JP2012002482A - 地下変電所変電設備冷却システム取替方法 - Google Patents

地下変電所変電設備冷却システム取替方法 Download PDF

Info

Publication number
JP2012002482A
JP2012002482A JP2010140855A JP2010140855A JP2012002482A JP 2012002482 A JP2012002482 A JP 2012002482A JP 2010140855 A JP2010140855 A JP 2010140855A JP 2010140855 A JP2010140855 A JP 2010140855A JP 2012002482 A JP2012002482 A JP 2012002482A
Authority
JP
Japan
Prior art keywords
cooling
substation
facility
temporary
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010140855A
Other languages
English (en)
Other versions
JP5622452B2 (ja
Inventor
Takeo Hashimoto
偉生 橋本
Atsushi Takimoto
篤 滝本
Shingo Imai
晋吾 今井
裕 ▲高▼橋
Yutaka Takahashi
Seiji Iwasaki
誠司 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2010140855A priority Critical patent/JP5622452B2/ja
Publication of JP2012002482A publication Critical patent/JP2012002482A/ja
Application granted granted Critical
Publication of JP5622452B2 publication Critical patent/JP5622452B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

【課題】地下変電所に設置される被冷却体の冷却系統を取り替える際、変電設備の停止期間を極力短い期間に抑えつつ簡便な取替方法を提供する。
【解決手段】地下変電所変電設備冷却システム取替方法は、地下変電所の変電設備を冷却する冷却設備20を備えた地下変電所変電設備冷却システム10に、仮設冷却設備30をさらに設置し、変電設備を冷却する設備を、冷却設備20と仮設冷却設備30とに切り替える接続点57,58を設置し、接続点57,58を切り替えて、変電設備を冷却する設備を、冷却設備20から仮設冷却設備30に切り替え、仮設冷却設備30で変電設備の冷却を継続したまま、冷却設備20を撤去して新規の冷却設備20を設置し、接続点57,58を切り替えて、変電設備を冷却する設備を、仮設冷却設備30から新規に設置した冷却設備20に切り替える。
【選択図】 図2

