JP2012001752A - Annealing separating-agent and method for producing grain-oriented magnetic steel sheet - Google Patents

Annealing separating-agent and method for producing grain-oriented magnetic steel sheet Download PDF

Info

Publication number
JP2012001752A
JP2012001752A JP2010136295A JP2010136295A JP2012001752A JP 2012001752 A JP2012001752 A JP 2012001752A JP 2010136295 A JP2010136295 A JP 2010136295A JP 2010136295 A JP2010136295 A JP 2010136295A JP 2012001752 A JP2012001752 A JP 2012001752A
Authority
JP
Japan
Prior art keywords
annealing
annealing separator
coil
steel sheet
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010136295A
Other languages
Japanese (ja)
Other versions
JP5494268B2 (en
Inventor
Takashi Terajima
寺島  敬
Tomoyuki Okubo
智幸 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010136295A priority Critical patent/JP5494268B2/en
Publication of JP2012001752A publication Critical patent/JP2012001752A/en
Application granted granted Critical
Publication of JP5494268B2 publication Critical patent/JP5494268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem, in which the inner peripheral shape of a coil, especially in the sideway-placing state, is deformed by devising an annealing separating-agent.SOLUTION: As the annealing separating-agent for a grain-oriented magnetic steel sheet essentially consisting of magnesia and also having a volume-shrinking ratio of 20 to 80%, the one obtained by incorporating an yttrium compound of 0.0005 to 0.01 mass% expressed in terms of YOinto the annealing separating-agent is used.

Description

本発明は、焼鈍分離剤が塗布された鋼板コイルを焼鈍した後、コイルを次工程の通板時に横置き状態(ダウンエンド状態)とした際の、コイル変形を防止するのに有用な焼鈍分離剤に関するものである。
また、本発明は、上記の焼鈍分離剤を用いた方向性電磁鋼板の製造方法に関するものである。
The present invention is an annealing separation useful for preventing coil deformation when a steel sheet coil coated with an annealing separator is annealed and then placed in a horizontal state (down-end state) when the coil is passed through in the next process. It relates to the agent.
The present invention also relates to a method for producing a grain-oriented electrical steel sheet using the above annealing separator.

方向性電磁鋼板の製造は、所定の成分組成に調整した鋼スラブに、熱間圧延、焼鈍および冷間圧延を施し、再結晶焼鈍、仕上焼鈍、そして平坦化焼鈍などを行うことが一般的である。これらの製造のうち、仕上焼鈍を行う場合は、コイル状に巻取られた状態で、800℃以上の温度を付与することによって二次再結晶を生じさせ、所望の磁気特性を発現させている。また、仕上焼鈍では、鋼板中の不純物の純化を目的として、1200℃という高温の焼鈍を行うこともある。さらに、仕上焼鈍後には、コイルセットを矯正する目的で平坦化焼鈍が施される。   Production of grain-oriented electrical steel sheets is generally performed by subjecting a steel slab adjusted to a predetermined composition to hot rolling, annealing, and cold rolling, and performing recrystallization annealing, finish annealing, and flattening annealing. is there. Among these manufactures, when finishing annealing, secondary recrystallization is caused by applying a temperature of 800 ° C. or higher in a coiled state, and desired magnetic properties are exhibited. . In the finish annealing, annealing at a high temperature of 1200 ° C. may be performed for the purpose of purifying impurities in the steel sheet. Further, after the finish annealing, flattening annealing is performed for the purpose of correcting the coil set.

ここに、仕上焼鈍後のコイルは、いわゆるルーズコイルの状態となりやすく、コイルを横置きにすると、コイルが偏平状に潰れてしまう場合があった。コイルが偏平状に潰れた場合は、コイル内径の短径が短くなり、次工程においてペイオフリールに挿入できなくなるという問題が発生する。コイルの内径変形は、巻き取られた鋼板間の摩擦力が乏しい場合に発生するため、コイル巻取時の張力を強めれば良い。しかし、単純に巻取り張力を高くしただけでは、今度はコイル内径部の一部が座屈するバックリングという問題が発生して、やはりペイオフリールヘの挿入が困難になる場合があった。   Here, the coil after the finish annealing tends to be in a so-called loose coil state, and when the coil is placed horizontally, the coil may be flattened. When the coil is crushed flat, the short inner diameter of the coil becomes short, which causes a problem that it cannot be inserted into the payoff reel in the next process. Since the inner diameter deformation of the coil occurs when the frictional force between the wound steel sheets is poor, the tension during coil winding may be increased. However, if the winding tension is simply increased, there is a problem of buckling in which a part of the inner diameter portion of the coil is buckled, and it may be difficult to insert the payoff reel.

これらの問題に対して、例えば、特許文献1には、巻取り張力を適正範囲に制御することが提案されている。しかしながら、張力を付与してコイル状に鋼板を巻取った後に焼鈍すると、コイルに付与した張力が消失してしまい、その結果、やはり、ルーズコイルの状態に戻ってしまう。
また、特許文献2には、コイルの内径部にスリーブを入れることが提案されているが、スリーブ挿入工程が追加となるなどの問題があった。
For these problems, for example, Patent Document 1 proposes controlling the winding tension within an appropriate range. However, if annealing is performed after winding a steel sheet in a coil shape by applying tension, the tension applied to the coil disappears, and as a result, the state returns to the state of the loose coil.
In addition, Patent Document 2 proposes to insert a sleeve into the inner diameter portion of the coil, but there is a problem that an additional sleeve insertion step is required.

さらに、特許文献3には、巻取り張力を適正化することに加えて、コイルに緩みが生じないように、焼鈍分離剤の線膨張率を制限することが提案されている。
しかし、上記の技術は、特許文献1と同様、焼鈍後に鋼板の張力が消失するという問題を抱えているため、コイルを横置きとした状態でのコイルの変形という問題が解消されていない。すなわち、特許文献3は、コイルの緩みを回避するための焼鈍分離剤を与えてはいるものの、コイルの横置き状態での変形を抑制する手立てを与えるものではない。
Furthermore, Patent Document 3 proposes to limit the linear expansion coefficient of the annealing separator so as not to loosen the coil in addition to optimizing the winding tension.
However, since the above technique has a problem that the tension of the steel sheet disappears after annealing, as in Patent Document 1, the problem of deformation of the coil in a state where the coil is placed horizontally is not solved. That is, Patent Document 3 provides an annealing separator for avoiding the loosening of the coil, but does not provide a means for suppressing the deformation of the coil in the horizontal position.

