JPH1088240A - Method for evaluation of magnesium oxide for separation agent at annealing at manufacture of grain oriented silicon steel sheet, and manufacture of grain oriented silicon steel sheet excellent in film characteristic - Google Patents

Method for evaluation of magnesium oxide for separation agent at annealing at manufacture of grain oriented silicon steel sheet, and manufacture of grain oriented silicon steel sheet excellent in film characteristic

Info

Publication number
JPH1088240A
JPH1088240A JP8240451A JP24045196A JPH1088240A JP H1088240 A JPH1088240 A JP H1088240A JP 8240451 A JP8240451 A JP 8240451A JP 24045196 A JP24045196 A JP 24045196A JP H1088240 A JPH1088240 A JP H1088240A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
mgo
silicon steel
relative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8240451A
Other languages
Japanese (ja)
Other versions
JP3695008B2 (en
Inventor
Makoto Watanabe
渡辺  誠
Tsutomu Kami
力 上
Michiro Komatsubara
道郎 小松原
Atsuto Honda
厚人 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24045196A priority Critical patent/JP3695008B2/en
Publication of JPH1088240A publication Critical patent/JPH1088240A/en
Application granted granted Critical
Publication of JP3695008B2 publication Critical patent/JP3695008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To stable obtain a grain oriented silicon steel sheet excellent in mag netic properties as well as film characteristic by measuring gas adsorption isothermal line prior to the use of MgO for a separation agent at annealing and judging the feasibility of application. SOLUTION: A hot rolled silicon steel plate is cold-rolled while process- annealed between cold rolling stages and finished to final sheet thickness. Subsequently, after primary recrystallization annealing, a separation agent at annealing, prepared by using MgO as a main material agent and formed into slurry state, is applied to the surface of the resultant steel sheet and final finish annealing is performed. In this method, an MgO, having a powder characteristic where the N2 gas adsorption isothermal line up to 0.05-0.95 relative pressure satisfied the region enclosed with lines connecting point A (0.05, 2.7), point B (0.3, 4.0), point C (0.8, 7.7), point D (0.95, 13.6), point E (0.95, 40.9), point F (0.8, 15.9), point G (0.3, 7.1), and point H (0.05, 4.6) in the coordinates [relative pressure, amount of adsorption: (ml/g)], is used as MgO.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器その他の
電気機器の鉄心等に用いられる方向性けい素鋼板の製造
工程中とくに最終仕上焼鈍工程において、フォルステラ
イト被膜形成のために用いられる焼鈍分離剤の主剤であ
るMgOに関し、このMgOの適用可否判断のための新たな
指標を与えると共に、これの好適範囲を特定することに
より、被膜特性および磁気特性の有利な向上を図ろうと
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an annealing separator used for forming a forsterite film in a manufacturing process of a grain-oriented silicon steel sheet used for an iron core of a transformer or other electric equipment, particularly in a final finishing annealing process. With respect to MgO, which is the main agent of the agent, it is intended to provide a new index for judging the applicability of this MgO and to specify a suitable range thereof, thereby improving the film properties and magnetic properties advantageously. .

【0002】[0002]

【従来の技術】方向性けい素鋼板の製造方法としては、
鋼スラブを、熱間圧延後、1回または中間焼鈍を挟む2
回以上の冷間圧延を施したのち、脱炭焼鈍し、ついで最
終仕上焼鈍を施す工程が一般的である。この最終仕上焼
鈍中に二次再結晶が起こり、圧延方向に磁化容易軸の揃
った粗大な結晶粒が生成する。
2. Description of the Related Art As a method of manufacturing a grain-oriented silicon steel sheet,
After hot rolling of steel slabs, one or intermediate annealing 2
It is a common practice to perform cold rolling more than once, decarburize annealing, and then perform final finish annealing. Secondary recrystallization occurs during this final finish annealing, and coarse crystal grains having a uniform axis of easy magnetization in the rolling direction are generated.

【0003】ところで、上記した最終仕上焼鈍は長時間
の処理であるため、処理中における鋼板の焼付き防止を
目的として、通常、焼鈍前にMgOを主体とする焼鈍分離
剤を塗布する。このMgOは、焼鈍分離剤としての役割以
外に、脱炭焼鈍時に鋼板表面に生成したSiO2を主体とす
る酸化層と反応することによりフォルステライト被膜を
形成させる働きがある。このフォルステライト被膜は、
絶縁コーティングと地鉄部分とを密着させる一種のバイ
ンダーとしての働きの他、絶縁抵抗を高め、また鋼板に
張力を付与することによって磁気特性を改善する等の働
きがある。従って、均一な厚みを持ち、しかも鋼板との
密着性の良い被膜を形成させることは極めて重要であ
る。
[0003] Since the above-mentioned final finish annealing is a long-time treatment, an annealing separator mainly composed of MgO is usually applied before annealing in order to prevent seizure of the steel sheet during the treatment. This MgO has a function of forming a forsterite film by reacting with an oxide layer mainly composed of SiO 2 formed on the surface of the steel sheet during decarburization annealing, in addition to the role of the annealing separator. This forsterite coating,
In addition to functioning as a kind of binder that makes the insulating coating adhere to the base iron part, it has functions such as increasing the insulation resistance and improving the magnetic properties by applying tension to the steel sheet. Therefore, it is extremely important to form a film having a uniform thickness and good adhesion to a steel sheet.

【0004】また、焼鈍分離剤には、上記の働き以外
に、鋼板中の析出物の成長、分解挙動や結晶粒の成長挙
動を変化させて磁気特性に影響を及ぼす働きもある。た
とえば、MgOをスラリー化した際、持ち込まれる水分が
多すぎると鋼板が酸化されて磁気特性が劣化したり、被
膜に点状欠陥が生成したりする。また、MgO中に含まれ
る不純物が焼鈍中に鋼中に侵入することにより、二次再
結晶挙動が変化することも等も知られている。従って、
焼鈍分離剤の成分や粉体特性の良否は、方向性けい素鋼
の被膜特性および磁気特性を左右する重要な要因となっ
ている。
[0004] In addition to the above functions, the annealing separator has a function of affecting the magnetic properties by changing the growth and decomposition behavior of precipitates in the steel sheet and the growth behavior of crystal grains. For example, when MgO is slurried, if too much moisture is brought in, the steel sheet is oxidized and the magnetic properties are degraded, or point defects are generated in the coating. It is also known that secondary recrystallization behavior changes when impurities contained in MgO enter steel during annealing. Therefore,
The quality of the components and the powder properties of the annealing separator are important factors that influence the coating properties and magnetic properties of the grain-oriented silicon steel.

【0005】このため、従来から、焼鈍分離剤の品質改
善のために様々な方法が提案されている。例えば、特公
昭57-14566号公報には、マッフル炉で高温焼成されたマ
グネシヤの不純物の濃度、水和量、ふるい通過性を特定
することによって、良好なフォルステライト被膜を形成
させる方法が開示されている。また、特公昭57-45472公
報には、 SO3, B等の不純物濃度および比表面積、粒径
等の粉体特性を特定の範囲内に収めると共に、クエン酸
活性度の分布を所定の範囲に収めることによって、良好
な被膜を形成する技術が開示されている。さらに、特公
昭57−8188号公報には、水酸化マグネシウムを焼成し、
引き続き吸着させて表面積:100 Å2 当たりOH基の数が
15〜30の範囲にした、 BET比表面積が15〜30 m2/gの酸
化マグネシウム:70〜90wt%と BET比表面積が1〜10 m
2/gの酸化マグネシウム10〜30wt%とを成分とするMgO
を用いることにより、鋼板との接着力を高めることによ
って、被膜密着性および磁気特性を向上させる方法が開
示されている。
For this reason, various methods have conventionally been proposed for improving the quality of the annealing separator. For example, Japanese Patent Publication No. 57-14566 discloses a method for forming a good forsterite film by specifying the impurity concentration, hydration amount, and sieve permeability of magnesium fired in a muffle furnace at a high temperature. ing. Further, Japanese Patent Publication No. 57-45472 discloses that the powder characteristics such as the impurity concentration of SO 3 , B, etc. and the specific surface area, particle size, etc. are within a specific range and the distribution of citric acid activity is within a predetermined range. There is disclosed a technique for forming a good film by containing the film. Furthermore, Japanese Patent Publication No. 57-8188 discloses that magnesium hydroxide is calcined,
Continued adsorption and surface area: 100 Å 2
Magnesium oxide with a BET specific surface area of 15 to 30 m 2 / g in the range of 15 to 30: 70 to 90 wt% and a BET specific surface area of 1 to 10 m
MgO containing 10 / 30wt% of 2 / g magnesium oxide
There is disclosed a method for improving film adhesion and magnetic properties by increasing the adhesive strength to a steel sheet by using the method.

