26 2008-07-10 Kyocera Corp 光電気回路基板、光モジュールおよび光電気回路システム
JP2009139758A (ja) * 2007-12-07 2009-06-25 Ngk Spark Plug Co Ltd 光電気混載パッケージ、光電気混載モジュール

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706546B2 (en) * 1998-10-09 2004-03-16 Fujitsu Limited Optical reflective structures and method for making
TW451084B (en) * 1999-06-25 2001-08-21 Toppan Printing Co Ltd Optical-electro wiring board, mounted board, and manufacturing method of optical-electro wiring board
US6516104B1 (en) * 1999-06-25 2003-02-04 Kabushiki Kaisha Toshiba Optical wiring device
US6396116B1 (en) * 2000-02-25 2002-05-28 Agilent Technologies, Inc. Integrated circuit packaging for optical sensor devices
US6512861B2 (en) * 2001-06-26 2003-01-28 Intel Corporation Packaging and assembly method for optical coupling
US6792179B2 (en) * 2002-12-31 2004-09-14 Intel Corporation Optical thumbtack
JP4165244B2 (ja) 2003-02-06 2008-10-15 セイコーエプソン株式会社 受光素子の製造方法
US7263248B2 (en) * 2003-02-11 2007-08-28 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Optical via to pass signals through a printed circuit board
US7352066B2 (en) * 2003-09-30 2008-04-01 International Business Machines Corporation Silicon based optical vias
KR100575951B1 (ko) * 2003-11-11 2006-05-02 삼성전자주식회사 광 인쇄회로기판 집적형 광연결 패키징 장치
JPWO2005052666A1 (ja) * 2003-11-27 2008-03-06 イビデン株式会社 Icチップ実装用基板、マザーボード用基板、光通信用デバイス、icチップ実装用基板の製造方法、および、マザーボード用基板の製造方法
JP2006047764A (ja) 2004-08-05 2006-02-16 Mitsui Chemicals Inc 突起状光導波路,その製造方法およびそれを用いた光電気混載基板
JP5022795B2 (ja) 2007-07-09 2012-09-12 株式会社東芝 半導体受光素子およびその製造方法
JP5493744B2 (ja) * 2009-11-12 2014-05-14 富士通株式会社 光電気混載基板、および、光電気混載基板の製造方法
JP5779855B2 (ja) * 2010-09-24 2015-09-16 富士通株式会社 光モジュールおよび製造方法
US8708576B2 (en) * 2011-01-20 2014-04-29 Harris Corporation Electro-optical device having an elastomeric body and related methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10511780A (ja) * 1994-12-23 1998-11-10 アライドシグナル・インコーポレーテッド 少なくとも2の幾何学的に差異をつけたテーパー光学導波管を有する複数のユニットを含む光学装置
JP2000066064A (ja) * 1998-08-24 2000-03-03 Hitachi Ltd 光伝送素子、その製作方法および光伝送モジュール
US6438296B1 (en) * 2000-05-22 2002-08-20 Lockhead Martin Corporation Fiber optic taper coupled position sensing module
JP2002182077A (ja) * 2000-12-18 2002-06-26 Shigeru Koshibe 光通信用受光装置
US7121744B2 (en) * 2002-05-14 2006-10-17 Sony Corporation Optical link device
JP2008107781A (ja) * 2006-09-27 2008-05-08 Kyocera Corp 光伝送基板およびその製造方法、並びに光電子混載基板および光モジュール
JP2008158388A (ja) * 2006-12-26 2008-07-10 Kyocera Corp 光電気回路基板、光モジュールおよび光電気回路システム
JP2009139758A (ja) * 2007-12-07 2009-06-25 Ngk Spark Plug Co Ltd 光電気混載パッケージ、光電気混載モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137443A (ja) * 2013-01-16 2014-07-28 Fujitsu Ltd 光モジュールおよび光モジュールのモニタ方法
KR20180130725A (ko) * 2017-05-30 2018-12-10 삼성전자주식회사 반도체 발광소자 및 이를 이용한 led 모듈
KR102430500B1 (ko) * 2017-05-30 2022-08-08 삼성전자주식회사 반도체 발광소자 및 이를 이용한 led 모듈

Also Published As

Publication number Publication date
JP5505140B2 (ja) 2014-05-28
US8805131B2 (en) 2014-08-12
US20120002915A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5505140B2 (ja) 光モジュールおよび製造方法
JP5779855B2 (ja) 光モジュールおよび製造方法
TWI507753B (zh) Lens parts and light modules with their light
CN101535859B (zh) 光学连接组件
JP4690870B2 (ja) 光電気集積配線基板及び光電気集積配線システム
JP5692581B2 (ja) 光電変換モジュール、及び、光電変換モジュールの製造方法
US8363988B2 (en) Opto-electronic connector module and opto-electronic communication module having the same
US6786651B2 (en) Optical interconnect structure, system and transceiver including the structure, and method of forming the same
KR100734906B1 (ko) 연성 광 pcb를 이용한 광연결 장치
JP2010028006A (ja) 光学装置
JPWO2007114316A1 (ja) 光伝送基板およびその製造方法並びに光電子混載基板
JP2008102283A (ja) 光導波路、光モジュール及び光導波路の製造方法
JP5570322B2 (ja) 光伝送基体および受光モジュール
JP2012128387A (ja) 光導波路デバイスおよびこれを用いた光伝送装置
JP2009069501A (ja) 光電子回路基板及び光伝送装置
JP5899925B2 (ja) レンズ部品
KR102576473B1 (ko) 광 전기 혼재 기판
JP2014006490A (ja) 光素子実装体および光配線モジュール
JP2015106099A (ja) 光配線部品、光モジュール、光電気混載基板および電子機器
JP6268932B2 (ja) 光導波路、インプリント用型、光導波路の製造方法、光電気混載基板および電子機器
JP4698728B2 (ja) 光電気集積配線基板および光電気集積配線システム
JP6711011B2 (ja) レンズ付き光導波路、光電気混載基板、光モジュールおよび電子機器
CN108463755B (zh) 光电转换模块以及有源光缆
JP4691196B2 (ja) 光電気集積配線基板及び光電気集積配線システム
TWI588552B (zh) 光收發次組件及其製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5505140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250