JP2012002178A - Fuel injection state detection device - Google Patents

Fuel injection state detection device Download PDF

Info

Publication number
JP2012002178A
JP2012002178A JP2010139479A JP2010139479A JP2012002178A JP 2012002178 A JP2012002178 A JP 2012002178A JP 2010139479 A JP2010139479 A JP 2010139479A JP 2010139479 A JP2010139479 A JP 2010139479A JP 2012002178 A JP2012002178 A JP 2012002178A
Authority
JP
Japan
Prior art keywords
pulsation
pressure
fuel
waveform
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010139479A
Other languages
Japanese (ja)
Other versions
JP5003796B2 (en
Inventor
Masakazu Sakata
正和 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010139479A priority Critical patent/JP5003796B2/en
Priority to DE102011051012.5A priority patent/DE102011051012B4/en
Priority to CN201110167053.9A priority patent/CN102287286B/en
Publication of JP2012002178A publication Critical patent/JP2012002178A/en
Application granted granted Critical
Publication of JP5003796B2 publication Critical patent/JP5003796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/005Fuel-injectors combined or associated with other devices the devices being sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • F02D2200/0604Estimation of fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • F02M2200/247Pressure sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection state detection device capable of detecting highly accurately the actual injection state.SOLUTION: The device includes a pressure waveform obtaining means S10 for obtaining a pressure waveform W representing the fuel pressure change occurring in a fuel supply path accompanying fuel injection based on the value sensed by a fuel pressure sensor, a pulsation model memory means storing pulsation models prepared by modelling pulsations in the pressure waveforms W generated accompanying movement of a valve element of a fuel injection valve to the valve closing position into a plurality of kinds of patterns, a pulsation model selecting means S40 for selecting a pulsation model M closest to the actual pulsation appeared in a pressure waveform W-PC out of the plurality of kinds of the pulsation models, a pulsation offsetting means S50 for calculating a pulsation offsetting waveform W-PC-M by subtracting the selected pulsation model M from the pressure waveform W-PC, and an injection state estimating means S60 for estimating the fuel injection ratio waveform (fuel injection state) based on the pulsation offsetting waveform W-PC-M.

Description

本発明は、燃料噴射に伴い燃料供給経路内で生じる燃料圧力の変化を表した圧力波形を燃圧センサで検出し、検出した圧力波形に基づき燃料噴射状態を推定する燃料噴射状態検出装置に関する。   The present invention relates to a fuel injection state detection device that detects a pressure waveform representing a change in fuel pressure that occurs in a fuel supply path with fuel injection by a fuel pressure sensor and estimates a fuel injection state based on the detected pressure waveform.

内燃機関の出力トルク及びエミッション状態を精度良く制御するには、燃料噴射弁の噴孔から噴射される燃料の噴射量及び噴射開始時期等、その噴射状態を精度良く制御することが重要である。そこで特許文献1,2等には、噴孔に至るまでの燃料供給経路内で噴射に伴い生じる燃料圧力の変化を燃圧センサで検出することで、実際の噴射状態(噴射開始時期や噴射量等)を検出する技術が開示されている。このように実際の噴射状態を検出できれば、その検出結果に基づき噴射状態を精度良く制御することができる。   In order to accurately control the output torque and the emission state of the internal combustion engine, it is important to accurately control the injection state such as the injection amount of fuel injected from the injection hole of the fuel injection valve and the injection start timing. Therefore, in Patent Documents 1 and 2, the actual injection state (injection start timing, injection amount, etc.) is detected by a fuel pressure sensor that detects a change in fuel pressure caused by injection in the fuel supply path up to the nozzle hole. ) Is disclosed. If the actual injection state can be detected in this way, the injection state can be accurately controlled based on the detection result.

例えば特許文献2には、燃圧センサにより検出される圧力波形を取得し、その圧力波形中に現れる変化点P1,P2,P3(図2(c)参照)を検出し、これらの変化点P1,P2,P3の出現時期及び圧力値に基づき、実際の噴射状態(噴射開始時期R1、噴射終了時期R4、噴射量Q等)を算出している。   For example, in Patent Document 2, a pressure waveform detected by a fuel pressure sensor is acquired, change points P1, P2, and P3 (see FIG. 2C) appearing in the pressure waveform are detected, and these change points P1, Based on the appearance times and pressure values of P2 and P3, the actual injection state (injection start time R1, injection end time R4, injection amount Q, etc.) is calculated.

特開2010−3004号公報JP 2010-3004 A 特開2009−57924号公報JP 2009-57924 A

しかしながら、燃圧センサにより検出された圧力波形は噴射状態をそのまま反映している訳ではなく、噴射状態とは無関係に生じる脈動が圧力波形に現れていることが、本発明者らが実施した各種試験により明らかとなった。   However, the pressure waveform detected by the fuel pressure sensor does not reflect the injection state as it is, and pulsations that occur independently of the injection state appear in the pressure waveform. It became clear.

先ず、上記試験に用いた燃料噴射弁の構造について、図1の拡大図である図3を参照して以下に説明する。燃料噴射弁10が有する弁体12にはシート面12aが形成されており、このシート面12aがボデー11の着座面11eに着座すると(図1参照)、高圧通路11aが閉鎖されて噴孔11bが閉弁されることとなり噴射率はゼロになる。一方、シート面12aが着座面11eから離座すると(図3参照)、高圧通路11aが開放されて噴孔11bが開弁されることとなる。   First, the structure of the fuel injection valve used in the above test will be described below with reference to FIG. 3 which is an enlarged view of FIG. The valve body 12 of the fuel injection valve 10 has a seat surface 12a. When the seat surface 12a is seated on the seating surface 11e of the body 11 (see FIG. 1), the high-pressure passage 11a is closed and the nozzle hole 11b. Is closed and the injection rate becomes zero. On the other hand, when the seat surface 12a is separated from the seating surface 11e (see FIG. 3), the high-pressure passage 11a is opened and the nozzle hole 11b is opened.

そして、弁体12がフルリフト位置まで開弁作動した状態(図3(a)参照)では、高圧通路11aの流路面積は噴孔11bの部分で最小となり、噴射燃料の流量は噴孔11bで絞られた噴孔絞り状態になる。そして、閉弁作動の開始後、弁体12のストローク量(リフトアップ量)が所定量に達するまでは、噴孔絞り状態が継続する(図3(b)参照)。一方、弁体12のストローク量が所定量未満になると、高圧通路11aの流路面積はシート面12aの部分で最小となり、シート面12aで流量が絞られるシート絞り状態になる(図3(c)参照)。   When the valve body 12 is opened to the full lift position (see FIG. 3A), the flow passage area of the high pressure passage 11a is minimized at the injection hole 11b, and the flow rate of the injected fuel is at the injection hole 11b. The throttle hole is in a throttled state. After the start of the valve closing operation, the nozzle hole throttle state continues until the stroke amount (lift-up amount) of the valve body 12 reaches a predetermined amount (see FIG. 3B). On the other hand, when the stroke amount of the valve body 12 becomes less than a predetermined amount, the flow passage area of the high pressure passage 11a is minimized at the portion of the seat surface 12a, and the seat throttle state in which the flow rate is restricted by the seat surface 12a (FIG. 3C). )reference).

つまり、フルリフト位置にある弁体12が閉弁位置へ向けて移動を開始すると、噴孔絞り状態からシート絞り状態へ移行し、この移行時点R3(図2(b)参照)で、実際の噴射率(単位時間当たりに噴射される量)は低下を開始する。そして、弁体12が閉弁位置へ達したR4時点で噴射率はゼロになる。   That is, when the valve body 12 in the full lift position starts to move toward the valve closing position, the state is shifted from the nozzle hole throttle state to the seat throttle state, and at this transition time R3 (see FIG. 2B), the actual injection is performed. The rate (amount injected per unit time) begins to decline. The injection rate becomes zero at the time point R4 when the valve body 12 reaches the valve closing position.

この点を鑑みると、圧力波形が上昇を開始するのは、噴孔絞り状態からシート絞り状態へ移行した時点であると当初では想定していた。しかし、実際に試験した圧力波形には、シート絞り状態へ移行する直前に僅かに圧力上昇する脈動(図2(c)中の一点鎖線B参照)が生じることが分かった。このように脈動Bが生じるメカニズムを本発明者は次のように考察した。   In view of this point, it was initially assumed that the pressure waveform starts to rise when the transition is made from the nozzle hole throttle state to the sheet throttle state. However, it was found that in the actually tested pressure waveform, a pulsation (see the one-dot chain line B in FIG. 2C) in which the pressure slightly increases immediately before the transition to the sheet throttle state occurs. The present inventor considered the mechanism of the occurrence of pulsation B as follows.