Description

本発明は、変電設備の冷却システムに係り、特に、被冷却体の冷却系統が被冷却体と同数の(予備の冷却装置を持たない)地下変電所であっても、当該地下変電所を極力停止させることなく、冷却システムの取替(リプレース)を可能にする地下変電所変電設備冷却システム取替方法に関する。
都市部の市街地に設置される変電所は、一般に、建物の地下部分に設置されることが多く、地下変電所と呼ばれている。この地下変電所は、都市部の送配電において重要な設備であって、最大のものでは500kV級の設備もある。このような地下変電所は、都市部の主要機関に電力を供給している関係から、設備停止は都市部の混乱を招く等の社会問題としてクローズアップされる傾向がある。従って、地下変電所の信頼性向上は大きな命題である。
上述した事情から、地下変電所を構成する機器(例えば、変圧器)について、高い信頼性が求められるのはもちろんのこと、その補機(例えば、変圧器の冷却システム)についても同様に高い信頼性が求められる。例えば、地下変電所を構成する変圧器の冷却システムは、冷却システムの停止が、変圧器の停止(熱による自損)に直結するため、やはり、高い信頼性が求められる。また、地下変電所は、建物の地下階に設置されていることから、変圧器等で大量に発生した熱が拡散しにくく、発生した熱を地下階から屋外(地上)へ強制的に放出することが必要なため、地下変電所の冷却設備は屋外に設置される変電所に比べて、大型化・複雑化する。
そのため、一般的な地下変電所では、変圧器(被冷却体)で発生した熱を、変圧器に設置される一次冷却器(冷却装置)において冷却水(吸熱前の循環水)が温水(吸熱後の循環水)となる過程で熱交換し、一次冷却器からの温水をポンプによって二次冷却器(冷却装置)へ送り、二次冷却器で温水(放熱前の循環水)が冷却水(放熱後の循環水)となる過程で熱交換することによって放熱する仕組である。
また、地下変電所の変電設備は、上述した事情から設備停止が許されないため、少なくとも一つの予備の冷却装置を備えているものが採用されており、一つの冷却装置が停止しても予備の冷却装置を稼動させて冷却を継続することができる。
この様な変電設備の冷却システムの一例としては、例えば、特開2001−82770号公報に記載されるような冷却システムが知られている(例えば、特許文献1参照)。
尚、特許文献1に記載される冷却システムは、被冷却体側の循環水の経路であるパイプ(特許文献1において符号66)および冷却塔側の循環水の経路であるパイプ(特許文献1において符号68)が共通化されており、この共通化された循環水経路を接続した方式(共通ヘッダ方式)の冷却システムの一例である。
特開2001−82770号公報
特許文献1に記載される冷却システムについて耐用年数が来た場合、当該冷却システムを取替(リプレース)することが必要となる。従来のリプレース方法として実用化されている案としては、既存冷却設備を一気に撤去して新規冷却設備を一気に取り替える方法(以下、「従来の第1取替方法」と称する。)や、既存冷却設備の一部を撤去し新規冷却設備を取り付けるための空間を確保したら、新規冷却設備を取り付けた後、別の既存冷却設備を撤去し、また、新規冷却設備を取り付けていく段階的な取替方法(以下、「従来の第2取替方法」と称する。)がある。
この場合、何れの取替方法を採用するとしても、リプレースの間は地下変電所の変電設備を設備停止させざるを得ないため、リプレースの計画に合わせてリプレースする変電設備が本来供給すべき需要者側へ送電できるように送電計画を調整する必要が生じる。
送電計画を調整する事態は、非定常な対応(イレギュラーな状態)であり、この様な状態を長く継続することは好ましくないため、地下変電所の変電設備を設備停止する期間は極力短い期間に抑えたい要請がある。
また、地下変電所の変電設備を設備停止する期間が短い場合、リプレースの計画に合わせた送電計画の調整も地下変電所の変電設備を設備停止する期間が長い場合と比較して容易になるため、送電計画の調整容易化の観点からみても、地下変電所の変電設備を設備停止する期間は極力短い期間に抑えたい要請がある。
さらに、リプレースの方法としては、なるべく単純な方法が望まれている。すなわち、地下変電所変電設備冷却システム取替方法(リプレースの方法)としては、地下変電所の変電設備を設備停止する期間は極力短い期間に抑えつつも、なるべく単純な工法が望まれている。
しかしながら、上述した従来の第1取替方法では、一気に取り替えできる点で工法としては単純で作業者にとって作業を進め易いものの、地下変電所の変電設備を設備停止する期間は極力短い期間に抑えたい要請にかなうものではなかった。
また、従来の第2取替方法では、一回一回の設備停止は比較的短くて済むものの、既存設備と新規設備との切替作業が多くなる、切替作業の度に設備停止が必要なため設備停止の回数は多くなる、既存設備および新規設備の制御系統が輻輳するため、工法としては作業者にとって複雑で作業を進め難く、全体としての設備停止期間は決して短いともいえるものではなかった。
本発明は、上述した事情を考慮してなされたものであり、地下変電所に設置される被冷却体の冷却系統を取替(リプレース)する際に、地下変電所の変電設備を設備停止する期間は極力短い期間に抑えつつ、簡便な取替方法を提供することを目的とする。
本発明に係る地下変電所変電設備冷却システム取替方法は、上述した課題を解決するため、特許請求の範囲に記載したように、地下変電所の変電設備を冷却する冷却設備を備えた地下変電所変電設備冷却システムに、仮設冷却設備をさらに設置し、前記変電設備を冷却する設備を、前記冷却設備と前記仮設冷却設備とに切り替える接続点を設置し、前記接続点を切り替えて、前記変電設備を冷却する設備を、前記冷却設備から前記仮設冷却設備に切り替え、前記仮設冷却設備で前記変電設備の冷却を継続したまま、前記冷却設備を撤去して新規の冷却設備を設置し、前記接続点を切り替えて、前記変電設備を冷却する設備を、前記仮設冷却設備から新規に設置した冷却設備に切り替えることを特徴とする。
本発明によれば、地下変電所に設置される被冷却体の冷却系統を取替(リプレース)する際に、地下変電所の変電設備を設備停止する期間は極力短い期間に抑えつつ、簡便な取替方法を提供することができる。
本発明の実施形態に係る地下変電所変電設備冷却システム取替方法を説明する説明図であり、既存の地下変電所変電設備冷却システムの一例を示した構成図。 本発明の実施形態に係る地下変電所変電設備冷却システム取替方法を説明する説明図であり、既存の冷却設備に加えさらに仮設冷却設備を設置した状態を示す地下変電所変電設備冷却システムの構成図。 本発明の実施形態に係る地下変電所変電設備冷却システム取替方法を説明する説明図であり、取替対象である既存の冷却設備を撤去した状態を示す地下変電所変電設備冷却システムの構成図。 本発明の実施形態に係る地下変電所変電設備冷却システム取替方法によって、冷却設備を一部変更して取り替えた冷却塔予備方式の地下変電所変電設備冷却システム(被冷却体群が1つの場合の例)の構成図。 本発明の実施形態に係る地下変電所の変電設備冷却システム取替方法によって、冷却設備を取り替えた冷却塔予備方式の地下変電所変電設備冷却システムの構成図(被冷却体群が3つの場合の例)。 本発明の実施形態に係る地下変電所の変電設備冷却システム取替方法によって、冷却設備および循環水を循環させる配管系統を一部変更して取り替えた多系統同時使用方式の地下変電所変電設備冷却システムの構成図。
以下、本発明の実施形態に係る地下変電所の変電設備冷却システム取替方法について添付図面を参照して説明する。尚、添付の図面では、図を簡略化する観点から、地下変電所の変電設備冷却システムにおいて実在する構成要素のうち一部が省略されている場合もある。
図1〜図3は、本発明の実施形態に係る地下変電所の変電設備冷却システムの取替方法(地下変電所変電設備冷却システム取替方法)を説明する説明図であり、図1は既存の地下変電所変電設備冷却システムの一例である地下変電所変電設備冷却システム10の構成図、図2は既存の冷却設備20に加えさらに仮設冷却設備30を設置した状態を示す地下変電所変電設備冷却システム10の構成図、図3は取替対象である既存の冷却設備20を撤去した状態を示す地下変電所変電設備冷却システム10の構成図である。
また、図4、図5および図6は、本発明の実施形態に係る地下変電所変電設備冷却システム取替方法によって、冷却設備20または冷却設備20を含めた冷却系統28を一部変更して取り替えた後の地下変電所変電設備冷却システム10A,10B,10Cの構成図である。
図1に示される地下変電所変電設備冷却システム10は、地下変電所に設置される例えば、四つ等の複数の被冷却体11,12,13,14と、被冷却体11,12,13,14の冷却設備20であって、被冷却体11,12,13,14よりも一つ多い数の冷却装置としての冷却塔21,22,23,24,25を配管によって接続した冷却系統28に水(以下、「循環水」と称する。)をポンプ装置40で循環させることによって、被冷却体11,12,13,14を冷却するシステムである。