【0006】上記の各技術により、ある程度被膜特性お
よび磁気特性は向上してきたものの、未だ十分な効果が
得られているとはいい難く、特に近年のエネルギー事情
の悪化から、より一層の生産性および製品特性の向上が
求められている。
Although the film properties and magnetic properties have been improved to some extent by the above techniques, it is still difficult to say that sufficient effects have been obtained. There is a demand for improved product characteristics.

【0007】また、MgOは上述したように、製造過程で
複雑な働きをするため、MgOの各粉体特性の変化が製品
特性にどのような影響を及ぼしているかは、まだ完全に
は解明されていない。これまでMgOを評価する指標とし
て、B,CaO, SO3, Clなどの不純物濃度や、クエン酸活
性度、BET 比表面積および粒度分布などの粉体特性が用
いられてきた。しかしながら、これらの特性でMgOの適
用可否を十分判断することができず、場合によっては各
粉体特性に対する製品特性の影響が従来言われていた傾
向と異なることもあった。従って、MgOの改良を検討す
るに当たり、より適切な評価指標を見出すことが強く望
まれていた。
[0007] Further, as described above, since MgO has a complicated function in the manufacturing process, it is still not completely understood how the change in each powder property of MgO affects the product properties. Not. Until now, as an index for evaluating MgO, powder characteristics such as impurity concentration of B, CaO, SO 3 , Cl and the like, citric acid activity, BET specific surface area and particle size distribution have been used. However, the applicability of MgO cannot be sufficiently determined based on these characteristics, and in some cases, the influence of the product characteristics on the characteristics of each powder may be different from the tendencies conventionally known. Therefore, in studying the improvement of MgO, it has been strongly desired to find a more appropriate evaluation index.

【0008】[0008]

【発明が解決しようとする課題】この発明は、上記の事
情に鑑みて開発されたもので、方向性けい素鋼板製造時
における焼鈍分離剤用のMgOの新しい評価方法を提案す
ると共に、この評価方法で評価した特性値を所定の範囲
に制限したMgOを用いることにより、被膜特性ひいては
磁気特性に優れた方向性けい素鋼板を安定して得ること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above circumstances, and proposes a new method for evaluating MgO for an annealing separator in the production of a grain-oriented silicon steel sheet, and also provides an evaluation method for the same. It is an object of the present invention to stably obtain a grain-oriented silicon steel sheet having excellent coating properties and magnetic properties by using MgO whose characteristic value evaluated by the method is limited to a predetermined range.

【0009】[0009]

【課題を解決するための手段】さて、発明者らは、上記
の目的を達成すべく、被膜形成に最適なMgO条件につい
て種々検討を行った結果、MgOのガス吸着等温線のプロ
ファイルにより被膜品質を的確に判断できることの新規
知見を得た。この発明は、上記の知見に立脚するもので
ある。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted various studies on the optimum MgO conditions for film formation. As a result, the quality of the film was determined by the profile of the gas adsorption isotherm of MgO. We have obtained new knowledge that we can judge accurately. The present invention is based on the above findings.

【0010】すなわち、この発明は、焼鈍分離剤用のMg
Oについて、その使用に先立ち、ガス吸着等温線を測定
し、得られたプロファイルによって適用の可否を判断す
ることを特徴とする方向性けい素鋼板製造時における焼
鈍分離剤用MgOの評価方法(第1発明)である。
[0010] That is, the present invention relates to an Mg separation agent for annealing.
Prior to the use of O, a gas adsorption isotherm was measured, and the applicability was judged based on the obtained profile. 1 invention).

【0011】また、この発明は、けい素鋼熱延板を、1
回または中間焼鈍を挟む複数回の冷間圧延によって最終
板厚に仕上げた後、一次再結晶焼鈍を施し、ついでMgO
を主剤とする焼鈍分離剤を水でスラリー状にしてから鋼
板表面に塗布し、しかるのち最終仕上焼鈍を施す一連の
工程からなる方向性けい素鋼板の製造方法において、Mg
Oとして、その粉体特性が、相対圧:0.05〜0.95までの
N2ガス吸着等温線が図1の点A, B, C, D, E, F,
GおよびHで囲まれる領域を満足するものを用いること
を特徴とする被膜特性に優れた方向性けい素鋼板の製造
方法(第2発明)である。ここに、図1における各点の
座標(相対圧,吸着量:ml/g)は、次のとおりである。 点A=( 0.05 , 2.7 )、 点B=( 0.3 , 4.0
)、点C=( 0.8 , 7.7 )、 点D=( 0.95 ,1
3.6 )、点E=( 0.95 ,40.9 )、 点F=( 0.8
,15.9 )、点G=( 0.3 , 7.1 )、 点H=(
0.05 , 4.6 )。
The present invention also provides a hot rolled silicon steel sheet comprising:
After finishing to the final sheet thickness by cold rolling multiple times including intermediate or intermediate annealing, primary recrystallization annealing is performed, and then MgO
In a method for producing a grain-oriented silicon steel sheet, comprising a series of steps of applying an annealing separator mainly containing water as a slurry with water and then applying it to the steel sheet surface, and then performing a final finish annealing,
As O, its powder properties are relative pressure: 0.05 to 0.95.
The N 2 gas adsorption isotherms are points A, B, C, D, E, F,
A method for producing a grain-oriented silicon steel sheet having excellent coating properties, characterized by using a material satisfying a region surrounded by G and H (second invention). Here, the coordinates (relative pressure, adsorption amount: ml / g) of each point in FIG. 1 are as follows. Point A = (0.05, 2.7), Point B = (0.3, 4.0)
), Point C = (0.8, 7.7), point D = (0.95, 1)
3.6), point E = (0.95, 40.9), point F = (0.8
, 15.9), point G = (0.3, 7.1), point H = (
0.05, 4.6).

【0012】さらに、この発明は、けい素鋼熱延板を、
1回または中間焼鈍を挟む複数回の冷間圧延によって最
終板厚に仕上げた後、一次再結晶焼鈍を施し、ついでMg
Oを主剤とする焼鈍分離剤を水でスラリー状にしてから
鋼板表面に塗布し、しかるのち最終仕上焼鈍を施す一連
の工程からなる方向性けい素鋼板の製造方法において、
MgOとして、その粉体特性が、相対圧:0.05〜0.95まで
のN2ガス吸着等温線が図1の点A, B, C, D, E,
F, GおよびHで囲まれる領域を満足し、かつ相対圧:
0.05〜0.90までの水蒸気吸着等温線が図2の点I, J,
K, L, MおよびNで囲まれる領域を併せて満足するも
のを用いることを特徴とする被膜特性に優れた方向性け
い素鋼板の製造方法(第3発明)である。ここに、図2
における各点の座標(相対圧,吸着量:ml/g)は、次の
とおりである。 点I=( 0.05 , 1.8 )、 点J=( 0.3 , 4.3
)、点K=( 0.9 , 12.5 )、 点L=( 0.9 , 3
3.2 )、点M=( 0.3 , 13.8 )、 点N=( 0.05 ,
8.4 )。
Further, the present invention provides a hot rolled silicon steel sheet,
After finishing to the final thickness by cold rolling once or multiple times with intermediate annealing, primary recrystallization annealing is performed, and then Mg
A method for producing a grain-oriented silicon steel sheet comprising a series of steps of applying an annealing separator mainly containing O as a slurry with water and then applying it to the steel sheet surface, and then performing a final finish annealing,
As the powder characteristic of MgO, its N 2 gas adsorption isotherm at a relative pressure of 0.05 to 0.95 is indicated by points A, B, C, D, E,
Satisfies the area surrounded by F, G and H, and the relative pressure:
The water vapor adsorption isotherms from 0.05 to 0.90 correspond to points I, J,
A method for producing a grain-oriented silicon steel sheet having excellent coating properties, characterized by using a material that satisfies a region surrounded by K, L, M and N (third invention). Here, FIG.
The coordinates (relative pressure, adsorption amount: ml / g) of each point in are as follows. Point I = (0.05,1.8), Point J = (0.3,4.3)
), Point K = (0.9, 12.5), point L = (0.9, 3
3.2), point M = (0.3, 13.8), point N = (0.05,
8.4).

【0013】[0013]

【発明の実施の形態】以下、この発明を由来するに至っ
た実験について述べる。C:0.045 wt%(以下%で示
す。),Si:3.25%,Al:0.01%, N:0.0080%, Mn:
0.07%, Se:0.02%, Sb:0.03%およびCu:0.08%を含
み、残部は実質的にFeの組成になるけい素鋼スラブを、
1400℃で30分加熱した後、熱延して2.2 mmの板厚にし、
ついで1000℃、1分間でのノルマ焼鈍後、タンデム圧延
機にて120℃で0.35mm厚に冷延し、最終板厚に仕上げ
た。ついで、脱炭焼鈍後、MgOを主体とする焼鈍分離剤
を塗布、乾燥して最終仕上焼鈍を行った。このとき、Mg
Oとしては、表1に示される特性および図3に示される
N2ガス吸着プロファイルを持つ5種類の粉体(No.1〜
5)を用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an experiment which led to the present invention will be described. C: 0.045 wt% (hereinafter expressed as%), Si: 3.25%, Al: 0.01%, N: 0.0080%, Mn:
A silicon steel slab containing 0.07%, Se: 0.02%, Sb: 0.03% and Cu: 0.08%, with the balance being substantially Fe
After heating at 1400 ° C for 30 minutes, hot-rolled to a thickness of 2.2 mm,
Then, after a norma annealing at 1000 ° C. for 1 minute, the sheet was cold-rolled to a thickness of 0.35 mm at 120 ° C. by a tandem rolling mill, and finished to a final thickness. Next, after decarburizing annealing, an annealing separator mainly composed of MgO was applied and dried to perform final finish annealing. At this time, Mg
As O, the properties shown in Table 1 and those shown in FIG.
Five powders with N 2 gas adsorption profile (Nanba1~
5) was used.