すなわち、弁体12がフルリフト位置から閉弁位置へ向けて移動すると、高圧通路11aのうち弁体12を収容する弁体収容室11fの容積が小さくなっていく。すると、その容積縮小分だけ高圧通路11a内の燃料圧力は僅かに上昇することとなり、この上昇が前記脈動Bとなって圧力波形に現れる。要するに、弁体12が閉弁位置へ向けて移動を開始すると、弁体収容室11fの容積縮小に起因して、噴孔絞り状態であるにも拘わらずP3a時点で圧力が僅かに上昇する脈動Bが生じる。その後、シート絞り状態へ移行したことに起因してP3時点で圧力上昇を開始する。ちなみに、弁体12が閉弁位置に達した後も圧力はそのまま上昇していく。   That is, when the valve body 12 moves from the full lift position toward the valve closing position, the volume of the valve body housing chamber 11f that houses the valve body 12 in the high-pressure passage 11a decreases. Then, the fuel pressure in the high pressure passage 11a slightly increases by the volume reduction, and this increase becomes the pulsation B and appears in the pressure waveform. In short, when the valve body 12 starts moving toward the valve closing position, the pulsation in which the pressure slightly increases at the time point P3a despite the injection hole throttle state due to the volume reduction of the valve body accommodating chamber 11f. B is produced. Thereafter, the pressure starts to increase at time P3 due to the shift to the sheet squeezed state. Incidentally, the pressure rises as it is even after the valve body 12 reaches the valve closing position.

以上の考察に基づけば、圧力波形のうちP3時点以降の圧力上昇は噴射率の下降を表しているものの、上記脈動Bは、噴射率が変化していないにも拘わらず生じるものであり、噴射以外の影響による波形であると言える。したがって、上記脈動Bが含まれた状態の圧力波形に基づき噴射率を算出する特許文献1,2の手法では、実際の噴射率(噴射状態)を高精度で検出できない。   Based on the above considerations, the pressure increase after the point P3 in the pressure waveform represents a decrease in the injection rate, but the pulsation B occurs even though the injection rate has not changed. It can be said that the waveform is due to the influence other than Therefore, the methods of Patent Documents 1 and 2 that calculate the injection rate based on the pressure waveform in the state where the pulsation B is included cannot detect the actual injection rate (injection state) with high accuracy.

本発明は、上記課題を解決するためになされたものであり、その目的は、実際の噴射状態を高精度で検出可能な燃料噴射状態検出装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel injection state detection device capable of detecting an actual injection state with high accuracy.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、噴孔を開閉する弁体を開弁作動させることにより、内燃機関で燃焼させる燃料を前記噴孔から噴射する燃料噴射弁と、前記噴孔に至るまでの燃料供給経路内の燃料圧力を検出する燃圧センサと、を備えた燃料噴射システムに適用されることを前提とする。   According to the first aspect of the present invention, a valve body that opens and closes the nozzle hole is opened, thereby a fuel injection valve that injects fuel to be burned in the internal combustion engine from the nozzle hole, and fuel supply up to the nozzle hole It is assumed that the present invention is applied to a fuel injection system including a fuel pressure sensor that detects a fuel pressure in a path.

そして、前記燃圧センサの検出値に基づき、燃料噴射に伴い前記燃料供給経路内で生じる燃料圧力の変化を表した圧力波形を取得する圧力波形取得手段と、前記弁体が閉弁位置へ向けて移動することに伴い生じる前記圧力波形中の脈動を、複数種類のパターンにモデル化した脈動モデルが予め記憶された脈動モデル記憶手段と、前記複数種類の脈動モデルの中から、前記圧力波形中に現れる実際の脈動に類似する脈動モデルを選択する脈動モデル選択手段と、前記脈動モデル選択手段により選択された脈動モデルを前記圧力波形から差し引いて脈動消し波形を算出する脈動消し手段と、前記脈動消し波形に基づき、前記噴孔からの燃料噴射状態を推定する噴射状態推定手段と、を備えることを特徴とする。   Then, based on the detected value of the fuel pressure sensor, a pressure waveform acquisition means for acquiring a pressure waveform representing a change in fuel pressure that occurs in the fuel supply path due to fuel injection, and the valve body toward the valve closing position. A pulsation model storage means in which a pulsation model obtained by modeling pulsations in the pressure waveform caused by movement into a plurality of types of patterns is stored in advance, and the plurality of types of pulsation models in the pressure waveform. A pulsation model selecting means for selecting a pulsation model similar to the actual pulsation that appears; Injection state estimating means for estimating a fuel injection state from the nozzle hole based on a waveform.

上記発明は要するに、弁体が閉弁位置へ向けて移動することに伴い生じる圧力波形中の脈動を、複数種類のパターンにモデル化して記憶させておく。そして、実際の脈動に類似する脈動モデルを選択し、選択した脈動モデルを圧力波形から差し引いて脈動消し波形を算出する。そのため、噴射以外の影響による脈動が圧力波形から除去されるので、補正後の圧力波形(脈動消し波形)と噴射状態との相関を高めることができる。そして、相関が高くなった脈動消し波形に基づき噴射状態を推定するので、噴射状態を高精度で検出できる。   In short, in the above invention, the pulsation in the pressure waveform generated when the valve body moves toward the valve closing position is modeled and stored in a plurality of types of patterns. Then, a pulsation model similar to the actual pulsation is selected, and the pulsation elimination waveform is calculated by subtracting the selected pulsation model from the pressure waveform. Therefore, pulsation due to effects other than injection is removed from the pressure waveform, and thus the correlation between the corrected pressure waveform (pulsation canceling waveform) and the injection state can be increased. Since the injection state is estimated based on the pulsation extinguishing waveform having a high correlation, the injection state can be detected with high accuracy.

請求項2記載の発明では、前記脈動モデル選択手段は、前記燃料噴射弁へ供給される燃料の供給圧力に基づき、前記脈動モデルを選択することを特徴とする。   The invention according to claim 2 is characterized in that the pulsation model selection means selects the pulsation model based on a supply pressure of fuel supplied to the fuel injection valve.

先述した通り、前記脈動は、弁体収容室11fの容積が縮小することに起因して燃料圧力が僅かに上昇する現象である。そして、このように生じる脈動の形は、その時に燃料噴射弁へ供給されている燃料の圧力(供給圧力)が異なれば異なる形になる、との知見を発明者は得た。この知見を鑑みた上記発明によれば、供給圧力に基づき脈動モデルを選択するので、実際の脈動に類似する脈動モデルを高精度で選択できる。よって、脈動消し波形の算出精度を向上でき、ひいては燃料噴射状態の推定精度を向上できる。   As described above, the pulsation is a phenomenon in which the fuel pressure slightly increases due to the volume of the valve body accommodating chamber 11f being reduced. The inventors have found that the shape of the pulsation generated in this way is different if the pressure (supply pressure) of the fuel supplied to the fuel injection valve at that time is different. According to the above invention in view of this knowledge, since the pulsation model is selected based on the supply pressure, a pulsation model similar to the actual pulsation can be selected with high accuracy. Therefore, the calculation accuracy of the pulsation canceling waveform can be improved, and the estimation accuracy of the fuel injection state can be improved.

請求項3記載の発明では、前記燃料噴射弁は多気筒内燃機関の各気筒に設けられ、前記燃圧センサは、複数の前記燃料噴射弁の各々に対して設けられており、前記脈動モデル選択手段は、複数の前記燃圧センサのうち噴射していない燃料噴射弁に対応する燃圧センサにより検出された圧力を前記供給圧力とみなして、前記選択を実施することを特徴とする。   According to a third aspect of the present invention, the fuel injection valve is provided in each cylinder of a multi-cylinder internal combustion engine, and the fuel pressure sensor is provided for each of the plurality of fuel injection valves. Is characterized in that the selection is performed by regarding the pressure detected by the fuel pressure sensor corresponding to the fuel injection valve that is not injecting among the plurality of fuel pressure sensors as the supply pressure.

非噴射気筒の燃圧センサにより検出された圧力は供給圧力を表していると言える。よって上記発明によれば、例えば燃料ポンプから供給される燃料を蓄圧して複数の燃料噴射弁へ分配供給する分配容器に、供給圧力を検出する専用の燃圧センサを設けることを不要にできる。   It can be said that the pressure detected by the non-injection cylinder fuel pressure sensor represents the supply pressure. Therefore, according to the invention, for example, it is unnecessary to provide a dedicated fuel pressure sensor for detecting the supply pressure in a distribution container that accumulates fuel supplied from a fuel pump and distributes and supplies the fuel to a plurality of fuel injection valves.