また、図1に示される冷却塔21〜25は、四台が常用される冷却塔21〜24であり、残りの一台が予備の冷却塔(予備冷却塔)25である。つまり、これらの冷却塔21〜25のうち、四台で設計上必要とされる冷却能力を確保する構成であり、一台当たりの冷却能力は全体の約1/4(25%)である。
冷却系統28を具体的に説明すれば、冷却系統28は、被冷却体11〜14および冷却塔21〜25で循環水と熱交換を繰り返す水循環式の配管系統である。循環水の経路について説明すると、まず、ポンプ装置40から送出された循環水が冷却塔21〜25へ送られる。冷却塔21〜25が有する熱交換器(図において省略)が循環水から熱を奪うことによって循環水は冷却される。そして、冷却された循環水が被冷却体11〜14へ送られる。
被冷却体11〜14では、熱交換器(図において省略)を介して循環水が被冷却体11〜14の熱を奪うため、被冷却体11〜14については冷却される一方、循環水は温度上昇する。その後、被冷却体11〜14の熱を奪って温度上昇した循環水は、ポンプ装置40へ戻される。そして、再びポンプ装置40から冷却塔21〜25へ循環水が送られる。
ここで、被冷却体11〜14とは、変電動作時に冷却対象となる機器であり、例えば、変圧器(トランス)や分路リアクトルの様に変電動作時に発熱する機器である。また、符号29は循環水を補給する補給水槽である。さらに、被冷却体11,12,13,14との熱交換を行なう熱交換器等の構成要素は図1および図2以降において省略されている。
さらにまた、冷却塔21〜25は、地下変電所で適用される何れかの方式の熱交換器を有し、被冷却体11〜14によって加熱された循環水を冷却する役割を果たす限りにおいて任意に選択できる。例えば、冷却塔21〜25が有する熱交換器として、乾式熱交換器、湿式熱交換器、および、乾式熱交換器と湿式熱交換器とを組み合わせた熱交換器(必要に応じて乾式熱交換器又は湿式熱交換器の一方に切り替え可能なものを含む)の何れかを採用することができる。
尚、図1に示される地下変電所変電設備冷却システム10において、循環水の循環方向は必ずしも図1に示される方向に限定されない。例えば、ポンプ装置40から被冷却体11〜14を経由して冷却塔21〜25へ送られてポンプ装置40へ戻る場合であっても良い。
また、地下変電所変電設備冷却システム10のポンプ装置40は、循環水の循環をトラブル等で停止させない観点から二重化されているが、費用等が許すならばそれ以上に多重化(冗長化)しても良い。また、ポンプ装置40の設置数も二重化された1つに限られず、ポンプ装置40のポンプ41の送水能力に応じて複数台設けられていても良い。
さらに、図1に示されるポンプ41の上流側又は下流側に設置される構成要素は、仕切弁42、玉型弁43、逆止弁44およびストレーナ45に限定されるものではなく、実際の適用(設計・設置)段階において適宜選択可能である。すなわち、図1に示されるポンプ装置40は、単なる一例であり、これに限定されない。
図2に示される地下変電所変電設備冷却システム10は、既存の冷却設備20(例えば図1および2に示される冷却装置としての冷却塔21〜25)に加え、循環水の循環経路を構成する既存の冷却設備20と仮設冷却設備30(例えば、図2に示される冷却装置としての仮設冷却塔31,32)とを切替可能な状態でさらに設置したものである。
図2に示される地下変電所変電設備冷却システム10では、被冷却体11〜14を既存の冷却塔21〜25によって冷却するか、仮設冷却塔31,32によって冷却するかを切り替えられるように、弁51,52,53,54が循環水の経路上に設けられている。
仮設冷却塔31,32は、既存の冷却設備20を新規の冷却設備20に取り替えるまでの間(通常、3ヶ月程度、長くてもせいぜい半年程度)使用されるものであるから、冷却塔21〜25の様な長期(30年程度)の耐用年数を要求される特殊品である必要はなく、市場で通常に販売される製品、より好ましくは市場に広く普及し価格の安価な普及品を使用することができる。仮設冷却塔31,32が普及品であっても、その耐用年数は年単位(一般的には10年)であるから、これよりも短い取替期間における暫定的な使用であれば何ら支障はない。
また、仮設冷却塔31,32の電源については、既設の冷却塔21〜25のうち、予備冷却塔25については使用しないため、この電源を流用することもできる。さらに、既設の冷却塔21〜25は撤去するので、撤去した後は電源が余ることになり、この余った電源を流用することができる。これにより、設置に伴う電源工事が簡略化できる。
循環水の経路上に設けられた弁51,52は、循環水が既存の冷却設備20又は仮設冷却設備30に向かう方向における接続点(以下、「第1の接続点」と称する。)57を構成し、弁53,54は、循環水が冷却設備20又は仮設冷却設備30からポンプ装置41,42へ戻る方向における接続点(以下、「第2の接続点」と称する。)58を構成する。また、この時、弁51,53が閉じ、弁52,54が開いており、既存の冷却設備20側へ循環水が供給されるように弁51〜54が開閉されている。
尚、図2に示される地下変電所変電設備冷却システム10では、仮設冷却設備30として二台の仮設冷却塔31,32を適用しているが、必ずしも二台に限定されるものではない。同じ冷却能力を一台でまかなっても良いし、より冷却系統28の冗長度を高める観点から三台以上としても良い。
図3に示される地下変電所変電設備冷却システム10は、図2に示される地下変電所変電設備冷却システム10において、弁52と弁54とを閉じて既存の冷却設備20側へ循環水を供給するための経路を断つ一方、弁51と弁53とを開いて仮設冷却設備30へ循環水を供給するための経路を確保した後に、既存の冷却設備20(冷却塔21〜25)を撤去した状態である。
図3に示される地下変電所変電設備冷却システム10では、第1の接続点57と第2の接続点58における弁51,52,53,54の開閉操作によって、被冷却体11〜14の冷却を仮設冷却設備30によって継続可能な状態とした後、既存の冷却設備20(冷却塔21〜25)の撤去を開始する。既存の冷却設備20を撤去した後は、新規の冷却設備20を設置して新規の冷却設備20側へ循環水を供給する経路を確保する。その後、弁51と弁53とを閉じて仮設冷却設備30へ循環水を供給するための経路を断つ一方、弁52と弁54とを開いて新規の冷却設備20側へ循環水を供給するように循環水の経路を切り替える。
循環水の経路の切り替えが無事に完了した後は、仮設冷却設備30を撤去する。仮設冷却設備30を撤去すれば、図1に示される状態となり、新規の冷却設備20で被冷却体11〜14の冷却を実施できる。
尚、新規の冷却設備20は、例えば、図4、図5および図6に示されるように、必ずしも、図1又は図2に示される冷却塔21〜25と同じ冷却塔21〜25で構成されることを要しない。すなわち、被冷却体11〜14に対する実質的な冷却能力が維持される限り任意である。
例えば、図4に示される地下変電所変電設備冷却システム10Aのように、冷却設備20が冷却塔21〜25の一台当たりの冷却能力に対して、二倍の冷却能力を有する冷却塔21A,22Aと、既設の予備冷却塔25と同じ冷却能力を有する新規製品である予備冷却塔25とを備えるように構成しても良い。
また、図1〜図3に示した既存(撤去前)の地下変電所変電設備冷却システム10は、地下変電所変電設備の被冷却体11〜14を1つの群とした被冷却体群数が1(単数)である場合の例を示したものであるが、必ずしも1である必要はなく、被冷却体群数が複数の場合にも1の場合と同様に適用できる。例えば、図5に示されるように、被冷却体群としての被冷却体群61,62,63を複数の一例として三つ備えた地下変電所設備冷却システム10Bにも対応することができる。この場合、必ずしも冷却塔21〜25を個々の被冷却体11〜14に対応させて設置する必要はない。例えば、二つの冷却塔21B,22Bで三つの被冷却体群61,62,63を冷却可能に冷却設備20を構成しても良い。
ここで、図5において、符号75,76,81〜83,91〜93,101〜103,111〜113は配管であり、符号121〜123,131〜133,141〜143,151〜153は弁である。
さらに、冷却設備20を含む冷却系統28の取り替えの際に取替依頼者の要求に応じて、既存の方式(ここでは冷却塔予備方式)とは異なる方式を採用する地下変電所設備冷却システムに改修しても良い。例えば、三つの被冷却体群61,62,63と三つの冷却塔21B,22B,25とを接続して循環水を循環させる二つの並列な循環水の循環経路が構成される方式(以下、「配管系統予備方式」と称する。)を採用した冷却システムに改修しても良いし、図6に示されるように、既存の方式(ここでは冷却塔予備方式)とは異なる方式を採用する地下変電所設備冷却システム10Cに改修しても良い。