【0014】[0014]

【表1】 [Table 1]

【0015】表1中、CAA40, 80(s)は、特公昭57-45472
号公報の方法を用いて測定し、また水和量は20℃で、60
分水和後の強熱減量より求めた。累積50%径は、ヘキサ
メタリン酸3%水溶液で 300W、3分間の超音波分散を
行った後、レーザー回折式粒度分布計を用いて測定し
た。さらに、N2ガス吸着曲線の測定は、予備処理として
真空中で 400℃、2時間の熱処理を施した後、定容量式
測定器で、吸着ガスをN2、吸着温度を−196 ℃として相
対圧:0〜0.99まで測定した。また、ここで示した測定
値は吸脱着曲線のうち吸着側データを用いた。
[0015] In Table 1, CAA40, 80 (s) corresponds to Japanese Patent Publication No. 57-45472.
The hydration was measured at 20 ° C.
It was determined from the loss on ignition after dehydration. The cumulative 50% diameter was measured using a laser diffraction type particle size distribution meter after performing ultrasonic dispersion at 300 W for 3 minutes with a 3% aqueous solution of hexametaphosphoric acid. Furthermore, the N 2 gas adsorption curve was measured by performing a heat treatment at 400 ° C. for 2 hours in a vacuum as a pretreatment, and then using a constant volume measuring instrument to set the adsorption gas to N 2 and the adsorption temperature to -196 ° C. Pressure: Measured from 0 to 0.99. In addition, the measured values shown here used data on the adsorption side of the adsorption / desorption curve.

【0016】また、各MgO:100 重量部に対して、TiO2
を6重量部、 SrSO4を2重量部添加して焼鈍分離剤とし
た。その後、仕上焼鈍として 850℃から1150℃までを15
℃/hの昇温速度で加熱し、引き続き1200℃、5時間の
鈍化焼鈍を施した。かくして得られた各コイルの磁気特
性および被膜欠陥発生率について調査した結果を表2に
示す。なお、被膜欠陥発生率は、レーザー式の表面検査
装置を用いて評価した。
Further, TiO 2 is added to each 100 parts by weight of MgO.
Was added as an annealing separator by adding 6 parts by weight of SrSO 4 and 2 parts by weight of SrSO 4 . After that, finish annealing from 850 ° C to 1150 ° C for 15 minutes
Heating was carried out at a temperature rising rate of ° C./h, followed by annealing at 1200 ° C. for 5 hours. Table 2 shows the results obtained by examining the magnetic properties and the coating defect occurrence rate of each coil thus obtained. In addition, the coating defect occurrence rate was evaluated using a laser type surface inspection device.

【0017】[0017]

【表2】 同表から明らかなように、N2ガス吸着曲線が、図1の点
A, B, C, D, E,F, GおよびHで囲まれる領域を
満足するものを用いた場合には、被膜欠陥発生率が低下
して、良好な被膜が得ることができた。また、磁気特性
も良好な値が得られた。しかしながら、N2ガス吸着等温
線が上記の範囲を満足する場合であっても、被膜欠陥発
生率には若干の劣化が見られた。
[Table 2] As is clear from the table, when the N 2 gas adsorption curve satisfies the region surrounded by points A, B, C, D, E, F, G and H in FIG. The defect occurrence rate was reduced, and a good film could be obtained. Also, good values were obtained for the magnetic properties. However, even when the N 2 gas adsorption isotherm satisfies the above range, the occurrence rate of film defects was slightly deteriorated.

【0018】そこで、次に、この原因を調査するため
に、上記の実験の結果、N2ガス吸着等温線が図1のAB
CDEFGHの範囲内にある粉体に限定して、図4に示
される様々な水蒸気吸着等温線を持つMgOを用いて上述
と同様の実験を行った。なお、水蒸気吸着等温線測定時
の測定温度は25℃、相対圧は0〜0.90で、その他の測定
条件は上述と同一にして行った。得られた結果を表3に
示す。
Then, next, in order to investigate the cause, as a result of the above-mentioned experiment, the N 2 gas adsorption isotherm is shown by AB in FIG.
The same experiment as described above was performed using MgO having various water vapor adsorption isotherms shown in FIG. 4 only for powders within the range of CDEFGH. The measurement temperature at the time of measuring the water vapor adsorption isotherm was 25 ° C., the relative pressure was 0 to 0.90, and the other measurement conditions were the same as described above. Table 3 shows the obtained results.

【0019】[0019]

【表3】 同表から明らかなように、N2ガス吸着等温線が図1のA
BCDEFGHの範囲内を満足し、かつ水蒸気吸着曲線
が図2のIJKLMNの範囲内を満足するMgOを用いた
場合に、とりわけ良好な被膜欠陥発生率および被膜密着
性が得られている。
[Table 3] As is clear from the table, the N 2 gas adsorption isotherm is shown in FIG.
In particular, when using MgO that satisfies the range of BCDEFGH and the water vapor adsorption curve satisfies the range of IJKLMN in FIG. 2, particularly good film defect occurrence rates and film adhesion are obtained.

【0020】このような結果が得られた詳細なメカニズ
ムについては、まだ明確に解明されてはないが、発明者
らは次のように考えている。方向性けい素鋼板用のMgO
の吸脱着等温線は、いわゆるBET型と呼ばれるプロフ
ァイルを示す。これは、低相対圧領域で急激に吸着し、
中相対圧領域で緩やかに吸着量が増大したあと、高相対
圧領域で再び急激に吸着量が増大するもので、ノンポー
ラスであるか、50nm程度以上のマクロポアの存在する粉
体で見られる現象である。
The detailed mechanism by which such a result is obtained has not yet been clearly elucidated, but the inventors consider as follows. MgO for oriented silicon steel sheet
Shows a so-called BET type profile. This is due to the rapid adsorption in the low relative pressure region,
This is a phenomenon that is observed in non-porous or powders with macropores of about 50 nm or more, after the amount of adsorption gradually increases in the medium relative pressure region and then increases rapidly in the high relative pressure region. It is.

【0021】低相対圧の急激な吸着は、数nm以下のマイ
クロポアの存在を示し、方向性けい素鋼用ではかような
マイクロポアが存在するとスラリー化するまでの段階で
CO2吸着が起こり、これが仕上焼鈍中に放出されること
により、鋼中に浸炭したり、水分の吸着が急激に起る。
そして、この水分は低温では脱離せず、高温時で放出さ
れるために有害となり、良好な磁気特性を得ることはで
きない。今回の結果では、相対圧:0.05までの吸着量の
多い粉体では被膜不良となったことに対応する。
Sudden adsorption at a low relative pressure indicates the presence of micropores of several nm or less. In the case of oriented silicon steel, if such micropores are present, they become a slurry before the slurry is formed.
CO 2 adsorption occurs and is released during finish annealing, causing carburization in the steel and rapid adsorption of moisture.
This water does not desorb at low temperatures and is released at high temperatures, which is harmful and makes it impossible to obtain good magnetic properties. The present results correspond to the fact that the powder having a large amount of adsorption up to a relative pressure of 0.05 resulted in a coating failure.

【0022】中相対圧領域は、外部表面への多分子吸着
に相当する。通常、BET 比表面積はこの領域でのデータ
から計算するが、大雑把に述べると、この傾きが大きい
ほど外部の比表面積が大きくなることに対応する。比表
面積は大きすぎると被膜形成が進みすぎ、一方小さすぎ
ると反応性が低下するので、適当な範囲である必要があ
る。
The medium relative pressure region corresponds to multi-molecule adsorption on the outer surface. Normally, the BET specific surface area is calculated from the data in this region, but roughly speaking, the larger the slope, the larger the external specific surface area. If the specific surface area is too large, the film formation proceeds too much, while if it is too small, the reactivity decreases.