請求項4記載の発明では、前記脈動消し手段は、噴射終了指令信号を前記燃料噴射弁へ出力した時点に基づき前記圧力波形の位相と前記脈動モデルの位相を関連付けし、その関連付けした状態で前記圧力波形から前記脈動モデルを差し引いて前記脈動消し波形を算出することを特徴とする。   According to a fourth aspect of the present invention, the pulsation canceling means associates the phase of the pressure waveform and the phase of the pulsation model based on the time point when the injection end command signal is output to the fuel injection valve, and The pulsation elimination waveform is calculated by subtracting the pulsation model from the pressure waveform.

脈動モデルを圧力波形から差し引いて脈動消し波形を算出するにあたり、圧力波形の位相と脈動モデルの位相を精度良く関連付けして合わせ込んだ状態で前記算出を実施しなければ、脈動消し波形の精度が低下してしまう。この課題に対し本発明者は、噴射終了指令信号を出力した時点と脈動が現れる時点とは相関が高いことに着目して上記発明を想起した。すなわち、噴射終了指令信号の出力時点に基づき圧力波形の位相と脈動モデルの位相を関連付けするので、脈動消し波形の算出精度を向上でき、ひいては燃料噴射状態の推定精度を向上できる。   When calculating the pulsation elimination waveform by subtracting the pulsation model from the pressure waveform, the accuracy of the pulsation elimination waveform will be improved if the above calculation is not performed in a state where the phase of the pressure waveform and the phase of the pulsation model are accurately correlated and combined. It will decline. In view of this problem, the present inventor has conceived the above invention by paying attention to the fact that there is a high correlation between the time when the injection end command signal is output and the time when pulsation appears. That is, since the phase of the pressure waveform and the phase of the pulsation model are associated based on the output time point of the injection end command signal, the calculation accuracy of the pulsation canceling waveform can be improved, and the estimation accuracy of the fuel injection state can be improved.

本発明の一実施形態にかかる燃料噴射状態検出装置が適用される、燃料噴射システムの概略を示す図。The figure which shows the outline of the fuel-injection system with which the fuel-injection state detection apparatus concerning one Embodiment of this invention is applied. (a)は図1に示す燃料噴射弁への噴射指令信号、(b)は噴射指令信号に伴い生じる燃料噴射率の変化を表す噴射率波形、(c)は図1に示す燃圧センサにより検出された検出圧力の変化を表す圧力波形を示すタイムチャート。(A) is an injection command signal to the fuel injection valve shown in FIG. 1, (b) is an injection rate waveform representing a change in fuel injection rate caused by the injection command signal, and (c) is detected by a fuel pressure sensor shown in FIG. The time chart which shows the pressure waveform showing the change of the detected pressure made. (a)は弁体がフルリフト位置にある状態を示し、(b)は噴孔絞り状態を示し、(c)はシート絞り状態を示す断面図。(A) shows the state in which a valve body exists in a full lift position, (b) shows a nozzle hole throttle state, (c) is sectional drawing which shows a sheet | seat throttle state. (a)は噴射時圧力波形W及び非噴射時圧力波形PCを示し、(b)は噴射時圧力波形Wから非噴射時圧力波形PCを差し引いて得られた波形W−PCを示し、(c)は波形W−PCから脈動モデルMを差し引いて得られた波形W−PC−M示す図。(A) shows an injection pressure waveform W and a non-injection pressure waveform PC, (b) shows a waveform W-PC obtained by subtracting a non-injection pressure waveform PC from an injection pressure waveform W, (c ) Is a diagram showing a waveform W-PC-M obtained by subtracting the pulsation model M from the waveform W-PC. 図4(c)に示す波形W−PC−Mを算出して噴射率波形を算出する処理手順を示すフローチャート。The flowchart which shows the process sequence which calculates the waveform W-PC-M shown in FIG.4 (c), and calculates an injection rate waveform.

以下、本発明に係る燃料噴射状態検出装置を具体化した一実施形態を図面に基づいて説明する。本実施形態の燃料噴射状態検出装置は、車両用のエンジン(内燃機関)に搭載されたものであり、当該エンジンには、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。   Hereinafter, an embodiment embodying a fuel injection state detection device according to the present invention will be described with reference to the drawings. The fuel injection state detection device according to the present embodiment is mounted on a vehicle engine (internal combustion engine), and compression auto-ignition is performed by injecting high-pressure fuel into a plurality of cylinders # 1 to # 4. It assumes a diesel engine that burns.

図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、各々の燃料噴射弁10に搭載された燃圧センサ20、及び車両に搭載された電子制御装置であるECU30等を示す模式図である。   FIG. 1 is a schematic diagram showing a fuel injection valve 10 mounted on each cylinder of the engine, a fuel pressure sensor 20 mounted on each fuel injection valve 10, an ECU 30 that is an electronic control device mounted on a vehicle, and the like. is there.

先ず、燃料噴射弁10を含むエンジンの燃料噴射システムについて説明する。燃料タンク40内の燃料は、高圧ポンプ41によりコモンレール42(蓄圧容器)に圧送されて蓄圧され、各気筒の燃料噴射弁10(#1〜#4)へ分配供給される。複数の燃料噴射弁10(#1〜#4)は、予め設定された順番で燃料の噴射を順次行う。なお、高圧ポンプ41にはプランジャポンプが用いられているため、プランジャの往復動に同期して間欠的に燃料は圧送される。   First, an engine fuel injection system including the fuel injection valve 10 will be described. The fuel in the fuel tank 40 is pumped and stored in the common rail 42 (pressure accumulating container) by the high pressure pump 41, and is distributed and supplied to the fuel injection valves 10 (# 1 to # 4) of each cylinder. The plurality of fuel injection valves 10 (# 1 to # 4) sequentially inject fuel in a preset order. Since the plunger pump is used as the high-pressure pump 41, the fuel is intermittently pumped in synchronism with the reciprocating movement of the plunger.

燃料噴射弁10は、以下に説明するボデー11、ニードル形状の弁体12及びアクチュエータ13等を備えて構成されている。ボデー11は、内部に高圧通路11aを形成するとともに、燃料を噴射する噴孔11bを形成する。弁体12は、ボデー11内に収容されて噴孔11bを開閉する。   The fuel injection valve 10 includes a body 11, a needle-shaped valve body 12, an actuator 13, and the like described below. The body 11 forms a high-pressure passage 11a inside and a nozzle hole 11b for injecting fuel. The valve body 12 is accommodated in the body 11 and opens and closes the nozzle hole 11b.

ボデー11内には弁体12に背圧を付与する背圧室11cが形成されており、高圧通路11a及び低圧通路11dは背圧室11cと接続されている。高圧通路11a及び低圧通路11dと背圧室11cとの連通状態は制御弁14により切り替えられており、電磁コイルやピエゾ素子等のアクチュエータ13へ通電して制御弁14を図1の下方へ押し下げ作動させると、背圧室11cは低圧通路11dと連通して背圧室11c内の燃料圧力は低下する。その結果、弁体12へ付与される背圧力が低下して弁体12は開弁作動する。一方、アクチュエータ13への通電をオフして制御弁14を図1の上方へ作動させると、背圧室11cは高圧通路11aと連通して背圧室11c内の燃料圧力は上昇する。その結果、弁体12へ付与される背圧力が上昇して弁体12は閉弁作動する。   A back pressure chamber 11c for applying a back pressure to the valve body 12 is formed in the body 11, and the high pressure passage 11a and the low pressure passage 11d are connected to the back pressure chamber 11c. The communication state between the high pressure passage 11a and the low pressure passage 11d and the back pressure chamber 11c is switched by the control valve 14, and the actuator 13 such as an electromagnetic coil or a piezoelectric element is energized to push the control valve 14 downward in FIG. As a result, the back pressure chamber 11c communicates with the low pressure passage 11d and the fuel pressure in the back pressure chamber 11c decreases. As a result, the back pressure applied to the valve body 12 decreases and the valve body 12 opens. On the other hand, when the power supply to the actuator 13 is turned off and the control valve 14 is operated upward in FIG. 1, the back pressure chamber 11c communicates with the high pressure passage 11a and the fuel pressure in the back pressure chamber 11c increases. As a result, the back pressure applied to the valve body 12 rises and the valve body 12 is closed.

したがって、ECU30がアクチュエータ13への通電を制御することで、弁体12の開閉作動が制御される。これにより、コモンレール42から高圧通路11aへ供給された高圧燃料は、弁体12の開閉作動に応じて噴孔11bから噴射される。例えばECU30は、エンジン出力軸の回転速度及びエンジン負荷等に基づき、噴射開始時期、噴射終了時期及び噴射量等の目標噴射状態を算出し、算出した目標噴射状態となるようアクチュエータ13へ噴射指令信号を出力して、燃料噴射弁10の作動を制御する。   Therefore, the ECU 30 controls the energization of the actuator 13 so that the opening / closing operation of the valve body 12 is controlled. Thereby, the high-pressure fuel supplied from the common rail 42 to the high-pressure passage 11 a is injected from the injection hole 11 b according to the opening / closing operation of the valve body 12. For example, the ECU 30 calculates a target injection state such as an injection start timing, an injection end timing, and an injection amount based on the rotation speed of the engine output shaft, the engine load, and the like, and sends an injection command signal to the actuator 13 so that the calculated target injection state is obtained. Is output to control the operation of the fuel injection valve 10.