図6に示される地下変電所設備冷却システム10Cは、例えば、三つの被冷却体群61,62,63と三つの冷却塔21C,22C,23Cとを接続して循環水を循環させるX系統およびY系統の二つの並列な循環水の循環経路が構成され、X系統およびY系統の両系統を常用系として運用される方式(以下、「多系統同時使用方式」と称する。)を採用した冷却システムである。多系統同時使用方式の冷却システムについて、その詳細は特願2010−064999号に記載されるが、以下、冷却系統28の構成および運用方法の概要を示す。
地下変電所設備冷却システム10Cの冷却系統28において循環水が循環する流路は、三つの被冷却体群61,62,63および三つの冷却塔21C,22C,23Cに対して共通の流路を構成する共通ヘッダ配管75,76を有し、共通ヘッダ配管75,76と被冷却体群61,62,63とは、それぞれ配管(以下、「被冷却体群流入側配管」と称する。)81,82,83および配管(以下、「被冷却体群流出側配管」と称する。)91,92,93で接続される。
また、共通ヘッダ配管75,76と冷却塔21C,22C,23Cとは、それぞれ配管(以下、「冷却装置流入側配管」と称する。)101,102,103および配管(以下、「冷却装置流出側配管」と称する。)111,112,113で接続される。
また、被冷却体群流入側配管81,82,83、被冷却体群流出側配管91,92,93、冷却装置流入側配管101,102,103および冷却装置流出側配管111,112,113には、それぞれ、被冷却体群流入側手動弁121,122,123、被冷却体群流出側手動弁131,132,133、冷却装置流入側手動弁141,142,143および冷却装置流出側手動弁151,152,153がそれぞれ設置される。
このように、配管を接続して構成された冷却系統28のX系統の流路では、ポンプ装置40で吐出された循環水が、各被冷却体群61,62,63に送られ、各被冷却体被冷却体群61,62,63で熱交換された後、被冷却体群流出側配管91,92,93および被冷却体群流出側手動弁131X,132X,133Xを経由して共通ヘッダ配管75Xへ導かれる。その後、循環水は、共通ヘッダ配管75Xから冷却装置流入側手動弁141X,142X,143X、冷却装置流入側配管101,102,103、冷却塔21C,22C,23C、冷却装置流出側配管111,112,113および冷却装置流出側手動弁151X,152X,153Xを経由して共通ヘッダ配管76Xへ導かれ、共通ヘッダ配管76Xからは、被冷却体群流入側手動弁121X,122X,123Xおよび被冷却体群流入側配管81,82,83を経由してポンプ装置40に吸入され、再び吐出される。
冷却系統28において循環水が循環するもう一方の系統であるY系統の流路については、X系統と同様であり、上述のX系統についての説明において、XをYと読み替えれば良い。
すなわち、冷却系統28のY系統の流路では、ポンプ装置40で吐出された循環水が、各被冷却体群61,62,63に送られ、各被冷却体被冷却体群61,62,63で熱交換された後、被冷却体群流出側配管91,92,93および被冷却体群流出側手動弁131Y,132Y,133Yを経由して共通ヘッダ配管75Yへ導かれる。その後、循環水は、共通ヘッダ配管75Yから冷却装置流入側手動弁141Y,142Y,143Y、冷却装置流入側配管101,102,103、冷却塔21C,22C,23C、冷却装置流出側配管111,112,113および冷却装置流出側手動弁151Y,152Y,153Yを経由して共通ヘッダ配管76Yへ導かれ、共通ヘッダ配管76Yからは、被冷却体群流入側手動弁121Y,122Y,123Yおよび被冷却体群流入側配管81,82,83を経由してポンプ装置40に吸入され、再び吐出される。
尚、図6に示される配管81〜83,91〜93,101〜103,111〜113は、X系統およびY系統の共通構成として示されているが、これらの少なくとも一部を各系統独立に設けても良い。例えば、被冷却体群流入側配管81の場合、X系統用の被冷却体群流入側配管81XとY系統用の被冷却体群流入側配管81Yにする等のようにX系統とY系統とを独立に構成しても良い。また、冷却系統28はX系統とY系統とに二重化されているが、図6に示される冷却系統28は一例であり、必ずしも二重化の場合に限定されない。予算や場所が許すのであれば、二以上に多重化(冗長化)しても良い。
次に、地下変電所変電設備冷却システム10Cの運用方法について説明する。
図6に示されるような多系統同時使用方式を採用した地下変電所変電設備冷却システム10Cでは、地下変電所変電設備冷却システム10Bの配管に対して約半分の量の循環水を通水可能な配管でX系統およびY系統の冷却系統28が構成されており、通常の運用時には、X系統およびY系統の両系統が運用状態となり、停止状態の系統は存在しない。
すなわち、通常運用時には2系統によって100%(1系統で50%)の循環水を循環させておき、メンテナンス時又は非常時で1系統を停止させなくてはならない事態が生じた場合には、当該事態が生じた1系統(例えばX系統)を停止させ、残りの1系統(上記例ではY系統)によって循環水の循環を止めることなく変電所の運用継続を可能とする運用方式である。
この場合、一見すると、循環水の供給能力(通水能力)が50%に低下してしまう様に思われるが、現実には、1系統(例えばX系統)を閉じると、圧力損失等の関係で、運用を継続する残りの1系統(上記例ではY系統)の流速が通常運用時よりも速くなり、循環水の供給量は約80%確保することができるのである。そうすると、被冷却体11,12,13の冷却能力は、半減することはなく、せいぜい2割程度の低下に止めることができる。
地下変電所に設置される冷却システムは、通常、想定される最大負荷(100%容量)での運用を継続できる様に設計されており、さらに幾分かの設計余裕(例えばα%)を持たせていること、および、想定される通常運用時の負荷は最大負荷の約80%程度(発生熱量は理論的には約64%)であること、を考慮すれば、多系統同時使用方式を採用した地下変電所変電設備冷却システム10Cで1系統を停止させた場合でも十分な冷却能力を確保できる。
尚、多系統同時使用方式は、冷却設備20の冷却塔21C,22C,23Cに限定される話ではなく、仮設冷却設備30の仮設冷却塔31,32についても同様に適用することもできる。
[仮設冷却設備の選定]
次に、本発明の実施形態に係る地下変電所の変電設備冷却システム取替方法における仮設冷却設備30(例えば、図2に示される仮設冷却塔31,32)をどのようにして選定するかについて説明する。
(1)被冷却体での発生熱量と冷却設備の冷却能力との関係
図6に示される地下変電所変電設備冷却システム10Cに関連して説明したように、通常、地下変電所に設置される変電設備の冷却システム(地下変電所変電設備冷却システム)は、想定される最大負荷(100%容量)での運用を継続できる様に設計されており、さらに幾分かの設計余裕を持たせている。そのため、実際には最大負荷時に発生する熱量100に対して、設計余裕分(例えば、熱量αとする)を付加した100+αで熱が発生しても冷却できるだけの冷却能力を備える。
一方、通常運用時における被冷却体11〜14の負荷は約60〜80%であり、被冷却体11〜14での発生熱量は、理論的には負荷率の二乗に比例した約36〜64%となる。使用する期間が数ヶ月程度の仮設冷却設備30については、冷却設備20のような約30年もの長期間において想定される最大負荷時を想定するのではなく、数ヶ月単位内に想定される最大負荷で十分であるから、通常運用時における最大の負荷率である約80%を見込めば十分と考えられる。そうすると、負荷率約80%を考慮すれば、仮設冷却設備30の冷却能力としては、少なくとも約64以上であれば良く、好ましくは数%〜10%程度の余力を見込んだ約70以上とすれば良い。
すなわち、仮設冷却設備30が、既存の冷却設備20の冷却能力(100+α)よりも低い冷却能力(約70)であっても被冷却体11〜14を十分に冷却することができ、地下変電所の変電設備を停止させることなく運転継続させることができる。
また、より少ない冷却能力を有する仮設冷却設備30を適用できるということは、100+αの冷却能力を有する既存の冷却設備20よりも小型の設備を適用できることを意味する。設置する仮設冷却設備30の小型化は、仮設冷却設備30の設置工事費(搬入出コストおよび組立コスト等)の低減に寄与することができる。
(2)仮設冷却設備の耐久性等