【0023】高相対圧領域では、吸着分子がマクロなポ
アに毛管凝集することにより、急激な吸着が起ると考え
られる。この吸着データにより、マクロポアの分布が判
断できる。つまり、高相対圧側で吸着量の増大が大きい
ほどマクロなポアの存在が多いと考えられる。マイクロ
ポアでは、 CO2やH2O の吸着が優先的に起こり、解離し
にくいという欠点があるため、できり限り少なくする必
要があるが、マクロポアではこのような欠点はない。マ
クロポアはMgOの充填率に影響し、仕上焼鈍中に収縮が
起ることによってMgO焼結性を調節し、被膜反応性を変
化させる作用を引き起こす。従って、このようなポアの
存在により製品特性やそのばらつきは大きく変化するこ
とになるため、良好な製品特性が得る上では適度に存在
させることが重要である。
In the high relative pressure region, it is considered that rapid adsorption occurs due to capillary aggregation of the adsorbed molecules into macropores. From the adsorption data, the distribution of macropores can be determined. That is, it is considered that the larger the increase in the amount of adsorption is on the high relative pressure side, the more macropores are present. Micropores have the drawback that CO 2 and H 2 O are adsorbed preferentially and are difficult to dissociate. Therefore, they need to be minimized. However, macropores do not have such drawbacks. The macropores affect the filling rate of MgO, and cause shrinkage during finish annealing to adjust the MgO sinterability, thereby causing an effect of changing the coating reactivity. Therefore, the presence or absence of such pores greatly changes the product characteristics and variations thereof. Therefore, it is important that the pores be appropriately present in order to obtain good product characteristics.

【0024】次に水分吸着について述べると、水分吸着
はN2ガス吸着とは異なり、活性化、化学吸着も同時に測
定していることになる。また、N2ガス吸着では、N2ガス
の極性が低いので、マイクロポアの部分を除いて粉体表
面に選択性なく一様に吸着すると考えられるが、水分吸
着では、 H2Oの極性が強いので、MgOの荷電状態すなわ
ち表面活性状態によって吸着程度に差異が生じる。従っ
て、これらの違いからMgOを水でスラリー化する際に起
こる水分子の吸着は、N2ガス吸着よりも水蒸気吸着によ
って工程条件により近い条件で評価できると考えられ
る。
Next, regarding the moisture adsorption, unlike the N 2 gas adsorption, the activation and the chemical adsorption are measured at the same time. Further, the N 2 gas adsorption, the polarity of the N 2 gas is low, it is believed that uniformly adsorbed without selectivity for powder surface except for a portion of the micropores, the moisture adsorption, the polarity of the H 2 O is Since it is strong, the degree of adsorption varies depending on the charged state of MgO, that is, the surface active state. Therefore, from these differences, it is considered that the adsorption of water molecules that occurs when MgO is slurried with water can be evaluated under conditions closer to the process conditions by water vapor adsorption than by N 2 gas adsorption.

【0025】すなわち、低相対圧領域は、マイクロポア
での水分子の吸着のし易さを示し、N2ガス吸着の場合と
同様に高すぎると被膜に悪影響を及ぼす。中相対圧領域
は、外部表面の親水性の高いサイトでの吸着に相当し、
この傾きが大きいと仕上焼鈍中の持ち込み水分が大きく
なりすぎ、一方傾きが小さいと持ち込み水分が少なくな
りすぎて、いずれも被膜劣化を生じる。なお、この領域
でのデータから計算した水分吸着でのBET 比表面積を、
N2ガス吸着での比表面積と比較することにより、親水性
の強さを評価することもできる。高相対圧領域を外挿し
た相対圧:1での吸着量は、水和量に相当すると考えら
れるが、高相対圧領域での吸着はマクロなポアへの毛管
凝集によるものであり、スラリー乾燥中および仕上焼鈍
の低温時に速やかに解離し、鋼板にはさほど影響を与え
ないので、急激に吸着量が増加する前の相対圧:0.9 程
度までを測定すれば良い。
That is, the low relative pressure region indicates that water molecules are easily adsorbed by the micropores, and as in the case of N 2 gas adsorption, if it is too high, the coating film will be adversely affected. The medium relative pressure region corresponds to adsorption at sites with high hydrophilicity on the outer surface,
If the inclination is large, the amount of water brought in during the finish annealing becomes too large, while if the inclination is small, the amount of water brought in becomes too small, and in any case, the coating deteriorates. The BET specific surface area for moisture adsorption calculated from the data in this region is
By comparing the specific surface area with the N 2 gas adsorption, the strength of the hydrophilicity can also be evaluated. The amount of adsorption at a relative pressure of 1 extrapolating the high relative pressure region is considered to be equivalent to the hydration amount, but the adsorption at the high relative pressure region is due to capillary aggregation in macropores, and the slurry is dried. It dissociates quickly at low temperatures during medium and finish annealing, and does not significantly affect the steel sheet. Therefore, it is sufficient to measure the relative pressure before the amount of adsorption rapidly increases: about 0.9.

【0026】以上の点から、ガス吸着等温線を用いるこ
とにより、焼鈍分離剤用MgOの良否判断を的確に行うこ
とができるのである。また、N2ガス吸着や水蒸気吸着等
温線を所定の範囲に収めることにより、良好な被膜品質
を有する方向性けい素鋼板を安定して得ることができる
のである。
From the above points, the use of the gas adsorption isotherm makes it possible to accurately judge the quality of MgO for an annealing separator. Also, by keeping the N 2 gas adsorption and water vapor adsorption isotherm in a predetermined range, it is possible to stably obtain a grain oriented silicon steel sheet having a good film quality.

【0027】次に、この発明の素材である含けい素鋼の
好適成分組成について述べる。まず、Cは、出鋼段階で
低下させて脱炭焼鈍を行わない方法と、ある程度の量を
確保して組織の改善を図り、その後の脱炭焼鈍により除
去する方法がある。前者では、Cの悪影響を避けるため
に0.01%以下とする必要がある。一方、後者では、組織
改善のための好適範囲は0.01%以上0.10%以下である。
Next, the preferred component composition of the silicon-containing steel which is the material of the present invention will be described. First, there is a method in which C is lowered at the tapping stage so that decarburization annealing is not performed, and a method in which a certain amount is secured to improve the structure and then removed by decarburization annealing. In the former case, the content needs to be 0.01% or less in order to avoid the adverse effect of C. On the other hand, in the latter, the preferable range for improving the structure is 0.01% or more and 0.10% or less.

【0028】Siは、 2.0〜4.5 %が好適である。という
のは、 2.0%未満では鉄損の低減効果が弱く、一方 4.5
%超では冷延性が損なわれるからである。
The content of Si is preferably 2.0 to 4.5%. If less than 2.0%, the effect of reducing iron loss is weak, while 4.5%
%, The cold rolling property is impaired.

【0029】C,Siの他にインヒビター構成元素を添加
する。インヒビターとしてはAlN,MnS, MnSe等が良く
知られているが、これらのいずれを用いてもよい。イン
ヒビターにMnSおよび/またはMnSeを用いる場合は、M
n:0.03〜0.10%,S+Se:0.01〜0.03%が好ましい。一
方、AlNをインヒビターに用いる場合は、Al:0.01〜0.
04%, N:50〜120ppm程度が好ましい。というのは、各
成分が上記の範囲よりも少ないとインヒビターとして効
果に乏しく、一方上記の範囲を超えると二次再結晶が不
安定になるからである。また、これらの他に、Cu, Sn,
Cr, Sb, Ge, Mo, Te, Bi, PおよびVなども、適宜使用
することができる。インヒビターとしての働きに有効な
量は、トータルで0.01%以上 0.2%以下である。なお、
これらの各インヒビターは単独使用、複合使用いずれも
可能である。
An inhibitor constituent element is added in addition to C and Si. AlN, MnS, MnSe and the like are well known as inhibitors, but any of these may be used. When MnS and / or MnSe is used for the inhibitor, M
n: 0.03 to 0.10%, S + Se: 0.01 to 0.03% is preferable. On the other hand, when AlN is used for the inhibitor, Al: 0.01-0.
04%, N: preferably about 50 to 120 ppm. This is because if each component is less than the above range, the effect as an inhibitor is poor, while if each component exceeds the above range, secondary recrystallization becomes unstable. In addition to these, Cu, Sn,
Cr, Sb, Ge, Mo, Te, Bi, P and V can also be used as appropriate. The effective amount of the inhibitor is 0.01% or more and 0.2% or less. In addition,
Each of these inhibitors can be used alone or in combination.