上記した問題を解決するものとして、発明者らは先に、特許文献4において、焼鈍分離剤の体積収縮率を所定の範囲に制限する技術を提案した。
しかしながら、焼鈍分離剤の体積収縮率が、特許文献4で限定している範囲よりも大きくなった場合には、依然としてコイルが変形するおそれが残っていた。また、生産ラインに予期せぬトラブル(ライン停止など)が発生するなどして、特に、コイルが横置き状態で長時間放置(例えば30分以上の保持)された場合には、たとえ特許文献4に従う焼鈍分離剤を適用したとしても、コイルの変形量が大きくなって、ペイオフリールに挿入できない事態を招来することがあった。
In order to solve the above-mentioned problems, the inventors previously proposed a technique for limiting the volumetric shrinkage of the annealing separator in a predetermined range in Patent Document 4.
However, when the volumetric shrinkage of the annealing separator becomes larger than the range limited in Patent Document 4, there is still a possibility that the coil is deformed. Further, when an unexpected trouble (such as line stoppage) occurs in the production line, particularly when the coil is left in a horizontal state for a long time (for example, held for 30 minutes or more), even if Patent Document 4 is used. Even if the annealing separator according to the above is applied, the amount of deformation of the coil becomes large, which may lead to a situation where the coil cannot be inserted into the payoff reel.

特開平11−267746号公報Japanese Patent Laid-Open No. 11-267746 特許第3702853号公報Japanese Patent No. 3708253 特許第3885463号公報Japanese Patent No. 3886463 特願2009−286862号明細書Japanese Patent Application No. 2009-286862 specification 国際公開第2006/126660号パンフレットInternational Publication No. 2006/126660 Pamphlet

窯業協会誌70〔2〕1962 P335「MgOとFe203との反応とそのマグネシアの焼結に対する影響」Journal of Ceramic Society 70 [2] 1962 P335 "Reaction between MgO and Fe203 and its influence on sintering of magnesia" 化学工学論文集11,433(1985)Journal of Chemical Engineering 11,433 (1985)

本発明は、上掲した特許文献4の改良に係るもので、焼鈍分離剤の体積収縮率が大きくなった場合であっても、またコイルが横置き状態で長時間放置された場合であっても、焼鈍後のコイル内周の形状変形を効果的に抑制することができる焼鈍分離剤を提供することを目的とするものである。
また、本発明は、上記した焼鈍分離剤を用いた方向性電磁鋼板の製造方法を提供することを目的とするものである。
The present invention relates to the improvement of the above-mentioned Patent Document 4, even when the volumetric shrinkage of the annealing separator is increased, or when the coil is left in a horizontal state for a long time. Moreover, it aims at providing the annealing separation agent which can suppress effectively the shape deformation of the coil inner periphery after annealing.
Another object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet using the above-described annealing separator.

発明者らは、前掲した特許文献4において、コイル内周部の変形量がバラつく原因を調査し、既に、コイル内周部の変形量と、焼鈍分離剤の体積収縮率との間に相関があることを解明した。しかしながら、焼鈍分離剤の体積収縮率が大きかったり、長時間放置した場合には、コイル内周の形状変形があったことは前述したとおりである。
そこで、発明者らは、焼鈍分離剤の体積収縮率が大きい場合であっても、コイルの変形を防止することについて鋭意検討した。その結果、焼鈍分離剤に、イットリウム化合物を添加することで、コイルの変形防止効果が大きくなることを見出した。すなわち、イットリウム化合物を添加すると、焼鈍分離剤による層の粒子同士の結合力が強化され、層自体にコイルを支える力が生じることで、コイルの変形が効果的に防止できることが解明されたのである。
なお、焼鈍分離剤にイットリアを含有することについては、特許文献5に開示されているが、特許文献5に開示の技術は、皮膜の付着強度の改善が目的であり、コイルの変形を抑制するための手立てについて、何ら考慮が払われていない。
Inventors investigated the cause in which the deformation amount of a coil inner peripheral part varies in patent document 4 mentioned above, and already correlate between the deformation amount of a coil inner peripheral part, and the volumetric shrinkage rate of an annealing separation agent. Elucidated that there is. However, as described above, when the volumetric shrinkage of the annealing separator is large, or when the annealing separator is left for a long time, the inner circumference of the coil is deformed.
Therefore, the inventors diligently studied to prevent the deformation of the coil even when the volumetric shrinkage of the annealing separator is large. As a result, it has been found that the effect of preventing deformation of the coil is increased by adding an yttrium compound to the annealing separator. That is, it has been clarified that the addition of an yttrium compound enhances the bonding force between the particles of the layer by the annealing separator, and the layer itself generates a force to support the coil, thereby effectively preventing the deformation of the coil. .
The inclusion of yttria in the annealing separator is disclosed in Patent Document 5, but the technique disclosed in Patent Document 5 is intended to improve the adhesion strength of the film and suppresses deformation of the coil. No consideration has been given to measures for this.

すなわち、本発明は、上記した知見に基づくもので、その要旨構成は次のとおりである。
1.マグネシアを主体とし、かつ体積収縮率が20%以上80%以下である方向性電磁鋼板用の焼鈍分離剤であって、該焼鈍分離剤中にイットリウム化合物をY2O3換算で0.0005質量%以上0.01質量%以下含有することを特徴とする焼鈍分離剤。
That is, the present invention is based on the above-described knowledge, and the gist configuration is as follows.
1. An annealing separator for grain-oriented electrical steel sheets mainly composed of magnesia and having a volume shrinkage of 20% or more and 80% or less, and an yttrium compound in the annealing separator in an amount of 0.0005% by mass or more in terms of Y 2 O 3 An annealing separator containing 0.01% by mass or less.

2.前記焼鈍分離剤がマグネシアを80%以上含有することを特徴とする前記1に記載の焼鈍分離剤。 2. 2. The annealing separator as described in 1 above, wherein the annealing separator contains 80% or more of magnesia.

3.前記焼鈍分離剤が水酸化マグネシウムおよび/または炭酸マグネシウムを主原料とし、これを焼成するに先立ってイットリウム化合物を添加したのち、焼成して得たものであることを特徴とする前記1または2に記載の焼鈍分離剤。 3. In the above 1 or 2, wherein the annealing separator is obtained by calcining magnesium hydroxide and / or magnesium carbonate as a main raw material, and adding an yttrium compound prior to firing. The annealing separator as described.

4.方向性電磁鋼板用スラブを、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終冷延板とし、ついで、一次再結晶焼鈍を施したのち、焼鈍分離剤を塗布して、コイル状に巻取り、900℃以上の温度で仕上焼鈍を施すに当たり、該焼鈍分離剤として、前記1〜3のいずれかに記載の焼鈍分離剤を用いることを特徴とする方向性電磁鋼板の製造方法。 4). The slab for grain-oriented electrical steel sheet is hot-rolled and subjected to hot-rolled sheet annealing as necessary, and then cold-rolled twice or more with intermediate or intermediate annealing to obtain the final cold-rolled sheet. After applying the primary recrystallization annealing, the annealing separator is applied, wound in a coil shape, and subjected to finish annealing at a temperature of 900 ° C. or higher. A method for producing a grain-oriented electrical steel sheet, characterized by using the annealing separator described above.