ECU30は、アクセル操作量等から算出されるエンジン負荷やエンジン回転速度に基づき目標噴射状態を算出する。例えば、エンジン負荷及びエンジン回転速度に対応する最適噴射状態(噴射段数、噴射開始時期、噴射終了時期、噴射量等)を噴射状態マップにして記憶させておく。そして、現時点でのエンジン負荷及びエンジン回転速度に基づき、噴射状態マップを参照して目標噴射状態を算出する。そして、算出した目標噴射状態に基づき噴射指令信号t1、t2、Tqを設定する。例えば、目標噴射状態に対応する噴射指令信号を指令マップにして記憶させておき、算出した目標噴射状態に基づき、指令マップを参照して噴射指令信号を設定する。以上により、エンジン負荷及びエンジン回転速度に応じた噴射指令信号が設定され、ECU30から燃料噴射弁10へ出力される。   The ECU 30 calculates the target injection state based on the engine load and engine speed calculated from the accelerator operation amount and the like. For example, the optimal injection state (the number of injection stages, the injection start time, the injection end time, the injection amount, etc.) corresponding to the engine load and the engine speed is stored as an injection state map. Based on the current engine load and engine speed, the target injection state is calculated with reference to the injection state map. Then, injection command signals t1, t2, and Tq are set based on the calculated target injection state. For example, an injection command signal corresponding to the target injection state is stored as a command map, and the injection command signal is set with reference to the command map based on the calculated target injection state. Thus, the injection command signal corresponding to the engine load and the engine rotation speed is set and output from the ECU 30 to the fuel injection valve 10.

ここで、噴孔11bの磨耗等、燃料噴射弁10の経年劣化に起因して、噴射指令信号に対する実際の噴射状態は変化していく。そこで、後に詳述するように燃圧センサ20により検出された圧力波形に基づき燃料の噴射率波形を演算して噴射状態を検出し、検出した噴射状態と噴射指令信号(パルスオン時期t1、パルスオフ時期t2及びパルスオン期間Tq)との相関関係を学習し、その学習結果に基づき、指令マップに記憶された噴射指令信号を補正する。これにより、実噴射状態が目標噴射状態に一致するよう、燃料噴射状態を高精度で制御できる。   Here, the actual injection state with respect to the injection command signal changes due to deterioration of the fuel injection valve 10 such as wear of the injection hole 11b. Therefore, as described in detail later, the fuel injection rate waveform is calculated based on the pressure waveform detected by the fuel pressure sensor 20 to detect the injection state, and the detected injection state and the injection command signal (pulse on timing t1, pulse off timing t2). And the correlation with the pulse-on period Tq), and the injection command signal stored in the command map is corrected based on the learning result. Thus, the fuel injection state can be controlled with high accuracy so that the actual injection state matches the target injection state.

次に、燃圧センサ20のハード構成について説明する。燃圧センサ20は、以下に説明するステム21(起歪体)、圧力センサ素子22及びモールドIC23等を備えて構成されている。ステム21はボデー11に取り付けられており、ステム21に形成されたダイヤフラム部21aが高圧通路11aを流通する高圧燃料の圧力を受けて弾性変形する。圧力センサ素子22はダイヤフラム部21aに取り付けられており、ダイヤフラム部21aで生じた弾性変形量に応じて圧力検出信号を出力する。   Next, the hardware configuration of the fuel pressure sensor 20 will be described. The fuel pressure sensor 20 includes a stem 21 (distortion body), a pressure sensor element 22, a mold IC 23, and the like described below. The stem 21 is attached to the body 11, and the diaphragm portion 21a formed on the stem 21 is elastically deformed by receiving the pressure of the high-pressure fuel flowing through the high-pressure passage 11a. The pressure sensor element 22 is attached to the diaphragm portion 21a, and outputs a pressure detection signal in accordance with the amount of elastic deformation generated in the diaphragm portion 21a.

モールドIC23は、圧力センサ素子22から出力された圧力検出信号を増幅する増幅回路等の電子部品を樹脂モールドして形成されており、ステム21とともに燃料噴射弁10に搭載されている。ボデー11上部にはコネクタ15が設けられており、コネクタ15に接続されたハーネス16により、モールドIC23及びアクチュエータ13とECU30とはそれぞれ電気接続される。   The mold IC 23 is formed by resin molding an electronic component such as an amplifier circuit that amplifies the pressure detection signal output from the pressure sensor element 22, and is mounted on the fuel injection valve 10 together with the stem 21. A connector 15 is provided on the upper portion of the body 11, and the mold IC 23, the actuator 13, and the ECU 30 are electrically connected by a harness 16 connected to the connector 15.

ここで、噴孔11bから燃料の噴射を開始することに伴い高圧通路11a内の燃料の圧力(燃圧)は低下し、噴射を終了することに伴い燃圧は上昇する。つまり、燃圧の変化と噴射率(単位時間当たりに噴射される噴射量)の変化とは相関があり、燃圧変化から噴射率変化(実噴射状態)を検出できると言える。そして、検出した実噴射状態が目標噴射状態となるよう先述した噴射指令信号を補正する。これにより、噴射状態を精度良く制御できる。   Here, the fuel pressure (fuel pressure) in the high-pressure passage 11a decreases with the start of fuel injection from the nozzle hole 11b, and the fuel pressure increases with the end of injection. That is, it can be said that the change in the fuel pressure and the change in the injection rate (injection amount injected per unit time) are correlated, and the change in the injection rate (actual injection state) can be detected from the change in the fuel pressure. Then, the above-described injection command signal is corrected so that the detected actual injection state becomes the target injection state. Thereby, the injection state can be controlled with high accuracy.

次に、燃料噴射中の燃料噴射弁10に搭載された燃圧センサ20により検出した燃圧変化を表した圧力波形と、その燃料噴射弁10にかかる燃料噴射率の変化を表した噴射率波形との相関について、図2を用いて説明する。   Next, a pressure waveform representing a change in fuel pressure detected by a fuel pressure sensor 20 mounted on the fuel injection valve 10 during fuel injection, and an injection rate waveform representing a change in the fuel injection rate applied to the fuel injection valve 10. The correlation will be described with reference to FIG.

図2(a)は、燃料噴射弁10のアクチュエータ13へECU30から出力される噴射指令信号を示しており、この指令信号のパルスオンによりアクチュエータ13が通電作動して噴孔11bが開弁する。つまり、噴射指令信号のパルスオン時期t1により噴射開始が指令され、パルスオフ時期t2により噴射終了が指令される。よって、指令信号のパルスオン期間(噴射指令期間Tq)により噴孔11bの開弁時間を制御することで、噴射量Qを制御している。   FIG. 2A shows an injection command signal output from the ECU 30 to the actuator 13 of the fuel injection valve 10. When the command signal is turned on, the actuator 13 is energized to open the nozzle hole 11b. That is, the injection start is commanded by the pulse-on timing t1 of the injection command signal, and the injection end is commanded by the pulse-off timing t2. Therefore, the injection amount Q is controlled by controlling the valve opening time of the nozzle hole 11b according to the pulse-on period (injection command period Tq) of the command signal.

図2(b)は、上記噴射指令に伴い生じる噴孔11bからの燃料噴射率の変化(噴射率波形)を示し、図2(c)は、燃料噴射中の燃料噴射弁10に設けられた燃圧センサ20により検出された、噴射率の変化に伴い生じる検出圧力の変化(噴射時圧力波形)を示す。噴射時圧力波形と噴射率波形とは以下に説明する相関があるため、検出された噴射時圧力波形から噴射率波形を推定(検出)することができる。   FIG. 2 (b) shows a change in fuel injection rate (injection rate waveform) from the nozzle hole 11b caused by the injection command, and FIG. 2 (c) is provided in the fuel injection valve 10 during fuel injection. The change of the detection pressure (pressure waveform at the time of injection) which arises with the change of the injection rate detected by the fuel pressure sensor 20 is shown. Since the injection pressure waveform and the injection rate waveform have the correlation described below, the injection rate waveform can be estimated (detected) from the detected injection pressure waveform.