【0030】次に、好適製造条件について説明する。上
記の好適範囲に成分調整した鋼スラブを、公知の方法で
熱延した後、1回または中間焼鈍を含む複数回の冷延を
行って最終板厚にする。また、必要に応じて熱延板焼鈍
を施すことも可能である。ついで、一次再結晶焼鈍を行
った後、焼鈍分離剤を塗布してから、最終仕上焼鈍を施
す。一次再結晶焼鈍における雰囲気、温度、時間は特に
限定するものではないが、通常、雰囲気は水蒸気/水素
分圧比P(H2O) /P(H2)で0.05以上0.68以下が採用され
る。これは良好な内部酸化層を形成させるためのもの
で、0.05未満では酸化層が薄くなりすぎ、一方0.68より
高いと酸化層中の酸素分が大きくなりすぎて、いずれの
場合も仕上焼鈍中のインヒビターの酸化が激しくなり、
磁気特性の劣化を招くことが多くなるからである。ま
た、焼鈍温度は 750℃以上 900℃以下、焼鈍時間は30秒
以上 180秒以下とするのが望ましい。これは一次再結晶
粒径を特定の範囲に収めるためで、この範囲内において
磁気特性が良好となる。なお、一次再結晶焼鈍の加熱時
の雰囲気と均熱時の雰囲気を別々に制御して被膜特性を
向上させる方法が知られているが、この発明ではこの方
法を用いることもできる。さらに、AlNをインヒビター
とする場合には、一次再結晶焼鈍の前、途中、または後
に窒化処理を行う方法が知られているが、この発明で
は、このような方法を同時に行っても差し支えない。
Next, preferred manufacturing conditions will be described. The steel slab having the composition adjusted to the above preferable range is hot-rolled by a known method, and then cold-rolled once or a plurality of times including intermediate annealing to a final thickness. Moreover, it is also possible to perform hot-rolled sheet annealing as needed. Next, after performing primary recrystallization annealing, an annealing separator is applied, and then final finish annealing is performed. The atmosphere, temperature, and time in the primary recrystallization annealing are not particularly limited, but usually, the atmosphere is a steam / hydrogen partial pressure ratio P (H 2 O) / P (H 2 ) of 0.05 or more and 0.68 or less. This is for forming a good internal oxide layer.If it is less than 0.05, the oxide layer becomes too thin, while if it is higher than 0.68, the oxygen content in the oxide layer becomes too large, and in any case during the finish annealing Inhibitors become more oxidized,
This is because the magnetic properties often deteriorate. The annealing temperature is desirably 750 ° C or more and 900 ° C or less, and the annealing time is desirably 30 seconds or more and 180 seconds or less. This is because the primary recrystallized grain size falls within a specific range, and the magnetic properties are improved within this range. In addition, a method is known in which the atmosphere during the primary recrystallization annealing and the atmosphere during the soaking are separately controlled to improve the film properties, but this method can also be used in the present invention. Further, when AlN is used as an inhibitor, a method of performing a nitriding treatment before, during, or after the primary recrystallization annealing is known, but in the present invention, such a method may be performed simultaneously.

【0031】一次再結晶焼鈍後には、MgOを主体とす
る、すなわち少なくとも40%のMgOを含有する焼鈍分離
剤を用いる。このとき、MgOとして、相対圧:0.05〜0.
95までのN2ガス吸着等温線が図1の点A, B, C, D,
E, F, GおよびHで囲まれる領域を満足するものか、
またさらには相対圧:0.05〜0.90までの水蒸気吸着等温
線が図2の点I, J, K, L, MおよびNで囲まれる領
域を満足するものを用いることが肝要であり、かくして
細孔分布および外側の分布を適正化して被膜特性を改善
するのである。なお、このプロファイルが部分的にはず
れた場合でも、良好な被膜を得ることはできない。
After the primary recrystallization annealing, an annealing separator mainly containing MgO, that is, containing at least 40% of MgO is used. At this time, as MgO, relative pressure: 0.05-0.
The N 2 gas adsorption isotherms up to 95 correspond to points A, B, C, D,
Satisfies the area enclosed by E, F, G and H
Furthermore, it is essential to use a water vapor adsorption isotherm having a relative pressure of 0.05 to 0.90 that satisfies the region surrounded by points I, J, K, L, M and N in FIG. It optimizes the distribution and the outer distribution to improve the coating properties. Even if this profile is partially off, a good coating cannot be obtained.

【0032】N2ガス吸着等温線を指標とする場合につい
て、具体的に述べると、前述したとおり焼鈍分離剤用の
MgOは BET型のプロファイルを示すので、好適範囲から
はずれる場合としては次の7種類およびその組み合わせ
が考えられる。 (1) 相対圧:0.05での吸着量が図1Hより高い、つまり
0.05までの低相対圧部でのガス吸着量が多すぎる。 (2) 相対圧:0.05での吸着量が図1Aより低い、つまり
0.05までの低相対圧部でのガス吸着量が少なすぎる。 (3) 相対圧:0.05〜0.8 までの範囲で吸着量が緩やかに
増大して、この範囲内での高相対圧側の領域で、図1の
線分FG,GHで示される吸着等温線よりも高い吸着量
となる。 (4) 相対圧:0.05〜0.8 までの範囲で吸着量の増大がわ
ずかなため、この範囲内での高相対圧側の領域で、図1
の線分AB,BCで示される吸着等温線よりも低い吸着
量となる。 (5) 相対圧:0.3 〜0.8 までの範囲での吸着量が極めて
急激に増大し、この範囲内での高相対圧側の領域で、図
1の線分FGよりも高い吸着量となる。 (6) 相対圧:0.3 〜0.95までの範囲での吸着量が極めて
急激に増大し、この範囲内での高相対圧側の領域で、図
1の線分EFよりも高い吸着量となる。 (7) 相対圧:0.8 〜0.95までの範囲で吸着量の増大が遅
れ、この範囲内での高相対圧側の領域で、図1の線分C
Dよりも低い吸着量となる。
Specifically, the case where the N 2 gas adsorption isotherm is used as an index is as described above.
Since MgO shows a BET-type profile, the following seven types and combinations thereof may be considered as deviating from the suitable range. (1) The adsorption amount at a relative pressure of 0.05 is higher than that in FIG.
The gas adsorption amount in the low relative pressure section up to 0.05 is too large. (2) The adsorption amount at a relative pressure of 0.05 is lower than that in FIG.
The gas adsorption amount in the low relative pressure section up to 0.05 is too small. (3) Relative pressure: The amount of adsorption gradually increases in the range of 0.05 to 0.8, and is higher than the adsorption isotherm indicated by the line segments FG and GH in FIG. High adsorption amount. (4) Relative pressure: Since the increase in the amount of adsorption is slight in the range of 0.05 to 0.8, in the region on the high relative pressure side within this range, FIG.
The adsorption amount is lower than the adsorption isotherm indicated by the line segments AB and BC. (5) Relative pressure: The amount of adsorption in the range of 0.3 to 0.8 increases extremely sharply, and in the region on the high relative pressure side within this range, the amount of adsorption becomes higher than the line segment FG in FIG. (6) Relative pressure: The amount of adsorption in the range of 0.3 to 0.95 increases very sharply, and in the region on the high relative pressure side within this range, the amount of adsorption becomes higher than the line segment EF in FIG. (7) Relative pressure: The increase of the adsorption amount is delayed in the range of 0.8 to 0.95, and in the high relative pressure side region within this range, the line segment C in FIG.
The adsorption amount is lower than D.

【0033】上記したように、N2ガス吸着等温線が好適
範囲から外れると、以下に述べるような問題が生じる。 (1)の場合は、マイクロポアが多すぎることに相当し、
すでに述べた理由により被膜劣化を起こす。 (2)の場合は、マイクロポアが少なすぎることに相当
し、このような粉体を作るためには必然的に高純度で一
次粒径を微細にせざるを得ず、使用時の作業性に悪影響
を及ぼすだけでなく、製造コストも高くなる。 (3)の場合は、外部表面積が大きすぎることに相当し、
すでに述べた理由により被膜劣化を起こす。 (4)の場合は、外部表面積が小さすぎることに相当し、
すでに述べた理由により被膜劣化を起こす。 (5)の場合は、マクロなポアが小さすぎることに相当
し、これは結晶子サイズが微細すぎることに相当し、反
応性が高すぎて使用できない。 (6)の場合は、マクロポアが大きすぎるまたは多すぎる
ことに相当し、すでに述べた理由により被膜劣化を起こ
す。 (7)の場合は、マクロポアが少なすぎることに相当し、
すでに述べた理由により被膜劣化を起こす。
As described above, when the N 2 gas adsorption isotherm deviates from the preferred range, the following problems occur. In the case of (1), it corresponds to too many micropores,
Deterioration of the coating occurs for the reasons already described. In the case of (2), it is equivalent to too few micropores, and in order to produce such a powder, it is inevitable to make the primary particle size finer with high purity, and the workability during use is reduced. Not only does it have an adverse effect, but also increases manufacturing costs. In the case of (3), the external surface area is too large,
Deterioration of the coating occurs for the reasons already described. In the case of (4), the external surface area is too small,
Deterioration of the coating occurs for the reasons already described. In case (5), the macropores are too small, which means that the crystallite size is too fine, and the reactivity is too high to use. The case (6) corresponds to the macropore being too large or too large, and causes film deterioration for the reasons already described. In the case of (7), it is equivalent to too few macropores,
Deterioration of the coating occurs for the reasons already described.