本発明によれば、焼鈍分離剤の体積膨張率が大きくなったとしても、その焼鈍分離剤を適用して、コイル内周部の変形を効果的に防止することができる。また、長時間放置した場合でも、同様に、コイル内周部の変形を効果的に防止することができる。その結果、コイルの生産性向上、製造設備の安定稼動および製品歩留まりの向上(例えば、スクラップコイル発生防止)などを達成することができる。   According to the present invention, even if the volume expansion coefficient of the annealing separator increases, the annealing separator can be applied to effectively prevent deformation of the inner peripheral portion of the coil. Further, even when left for a long time, similarly, deformation of the inner peripheral portion of the coil can be effectively prevented. As a result, it is possible to achieve improvement in coil productivity, stable operation of manufacturing equipment, improvement in product yield (for example, prevention of scrap coil generation), and the like.

Y2O3を焼鈍分離剤を用いて得た積層体サンプルおよびY2O3を含有しない焼鈍分離剤を用いて得た積層体サンプルの3点曲げ試験において、ストロークと荷重との変化を示した図である。In 3-point bending test of the laminate samples were obtained using an annealing separator containing no laminate samples and Y 2 O 3 were obtained using an annealing separating agent to Y 2 O 3, it shows a change between the stroke and the load It is a figure.

以下、本発明の解明経緯について説明する。
コイルを横置きにした際に、コイルの内周形状が偏平化する問題は、焼鈍後の方向性電磁鋼板に限った問題ではなく、焼鈍後の熱延鋼板や冷延鋼板にも発生する問題である。ここに、内周形状が変形する原因は、巻取った鋼板間のすべりにあり、その対策として、巻取り張力による鋼板間面圧の付与、鋼板間の摩擦力の調整、コイルへの外力付与、内周部へのスリーブ挿入、等が行われているのは既述のとおりである。しかしながら、方向性電磁鋼板の製造のように、焼鈍分離剤を塗布した後に900℃を超える温度で焼鈍する場合は、コイルに付与した巻取り張力が低下するため、巻取り張力を高くしたとしても、上記したような偏平化の問題は解決できない。
The elucidation process of the present invention will be described below.
When the coil is placed horizontally, the problem of flattening the inner peripheral shape of the coil is not limited to the directional electrical steel sheet after annealing, but also occurs in the hot-rolled steel sheet and cold-rolled steel sheet after annealing. It is. Here, the cause of the deformation of the inner peripheral shape is the slip between the wound steel sheets. As countermeasures, the application of surface pressure between the steel sheets by the winding tension, adjustment of the frictional force between the steel sheets, the application of external force to the coil As described above, the sleeve is inserted into the inner periphery. However, as in the manufacture of grain-oriented electrical steel sheets, when annealing at a temperature exceeding 900 ° C. after applying the annealing separator, the winding tension applied to the coil decreases, so even if the winding tension is increased The above-mentioned flattening problem cannot be solved.

そのため、現在では、内周部に予めスリーブを挿入して焼鈍したり、焼鈍後にスリーブを挿入したりして、変形を防止する方策がとられている。しかしながら、スリーブ挿入のための手間やスリーブの消耗による交換用スリーブの作製が必要となるなどから、スリーブを挿入しない場合と比べると、コイルの製造コストが上昇するという問題がある。   Therefore, at present, measures are taken to prevent deformation by inserting a sleeve into the inner peripheral portion in advance and annealing, or inserting a sleeve after annealing. However, there is a problem that the manufacturing cost of the coil is increased as compared with the case where the sleeve is not inserted, because it takes time to insert the sleeve and it is necessary to produce a replacement sleeve due to wear of the sleeve.

上記の問題を解決するものとして前掲した特許文献4において、焼鈍分離剤の体積収縮率を所定の範囲に制御する技術が提案されている。
この特許文献4に記載の技術を用いると、上記したスリーブ挿入などを行わなくてもコイル変形を防止することが可能となる。
すなわち、焼鈍分離剤の体積収縮率を20〜60%の範囲に制御することにより、焼鈍後のコイルに残存する巻取り張力を確保し、鋼板間に面圧を残して摩擦力を確保して、コイル変形を防止するものである。
In Patent Document 4 listed above as a solution to the above problem, a technique for controlling the volume shrinkage ratio of the annealing separator within a predetermined range is proposed.
When the technique described in Patent Document 4 is used, it is possible to prevent coil deformation without performing sleeve insertion as described above.
That is, by controlling the volumetric shrinkage of the annealing separator to a range of 20 to 60%, the winding tension remaining in the coil after annealing is secured, and the frictional force is secured by leaving the surface pressure between the steel plates. The coil deformation is prevented.

従って、特許文献4において、焼鈍分離剤は、マグネシアの焼成温度および粒度分布を調整することにより、焼鈍分離剤の体積収縮率を20〜60%の範囲に収めていた。しかしながら、かような調整を行ったとしても、必ずしも20〜60%の範囲に制御できるとは限らず、焼鈍分離剤の体積収縮率が60%を超えてしまうと、やはり、収縮率が大きすぎるため、コイルの変形が大きくなり、ペイオフリールへの挿入が阻害されてしまう場合があった。   Therefore, in Patent Document 4, the annealing separator has a volume shrinkage of 20 to 60% within the range of 20 to 60% by adjusting the firing temperature and particle size distribution of magnesia. However, even if such an adjustment is made, it is not always possible to control within the range of 20 to 60%. If the volume shrinkage of the annealing separator exceeds 60%, the shrinkage is still too large. For this reason, the deformation of the coil becomes large and insertion into the payoff reel may be hindered.

また、焼鈍分離剤の体積収縮率を特許文献4に記載したように制御できたとしても、鋼板間のすべりが全く解消されたわけではなく、例えば、コイルが長時間横置き状態に保持されると徐々に鋼板間にすべりが生じ、コイルの変形量が大きくなってしまうという問題が残っていた。すなわち、鋼板間の摩擦力を向上させる以外の手段で、コイルの変形を防止する方策を講じる必要があった。   Further, even if the volumetric shrinkage of the annealing separator can be controlled as described in Patent Document 4, the slip between the steel sheets is not completely eliminated. For example, when the coil is held in a horizontal state for a long time. The problem that the slip was gradually generated between the steel plates and the amount of deformation of the coil became large remained. That is, it has been necessary to take measures to prevent the deformation of the coil by means other than improving the frictional force between the steel plates.

これらの問題に対し、前述したように、焼鈍分離剤中に、イットリウム化合物を適正量添加することにより、コイルの変形を効果的に防止できることを見出し、本発明に想到するに至った。   As described above, the inventors have found that the deformation of the coil can be effectively prevented by adding an appropriate amount of an yttrium compound to the annealing separator as described above, and have arrived at the present invention.