仮設冷却設備30として設置される仮設冷却塔31,32は、既存の冷却設備20を新規の冷却設備20に取り替えるまでの間(通常、3ヶ月程度、長くてもせいぜい半年程度)使用できれば十分であるから、冷却塔21〜25の様な長期(30年程度)の耐用年数を要求される特殊品である必要はなく、いわゆる普及品を使用することができる。仮設冷却塔31,32が普及品であっても、その耐用年数は年単位(一般的には10年)であるから、これよりも短い取替期間における暫定的な使用であれば何ら支障はない。
また耐用年数が10年程度の普及品である冷却塔31,32は、ケーシングが塩化ビニル等の樹脂で構成されていることが多く、腐食に強いステンレス等の耐腐食金属が用いられる特殊品の冷却塔21〜25に比べて極めて重量が軽い。このため、特殊品の冷却塔21〜25の搬入および搬出に比べて簡便であり、低コストである。
(3)仮設冷却設備の仕様と取替工事の実施時期との関係
仮設冷却設備30の仕様についても、冷却設備20(冷却塔21〜25)の仕様と同様に決定する。冷却設備20(冷却塔21〜25)の仕様を決定する際は、アプローチApとレンジReの二つが大きく作用する。
ここで、アプローチApとは、冷却水の冷却塔出口における温度toと外気湿球温度(湿球で測定される外気の温度)Tとの差(K:ケルビン)である。また、レンジReとは、冷却水の冷却塔出口における温度(冷却塔出口温度)toと冷却水の冷却塔入口における温度(冷却塔入口温度)tiの差(K:ケルビン)である。外気湿球温度Tの最大値は、通常、地下変電所変電設備冷却システム10を有する顧客で決定される設計仕様値であり、夏の最も暑い時期における値(例えば湿球温度で28度等)を想定して決定される。また、冷却塔出口温度toおよび冷却塔入口温度tiは、被冷却体11〜14で決定される要求値である。
そうすると、レンジReは被冷却体11〜14によって定まる値であり、変更できる余地は無いが、アプローチApについては、冷却水の冷却塔出口温度toが被冷却体11〜14で決定される要求値であるとしても、冷却塔21〜25の設置される環境(例えば、屋外であるか室内であるか)や季節(例えば夏であるか冬であるか)によって外気湿球温度Tが変動するため、変更できる余地がある。
また、冷却塔21〜25の冷却能力は、想定しているアプローチAp(設計値)と比較して実際のアプローチAp(実測値)が大きいほど向上させることができる。より詳細には、実測値を設計値で除算して求まる値(以下、「アプローチ比」と称する。)が1以上であれば、冷却塔21〜25の冷却能力を向上させることができる。
夏の最も暑い時期における値を想定して決定される外気湿球温度Tの最大値よりも、実際の外気湿球温度Tが小さくなれば、実際のアプローチAp(実測値)を想定された値(設計値)よりも大きくすることができ、アプローチ比を1以上とすることができる。この点は当然に仮設冷却塔31,32の場合でも同様である。
そうすると、アプローチApが最大となるのは、仮設冷却塔31,32の設置場所における気温(外気湿球温度)Tが最小となる場合なので、仮設冷却塔31,32の冷却能力を最大限に発揮させる観点からすれば、外気湿球温度Tが最も小さくなる(外気温が下がる)冬の時期に既設の冷却設備20の取替工事を行なうのが最も好ましいといえる。
また、仮設冷却塔31,32の冷却容量比は、冷却能力比と等しく、また、アプローチ比とほぼ等しくなる点に鑑みれば、仮設冷却塔31,32の冷却能力は、アプローチ比にほぼ比例することになる。
より具体的に例示して説明すれば、例えば、冷却塔出口温度toが48度、外気湿球温度Tの最大値が28度と設定される場合、アプローチAp(設計値)は20(K)となる。一方、冬に既設の冷却設備20の取替工事を行なうものとし、この間の外気湿球温度Tが8度となる場合、アプローチAp(実測値)は40(K)となる。そうすると、この場合のアプローチ比は2(=40/20)であるから、実際の仮設冷却塔31,32の冷却能力は、設計値の約2倍となる。
換言すれば、既設の冷却設備20の冷却能力にアプローチ比の逆数を乗じて得られる冷却能力、すなわち、既設の冷却設備20の半分(1/2倍)の冷却能力しか有さない仮設冷却設備30を適用したとしても、実際には設計値の2倍の冷却効果が得られているので、被冷却体11〜14を十分に冷却することができる。
尚、夏の最盛期ではアプローチApが拡大することによる冷却能力の増大はほとんど期待できないものの、それ以外の時期(例えば、春、秋、又は、夏でも春や秋に近い時期)であれば、冬でないとしても一定の効果が期待できる。
(4)仮設冷却設備の設置スペース
地下変電所は建屋内に設置されていることから、仮設冷却設備30(例えば、図2に示される仮設冷却塔31,32)の設置場所は限定的となると考えられるが、上記(1)〜(3)を精査することによって仮設冷却設備30の省スペース化を図ることにより、通常は地下変電所内の空きスペース(既存の冷却塔21〜25が屋上に設置される場合には屋上も含む)を利用して設置することができる場合がほとんどと考えられる。万が一、どのようにしても地下変電所内の空きスペースでは設置できないとしても、一時的に他のフロアの空きスペースを一時的に使用させてもらう等、何らかの手段を講じることによって、仮設冷却設備30の設置スペースを確保することができると考えられる。
このようにして選定された仮設冷却設備30(例えば、図2に示される仮設冷却塔31,32)を、既存の冷却設備20(例えば図1および2に示される冷却塔21〜25)に加えて設置し、循環水の循環経路を構成する既存の冷却設備20と仮設冷却設備30とを切り替え、冷却設備20の取替工事中は仮設冷却設備30によって被冷却体11〜14の冷却を行なう地下変電所の変電設備冷却システム取替方法(以下、「本実施の形態に係る取替方法」と称する。)によれば、従来の第1取替方法や第2取替方法では成し得ない効果を奏する。
[作用・効果]
以下、本実施の形態に係る取替方法の作用・効果を従来の取替方法と対比して説明する。尚、何れの取替方法においても、取替後の状態は図4に示される地下変電所変電設備冷却システム10Aにする場合を一例として説明する。
(1)地下変電所の変電設備を設備停止させることが必要な期間
従来の第1取替方法(一気に取り替える方法)では、既存の冷却設備20を全て撤去し、新規の冷却設備20を設置し、新規冷却設備20が正常に運用できるかを確認するまでの全期間、すなわち、数ヶ月に亘る停止期間が必要となる。また、冷却塔21〜25の撤去および据付の作業は、冷却塔21〜25が大型化すればする程に長期化する傾向にあるので、冷却塔21〜25の冷却能力(換言すれば、被冷却体11〜14の一例である変圧器の規模)によっては、地下変電所の変電設備を設備停止させる期間は上記期間以上に長期化する可能性がある。
また、従来の第2取替方法(新規の冷却塔を段階的に取り替える方法)では、地下変電所変電設備冷却システム10Aとする場合、既存の冷却塔21,22,23,24,25のうち、2台(例えば、冷却塔21,22)を撤去し、新規の一台(例えば、冷却塔21A)を設置する。そして、取り替えた新規の一台が正常に運用できるかを確認し、その後、循環水の経路の切り替えを行なう必要がある。これを順次繰り返して既存の冷却塔21,22,23,24,25を新規の冷却塔21A,22A,25に交換することが必要となる。
そうすると、一台当たりの撤去および据付の作業が5日程度であるとしても、既存の五台を撤去して新規に三台を据え付けているので、15〜25日の停止期間が必要となる。
これに対して、本実施の形態に係る取替方法では、設備停止前に仮設冷却設備30と循環水が通水するのに必要な流路(配管)を予め設置した後、地下変電所の変電設備を約1日間設備停止させる。その間に、設置した仮設冷却設備30側の流路と既存の冷却設備20側の流路とを切替可能にするための弁51〜54を設置し、仮設冷却設備30が正常に運用できるかを確認し、弁51〜54の開閉操作によって循環水の経路の切り替えを行なう。
そして、冷却設備20の取替工事が終わった後は、地下変電所の変電設備を約1日間設備停止させ、新規冷却設備20が正常に運用できるかを確認し、弁51〜54の開閉操作によって循環水の経路を切り替える作業を完了させる。尚、仮設冷却設備30の撤去は設備停止を解除した後でも支障なく行なえる作業なので、設備停止期間内に必ずしも終えなくてはならない作業ではない。
このように、本実施の形態に係る取替方法では、取替工事前の作業に約1日、取替工事後の作業に約1日と、合計で約2日の停止期間で済ませることができ、従来の何れの取替方法でも成し得ない短い期間で冷却設備20を取り替えることができる。また、循環水の経路の切り替え作業の長短は、冷却塔21〜25の規模によって異なるものではない、冷却塔21〜25の規模にかかわらず約2日で行なえる点に変わりはない。
従って、本実施の形態に係る取替方法は、従来の取替方法に対して、地下変電所の変電設備の設備停止期間を極力短い期間に抑えたいという要請に応えることができるものである。
(2)冷却設備の取替方法の容易性