【0034】同じく、水蒸気吸着等温線を指標とする場
合にも、好適範囲からはずれる場合としては次の5種類
およびその組み合わせが考えられる。 (1) 相対圧:0.05での吸着量が図2Nより高い、つまり
0.05までの低相対圧部水分吸着量が多すぎる。 (2) 相対圧:0.05での吸着量が図2Iより低い、つまり
0.05までの低相対圧部での水分吸着量が少なすぎる。 (3) 相対圧:0.05〜0.9 までの範囲で吸着量が緩やかに
増大して、この範囲内での高相対圧側の領域で、図2の
線分LM,MNよりも高い吸着量となる。 (4) 相対圧:0.05〜0.9 までの範囲で吸着量の増大がわ
ずかなため、この範囲内での高相対圧側の領域で、図2
の線分IJ,JKよりも低い吸着量となる。 (5) 相対圧:0.3 〜0.9 までの範囲での吸着量が極めて
急激に増大し、この範囲内での高相対圧側の領域で、図
2の線分LMよりも高い吸着量となる。
Similarly, in the case where the water vapor adsorption isotherm is used as an index, the following five types and combinations thereof may be considered as deviating from the preferable range. (1) The adsorption amount at a relative pressure of 0.05 is higher than that in FIG.
Moisture adsorption in low relative pressure area up to 0.05 is too large. (2) The adsorption amount at a relative pressure of 0.05 is lower than that in FIG.
Moisture adsorption in low relative pressure area up to 0.05 is too small. (3) Relative pressure: The adsorption amount gradually increases in the range of 0.05 to 0.9, and becomes higher than the line segments LM and MN in FIG. 2 in the high relative pressure region within this range. (4) Relative pressure: Since the increase in the amount of adsorption was slight in the range of 0.05 to 0.9, in the region on the high relative pressure side within this range, FIG.
Is lower than the line segments IJ and JK. (5) Relative pressure: The amount of adsorption in the range of 0.3 to 0.9 increases very sharply, and in the region on the high relative pressure side within this range, the amount of adsorption becomes higher than the line segment LM in FIG.

【0035】上記したように、水蒸気吸着等温線が好適
範囲から外れると、以下に述べるような問題が生じる。 (1)の場合は、水和という観点からみたときのマイクロ
ポアが多すぎることに相当し、すでに述べた理由により
被膜劣化を起こす。 (2)の場合は、水和という観点からみたときのマイクロ
ポアが少なすぎることに相当し、このような粉体を作る
ためには必然的に高純度で一次粒径を微細にせざるを得
ず、使用時の作業性に悪影響を及ぼす上、製造コストも
高くなる。 (3)の場合は、水和という観点からみたときの外部表面
積が大きすぎることに相当し、水和が進みすぎて仕上焼
鈍雰囲気が過酸化となり被膜劣化を起こす。 (4)の場合は、水和という観点からみたときの外部表面
積が小さすぎることに相当し、水和量が少なすぎて仕上
焼鈍雰囲気が過還元となり被膜劣化を起こす。 (5)の場合は、水和という観点からみたときのマクロな
ポアが小さすぎることに相当し、これも(3) と同様、水
和が進みすぎて被膜劣化を起こす。
As described above, if the water vapor adsorption isotherm deviates from the preferred range, the following problems occur. The case (1) corresponds to an excessive number of micropores from the viewpoint of hydration, and causes film deterioration for the reasons already described. In the case of (2), it is equivalent to too few micropores from the viewpoint of hydration, and in order to produce such a powder, it is inevitably required to have a high purity and a fine primary particle size. Not only adversely affects workability during use but also increases manufacturing costs. The case (3) corresponds to an excessively large external surface area from the viewpoint of hydration, and the hydration proceeds excessively, and the finish annealing atmosphere becomes peroxidized, resulting in film deterioration. In case (4), the external surface area is too small from the viewpoint of hydration, and the amount of hydration is too small, so that the finish annealing atmosphere is over-reduced and the coating deteriorates. In the case of (5), the macropores from the viewpoint of hydration correspond to too small, and, similarly to (3), the hydration proceeds too much and the film deteriorates.

【0036】従って、N2ガス吸着等温線は図1の点A,
B, C, D, E, F, GおよびHで囲まれる領域を満足
させることが、また水蒸気吸着等温線は図2の点I,
J, K, L, MおよびNで囲まれる領域を満足させるこ
とが、重要なわけである。
Therefore, the N 2 gas adsorption isotherm is represented by the points A,
The region surrounded by B, C, D, E, F, G and H is satisfied, and the water vapor adsorption isotherm is shown in FIG.
It is important to satisfy the area enclosed by J, K, L, M and N.

【0037】ここで、ガス吸着等温線の測定に関し、N2
ガス吸着では低温の方が吸着量が多く傾向を読みとり易
いので液体窒素温度の−196 ℃で測定し、一方水蒸気吸
着では高温の方が吸着し易いので25℃で測定するのがよ
い。それぞれ±1℃までの測定時のずれは許される。ま
た、N2ガス吸着では、高相対圧の吸着量の急激な増大に
よりMgOの良否を判断するものであるため、相対圧:0.
5 〜0.95までの範囲を測定する必要があるが、水蒸気吸
着では、高相対圧側の測定データの信頼性と、相対圧:
0.90以上の高相対圧側データによるMgO良否判定は、通
常の水和量測定によるものとさほど大きな違いはないこ
とから、相対圧:0.5 〜0.90の範囲のみ測定すればよ
い。
Here, regarding the measurement of the gas adsorption isotherm, N 2
It is better to measure at a liquid nitrogen temperature of -196 ° C. for gas adsorption because the amount of adsorption is larger at a low temperature and the tendency to read the tendency is easy. Deviations during measurement up to ± 1 ° C are allowed. In addition, in N 2 gas adsorption, the quality of MgO is determined by a sudden increase in the amount of adsorption at a high relative pressure.
It is necessary to measure the range from 5 to 0.95, but in the case of water vapor adsorption, the reliability of the measurement data on the high relative pressure side and the relative pressure:
The determination of the quality of MgO based on the high relative pressure side data of 0.90 or more does not differ so much from the usual measurement of the amount of hydration. Therefore, it is sufficient to measure only the relative pressure range of 0.5 to 0.90.

【0038】また、上述したような吸着特性のMgOを得
るための好適製造条件は、以下のとおりである。酸化マ
グネシウムの原料としては、水酸化マグネシウム、炭酸
マグネシウム、塩化マグネシウムおよび塩基性炭酸マグ
ネシウム等があるが、細孔分布をこの発明の範囲に収め
るためには、原料としては水酸化マグネシウムが望まし
い。というのは、水酸化マグネシウムは、六方晶で六角
盤状の形態になっており、焼成時に六角盤の厚み方向か
ら優先的に脱水反応して酸化マグネシウムになるため、
焼成条件の調整により細孔の分布を制御し易いからであ
る。水酸化マグネシウムの製造原料としては、海水や苦
汁等があるが、これに関しては特に限定されない。ま
た、水酸化マグネシウムを焼成することによって酸化マ
グネシウムを得るが、このとき元の六角盤の形態が壊れ
るとマクロポアの状態が変化して、良好な範囲に制御し
にくくなるので、六角盤の形骸を壊れにくくするため
に、水酸化マグネシウム段階での厚みを 200Å以上に厚
くしておくのが望ましい。
The preferred production conditions for obtaining MgO having the above-mentioned adsorption characteristics are as follows. As a raw material of magnesium oxide, there are magnesium hydroxide, magnesium carbonate, magnesium chloride, basic magnesium carbonate, and the like. In order to keep the pore distribution within the range of the present invention, magnesium hydroxide is preferable as the raw material. This is because magnesium hydroxide is hexagonal and in the form of a hexagonal disk, and during firing, magnesium oxide undergoes a dehydration reaction preferentially from the thickness direction of the hexagonal disk,
This is because the distribution of pores can be easily controlled by adjusting the firing conditions. Raw materials for producing magnesium hydroxide include seawater and bittern, but are not particularly limited thereto. In addition, magnesium oxide is obtained by firing magnesium hydroxide, but if the original hexagonal plate is broken at this time, the state of the macropores changes and it becomes difficult to control it in a good range, so the hexagonal disk is removed. It is desirable to increase the thickness at the magnesium hydroxide stage to 200 mm or more to make it hard to break.

【0039】水酸化マグネシウムの焼成方法は、マッフ
ル炉による方法、ロータリーキルンによる方法のいずれ
でもよい。焼成条件により表面積、ポアの分布状態は大
きく異なる。表面積や細孔径を、この発明の範囲に収め
るためには、焼成温度は 700℃以上1200℃以下がよい。
また、処理量によっても焼成程度は異なり、例えば容
積:0.5 m3程度のマッフル炉であれば一回の挿入量が積
み厚:10cm以上70cm以下程度が望ましく、ロータリーキ
ルンであれば処理量:30kg/h以上 200kg/h以下が望
ましい。なお、ガス吸着等温線を適正範囲内に収めるた
めの有効な方法としては、焼成条件を種々に変更するこ
とによって、種々の細孔分布、表面積を持つMgOを数種
類用意しておき、これを適当に混合すれば良い。
The method for calcining magnesium hydroxide may be either a method using a muffle furnace or a method using a rotary kiln. The surface area and pore distribution vary greatly depending on the firing conditions. In order to keep the surface area and the pore diameter within the range of the present invention, the firing temperature is preferably from 700 ° C to 1200 ° C.
Also, the degree of firing varies depending on the processing amount. For example, in the case of a muffle furnace having a volume of about 0.5 m 3, the amount of insertion at one time is desirably about 10 cm to 70 cm, and in the case of a rotary kiln, the processing amount is 30 kg / h and not more than 200 kg / h. In addition, as an effective method for keeping the gas adsorption isotherm within an appropriate range, several types of MgO having various pore distributions and surface areas are prepared by changing the firing conditions in various ways. Should be mixed.