以下、本発明を由来するに至った実験について説明する。
鋼板を、幅:40mm、長さ:100mmにせん断後、30枚積層し、マグネシアを焼鈍分離剤として塗布した。この際、マグネシア100g当たり、Y2O3を0.005g添加した焼鈍分離剤と、Y2O3を添加しない焼鈍分離剤とを準備した。ついで、それぞれの鋼板を、温度:1200℃、時間:20hで焼鈍した。焼鈍後、島津製オートグラフ(AGI10kN)を用いて0.5mm/minの速度で圧子を押し込み、3点曲げ試験を実施して、鋼板の積層体の機械的特性を調査した。得られた鋼板の機械的特性について調査した結果を、図1に比較して示す。
なお、図中、横軸に圧子のストローク量、縦軸に荷重を示した。
Hereinafter, the experiment that led to the present invention will be described.
30 sheets of steel plates were sheared to a width of 40 mm and a length of 100 mm, laminated, and magnesia was applied as an annealing separator. At this time, an annealing separator containing 0.005 g of Y 2 O 3 added per 100 g of magnesia and an annealing separator not containing Y 2 O 3 were prepared. Subsequently, each steel plate was annealed at a temperature of 1200 ° C. and a time of 20 hours. After annealing, an indenter was pushed at a speed of 0.5 mm / min using an autograph (AGI 10 kN) manufactured by Shimadzu, and a three-point bending test was performed to investigate the mechanical properties of the steel sheet laminate. The result of investigating the mechanical properties of the obtained steel sheet is shown in comparison with FIG.
In the figure, the horizontal axis represents the stroke amount of the indenter, and the vertical axis represents the load.

同図より、Y2O3を添加した焼鈍分離剤を塗布したサンプルは、Y2O3を添加しない焼鈍分離剤を塗布したサンプルに比べて、圧子のストローク初期に荷重が急激に高くなり、その後、Y2O3未添加と同一の傾向を示すことが分かる。
また、Y2O3を添加した焼鈍分離剤を用いたサンプルは、ある荷重まで(ストローク量:約1.7mm)の変形量がY2O3未添加のものよりも少なく(すなわちストローク量が小さく)、積層体が変形しにくいことも分かった。
From the figure, the sample coated with annealing separator prepared by adding Y 2 O 3, as compared to samples coated with the annealing separator without addition of Y 2 O 3, the load is abruptly increased in stroke initial indenter, Thereafter, it can be seen that the same tendency as when Y 2 O 3 is not added is exhibited.
Further, samples using annealing separator prepared by adding Y 2 O 3, until certain loading (stroke: about 1.7 mm) deformation amount of less than that of the Y 2 O 3 was not added (i.e. the stroke amount is small ), It was also found that the laminate is difficult to deform.

この理由は、焼鈍後、鋼板間に残留している焼鈍分離剤の粒子同士の結合力が強化されるためと考えられる。また、粒子同士の結合力が強化されることで、焼鈍分離剤による層自体にコイルを支える力が生じるため、その力を利用すれば、コイルの変形が効果的に防止でき、さらに、焼鈍分離剤の体積収縮率の許容範囲をも拡げることができる。   The reason for this is considered to be that the bonding force between the particles of the annealing separator remaining between the steel plates after annealing is strengthened. In addition, since the force of supporting the coil is generated in the layer itself by the annealing separator by strengthening the bonding force between the particles, the use of this force can effectively prevent the deformation of the coil, and further the annealing separation. The allowable range of volumetric shrinkage of the agent can also be expanded.

上記した実験中、圧子のストローク量に対する荷重が一定になる部分(本実験では7.5N程度)がある。この荷重が一定になる部分においては、マグネシア粒子同士の結合が破壊されていると考えられるため、圧子のストローク量に対する荷重が一定になってると推定されるが、一旦、マグネシア粒子同士の結合が破壊された後は、Y2O3を添加したサンプルも、Y2O3未添加サンプルとほぼ同一の傾向を示すこととなる。 During the experiment described above, there is a portion where the load with respect to the stroke amount of the indenter becomes constant (in this experiment, about 7.5 N). In this portion where the load becomes constant, it is considered that the bond between the magnesia particles is broken, so it is estimated that the load with respect to the stroke amount of the indenter is constant, but once the bond between the magnesia particles is After being destroyed, the sample to which Y 2 O 3 has been added also exhibits almost the same tendency as the sample to which Y 2 O 3 has not been added.

以下、本発明について、構成要件について述べる。
本発明において、焼鈍分離剤中に含有させるべきイットリウム化合物の量はY2O3換算で0.0005質量%以上0.01質量%以下とする必要がある。
というのは、Y2O3換算で0.0005質量%に満たない場合、焼結を促進する効果が十分に発揮されないからである。一方、0.01質量%よりも多くなった場合、焼鈍分離剤の焼結が促進され過ぎるので、焼鈍後に鋼板から焼鈍分離剤を除去することが困難となるからである。
Hereinafter, the configuration requirements of the present invention will be described.
In the present invention, the amount of the yttrium compound to be contained in the annealing separator needs to be 0.0005 mass% or more and 0.01 mass% or less in terms of Y 2 O 3 .
This is because if the amount is less than 0.0005% by mass in terms of Y 2 O 3 , the effect of promoting sintering is not sufficiently exhibited. On the other hand, if the amount is more than 0.01% by mass, sintering of the annealing separator is promoted too much, so that it becomes difficult to remove the annealing separator from the steel sheet after annealing.

ここに、本発明における焼鈍分離剤の成分組成としては、マグネシアを主体とし、イットリウム化合物を上記した所定量で含有し、後述する体積収縮率が20〜80%を満たすものであれば、特に制限はない。
なお、本発明において、マグネシアを主体とするとは、焼鈍分離剤中の比率で、51質量%以上含有していることを意味し、好ましい範囲としては80質量%以上である。
Here, the component composition of the annealing separator in the present invention is particularly limited as long as it contains magnesia as a main component, contains the yttrium compound in the above-described predetermined amount, and satisfies the volume shrinkage rate described later of 20 to 80%. There is no.
In the present invention, “mainly comprising magnesia” means that the content in the annealing separator is 51% by mass or more, and a preferable range is 80% by mass or more.

その他の成分組成についても、上記同様、体積収縮率が20〜80%を満たすものであれば、特に制限はないが、代表組成を示すと以下のとおりである。
Al2O3:0.02質量%以上0.50質量%以下、SiO2:0.05質量%以上0.50質量%以下、Fe2O3: 0.02質量%以上0.50質量%以下、CaO:0.10質量%以上0.80質量%以下、SO3:0.05質量%以上0.50質量%以下、B:0.040質量%以上0.20質量%以下である。
The other component compositions are not particularly limited as long as the volume shrinkage rate satisfies 20 to 80% as described above, but the representative compositions are as follows.
Al 2 O 3 : 0.02 mass% to 0.50 mass%, SiO 2 : 0.05 mass% to 0.50 mass%, Fe 2 O 3 : 0.02 mass% to 0.50 mass%, CaO: 0.10 mass% to 0.80 mass% SO 3 : 0.05 mass% or more and 0.50 mass% or less, B: 0.040 mass% or more and 0.20 mass% or less.