従来の第1取替方法(一気に取り替える方法)では、既存の冷却設備20を全て撤去した後に新規の冷却設備20を設置するため、冷却塔21〜25の据付工事はもちろんのこと、冷却塔21〜25の動作を制御するための電気配線(制御盤)の工事も容易である。すなわち、旧制御盤に接続される配線を全て取り外し、取り外した配線を全て新規制御盤に繋ぎ込むだけの比較的単純な電気工事で済む。
また、従来の第2取替方法(新規の冷却塔を段階的に取り替える方法)では、例えば、既存の冷却塔21を撤去し、新規の冷却塔21を据え付け、既存の冷却塔22を撤去し、新規の冷却塔22を据え付け、既存の冷却塔23を撤去し、新規の冷却塔23を据え付け、と、順次撤去と据付を行なう必要があり冷却塔21〜25の本体取替の工程は従来の第1取替方法と比較して複雑である。
また、付随する電気工事についても、制御盤自体も新規に改修する場合、配線の一部を現在の制御盤から取り外し、それを新しい制御盤へ繋ぎ込みといった工程を繰り返すことになるので、やはり従来の第1取替方法と比較して複雑である。さらに、新旧二つの制御盤が並存するため、配線が入り組んで現場での搬入、搬出および電気工事の作業性を低下させる一因となっている。
これに対して、本実施の形態に係る取替方法では、設置した仮設冷却設備30側の流路と既存の冷却設備20側の流路とを切り替えた後は、従来の第1取替方法と同様に、一挙に取り外して一挙に取り付けることができるので、従来の第1取替方法と比較して同程度の容易性であり、従来の第2取替方法と比較すれば工程の少ない単純(容易)な方法である。従って、本実施の形態に係る取替方法によれば、従来の第1取替方法と同程度に容易な取替方法を提供することができる。
(3)冷却設備の取替工事中における冷却系統の冗長度
次に、既存の冷却設備20の取替工事中において、冷却塔21〜25又は仮設冷却塔31,32が故障した際に地下変電所の変電設備の運転を継続できるか否か(運転継続性)について比較する。尚、従来の第1取替方法(一気に取り替える方法)は、取替工事中に冷却設備20又は仮設冷却設備30を稼動させることを前提としない方法なので、本比較の対象からは除外する。
従来の第2取替方法(新規の冷却塔を段階的に取り替える方法)では、冷却塔21〜25のうち、一台当たりの冷却能力が全体の25%であるため、撤去する2台以外の全てを運用しても75%の冷却能力となる。さらに冷却塔21〜25が一台停止すると冷却能力は50%(万が一、新設した冷却塔21A,22Aのうちの一台が停止した場合には25%)に低下することになるため、通常運用時の負荷率が約80%を超えない点を考慮したとしても、地下変電設備の運用を継続できない状況となる。
一方、本実施の形態に係る取替方法では、仮設冷却塔31,32の一台当たりの冷却能力を冷却設備20の冷却能力の70%に設定した場合、仮設冷却塔31,32の何れか一台が停止したとしても、残りの一台で冷却設備20の冷却能力の70%を確保することができるので、通常運用時の負荷率が約80%を超えない点を考慮すれば、地下変電設備の運用を継続できるといえる。すなわち、従来の第2取替方法よりも冷却設備20の取替工事中における冷却系統28の冗長度が高く、冷却設備20の取替工事中であっても、より安定的に地下変電設備の運用を継続することができるといえる。
また、図2に示した本実施の形態に係る取替方法の一例では、仮設冷却塔31,32の二台を設置しているが、これを三台にして一台当たりの冷却能力を冷却設備20の冷却能力の40%に設定すれば、一台を予備として運用することができるので、一台停止しても全体として冷却設備20の冷却能力の80%以上の冷却能力を確保することができ、冷却設備20の取替工事中における冷却系統28の冗長度を高めることができる。
以上、地下変電所変電設備冷却システム10の取替方法によれば、地下変電所の変電設備を設備停止させる期間を、仮設冷却設備30を設置し、被冷却体11〜14の冷却を行なう設備を仮設冷却設備30に切り替える際と、新規の冷却設備20を据え付けて冷却設備20に切り替える際との二回のタイミングに限定することができ、約2日間で済ませることができる。これは、既存の冷却設備20を新規の冷却設備20に取り替えるまでの間、仮設冷却設備30を使用することによって、被冷却体11〜14の冷却を継続することができるためである。
その結果、地下変電所の変電設備の設備停止期間が数ヶ月に亘る従来の第1取替方法(一気に取り替える方法)や少なくとも約15日以上を要する従来の第2取替方法(新規の冷却塔を段階的に取り替える方法)と比較して、地下変電所の変電設備の設備停止期間をより短期間に抑えることができ、設備停止期間を極力短い期間に抑えたい要請をかなえることができる。
また、地下変電所変電設備冷却システム10の取替方法では、冷却設備20の大きさに関係なく地下変電所の変電設備の設備停止期間を、ほぼ同期間に抑えることができる。これは、上述したように、新規の冷却設備20に取り替えるまでの間も被冷却体11〜14の冷却を継続することができるためである。
さらに、仮設冷却設備30による被冷却体11〜14の冷却を継続可能な状態とした後は、既存の冷却設備20の撤去を一気に行なうことができ、新規の冷却設備20の据付も一気に行なうことができるので、工法として簡便な取替方法を提供することができる。すなわち、地下変電所の変電設備の設備停止期間を極力短い期間に抑えつつも、工法としては単純な方法を提供することができる。
地下変電所変電設備冷却システム10の取替方法によれば、仮設冷却設備30が必要となるが、上述したように、冷却設備20を取り替える際の限定的な使用に耐えられるものであれば良いので、いわゆる普及品を使用することができる。また、仮設冷却設備30の設置環境(場所又は時期)を適切に選択することによって、より小型で安価な仮設冷却設備30を選定することができる。
さらに、少なくとも複数の仮設冷却塔31,32を備える仮設冷却設備30を設置するため、従来の取替方法と比べて、冷却設備20の取替工事中における冷却系統28の冗長度が高く、冷却設備20の取替工事中であっても、より安定的に地下変電設備の運用を継続することができる。
このように、地下変電所変電設備冷却システム10の取替方法によれば、地下変電所に設置される被冷却体11〜14の冷却系統28を取替(リプレース)する際に、地下変電所の変電設備を設備停止する期間は極力短い期間に抑えつつ、簡便なリプレース方法を提供することができる。
尚、本発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化しても良い。また、作業工程を付加したり、一部の作業工程を省いたりして適用することもできる。例えば、第1の接続点57および第2の接続点58、すなわち、弁51〜54は必ずしも撤去することを要しない。また、仮設冷却塔31,32についても、暫く予備として残しておくことも可能である。
10 冷却塔予備方式の地下変電所変電設備冷却システム
10A 冷却塔予備方式の地下変電所変電設備冷却システム
10B 冷却塔予備方式の地下変電所変電設備冷却システム
10C 多系統同時使用方式の地下変電所変電設備冷却システム
11 第1の被冷却体
12 第2の被冷却体
13 第3の被冷却体
14 第4の被冷却体
20 冷却設備
21,21A,21B,21C 第1の冷却塔
22,22A,22B,22C 第2の冷却塔
23,23C 第3の冷却塔
24 第4の冷却塔
25 予備冷却塔
28 冷却系統
29 補給水槽
30 仮設冷却設備
31 第1の仮設冷却塔
32 第2の仮設冷却塔
40 ポンプ装置
41 ポンプ
42 仕切弁
43 玉型弁
44 逆止弁
45 ストレーナ
51,52,53,54 弁
57 第1の接続点
58 第2の接続点
61 第1の被冷却体群
62 第2の被冷却体群
63 第3の被冷却体群
75,76 共通ヘッダ配管
75X,76X X系統の共通ヘッダ配管
75Y,76Y Y系統の共通ヘッダ配管
71,72,73 被冷却体群流入側配管
81,82,83 被冷却体群流出側配管
101,102,103 冷却装置流入側配管
111,112,113 冷却装置流出側配管
121,122,123 被冷却体群流入側手動弁
121X,122X,123X X系統の被冷却体群流入側手動弁
121Y,122Y,123Y Y系統の被冷却体群流入側手動弁
131,132,133 被冷却体群流出側手動弁
131X,132X,133X X系統の被冷却体群流出側手動弁
131Y,132Y,133Y Y系統の被冷却体群流出側手動弁
141,142,143 冷却装置流入側手動弁
141X,142X,143X X系統の冷却装置流入側手動弁
141Y,142Y,143Y Y系統の冷却装置流入側手動弁
151,152,153 冷却装置流出側手動弁
151X,152X,153X X系統の冷却装置流出側手動弁
151Y,152Y,153Y Y系統の冷却装置流出側手動弁