すなわち、先ず、図2(a)に示すように噴射開始指令がなされたt1時点の後、噴射率がR1の時点で上昇を開始して噴射が開始される。一方、検出圧力は、R1の時点で噴射率が上昇を開始してから遅れ時間C1が経過した時点で、変化点P1にて下降を開始する。その後、R2の時点で噴射率が最大噴射率に到達したことに伴い、検出圧力の下降は変化点P2にて停止する。次に、R3の時点で噴射率が下降を開始したことに伴い、検出圧力は変化点P3にて上昇を開始する。その後、R4の時点で噴射率がゼロになり実際の噴射が終了したことに伴い、検出圧力の上昇は変化点P5にて停止する。   That is, first, as shown in FIG. 2 (a), after the time t1 when the injection start command is given, the injection rate starts to rise and the injection is started when the injection rate is R1. On the other hand, the detected pressure starts decreasing at the change point P1 when the delay time C1 elapses after the injection rate starts increasing at the time R1. Thereafter, as the injection rate reaches the maximum injection rate at the time of R2, the decrease in the detected pressure stops at the change point P2. Next, as the injection rate starts decreasing at the time point R3, the detected pressure starts increasing at the change point P3. Thereafter, as the injection rate becomes zero at the time point R4 and the actual injection ends, the increase in the detected pressure stops at the change point P5.

ちなみに、噴射時圧力波形のうち一点鎖線Aに示す部分の脈動は、燃料噴射に伴い生じた高圧通路11a内の燃料減少分を補うべく、最大噴射率に達した直後にコモンレール42から高圧通路11aへ燃料供給されることに起因して生じるものである。また、噴射時圧力波形のうち一点鎖線Bに示す部分の脈動は、先述したように、図3(b)の噴孔絞り状態の期間中に弁体12が閉弁位置へ向けて移動することに伴い、弁体収容室11fの容積が縮小したことに起因して生じるものである。   Incidentally, the pulsation of the portion indicated by the alternate long and short dash line A in the pressure waveform at the time of injection compensates for the fuel decrease in the high pressure passage 11a caused by the fuel injection, and immediately after reaching the maximum injection rate, from the common rail 42 to the high pressure passage 11a. This is caused by the fuel being supplied. Further, as described above, the pulsation of the portion indicated by the alternate long and short dash line B in the pressure waveform during injection is that the valve body 12 moves toward the valve closing position during the period of the injection hole throttle state of FIG. As a result, the volume of the valve body accommodating chamber 11f is reduced.

以上説明したように、噴射時圧力波形と噴射率波形とは相関が高い。そして、噴射率波形には、噴射開始時期(R1出現時期)や、噴射終了時期(R4出現時期)、噴射量(図2(b)中の網点部分の面積)が表されているので、噴射時圧力波形を噴射率波形に変換することで噴射状態を検出できる。   As explained above, the pressure waveform during injection and the injection rate waveform are highly correlated. The injection rate waveform shows the injection start time (R1 appearance time), the injection end time (R4 appearance time), and the injection amount (area of the halftone dot portion in FIG. 2B). The injection state can be detected by converting the injection pressure waveform into the injection rate waveform.

ところで、コモンレール42から燃料噴射弁10へ分配供給される燃料の圧力(分配供給圧力PC)は刻々と変化する。例えば、図4(a)中の実線は噴射気筒に対応する圧力波形Wを示すのに対し、図4(a)中の点線は、前記圧力波形Wと同時期に検出された分配供給圧力PCの変化を示す。なお、分配供給圧力PCの変化は、噴射していない燃料噴射弁10に対応する燃圧センサ20を用いて検出している。したがって、例えば#1気筒の燃料噴射弁10(#1)から燃料を噴射して、#2気筒の燃料噴射弁10(#2)からは噴射を停止している時には、#1気筒の燃圧センサ20による検出圧力が噴射時圧力波形Wに相当し、#2気筒(裏気筒)の燃圧センサ20による検出圧力が、分配供給圧力PCの変化を示す非噴射時圧力波形に相当する。   Incidentally, the pressure (distributed supply pressure PC) of the fuel distributed and supplied from the common rail 42 to the fuel injection valve 10 changes every moment. For example, the solid line in FIG. 4A indicates the pressure waveform W corresponding to the injection cylinder, whereas the dotted line in FIG. 4A indicates the distributed supply pressure PC detected at the same time as the pressure waveform W. Shows changes. The change in the distribution supply pressure PC is detected by using the fuel pressure sensor 20 corresponding to the fuel injection valve 10 that is not injecting. Therefore, for example, when the fuel is injected from the fuel injection valve 10 (# 1) of the # 1 cylinder and the injection is stopped from the fuel injection valve 10 (# 2) of the # 2 cylinder, the fuel pressure sensor of the # 1 cylinder The pressure detected by 20 corresponds to the pressure waveform W during injection, and the pressure detected by the fuel pressure sensor 20 of the # 2 cylinder (back cylinder) corresponds to the pressure waveform during non-injection indicating the change in the distribution supply pressure PC.

図4(a)に例示する非噴射時圧力波形が、噴射開始に伴い徐々に低下していく波形になっている理由は、コモンレール42から噴射気筒の燃料噴射弁10へ分配供給した分だけ分配供給圧力PCが低下することによる。ちなみに、燃料噴射中に高圧ポンプ41によるポンプ圧送が行われると、分配供給圧力PCは燃料噴射中であっても上昇していく。   The reason why the non-injection pressure waveform illustrated in FIG. 4A is a waveform that gradually decreases with the start of injection is that the distribution is performed by the amount distributed from the common rail 42 to the fuel injection valve 10 of the injection cylinder. This is because the supply pressure PC decreases. Incidentally, when the pumping by the high-pressure pump 41 is performed during fuel injection, the distribution supply pressure PC increases even during fuel injection.

要するに、噴射時圧力波形Wは分配供給圧力PCの変化(非噴射時圧力波形)の影響を受けているので、噴射時圧力波形Wから非噴射時圧力波形を差し引けば、噴射時圧力波形Wから分配供給圧力PCの変化による影響が除去される。図4(b)中の実線は、このように差し引く補正を実施した後の噴射時圧力波形W−PCを示している。なお、図2(c)に例示される噴射時圧力波形Wは、分配供給圧力PCが変化していないと仮定した場合の波形であり、差し引いた後の波形W−PCと噴射時圧力波形Wとが同じ波形になっていると仮定したものである。   In short, since the injection pressure waveform W is affected by the change of the distribution supply pressure PC (non-injection pressure waveform), if the non-injection pressure waveform is subtracted from the injection pressure waveform W, the injection pressure waveform W Thus, the influence of the change in the distribution supply pressure PC is removed. The solid line in FIG. 4B shows the pressure waveform W-PC at the time of injection after the correction to be subtracted in this way. In addition, the pressure waveform W at the time of injection illustrated in FIG. 2C is a waveform when it is assumed that the distribution supply pressure PC has not changed. The subtracted waveform W-PC and the pressure waveform W at the time of injection W Are assumed to have the same waveform.

次に、燃圧センサ20の検出値(噴射時圧力波形W)に基づき、図2(b)に示す噴射率波形を算出する手順について説明する。   Next, a procedure for calculating the injection rate waveform shown in FIG. 2B based on the detection value (pressure waveform W during injection) of the fuel pressure sensor 20 will be described.

図5は、ECU30が有するマイクロコンピュータによる噴射率波形の算出処理手順を示すフローチャートであり、当該処理は、イグニッションスイッチがオン操作されたことをトリガとして起動した後、所定周期で繰り返し実行される。   FIG. 5 is a flowchart showing a procedure for calculating the injection rate waveform by the microcomputer of the ECU 30. This process is repeatedly executed at a predetermined cycle after being started up when the ignition switch is turned on.

先ず、図5に示すステップS10(圧力波形取得手段)において、燃料噴射中の気筒#1の燃料噴射弁10に対応する燃圧センサ20により検出された、先述の圧力波形W(図4(a)中の実線参照)を取得する。続くステップS20では、噴射していない気筒#2の燃料噴射弁10に対応する燃圧センサ20により検出された、先述の非噴射時圧力波形PCを取得する(図4(a)中の破線参照)。続くステップS30では、ステップS10で取得した噴射時圧力波形Wから、ステップS20で取得した非噴射時圧力波形PCを差し引いて、噴射時圧力波形Wを補正する(図4(b)中の実線参照)。これにより、噴射時圧力波形Wに含まれている非噴射気筒(裏気筒)の波形成分(供給圧PCの変化)が、噴射時圧力波形から除去される。   First, in step S10 (pressure waveform acquisition means) shown in FIG. 5, the pressure waveform W (FIG. 4A) detected by the fuel pressure sensor 20 corresponding to the fuel injection valve 10 of the cylinder # 1 during fuel injection. (See the solid line inside.) In the subsequent step S20, the aforementioned non-injection pressure waveform PC detected by the fuel pressure sensor 20 corresponding to the fuel injection valve 10 of the cylinder # 2 that has not injected is acquired (see the broken line in FIG. 4A). . In subsequent step S30, the non-injection pressure waveform PC acquired in step S20 is subtracted from the injection pressure waveform W acquired in step S10 to correct the injection pressure waveform W (see the solid line in FIG. 4B). ). Thereby, the waveform component (change in supply pressure PC) of the non-injection cylinder (back cylinder) included in the injection pressure waveform W is removed from the injection pressure waveform.