上記の構成とすることにより、焼鈍分離剤の体積収縮率の許容範囲を、20%以上80%以下まで拡げることができる。
ここに、体積収縮率の許容範囲を20%以上80%以下に限定した理由は次のとおりである。すなわち、20%未満では、焼鈍中にコイル鋼板間への雰囲気ガスの流通性が悪くなり、コイル内の被膜均一性が悪くなってしまう。特に、方向性電磁鋼板では、焼鈍時に形成されるフォルステライト被膜の均一性が損なわれるため、体積収縮率を20%以上にすることが必要である。一方、体積収縮率が80%超では、収縮率が大きすぎるため、イットリウム化合物を適正量添加したとしても、コイル変形が大きくなり、ペイオフリールへの挿入が阻害されてしまう。従って、体積収縮率は80%以下とする必要がある。
By setting it as said structure, the tolerance | permissible_range of the volumetric shrinkage rate of an annealing separation agent can be expanded to 20% or more and 80% or less.
Here, the reason why the allowable range of volume shrinkage is limited to 20% or more and 80% or less is as follows. That is, if it is less than 20%, the circulation property of the atmospheric gas between the coil steel plates is deteriorated during annealing, and the coating uniformity in the coil is deteriorated. In particular, in the grain-oriented electrical steel sheet, since the uniformity of the forsterite film formed during annealing is impaired, the volume shrinkage ratio needs to be 20% or more. On the other hand, if the volume shrinkage rate exceeds 80%, the shrinkage rate is too large, so even if an appropriate amount of yttrium compound is added, coil deformation becomes large and insertion into the payoff reel is hindered. Therefore, the volume shrinkage needs to be 80% or less.

本発明における焼鈍分離剤の体積収縮率(%)は、
(焼成前の体積(cm3)−焼成後の体積(cm3))÷(焼成前の体積(cm3))×100
で算出する。
また、体積収縮率を求めるに当たっては、焼鈍分離剤:2.0gを、圧力:200kgf/cm2(19.6MPa)で外径:20mmにプレス成型したものを測定に供した。そして、焼成は1200℃、20hで窒素雰囲気下にて実施した。
The volume shrinkage (%) of the annealing separator in the present invention is
(Volume before firing (cm 3 ) −Volume after firing (cm 3 )) ÷ (Volume before firing (cm 3 )) × 100
Calculate with
Further, in order to obtain the volume shrinkage rate, an annealing separator: 2.0 g, which was press-molded to an outer diameter of 20 mm at a pressure of 200 kgf / cm 2 (19.6 MPa) was subjected to measurement. The firing was performed at 1200 ° C. for 20 hours in a nitrogen atmosphere.

本発明において、焼鈍分離剤の体積収縮率は、マグネシアへの微量元素の添加やマグネシアの焼成温度、粒度分布によって調整することができる。
例えば、マグネシアに微量元素を添加することによって焼鈍分離剤の体積収縮率を調整する場合、非特許文献1にはFe203を添加することでマグネシアの収縮率が高くなる皆記載されているように、Fe203の含有量を制御することにより調整でき、同様にFe203以外の微量元素の含有量制御によっても調整出来る。
また、マグネシアの焼成温度によって焼鈍分離剤の体積収縮率を調整する場合、焼成温度は、700〜1200℃程度の範囲とすることが好ましく、焼成温度の高い方が体積収縮率が低くなる。
In the present invention, the volumetric shrinkage of the annealing separator can be adjusted by adding trace elements to magnesia, the firing temperature of magnesia, and the particle size distribution.
For example, when adjusting the volumetric shrinkage of annealing separator by the addition of trace elements magnesia, are all described higher magnesia shrinkage by adding Fe 2 0 3 in non-patent document 1 as can be adjusted by controlling the content of Fe 2 0 3, similarly it can be adjusted by the content control of trace elements other than Fe 2 0 3.
Moreover, when adjusting the volumetric shrinkage rate of the annealing separator by the firing temperature of magnesia, the firing temperature is preferably in the range of about 700 to 1200 ° C, and the higher the firing temperature, the lower the volumetric shrinkage rate.

さらに、マグネシアの粒度分布によって焼鈍分離剤の体積収縮率を調整する場合には、粒径は、例えば、0.2μmから数10μm程度の範囲で調整することが望ましく、粒径が大きい方が収縮率が低くなる傾向にある。
かかる体積収縮率の調整は、一般に、単一分散粒子よりも複数の粒度の粒子を混合したほうが充填率は上昇し、焼鈍による体積収縮率が低下する傾向があるため、粒度分布を調整することが有効である。なお、粒度分布は一山である必要はなく、バイモーダルな分布等、複数の山〈ピーク)を持つ分布やブロードな分布であってもよい。
非特許文献2には、最密充填を得る粒度分布を計算するアルゴリズムが公開されている。また、マグネシアの粒度分布制御のみにて体積収縮率を適切な範囲に調整できない場合は、シリカ、珪酸化合物、アルミナなどを混合して調整することができる。
Furthermore, when adjusting the volume shrinkage of the annealing separator by the magnesia particle size distribution, it is desirable to adjust the particle size, for example, in the range of about 0.2 μm to several tens of μm. Tend to be lower.
In general, the volume shrinkage ratio is adjusted by adjusting the particle size distribution because mixing the particles having a plurality of particle sizes rather than the single dispersed particles tends to increase the filling rate and decrease the volume shrinkage rate due to annealing. Is effective. The particle size distribution need not be a single mountain, and may be a distribution having a plurality of peaks (peaks) such as a bimodal distribution or a broad distribution.
Non-Patent Document 2 discloses an algorithm for calculating a particle size distribution for obtaining the closest packing. Further, when the volume shrinkage cannot be adjusted to an appropriate range only by controlling the particle size distribution of magnesia, it can be adjusted by mixing silica, silicic acid compound, alumina and the like.

なお、本発明は、基本的に900℃以上で焼鈍されるコイルを対象とする。なぜなら、900℃未満の焼鈍では、ほとんどコイルが融着しないので、焼鈍分離剤を塗布しないか、塗布したとしても焼鈍分離剤の体積収縮量が小さい。そのため、焼鈍分離剤の体積収縮率を規定する必要がないからである。   The present invention is basically directed to a coil that is annealed at 900 ° C. or higher. This is because, when annealing at a temperature lower than 900 ° C., the coil hardly melts, so that the annealing separator is not applied or the volume shrinkage of the annealing separator is small even if it is applied. Therefore, it is not necessary to define the volume shrinkage rate of the annealing separator.