Claims (10)

  1. 地下変電所の変電設備を冷却する冷却設備を備えた地下変電所変電設備冷却システムに、仮設冷却設備をさらに設置し、
    前記変電設備を冷却する設備を、前記冷却設備と前記仮設冷却設備とに切り替える接続点を設置し、
    前記接続点を切り替えて、前記変電設備を冷却する設備を、前記冷却設備から前記仮設冷却設備に切り替え、
    前記仮設冷却設備で前記変電設備の冷却を継続したまま、前記冷却設備を撤去して新規の冷却設備を設置し、
    前記接続点を切り替えて、前記変電設備を冷却する設備を、前記仮設冷却設備から新規に設置した冷却設備に切り替えることを特徴とする地下変電所変電設備冷却システム取替方法。
  2. 前記仮設冷却設備は、前記冷却設備の冷却能力よりも低い冷却能力のものを適用することを特徴とする請求項1記載の地下変電所変電設備冷却システム取替方法。
  3. 前記仮設冷却設備の冷却能力は、前記変電設備の負荷率を考慮して決定されることを特徴とする請求項2記載の地下変電所変電設備冷却システム取替方法。
  4. 前記仮設冷却設備の冷却能力は、前記仮設冷却設備が設置される場所の気温を考慮して決定されることを特徴とする請求項2又は3に記載の地下変電所変電設備冷却システム取替方法。
  5. 前記仮設冷却設備の冷却能力は、前記冷却設備の冷却能力に、前記仮設冷却設備から出る冷却水の温度と設計仕様で定められた設置場所の湿球温度による気温との差で求まるアプローチの実測値と前記アプローチの設計値との比であるアプローチ比の逆数を乗じて得られる数値以上に設定されることを特徴とする請求項2乃至4の何れか1項に記載の地下変電所変電設備冷却システム取替方法。
  6. 前記仮設冷却設備の冷却能力は、前記仮設冷却設備が少なくとも複数の冷却装置を有する場合、この冷却装置の一台が停止した場合においても、前記変電設備の冷却を継続できる冷却能力を確保するように設定されることを特徴とする請求項2乃至5の何れか1項に記載の地下変電所変電設備冷却システム取替方法。
  7. 前記仮設冷却装置は、少なくとも複数であり、少なくとも一台を予備として確保することを特徴とする請求項2乃至6の何れか1項に記載の地下変電所変電設備冷却システム取替方法。
  8. 前記冷却設備は複数の冷却装置を備える場合、前記仮設冷却設備の電源として、前記冷却設備のうち予備又は撤去されたことにより使用されていない冷却装置の電源を使用することを特徴とする請求項1乃至7の何れか1項に記載の地下変電所変電設備冷却システム取替方法。
  9. 前記冷却設備は複数の冷却装置を備える場合、全ての冷却装置を撤去した後に、新規な冷却設備の全てを設置することを特徴とする請求項1乃至8の何れか1項に記載の地下変電所変電設備冷却システム取替方法。
  10. 前記仮設冷却設備は、普及品であることを特徴とする請求項1乃至9の何れか1項に記載の地下変電所変電設備冷却システム取替方法。
JP2010140855A 2010-06-21 2010-06-21 地下変電所変電設備冷却システム取替方法 Active JP5622452B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140855A JP5622452B2 (ja) 2010-06-21 2010-06-21 地下変電所変電設備冷却システム取替方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140855A JP5622452B2 (ja) 2010-06-21 2010-06-21 地下変電所変電設備冷却システム取替方法