ここで、先述した脈動Bは、図2(c)中の符号M1,M2,M3に例示される如く複数種類のパターンに予めモデル化されている。これらの脈動モデルM1〜M3は、脈動の形状が異なっており、具体的には圧力上昇量を示す脈動の高さ(振幅)、及び圧力上昇期間を示す脈動長さ(周期)がそれぞれ異なるようにモデル化されている。そして、これら複数種類の脈動モデルM1〜M3は、ECU30(脈動モデル記憶手段)が有するEEPROM等の不揮発性メモリに予め記憶されている。   Here, the pulsation B described above is modeled in advance into a plurality of types of patterns as exemplified by the symbols M1, M2, and M3 in FIG. These pulsation models M1 to M3 have different pulsation shapes. Specifically, the pulsation height (amplitude) indicating the pressure increase amount and the pulsation length (period) indicating the pressure increase period are different. Has been modeled. These plural types of pulsation models M1 to M3 are stored in advance in a nonvolatile memory such as an EEPROM included in the ECU 30 (pulsation model storage means).

そして、図5のステップS40(脈動モデル選択手段)では、補正後の噴射時圧力波形W−PC中に現れる実際の脈動Bに最も近い脈動モデル(最適脈動モデルM)を、複数種類の脈動モデルM1〜M3の中から選択する。具体的には、供給圧力PCと最適脈動モデルとの関係を予めマップ等の形式でECU30に予め記憶させておく。そして、ステップS20で取得した供給圧力PCに基づき前記マップを参照して、実際の脈動Bの波形形状とその形状が最も類似する最適脈動モデルMを選択する。供給圧力PCに応じて脈動モデルの形状は変化する。例えば、供給圧力PCが高いほど脈動モデルの脈動高さは大きくなり、また、供給圧力PCが高いほど脈動モデルの脈動長さは長くなる。したがって、供給圧力PCに基づけば、最適脈動モデルMを選択できる。   In step S40 (pulsation model selection means) in FIG. 5, the pulsation model (optimal pulsation model M) closest to the actual pulsation B appearing in the corrected injection pressure waveform W-PC is selected from a plurality of types of pulsation models. Select from M1 to M3. Specifically, the relationship between the supply pressure PC and the optimum pulsation model is stored in advance in the ECU 30 in the form of a map or the like. Then, referring to the map based on the supply pressure PC acquired in step S20, the optimum pulsation model M whose shape is most similar to the waveform shape of the actual pulsation B is selected. The shape of the pulsation model changes according to the supply pressure PC. For example, the pulsation height of the pulsation model increases as the supply pressure PC increases, and the pulsation length of the pulsation model increases as the supply pressure PC increases. Therefore, the optimal pulsation model M can be selected based on the supply pressure PC.

例えば、脈動モデルM1〜M3と脈動Bとのずれ量(各々の時刻における圧力差の総和)が最小となる脈動モデルが選択されるように、供給圧力PCと最適脈動モデルとの関係を設定しておけば、最も類似する最適脈動モデルMを選択する上で好適である。或いは、脈動モデルM1〜M3と脈動Bとの振幅差及び周波数差の少なくとも一方が最小となる脈動モデルが選択されるように、供給圧力PCと最適脈動モデルとの関係を設定しておいてもよい。   For example, the relationship between the supply pressure PC and the optimum pulsation model is set so that the pulsation model that minimizes the amount of deviation between the pulsation models M1 to M3 and the pulsation B (the sum of the pressure differences at each time) is selected. This is suitable for selecting the most similar optimal pulsation model M. Alternatively, the relationship between the supply pressure PC and the optimum pulsation model may be set such that at least one of the amplitude difference and the frequency difference between the pulsation models M1 to M3 and the pulsation B is selected. Good.

なお、上記選択に用いる供給圧力PCには、噴射開始前の圧力P0(図2(c)参照)を用いてもよいが、噴射終了指令信号を出力したt2時点以降の供給圧力PCを用いることが望ましい。例えば、脈動Mが現れる期間T20(図4(b)参照)の供給圧力PCを用いればよく、詳細には、前記期間T20中の供給圧力PCの平均を用いればよい。なお、噴射終了指令信号を出力したt2時点から所定時間T10(図2(a)参照)が経過した時点を前記期間T20の開始時点t3とすればよい。或いは、上記選択に用いる供給圧力PCに、前記t2時点の供給圧力PCを用いてもよいし、前記t3時点の供給圧力PCを用いてもよい。   Note that the pressure P0 before the start of injection (see FIG. 2C) may be used as the supply pressure PC used for the selection, but the supply pressure PC after time t2 when the injection end command signal is output is used. Is desirable. For example, the supply pressure PC during the period T20 in which the pulsation M appears (see FIG. 4B) may be used. Specifically, the average of the supply pressure PC during the period T20 may be used. It should be noted that the time point at which a predetermined time T10 (see FIG. 2 (a)) has elapsed from the time point t2 when the injection end command signal is output may be set as the start time point t3 of the period T20. Alternatively, the supply pressure PC at the time t2 may be used as the supply pressure PC used for the selection, or the supply pressure PC at the time t3 may be used.

続くステップS50(脈動消し手段)では、ステップS30で算出した圧力波形W−PCから、ステップS40で選択した脈動モデルMを差し引く処理(脈動消し処理)を実施して、図4(c)に示す脈動消し波形W−PC−Mを算出する。このようにして算出された脈動消し波形W−PC−Mには、脈動Bの影響が除去されることとなる。   In the subsequent step S50 (pulsation canceling means), a process (pulsation canceling process) for subtracting the pulsation model M selected in step S40 from the pressure waveform W-PC calculated in step S30 is performed, as shown in FIG. A pulsation elimination waveform W-PC-M is calculated. The influence of the pulsation B is removed from the pulsation elimination waveform W-PC-M calculated in this way.

この脈動消し処理を実施するにあたり、圧力波形W−PCの位相と脈動モデルMの位相を精度良く関連付けして合わせ込んだ状態で前記処理を実施しなければ、脈動消し波形W−PC−Mの精度が低下してしまう。そこで本実施形態では、噴射終了指令信号の出力時点に基づき圧力波形の位相と脈動モデルの位相を関連付けする。例えば、脈動モデルMの開始時点を前記t3時点に合わせ込んで関連付けすればよい。これにより、脈動消し波形W−PC−Mの算出精度向上を図ることができる。   In performing this pulsation canceling process, if the above process is not performed in a state where the phase of the pressure waveform W-PC and the phase of the pulsation model M are accurately associated and matched, the pulsation canceling waveform W-PC-M Accuracy will be reduced. Therefore, in the present embodiment, the phase of the pressure waveform and the phase of the pulsation model are associated based on the output time point of the injection end command signal. For example, the start time point of the pulsation model M may be associated with the time point t3. Thereby, the calculation accuracy of the pulsation elimination waveform W-PC-M can be improved.

続くステップS60(噴射状態推定手段)では、ステップS50で算出した脈動消し波形W−PC−Mに基づき、図2(b)に示す噴射率波形を推定する。例えば、脈動消し波形W−PC−M中に現れる各種変化点P1,P2,P3,P5、傾きPα,Pβ、及びP1からP2までの圧力降下量等と、噴射率波形の各種変化点R1,R2,R3,R4、傾きRα,Rβ、及び最大噴射率Rhとの相関を予めECU30に記憶させておき、その相関に基づき、脈動消し波形W−PC−Mから噴射率波形を推定する。ちなみに、図2(b)の例では噴射率波形を台形形状に推定しているが、噴射指令期間Tqが短く噴射量が少ない場合には、噴射率波形の形状は三角形になる。   In subsequent step S60 (injection state estimating means), the injection rate waveform shown in FIG. 2B is estimated based on the pulsation elimination waveform W-PC-M calculated in step S50. For example, various change points P1, P2, P3, and P5 appearing in the pulsation elimination waveform W-PC-M, slopes Pα and Pβ, and pressure drop amounts from P1 to P2, and various change points R1 and R1 of the injection rate waveform. Correlations with R2, R3, R4, gradients Rα, Rβ, and maximum injection rate Rh are stored in advance in ECU 30, and an injection rate waveform is estimated from pulsation elimination waveform W-PC-M based on the correlation. Incidentally, in the example of FIG. 2B, the injection rate waveform is estimated in a trapezoidal shape. However, when the injection command period Tq is short and the injection amount is small, the injection rate waveform has a triangular shape.