次に、本発明に従う方向性電磁鋼板の製造方法について説明する。
本発明に従う方向性電磁鋼板は、方向性電磁鋼板用スラブを、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終冷延板とし、ついで、一次再結晶焼鈍後、焼鈍分離剤を塗布してから、仕上焼鈍を施すという、方向性電磁鋼板の製造方法の常法を用いることができる。
ここで、上記した一次再結晶焼鈍後の鋼板に、焼鈍分離剤中のイットリウム化合物がY2O3換算で0.0005質量%以上0.01質量%以下で含有し、かつ焼鈍分離剤の体積収縮率が20%以上80%以下である焼鈍分離剤を塗布したのち、コイル状に巻取り、900℃以上の温度で焼鈍することで、偏平化を防止するという所望の効果を得ることができる。
Next, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention will be described.
The grain-oriented electrical steel sheet according to the present invention is obtained by subjecting a slab for grain-oriented electrical steel sheet to hot rolling and subjecting it to hot-rolled sheet annealing as necessary, and then performing cold rolling twice or more sandwiching intermediate annealing. It is possible to use a conventional method of manufacturing a grain-oriented electrical steel sheet in which a final cold-rolled sheet is applied, and after the primary recrystallization annealing, an annealing separator is applied and then finish annealing is performed.
Here, in the steel sheet after the primary recrystallization annealing described above, the yttrium compound in the annealing separator contains 0.0005 mass% or more and 0.01 mass% or less in terms of Y 2 O 3 , and the volumetric shrinkage of the annealing separator is 20 The desired effect of preventing flattening can be obtained by applying an annealing separator that is not less than 80% and not more than 80%, and then winding in a coil shape and annealing at a temperature of 900 ° C. or more.

すなわち、本発明に従う焼鈍分離剤を用い、かつ仕上焼鈍を経ることによって、均一なフォルステライト被膜を有し、かつペイオフリールへの挿入が保障されたコイルとすることで、健全な方向性電磁鋼板を得ることができるのである。   That is, by using the annealing separator according to the present invention and undergoing finish annealing, the coil has a uniform forsterite film and is guaranteed to be inserted into the payoff reel, thereby producing a sound grain-oriented electrical steel sheet. Can be obtained.

質量%で、C:0.045%、Si:3.25%、Mn:0.070%、Al:0.008%、N:0.004%およびS:0.002%を含有し、残部Feおよび不可避不純物からなる電磁鋼板用スラブを、1200℃の温度に加熱後、熱間圧延し、2.2mm厚の熱延板とした。この熱延板に1000℃の温度で30秒間の熱延板焼鈍を施し、鋼板表面のスケ一ルを除去した。次に、タンデム圧延機により冷間圧延し、最終板厚:0.30mmとした。その後、均熱温度:850℃で90秒間保持する脱炭焼鈍を兼ねた一次再結晶焼鈍を施してから、MgO中に、TiO2:10質量%およびY2O3を表1に示す比率で添加した焼鈍分離剤を塗布して、内径:500mmおよび外径:1000mmのコイル状に巻取った。
このコイルを縦置きして、1200℃まで25℃/hで昇熱を行う仕上焼鈍を施したのち、横置き状態としてペイオフリールに挿入し、平坦化焼鈍を施した。このとき、焼鈍分離剤の体積収縮率を表1に示すように変化させた。なお、体積収縮率は、焼鈍分離剤の粒度を変えることで調整した。
A slab for an electrical steel sheet containing, by mass%, C: 0.045%, Si: 3.25%, Mn: 0.070%, Al: 0.008%, N: 0.004% and S: 0.002%, and the balance Fe and inevitable impurities, After heating to a temperature of 1200 ° C., hot rolling was performed to obtain a hot-rolled sheet having a thickness of 2.2 mm. This hot-rolled sheet was subjected to hot-rolled sheet annealing at a temperature of 1000 ° C. for 30 seconds to remove the scale on the surface of the steel sheet. Next, it was cold-rolled with a tandem rolling mill to a final thickness of 0.30 mm. Then, after performing primary recrystallization annealing that also serves as decarburization annealing that is maintained at a soaking temperature of 850 ° C. for 90 seconds, TiO 2 : 10% by mass and Y 2 O 3 in the ratios shown in Table 1 are included in MgO. The added annealing separator was applied and wound into a coil having an inner diameter of 500 mm and an outer diameter of 1000 mm.
This coil was placed vertically and subjected to finish annealing for heating up to 1200 ° C. at 25 ° C./h, and then inserted into a pay-off reel in a horizontally placed state and subjected to flattening annealing. At this time, the volumetric shrinkage of the annealing separator was changed as shown in Table 1. The volume shrinkage was adjusted by changing the particle size of the annealing separator.

表1に、コイルを横置き状態にしてから60分経過後の縦(径)方向の内径を測定し求めたコイルの変形量、また、被膜外観、ペイオフリールへの挿入可否、焼鈍分離剤除去性の調査結果をそれぞれ併記する。
なお、コイルの変形量は、コイルを横置き状態にしてから60分経過後の縦(径)方向の内径を測定し、(初期内径(500mm))−(60分経過後の内径)で計算した。なお、コイル変形量が50mmを超えると、ペイオフリールに挿入することができない。被膜外観は、目視で観察し、模様、欠陥があるものを「不均一」、無いものを「均一」と判定した。焼鈍分離剤除去性は、焼鈍分離剤の除去残りが発生した場合を「困難」とした。
Table 1 shows the amount of deformation of the coil obtained by measuring the inner diameter in the longitudinal (diameter) direction 60 minutes after the coil was placed horizontally, the coating appearance, whether it can be inserted into a payoff reel, and removal of the annealing separator. The sex survey results are also listed.
The amount of deformation of the coil is calculated by measuring the inner diameter in the longitudinal (diameter) direction after 60 minutes have passed since the coil was placed horizontally, and calculating (initial inner diameter (500 mm))-(inner diameter after 60 minutes). did. If the coil deformation exceeds 50 mm, it cannot be inserted into the payoff reel. The appearance of the film was visually observed, and those having patterns and defects were determined to be “non-uniform” and those having no pattern or defect were determined to be “uniform”. The annealing separation agent removability was determined as “difficult” when the removal residue of the annealing separation agent was generated.