【0040】なお、この他、用いられるMgOとしては、
不純物が適度に存在していると焼結性が高まるので、少
量の含有は有効である。しかしながら、高すぎる場合に
は被膜欠陥が発生するので、それぞれ以下の範囲で含有
させることが好ましい。 CaO :0.25〜0.80%, B:0.05〜0.18%, SO3 :0.03〜
1.0 %, ハロゲン:トータルで 0.005%〜0.08%。 また、水和量は、20℃、60分の水和試験で、 0.5〜3.5
%と従来と同程度のものでよい。さらに、その他の粉体
特性については、CAA40%は30〜190 秒の範囲が従来
どおり良好である。平均粒径は、測定方法により数値は
大きく異なるが、レーザー回折式粒度分布計を用いた場
合、鋼板付着性を損なわないためには 4.5μm 未満が良
好であり、一方粉体の凝集による作業性を損なわないた
めには 0.2μm 以上が良好である。
In addition, as the MgO to be used,
Since the sinterability is enhanced when the impurities are present in an appropriate amount, a small amount is effective. However, if the content is too high, a coating defect will occur. CaO: 0.25~0.80%, B: 0.05~0.18 %, SO 3: 0.03~
1.0%, halogen: 0.005% to 0.08% in total. The hydration amount was 0.5 to 3.5 in a hydration test at 20 ° C for 60 minutes.
% And the same level as in the past. Further, regarding other powder properties, the CAA 40% is as good as before in the range of 30 to 190 seconds. The average particle size varies greatly depending on the measurement method.However, when using a laser diffraction particle size distribution meter, it is preferable that the average particle size is less than 4.5 μm so as not to impair the adhesion of the steel sheet. In order not to impair the thickness, a thickness of 0.2 μm or more is preferable.

【0041】次に、磁気特性、被膜改善のために使用す
る助剤は従来から公知のものでよいが、一般的にはMn,
Cu, Nb, Tl, Sr, Bi, Fe, Sn, TiおよびMgの酸化物、水
酸化物、硫酸塩等が知られている。これらの化合物を添
加する場合の添加量は、MgO:100 重量部に対してトー
タルで 0.5〜15重量部程度が好ましい。
The auxiliary used for improving the magnetic properties and the film may be a conventionally known one.
Oxides, hydroxides, sulfates and the like of Cu, Nb, Tl, Sr, Bi, Fe, Sn, Ti and Mg are known. When these compounds are added, the total amount is preferably about 0.5 to 15 parts by weight based on 100 parts by weight of MgO.

【0042】上記したような焼鈍分離剤を塗布した後の
最終仕上焼鈍は、従来より公知の方法で行えば良い。こ
れら一連の処理の後、絶縁張力コートを施し、フラット
ニング焼鈍をして製品に仕上げる。かくして、優れた被
膜特性および磁気特性を有する方向性けい素鋼を得るこ
とができるのである。
The final finish annealing after the application of the annealing separating agent as described above may be performed by a conventionally known method. After these series of treatments, an insulating tension coat is applied and flattening annealing is performed to finish the product. Thus, a grain-oriented silicon steel having excellent coating properties and magnetic properties can be obtained.

【0043】[0043]

【実施例】 実施例1 C:0.05%, Si:3.28%, Al:0.015 %, N:75 ppm,
Mn:0.07%およびSb:0.01%を含み、残部は実質的にFe
よりなる鋼スラブを、1200℃に加熱後、熱間圧延によっ
て2.2 mm厚に熱延し、ついで 900℃, 1分間のノルマ焼
鈍後、タンデム圧延機にて0.35mm厚まで冷延し、最終板
厚に仕上げた。ついで、 840℃、2分間の脱炭焼鈍後、
焼鈍分離剤としてMgO:100 重量部に対しTiO2:6重量
部と SrSO4:1重量部を添加したものを塗布したのち、
乾燥させた。このとき、MgOとしては、前掲表1に示す
粉体 No.1, 3, 5, 7, 9のものを用いた。その後、
仕上焼鈍として 800℃から1150℃までを昇温速度:20℃
で昇温し、引き続き乾H2雰囲気中にて1150℃, 5hの純
化焼鈍を行った。かくして得られた鋼板の被膜特性およ
び磁気特性について調査した結果を、表4に示す。
EXAMPLES Example 1 C: 0.05%, Si: 3.28%, Al: 0.015%, N: 75 ppm,
Mn: 0.07% and Sb: 0.01%, the balance being substantially Fe
The steel slab is heated to 1200 ° C, hot-rolled to a thickness of 2.2 mm by hot rolling, then subjected to a 1-minute immersion annealing at 900 ° C, and then cold-rolled to a thickness of 0.35 mm using a tandem rolling mill. Finished thick. Then, after decarburizing annealing at 840 ° C for 2 minutes,
As an annealing separator, a mixture obtained by adding 6 parts by weight of TiO 2 and 1 part by weight of SrSO 4 to 100 parts by weight of MgO was applied.
Let dry. At this time, powder Nos. 1, 3, 5, 7, 9 shown in Table 1 above were used as MgO. afterwards,
Heating rate from 800 ° C to 1150 ° C as finish annealing: 20 ° C
, Followed by purification annealing at 1150 ° C. for 5 hours in a dry H 2 atmosphere. Table 4 shows the results obtained by examining the coating properties and magnetic properties of the steel sheet thus obtained.

【0044】[0044]

【表4】 [Table 4]

【0045】同表から明らかなように、ガス吸着等温線
がこの発明の適正範囲を満足するMgOを用いた場合に
は、被膜特性のみならず、鉄損、磁束密度とも良好な値
を得ることができた。
As is clear from the table, when MgO whose gas adsorption isotherm satisfies the proper range of the present invention, good values are obtained not only in the film properties but also in iron loss and magnetic flux density. Was completed.

【0046】実施例2 C:0.06%, Si:3.28%, Mn:0.07%, Se:0.02%およ
びSb:0.025 %を含み、残部は実質的にFeよりなる鋼ス
ラブを、1400℃に加熱後、熱間圧延により2.2mm厚に熱
延し、ついで1050℃, 2分間の中間焼鈍を挟んで0.23mm
厚まで冷延し、最終板厚に仕上げた。ついで、 840℃,
2分間の脱炭焼鈍後、焼鈍分離剤として、MgO:100 重
量部に対してTiO2:2重量部と表5に示す種々の助剤:
1重量部とを添加したものを、塗布したのち、乾燥させ
た。このとき、MgO粉体としては、前掲表1の粉体 No.
2, No.3, No.9を使用した。その後、仕上焼鈍とし
て 820℃に50h保定した後、乾H2雰囲気中にて1150℃,
5hの純化焼鈍を行った。かくして得られた鋼板の被膜
特性および磁気特性について調査した結果を、表5に示
す。
Example 2 A steel slab containing 0.06% of C, 3.28% of Si, 0.07% of Mn, 0.02% of Se and 0.025% of Sb, and the balance being substantially Fe was heated to 1400 ° C. And hot-rolled to a thickness of 2.2mm by hot rolling, and then 0.23mm with intermediate annealing at 1050 ° C for 2 minutes
It was cold rolled to a thickness and finished to the final thickness. Then, 840 ℃,
After decarburizing annealing for 2 minutes, TiO 2 : 2 parts by weight to MgO: 100 parts by weight and various auxiliaries shown in Table 5 as an annealing separator:
After adding 1 part by weight, it was dried after being applied. At this time, as the MgO powder, the powder No.
2, No. 3 and No. 9 were used. After that, it was kept at 820 ° C for 50 hours as finish annealing, and then dried at 1150 ° C in dry H 2 atmosphere.
Purification annealing was performed for 5 hours. Table 5 shows the results obtained by examining the coating properties and magnetic properties of the steel sheet thus obtained.

【0047】[0047]

【表5】 [Table 5]

【0048】同表から明らかなように、いずれの分離剤
助剤を用いた場合でも、粉体特性がこの発明の適正範囲
を満足するMgOを用いた場合には、優れた被膜特性およ
び磁気特性が得られている。
As is clear from the table, no matter which of the separating agent auxiliaries is used, when MgO whose powder properties satisfy the proper range of the present invention is used, excellent coating properties and magnetic properties are obtained. Has been obtained.