以上により、本実施形態によれば、弁体12が閉弁位置(着座面11eへの着座位置)へ向けて移動することに伴い生じる圧力波形中の脈動Bを、複数種類のパターンにモデル化して記憶させておく。そして、複数種類の脈動モデルM1〜M3の中から、実際の脈動Bに最も類似する脈動モデルMを選択し、選択した脈動モデルMを圧力波形W−PCから差し引いて脈動消し波形W−PC−Mを算出する。そのため、噴射以外の影響による脈動Bが圧力波形Wから除去されるので、補正後の圧力波形(脈動消し波形)と実際の噴射率変化との相関を高めることができる。そして、相関が高くなった脈動消し波形W−PC−Mに基づき噴射率波形を推定するので、噴射率波形(噴射状態)を高精度で検出できる。   As described above, according to the present embodiment, the pulsation B in the pressure waveform generated when the valve body 12 moves toward the valve closing position (sitting position on the seating surface 11e) is modeled into a plurality of types of patterns. To remember. Then, a pulsation model M most similar to the actual pulsation B is selected from a plurality of types of pulsation models M1 to M3, and the selected pulsation model M is subtracted from the pressure waveform W-PC to eliminate the pulsation elimination waveform W-PC-. M is calculated. Therefore, since the pulsation B due to the influence other than the injection is removed from the pressure waveform W, the correlation between the corrected pressure waveform (pulsation canceling waveform) and the actual change in the injection rate can be enhanced. Since the injection rate waveform is estimated based on the pulsation elimination waveform W-PC-M having a high correlation, the injection rate waveform (injection state) can be detected with high accuracy.

また、その時の供給圧力PCに基づいて、実際の脈動Bに最も類似する脈動モデルMを選択するので、実際の脈動Bに最も類似する脈動モデルMを高精度で選択できる。よって、脈動消し波形W−PC−Mの算出精度を向上でき、ひいては燃料噴射状態の推定精度を向上できる。   Further, since the pulsation model M most similar to the actual pulsation B is selected based on the supply pressure PC at that time, the pulsation model M most similar to the actual pulsation B can be selected with high accuracy. Therefore, the calculation accuracy of the pulsation elimination waveform W-PC-M can be improved, and the estimation accuracy of the fuel injection state can be improved.

また、非噴射気筒の燃圧センサ20により噴射時圧力波形Wと同時期に検出された波形(非噴射時圧力波形)は分配供給圧力PCの変化を表していることに着目し、前記選択に用いる供給圧力PCを非噴射時圧力波形に基づき取得するので、供給圧力を検出する専用の燃圧センサをコモンレール42に設けることを不要にできる。   In addition, paying attention to the fact that the waveform (non-injection pressure waveform) detected at the same time as the injection pressure waveform W by the fuel pressure sensor 20 of the non-injection cylinder represents a change in the distribution supply pressure PC, it is used for the selection. Since the supply pressure PC is acquired based on the non-injection pressure waveform, it is unnecessary to provide a dedicated fuel pressure sensor for detecting the supply pressure on the common rail 42.

さらに、本実施形態によれば、分配供給圧力PCの変化を表す波形を噴射時圧力波形Wから差し引いて補正するので、噴射時圧力波形Wから分配供給圧力PCの変化による影響が除去される。よって、脈動消し波形W−PC−Mと実際の噴射率変化との相関を高めることができるので、噴射率波形の算出精度向上を促進できる。   Furthermore, according to the present embodiment, the waveform representing the change in the distribution supply pressure PC is corrected by subtracting it from the injection pressure waveform W, so that the influence due to the change in the distribution supply pressure PC is removed from the injection pressure waveform W. Therefore, since the correlation between the pulsation elimination waveform W-PC-M and the actual change in the injection rate can be increased, the improvement in the calculation accuracy of the injection rate waveform can be promoted.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・上記実施形態では、供給圧力PCに基づき最適脈動モデルMを選択しているが、複数種類の脈動モデルM1〜M3の全てについて、圧力波形W−PCとのずれ量を算出するマッチング処理を実施し、前記ずれ量が最も小さい脈動モデルを選択するようにしてもよい。なお、前記ずれ量は、例えば最小二乗法により算出すればよい。   In the above embodiment, the optimum pulsation model M is selected based on the supply pressure PC. However, a matching process for calculating a deviation amount from the pressure waveform W-PC is performed for all of the plural types of pulsation models M1 to M3. Then, the pulsation model with the smallest deviation amount may be selected. The deviation amount may be calculated by, for example, the least square method.

・上記実施形態では、非噴射気筒の燃圧センサ20により検出された圧力波形に基づき分配供給圧PCを取得しているが、コモンレール42に燃圧センサ(図示せず)を搭載して、その燃圧センサにより検出された圧力波形に基づき分配供給圧PCを取得してもよい。   In the above embodiment, the distributed supply pressure PC is acquired based on the pressure waveform detected by the fuel pressure sensor 20 of the non-injection cylinder, but a fuel pressure sensor (not shown) is mounted on the common rail 42 and the fuel pressure sensor The distribution supply pressure PC may be acquired based on the pressure waveform detected by the above.

・上記実施形態では、噴射時圧力波形Wから非噴射時圧力波形を差し引いて補正し、補正後の噴射時圧力波形W−PCから脈動モデルMを差し引く処理を実施しているが、上記補正を廃止して、噴射時圧力波形Wから脈動モデルMを差し引く処理を実施してもよい。   In the above embodiment, correction is performed by subtracting the non-injection pressure waveform from the injection pressure waveform W, and subtracting the pulsation model M from the corrected injection pressure waveform W-PC. It may be abolished and a process of subtracting the pulsation model M from the injection pressure waveform W may be performed.

・図1に示す上記実施形態では、燃圧センサ20を燃料噴射弁10に搭載しているが、本発明にかかる燃圧センサはコモンレール42の吐出口42aから噴孔11bに至るまでの燃料経路内の燃圧を検出するよう配置された燃圧センサであればよい。よって、例えばコモンレール42と燃料噴射弁10とを接続する高圧配管42bに燃圧センサを搭載してもよい。つまり、コモンレール42及び燃料噴射弁10を接続する高圧配管42bと、ボデー11内の高圧通路11aとが「燃料供給経路」に相当する。   In the above embodiment shown in FIG. 1, the fuel pressure sensor 20 is mounted on the fuel injection valve 10, but the fuel pressure sensor according to the present invention is located in the fuel path from the discharge port 42a of the common rail 42 to the injection hole 11b. Any fuel pressure sensor arranged to detect the fuel pressure may be used. Therefore, for example, a fuel pressure sensor may be mounted on the high-pressure pipe 42 b that connects the common rail 42 and the fuel injection valve 10. That is, the high-pressure pipe 42b connecting the common rail 42 and the fuel injection valve 10 and the high-pressure passage 11a in the body 11 correspond to the “fuel supply path”.

10…燃料噴射弁、11b…噴孔、12…弁体、20…燃圧センサ、30…ECU(脈動モデル記憶手段)、42…コモンレール(分配容器)、S10…圧力波形取得手段、S40…脈動モデル選択手段、S50…脈動消し手段、S60…噴射状態推定手段。   DESCRIPTION OF SYMBOLS 10 ... Fuel injection valve, 11b ... Injection hole, 12 ... Valve body, 20 ... Fuel pressure sensor, 30 ... ECU (pulsation model storage means), 42 ... Common rail (distribution container), S10 ... Pressure waveform acquisition means, S40 ... Pulsation model Selection means, S50: Pulsation canceling means, S60: Injection state estimation means.

Claims (4)