Figure 2012001752
Figure 2012001752

同表から、本発明に従う焼鈍分離剤を塗布したものは、60分という長時間に渡って横置き状態になっていても、いずれもその変形が、45mm以下と小さく、ペイオフリールに挿入することができる変形量に留まっていることが分かる。
これに対し、焼鈍分離剤の体積収縮率が80%より大きい場合には、コイルの変形が大きくなることが分かる。また、Y2O3の添加量が0.0005質量%に満たないと、やはりコイルの変形が大きくなることが分かる。さらに、焼鈍分離剤の体積収縮率が20%に満たないと、被膜均一性に劣り、Y2O3の含有量が0.01質量%を超えると焼鈍分離剤の除去性に劣ることが分かる。
From the same table, even if the annealing separator according to the present invention is applied in a horizontal state for a long time of 60 minutes, the deformation is as small as 45 mm or less, and it is inserted into the payoff reel. It can be seen that the amount of deformation remains.
On the other hand, it can be seen that when the volumetric shrinkage of the annealing separator is greater than 80%, the deformation of the coil increases. It can also be seen that if the amount of Y 2 O 3 added is less than 0.0005% by mass, the deformation of the coil becomes large. Furthermore, when the volumetric shrinkage of the annealing separator is less than 20%, the film uniformity is inferior, and when the Y 2 O 3 content exceeds 0.01% by mass, the annealing separator is poorly removable.

質量%で、C:0.06%、Si:2.95%、Mn:0.07%、Se:0.015%、Sb:0.015%およびCr:0.03%を含み、残部Feおよび不可避不純物からなる電磁鋼板用スラブを、1350℃で40分加熱後、熱間圧延して2.6mmの板厚にした後、900℃、60秒間の熱延板焼鈍を施してから、1050℃、60秒間の中間焼鈍を挟んで冷間圧延し、0.23mmの最終板厚に仕上げた。ついで、脱炭焼鈍後、MgOを主体とする焼鈍分離剤を塗布して、内径:1000mmおよび外径:2000mmのコイル状に巻取り、このコイルを縦置きして、1200℃まで25℃/hで昇熱を行う仕上焼鈍を施したのち、平坦化焼鈍を施した。このとき、焼鈍分離剤の体積収縮率を、表2に示すように変化させた。なお、体積収縮率は、焼鈍分離剤の粒度及びFe203の含有量を変えることで調整した。また、イットリウム化合物として表2に記載の化合物を、同じく表2に記載の比率で添加した。 A slab for electrical steel sheets containing, by mass%, C: 0.06%, Si: 2.95%, Mn: 0.07%, Se: 0.015%, Sb: 0.015% and Cr: 0.03%, the balance being Fe and inevitable impurities, 1350 After 40 minutes of heating at ℃, hot rolled to a thickness of 2.6 mm, then subjected to hot rolling of 900 ° C for 60 seconds, followed by cold rolling with intermediate annealing at 1050 ° C for 60 seconds And finished to a final thickness of 0.23 mm. Next, after decarburization annealing, an annealing separator mainly composed of MgO is applied and wound into a coil shape having an inner diameter of 1000 mm and an outer diameter of 2000 mm. After performing the finish annealing which raises the temperature at, flattening annealing was performed. At this time, the volume shrinkage of the annealing separator was changed as shown in Table 2. The volume shrinkage ratio was adjusted by changing the content of the particle size and Fe 2 0 3 in the annealing separating agent. Moreover, the compound of Table 2 was added in the ratio of Table 2 similarly as an yttrium compound.

表2に、コイルを横置き状態にしてから60分経過後の縦(径)方向の内径を測定し求めたコイルの変形量、また、被膜外観、ペイオフリールへの挿入可否、焼鈍分離剤除去性の調査結果をそれぞれ併記する。なお、コイルの変形量、被膜外観、ペイオフリールへの挿入可否および焼鈍分離剤除去性は、上記した実施例1と同様の手順にて調査した。   Table 2 shows the amount of deformation of the coil obtained by measuring the inner diameter in the longitudinal (diameter) direction 60 minutes after the coil was placed horizontally, the appearance of the coating, whether it can be inserted into a payoff reel, and removal of the annealing separator The sex survey results are also listed. The amount of deformation of the coil, the appearance of the coating, whether it can be inserted into the payoff reel, and the ability to remove the annealing separator were investigated by the same procedure as in Example 1 described above.

Figure 2012001752
Figure 2012001752

同表から、本発明に従う焼鈍分離剤を塗布したものは、60分という長時間に渡って横置き状態になっていても、いずれもその変形が、43mm以下と小さく、ペイオフリールに挿入することができる変形量に留まっていることが分かる。
これに対して、焼鈍分離剤の体積収縮率が80%より大きい場合、コイルの変形が大きくなる。また、Y2O3の添加量が0.0005質量%に満たないと、やはりコイルの変形が大きくなる。さらに、焼鈍分離剤の体積収縮率が20%に満たないと、被膜均一性が劣り、イットリウム化合物の添加量がY2O3換算で0.01質量%を超えると焼鈍分離剤の除去性が劣ることが分かる。
From the same table, even when the annealing separator according to the present invention is applied in a horizontal state for a long time of 60 minutes, the deformation is as small as 43 mm or less, and it is inserted into the payoff reel. It can be seen that the amount of deformation remains.
On the other hand, when the volumetric shrinkage of the annealing separator is greater than 80%, the deformation of the coil increases. If the amount of Y 2 O 3 added is less than 0.0005% by mass, the deformation of the coil is also increased. Furthermore, if the volumetric shrinkage of the annealing separator is less than 20%, the coating uniformity is inferior, and if the amount of yttrium compound added exceeds 0.01% by mass in terms of Y 2 O 3 , the removal ability of the annealing separator is inferior. I understand.

Claims (4)

マグネシアを主体とし、かつ体積収縮率が20%以上80%以下である方向性電磁鋼板用の焼鈍分離剤であって、該焼鈍分離剤中にイットリウム化合物をY2O3換算で0.0005質量%以上0.01質量%以下含有することを特徴とする焼鈍分離剤。 An annealing separator for grain-oriented electrical steel sheets mainly composed of magnesia and having a volume shrinkage of 20% or more and 80% or less, and an yttrium compound in the annealing separator in an amount of 0.0005% by mass or more in terms of Y 2 O 3 An annealing separator containing 0.01% by mass or less. 前記焼鈍分離剤がマグネシアを80%以上含有することを特徴とする請求項1に記載の焼鈍分離剤。   The annealing separator according to claim 1, wherein the annealing separator contains 80% or more of magnesia. 前記焼鈍分離剤が水酸化マグネシウムおよび/または炭酸マグネシウムを主原料とし、これを焼成するに先立ってイットリウム化合物を添加したのち、焼成して得たものであることを特徴とする請求項1または2に記載の焼鈍分離剤。   3. The annealing separator according to claim 1, wherein the annealing separator is obtained by calcining after using magnesium hydroxide and / or magnesium carbonate as a main raw material and adding an yttrium compound prior to firing. An annealing separator according to 1. 方向性電磁鋼板用スラブを、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終冷延板とし、ついで、一次再結晶焼鈍を施したのち、焼鈍分離剤を塗布して、コイル状に巻取り、900℃以上の温度で仕上焼鈍を施すに当たり、該焼鈍分離剤として、請求項1〜3のいずれかに記載の焼鈍分離剤を用いることを特徴とする方向性電磁鋼板の製造方法。   The slab for grain-oriented electrical steel sheet is hot-rolled and subjected to hot-rolled sheet annealing as necessary, and then cold-rolled twice or more with intermediate or intermediate annealing to obtain the final cold-rolled sheet. In addition, after performing primary recrystallization annealing, applying an annealing separator, winding it in a coil shape, and performing a final annealing at a temperature of 900 ° C. or higher, as the annealing separator, any one of claims 1 to 3 A method for producing a grain-oriented electrical steel sheet, comprising using the annealing separator described in 1.
JP2010136295A 2010-06-15 2010-06-15 Annealing separator and method for producing grain-oriented electrical steel sheet Active JP5494268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136295A JP5494268B2 (en) 2010-06-15 2010-06-15 Annealing separator and method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136295A JP5494268B2 (en) 2010-06-15 2010-06-15 Annealing separator and method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2012001752A true JP2012001752A (en) 2012-01-05
JP5494268B2 JP5494268B2 (en) 2014-05-14