Publications (2)

Publication Number Publication Date
JP2012002482A true JP2012002482A (ja) 2012-01-05
JP5622452B2 JP5622452B2 (ja) 2014-11-12

Family

ID=45534674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140855A Active JP5622452B2 (ja) 2010-06-21 2010-06-21 地下変電所変電設備冷却システム取替方法

Country Status (1)

Country Link
JP (1) JP5622452B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142089A (ja) * 2014-01-30 2015-08-03 東芝プラントシステム株式会社 地下変電所の緊急時変圧器冷却システムおよび緊急時変圧器冷却方法
JP2015233076A (ja) * 2014-06-10 2015-12-24 東芝プラントシステム株式会社 地下変電所の変圧器冷却システムおよび変圧器冷却方法
JP2017083135A (ja) * 2015-10-30 2017-05-18 東芝プラントシステム株式会社 水冷式変電所のレジオネラ属菌対策システム、被冷却体冷却システム、レジオネラ属菌対策方法および被冷却体冷却方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634281A (ja) * 1992-07-15 1994-02-08 Kimura Chem Plants Co Ltd 水の冷却方法及び冷水装置
JPH08331775A (ja) * 1995-06-05 1996-12-13 Meiden Eng Kk 蓄電池の取り替え方法
JPH10214727A (ja) * 1997-01-29 1998-08-11 Hitachi Ltd 冷却システム
JPH11107335A (ja) * 1997-10-03 1999-04-20 Haseko Corp 共用給水管の更新方法
JP2001082770A (ja) * 1999-09-16 2001-03-30 Toshiba Corp 冷却設備システム
JP2007051835A (ja) * 2005-08-19 2007-03-01 Sanki Eng Co Ltd 排熱利用システム
JP2008116114A (ja) * 2006-11-02 2008-05-22 Tajima:Kk 給湯システムの異常時応急対応方法および該異常時応急対応方法に用いられる仮設給湯装置ユニット
JP2011200039A (ja) * 2010-03-19 2011-10-06 Toshiba Plant Systems & Services Corp 地下変電所変電設備冷却システム、地下変電所変電設備冷却方法および地下変電所変電設備冷却システムを備えた変電設備

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634281A (ja) * 1992-07-15 1994-02-08 Kimura Chem Plants Co Ltd 水の冷却方法及び冷水装置
JPH08331775A (ja) * 1995-06-05 1996-12-13 Meiden Eng Kk 蓄電池の取り替え方法
JPH10214727A (ja) * 1997-01-29 1998-08-11 Hitachi Ltd 冷却システム
JPH11107335A (ja) * 1997-10-03 1999-04-20 Haseko Corp 共用給水管の更新方法
JP2001082770A (ja) * 1999-09-16 2001-03-30 Toshiba Corp 冷却設備システム
JP2007051835A (ja) * 2005-08-19 2007-03-01 Sanki Eng Co Ltd 排熱利用システム
JP2008116114A (ja) * 2006-11-02 2008-05-22 Tajima:Kk 給湯システムの異常時応急対応方法および該異常時応急対応方法に用いられる仮設給湯装置ユニット
JP2011200039A (ja) * 2010-03-19 2011-10-06 Toshiba Plant Systems & Services Corp 地下変電所変電設備冷却システム、地下変電所変電設備冷却方法および地下変電所変電設備冷却システムを備えた変電設備

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142089A (ja) * 2014-01-30 2015-08-03 東芝プラントシステム株式会社 地下変電所の緊急時変圧器冷却システムおよび緊急時変圧器冷却方法
JP2015233076A (ja) * 2014-06-10 2015-12-24 東芝プラントシステム株式会社 地下変電所の変圧器冷却システムおよび変圧器冷却方法
JP2017083135A (ja) * 2015-10-30 2017-05-18 東芝プラントシステム株式会社 水冷式変電所のレジオネラ属菌対策システム、被冷却体冷却システム、レジオネラ属菌対策方法および被冷却体冷却方法

Also Published As

Publication number Publication date
JP5622452B2 (ja) 2014-11-12

Similar Documents

Publication Publication Date Title
US9845983B2 (en) Central air-conditioning system and control method thereof
JP7053400B2 (ja) マルチモジュール式発電プラントとこれを稼働させる方法
CN110207523B (zh) 一种核电厂设备冷却水多级降温系统
CN108469111A (zh) 一种基于数据中心的余热回收系统及余热回收系统的控制方法
JP5622452B2 (ja) 地下変電所変電設備冷却システム取替方法
CN112398122A (zh) 一种极寒灾害下热电耦合系统应急恢复方法
JP2015142089A (ja) 地下変電所の緊急時変圧器冷却システムおよび緊急時変圧器冷却方法
Fiorino Achieving high chilled-water delta Ts
JP2016102626A (ja) 地下変電所の変圧器冷却装置、変圧器冷却システム、および変圧器冷却方法
JP6742835B2 (ja) 電力・熱媒製造システムおよびその制御方法
VanGeet et al. FEMP best practices guide for energy-efficient data center design
JP6612228B2 (ja) 空調システム、その周辺空調ユニットおよび加熱目的のための水パイプライン改修方法
Taylor Chilled water plant retrofit-a case study
JP2008309347A (ja) 空調システム
AU2020453087B2 (en) Cooling system
Fiorino How to raise chilled water temperature differentials
JP5584052B2 (ja) 空調システムにおける高効率熱搬送装置
JP6987731B2 (ja) ビル用冷暖房システム
CN209068646U (zh) 基于数据中心的水环热泵空调系统运行系统
CN114076341A (zh) 数据中心热回收系统
Kummert et al. Transient thermal analysis of a data centre cooling system under fault conditions
Duda Waterside Economizer Retrofit for Data Center.
Svensson et al. A Heat Re-Use System for the Cray XE6 and Future Systems at PDC, KTH
JP5661493B2 (ja) 複数階を有する施設の空調システム及び空調システムの運転方法
Benator et al. Commissioning Construction Projects

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5622452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250