噴孔を開閉する弁体を開弁作動させることにより、内燃機関で燃焼させる燃料を前記噴孔から噴射する燃料噴射弁と、
前記噴孔に至るまでの燃料供給経路内の燃料圧力を検出する燃圧センサと、
を備えた燃料噴射システムに適用され、
前記燃圧センサの検出値に基づき、燃料噴射に伴い前記燃料供給経路内で生じる燃料圧力の変化を表した圧力波形を取得する圧力波形取得手段と、
前記弁体が閉弁位置へ向けて移動することに伴い生じる前記圧力波形中の脈動を、複数種類のパターンにモデル化した脈動モデルが予め記憶された脈動モデル記憶手段と、
前記複数種類の脈動モデルの中から、前記圧力波形中に現れる実際の脈動に類似する脈動モデルを選択する脈動モデル選択手段と、
前記脈動モデル選択手段により選択された脈動モデルを前記圧力波形から差し引いて脈動消し波形を算出する脈動消し手段と、
前記脈動消し波形に基づき、前記噴孔からの燃料噴射状態を推定する噴射状態推定手段と、
を備えることを特徴とする燃料噴射状態検出装置。
A fuel injection valve that injects fuel to be burned in an internal combustion engine from the nozzle hole by opening a valve body that opens and closes the nozzle hole;
A fuel pressure sensor for detecting the fuel pressure in the fuel supply path leading to the nozzle hole;
Applied to the fuel injection system with
Pressure waveform acquisition means for acquiring a pressure waveform representing a change in fuel pressure generated in the fuel supply path due to fuel injection based on a detection value of the fuel pressure sensor;
A pulsation model storage means in which a pulsation model obtained by modeling pulsations in the pressure waveform generated when the valve body moves toward the valve closing position into a plurality of types of patterns is stored in advance;
A pulsation model selection means for selecting a pulsation model similar to an actual pulsation appearing in the pressure waveform from the plurality of types of pulsation models;
Pulsation canceling means for calculating a pulsation canceling waveform by subtracting the pulsation model selected by the pulsation model selecting means from the pressure waveform;
Injection state estimating means for estimating a fuel injection state from the nozzle hole based on the pulsation canceling waveform;
A fuel injection state detection device comprising:
前記脈動モデル選択手段は、前記燃料噴射弁へ供給される燃料の供給圧力に基づき、前記脈動モデルを選択することを特徴とする請求項1に記載の燃料噴射状態検出装置。   2. The fuel injection state detection device according to claim 1, wherein the pulsation model selection unit selects the pulsation model based on a supply pressure of fuel supplied to the fuel injection valve. 前記燃料噴射弁は多気筒内燃機関の各気筒に設けられ、前記燃圧センサは、複数の前記燃料噴射弁の各々に対して設けられており、
前記脈動モデル選択手段は、複数の前記燃圧センサのうち噴射していない燃料噴射弁に対応する燃圧センサにより検出された圧力を前記供給圧力とみなして、前記選択を実施することを特徴とする請求項2に記載の燃料噴射状態検出装置。
The fuel injection valve is provided in each cylinder of a multi-cylinder internal combustion engine, and the fuel pressure sensor is provided for each of the plurality of fuel injection valves,
The pulsation model selection means performs the selection by regarding a pressure detected by a fuel pressure sensor corresponding to a fuel injection valve that is not injecting among the plurality of fuel pressure sensors as the supply pressure. Item 3. The fuel injection state detection device according to Item 2.
前記脈動消し手段は、噴射終了指令信号を前記燃料噴射弁へ出力した時点に基づき前記圧力波形の位相と前記脈動モデルの位相を関連付けし、その関連付けした状態で前記圧力波形から前記脈動モデルを差し引いて前記脈動消し波形を算出することを特徴とする請求項1〜3のいずれか1つに記載の燃料噴射状態検出装置。   The pulsation canceling unit associates the phase of the pressure waveform and the phase of the pulsation model based on the time point when the injection end command signal is output to the fuel injection valve, and subtracts the pulsation model from the pressure waveform in the associated state. The fuel injection state detection apparatus according to claim 1, wherein the pulsation canceling waveform is calculated.
JP2010139479A 2010-06-18 2010-06-18 Fuel injection state detection device Active JP5003796B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010139479A JP5003796B2 (en) 2010-06-18 2010-06-18 Fuel injection state detection device
DE102011051012.5A DE102011051012B4 (en) 2010-06-18 2011-06-10 Fuel injection state detecting device
CN201110167053.9A CN102287286B (en) 2010-06-18 2011-06-16 Fuel injection state sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139479A JP5003796B2 (en) 2010-06-18 2010-06-18 Fuel injection state detection device

Publications (2)

Publication Number Publication Date
JP2012002178A true JP2012002178A (en) 2012-01-05
JP5003796B2 JP5003796B2 (en) 2012-08-15

Family

ID=45091366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139479A Active JP5003796B2 (en) 2010-06-18 2010-06-18 Fuel injection state detection device

Country Status (3)

Country Link
JP (1) JP5003796B2 (en)
CN (1) CN102287286B (en)
DE (1) DE102011051012B4 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217341A (en) * 2012-04-11 2013-10-24 Nippon Soken Inc Fuel injection control device
JP2014141951A (en) * 2013-01-25 2014-08-07 Denso Corp Fuel injection control device
JP2014152674A (en) * 2013-02-07 2014-08-25 Denso Corp Fuel injection characteristic detecting device
JP2015014249A (en) * 2013-07-05 2015-01-22 株式会社デンソー Fuel injection state estimation device
JP2019100299A (en) * 2017-12-06 2019-06-24 株式会社デンソー Fuel injection control device
JP2019183664A (en) * 2018-04-02 2019-10-24 株式会社デンソー Fuel passage characteristic acquisition device
CN114033570A (en) * 2021-11-26 2022-02-11 重庆红江机械有限责任公司 Common rail diesel engine rail pressure control method and system, common rail diesel engine and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014225530A1 (en) * 2014-12-11 2016-06-16 Robert Bosch Gmbh Method for operating a fuel injector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239605A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Fuel injection device
JP2009097385A (en) * 2007-10-15 2009-05-07 Denso Corp Fuel injection state detection device
JP2010003004A (en) * 2008-06-18 2010-01-07 Denso Corp Learning device and fuel injection system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119586A (en) * 1993-10-27 1995-05-09 Hino Motors Ltd Injector malfunction detecting method and its device
US6178949B1 (en) * 1999-10-04 2001-01-30 General Motors Corporation Engine control having fuel volatility compensation
DE10232356A1 (en) 2002-07-17 2004-01-29 Robert Bosch Gmbh Method for controlling injectors of a fuel metering system of an internal combustion engine
DE10309720B4 (en) 2003-03-06 2014-04-24 Robert Bosch Gmbh Method and device for multidrug compensating control of injectors of a fuel metering system of an internal combustion engine
JP4428427B2 (en) 2007-08-31 2010-03-10 株式会社デンソー Fuel injection characteristic detecting device and fuel injection command correcting device
US7873460B2 (en) 2007-09-25 2011-01-18 Denso Corporation Controller for fuel injection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239605A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Fuel injection device
JP2009097385A (en) * 2007-10-15 2009-05-07 Denso Corp Fuel injection state detection device
JP2010003004A (en) * 2008-06-18 2010-01-07 Denso Corp Learning device and fuel injection system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217341A (en) * 2012-04-11 2013-10-24 Nippon Soken Inc Fuel injection control device
JP2014141951A (en) * 2013-01-25 2014-08-07 Denso Corp Fuel injection control device
JP2014152674A (en) * 2013-02-07 2014-08-25 Denso Corp Fuel injection characteristic detecting device
JP2015014249A (en) * 2013-07-05 2015-01-22 株式会社デンソー Fuel injection state estimation device
JP2019100299A (en) * 2017-12-06 2019-06-24 株式会社デンソー Fuel injection control device
JP2019183664A (en) * 2018-04-02 2019-10-24 株式会社デンソー Fuel passage characteristic acquisition device
JP7021595B2 (en) 2018-04-02 2022-02-17 株式会社デンソー Fuel passage characteristic acquisition device
CN114033570A (en) * 2021-11-26 2022-02-11 重庆红江机械有限责任公司 Common rail diesel engine rail pressure control method and system, common rail diesel engine and storage medium
CN114033570B (en) * 2021-11-26 2024-04-09 重庆红江机械有限责任公司 Rail pressure control method and system for common rail diesel engine, common rail diesel engine and storage medium

Also Published As

Publication number Publication date
DE102011051012B4 (en) 2018-08-02
JP5003796B2 (en) 2012-08-15
CN102287286B (en) 2014-05-14
DE102011051012A1 (en) 2011-12-22
CN102287286A (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5003796B2 (en) Fuel injection state detection device
JP5278398B2 (en) Fuel injection state detection device
JP4424395B2 (en) Fuel injection control device for internal combustion engine
JP5195842B2 (en) Pressure reducing valve controller
JP5287915B2 (en) Fuel injection state estimation device
JP5141723B2 (en) Fuel injection control device for internal combustion engine
JP5723244B2 (en) Fuel injection control device
JP2013007341A (en) Fuel-injection-condition estimating apparatus
JP6040877B2 (en) Fuel injection state estimation device
JP5024430B2 (en) Fuel injection control device
JP5126296B2 (en) Fuel injection state detection device
JP5293765B2 (en) Fuel injection state estimation device
JP2012189042A (en) Failure diagnosis device for fuel injection valve
JP5067461B2 (en) Fuel injection state detection device
JP5182337B2 (en) Detection deviation judgment device of fuel pressure sensor
JP5024429B2 (en) Fuel injection state detection device
JP5168325B2 (en) Fuel injection state detection device
JP5370348B2 (en) Fuel injection control device for internal combustion engine
JP6028603B2 (en) Fuel injection state estimation device
JP5240283B2 (en) Noise diagnosis device for fuel injection system
JP5565435B2 (en) Fuel injection control device
JP5392277B2 (en) Fuel injection control device
JP6507982B2 (en) Fuel injection state detection device
JP5267441B2 (en) Fuel injection device for internal combustion engine
JP6308080B2 (en) Fuel injection state detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5003796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250