Family

ID=45534073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136295A Active JP5494268B2 (en) 2010-06-15 2010-06-15 Annealing separator and method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5494268B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152324A (en) * 2018-01-31 2018-06-12 彩虹显示器件股份有限公司 A kind of method tested glass and be heat-shrinked

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247661A (en) * 1992-03-04 1993-09-24 Nippon Steel Corp Production of grain oriented silicon steel sheet having uniform glass film and excellent in magnetic property
JPH05295441A (en) * 1992-04-22 1993-11-09 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in glass film characteristic, having superior magnetic property, and increrased in magnetic flux density
JPH05311353A (en) * 1992-05-08 1993-11-22 Nippon Steel Corp Ultralow core loss grain-oriented silicon steel sheet without glass coating film and its production
JPH07188937A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet
JPH1088240A (en) * 1996-09-11 1998-04-07 Kawasaki Steel Corp Method for evaluation of magnesium oxide for separation agent at annealing at manufacture of grain oriented silicon steel sheet, and manufacture of grain oriented silicon steel sheet excellent in film characteristic
JPH1088244A (en) * 1996-09-12 1998-04-07 Kawasaki Steel Corp Magnesium oxide for separation agent at annealing used fixed at manufacture of grain oriented silicon steel sheet
JPH11181525A (en) * 1997-12-24 1999-07-06 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JP2001303137A (en) * 2000-04-25 2001-10-31 Kawasaki Steel Corp Method for producing grain oriented silicon steel excellent in coil shape
WO2002034965A1 (en) * 2000-10-25 2002-05-02 Tateho Chemical Industries Co., Ltd. Magnesium oxide particle aggregate
WO2006126660A1 (en) * 2005-05-23 2006-11-30 Nippon Steel Corporation Grain oriented electromagnetic steel sheet having excellent film adhesion and process for producing the same
JP2008260668A (en) * 2007-04-13 2008-10-30 Jfe Steel Kk Magnesia for annealing separating agent and manufacture method of grain oriented magnetic steel sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247661A (en) * 1992-03-04 1993-09-24 Nippon Steel Corp Production of grain oriented silicon steel sheet having uniform glass film and excellent in magnetic property
JPH05295441A (en) * 1992-04-22 1993-11-09 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in glass film characteristic, having superior magnetic property, and increrased in magnetic flux density
JPH05311353A (en) * 1992-05-08 1993-11-22 Nippon Steel Corp Ultralow core loss grain-oriented silicon steel sheet without glass coating film and its production
JPH07188937A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet
JPH1088240A (en) * 1996-09-11 1998-04-07 Kawasaki Steel Corp Method for evaluation of magnesium oxide for separation agent at annealing at manufacture of grain oriented silicon steel sheet, and manufacture of grain oriented silicon steel sheet excellent in film characteristic
JPH1088244A (en) * 1996-09-12 1998-04-07 Kawasaki Steel Corp Magnesium oxide for separation agent at annealing used fixed at manufacture of grain oriented silicon steel sheet
JPH11181525A (en) * 1997-12-24 1999-07-06 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JP2001303137A (en) * 2000-04-25 2001-10-31 Kawasaki Steel Corp Method for producing grain oriented silicon steel excellent in coil shape
WO2002034965A1 (en) * 2000-10-25 2002-05-02 Tateho Chemical Industries Co., Ltd. Magnesium oxide particle aggregate
WO2006126660A1 (en) * 2005-05-23 2006-11-30 Nippon Steel Corporation Grain oriented electromagnetic steel sheet having excellent film adhesion and process for producing the same
JP2008260668A (en) * 2007-04-13 2008-10-30 Jfe Steel Kk Magnesia for annealing separating agent and manufacture method of grain oriented magnetic steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152324A (en) * 2018-01-31 2018-06-12 彩虹显示器件股份有限公司 A kind of method tested glass and be heat-shrinked

Also Published As

Publication number Publication date
JP5494268B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
KR101568627B1 (en) Annealing separator for grain oriented electrical steel sheet
KR101620763B1 (en) Grain-oriented electrical steel sheet and method of producing the same
JP6168173B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP3396681B1 (en) Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet
EP3178965B1 (en) Pre-coating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet comprising same, and manufacturing method therefor
EP2578706A1 (en) Process for production of unidirectional electromagnetic steel sheet
JP2012052230A (en) Oriented magnetic steel plate and production method for the same
JP6624180B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP6579078B2 (en) Method for producing grain-oriented electrical steel sheet
JP5494268B2 (en) Annealing separator and method for producing grain-oriented electrical steel sheet
JP5418844B2 (en) Method for producing grain-oriented electrical steel sheet
JP3885463B2 (en) Method for producing grain-oriented silicon steel sheet
JP5287641B2 (en) Method for producing grain-oriented electrical steel sheet
JP5729009B2 (en) Annealing separator
JP2005264280A (en) Grain-oriented electromagnetic steel sheet having superior stamping property and peeling resistance of coating, and manufacturing method therefor
JP6624028B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5434560B2 (en) Finishing annealing method for annealing separator and grain-oriented electrical steel sheet
JP5181651B2 (en) Method for adjusting annealing separator slurry for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP7226658B2 (en) Powder for annealing separator and method for producing grain-oriented electrical steel sheet
JP7107454B1 (en) Manufacturing method of grain-oriented electrical steel sheet
KR102564833B1 (en) Grain-oriented electrical steel sheet, manufacturing method thereof, and annealing separator
JP2001303259A (en) Magnesia for annealing and separating agent of grain oriented silicon steel sheet and method for manufacturing grain oriented silicon steel sheet having excellent magnetic characteristic and film characteristic
JP2003027139A (en) Method for manufacturing grain-oriented electrical steel sheet
JP2021085090A (en) Annealing separation agent for grain-oriented electromagnetic steel sheet and slurry thereof as well as a method for producing a grain-oriented electromagnetic steel sheet using slurry thereof
JPH0762427A (en) Separation agent for annealing for grain-opented silicon steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5494268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250