【0049】実施例3 表6に示す種々の化学成分になるけい素鋼スラブを、13
80℃で30分加熱後、熱間圧延により2.2 mmの板厚にし、
ついで1050℃, 1分間の中間焼鈍を挟んで2回の冷延圧
延により0.22mmの最終板厚に仕上げた。ついで、 840
℃, 2分間の脱炭焼鈍後、焼鈍分離剤として、MgO:10
0 重量部に対してTiO2:6重量部, SrSO4:1重量部を
添加したものを塗布したのち、乾燥させた。このとき、
MgO粉体としては、前掲表1の粉体 No.2, No.3, N
o.9を使用した。その後、仕上焼鈍として 820℃で15h
保定した後、 850℃から1150℃までを15℃/hで昇温
し、引続き乾H2雰囲気にて1150℃, 5hの純化焼鈍を行
った。かくして得られた鋼板の被膜特性および磁気特性
について調査した結果を、表7に示す。
Example 3 Silicon steel slabs having various chemical components shown in Table 6 were
After heating at 80 ° C for 30 minutes, hot-rolled to a thickness of 2.2 mm,
Then, the sheet was finished to a final thickness of 0.22 mm by cold rolling twice at 1050 ° C. for 1 minute with intermediate annealing. Then 840
After decarburization annealing for 2 minutes at ℃, MgO: 10
A coating obtained by adding 6 parts by weight of TiO 2 and 1 part by weight of SrSO 4 to 0 parts by weight was applied and dried. At this time,
As the MgO powder, the powders No. 2, No. 3, N
o.9 was used. After that, finish annealing at 820 ° C for 15 hours
After the retention, the temperature was raised from 850 ° C. to 1150 ° C. at a rate of 15 ° C./h, followed by purification annealing at 1150 ° C. for 5 hours in a dry H 2 atmosphere. Table 7 shows the results obtained by examining the coating properties and magnetic properties of the steel sheet thus obtained.

【0050】[0050]

【表6】 [Table 6]

【0051】[0051]

【表7】 [Table 7]

【0052】同表から明らかなように、素材鋼板の成分
組成の如何にかかわらず、この発明に従うMgOを用いた
場合には、優れた被膜特性および磁気特性を得ることが
できた。
As is clear from the table, regardless of the composition of the material steel sheet, when the MgO according to the present invention was used, excellent film properties and magnetic properties could be obtained.

【0053】[0053]

【発明の効果】かくして、この発明に従い、ガス吸着等
温線を評価指標とするれば、得られた測定プロファイル
から、焼鈍分離剤用のMgOの適用の可否を的確に判断す
ることができる。また、焼鈍分離剤のMgOとして、上記
したガス吸着等温線が所定の領域を満足するものを用い
ることにより、被膜特性を安定して向上させることがで
き、ひいては被膜特性および磁気特性に優れた方向性け
い素鋼板を安定して得ることができる。
As described above, according to the present invention, if the gas adsorption isotherm is used as an evaluation index, it is possible to accurately judge whether or not MgO for an annealing separator can be applied from the obtained measurement profile. In addition, the use of the MgO of the annealing separator having the above-mentioned gas adsorption isotherm satisfying a predetermined region can stably improve the film characteristics, and furthermore, the direction in which the film characteristics and the magnetic characteristics are excellent. A stable silicon steel sheet can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に従うN2ガス吸着等温線の適正範囲を
示した図である。
FIG. 1 is a diagram showing an appropriate range of an N 2 gas adsorption isotherm according to the present invention.

【図2】この発明に従う水蒸気吸着等温線の適正範囲を
示した図である。
FIG. 2 is a diagram showing an appropriate range of a water vapor adsorption isotherm according to the present invention.

【図3】実験に用いた粉体 No.1〜5のN2ガス吸着等温
線を示したグラフである。
FIG. 3 is a graph showing N 2 gas adsorption isotherms of powder Nos. 1 to 5 used in the experiment.

【図4】実験に用いた粉体 No.6〜10の水蒸気吸着等温
線を示したグラフである。
FIG. 4 is a graph showing water vapor adsorption isotherms of powder Nos. 6 to 10 used in the experiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松原 道郎 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 本田 厚人 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Michio Komatsubara 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. (Without address) Inside the Mizushima Works, Kawasaki Steel Corporation (72) Inventor Atsuto Honda, Atsuto Honda 1-chome (without address) Inside Kawasaki Steel Corporation Mizushima Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 焼鈍分離剤用のMgOについて、その使用
に先立ち、ガス吸着等温線を測定し、得られたプロファ
イルによって適用の可否を判断することを特徴とする方
向性けい素鋼板製造時における焼鈍分離剤用MgOの評価
方法。
1. A method for producing a grain-oriented silicon steel sheet, comprising: measuring a gas adsorption isotherm of MgO for an annealing separator prior to its use, and judging the applicability of the MgO based on an obtained profile. Evaluation method of MgO for annealing separator.
【請求項2】 けい素鋼熱延板を、1回または中間焼鈍
を挟む複数回の冷間圧延によって最終板厚に仕上げた
後、一次再結晶焼鈍を施し、ついでMgOを主剤とする焼
鈍分離剤を水でスラリー状にしてから鋼板表面に塗布
し、しかるのち最終仕上焼鈍を施す一連の工程からなる
方向性けい素鋼板の製造方法において、 MgOとして、その粉体特性が、相対圧:0.05〜0.95まで
のN2ガス吸着等温線が図1の点A, B, C, D, E,
F, GおよびHで囲まれる領域を満足するものを用いる
ことを特徴とする被膜特性に優れた方向性けい素鋼板の
製造方法。方向性けい素鋼の製造方法。
2. A hot rolled silicon steel sheet is finished to a final thickness by cold rolling once or a plurality of times with intermediate annealing, followed by primary recrystallization annealing, and then annealing separation using MgO as a main component. In a method for producing a grain-oriented silicon steel sheet, which comprises a series of steps in which a slurry is formed into a slurry with water and then applied to the surface of the steel sheet and then subjected to final finish annealing, the powder characteristic of MgO is set as a relative pressure: 0.05 The N 2 gas adsorption isotherm from ~ 0.95 to points A, B, C, D, E,
A method for producing a grain-oriented silicon steel sheet having excellent coating characteristics, characterized by using a material satisfying a region surrounded by F, G and H. A method for producing directional silicon steel.
【請求項3】 けい素鋼熱延板を、1回または中間焼鈍
を挟む複数回の冷間圧延によって最終板厚に仕上げた
後、一次再結晶焼鈍を施し、ついでMgOを主剤とする焼
鈍分離剤を水でスラリー状にしてから鋼板表面に塗布
し、しかるのち最終仕上焼鈍を施す一連の工程からなる
方向性けい素鋼板の製造方法において、 MgOとして、その粉体特性が、相対圧:0.05〜0.95まで
のN2ガス吸着等温線が図1の点A, B, C, D, E,
F, GおよびHで囲まれる領域を満足し、かつ相対圧:
0.05〜0.90までの水蒸気吸着等温線が図2の点I, J,
K, L, MおよびNで囲まれる領域を併せて満足するも
のを用いることを特徴とする被膜特性に優れた方向性け
い素鋼板の製造方法。
3. A hot-rolled silicon steel sheet is finished to a final thickness by cold rolling once or a plurality of times with intermediate annealing, followed by primary recrystallization annealing, and then annealing separation using MgO as a main component. In a method for producing a grain-oriented silicon steel sheet, which comprises a series of steps in which a slurry is formed into a slurry with water and then applied to the surface of the steel sheet and then subjected to final finish annealing, the powder characteristic of MgO is set as a relative pressure: 0.05 The N 2 gas adsorption isotherm from ~ 0.95 to points A, B, C, D, E,
Satisfies the area surrounded by F, G and H, and the relative pressure:
The water vapor adsorption isotherms from 0.05 to 0.90 correspond to points I, J,
A method for producing a grain-oriented silicon steel sheet having excellent coating properties, characterized by using a material that satisfies a region surrounded by K, L, M and N.
JP24045196A 1996-09-11 1996-09-11 Method for evaluating MgO for annealing separator during production of grain-oriented silicon steel sheet and method for producing grain-oriented silicon steel sheet Expired - Lifetime JP3695008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24045196A JP3695008B2 (en) 1996-09-11 1996-09-11 Method for evaluating MgO for annealing separator during production of grain-oriented silicon steel sheet and method for producing grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24045196A JP3695008B2 (en) 1996-09-11 1996-09-11 Method for evaluating MgO for annealing separator during production of grain-oriented silicon steel sheet and method for producing grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH1088240A true JPH1088240A (en) 1998-04-07
JP3695008B2 JP3695008B2 (en) 2005-09-14

Family

ID=17059701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24045196A Expired - Lifetime JP3695008B2 (en) 1996-09-11 1996-09-11 Method for evaluating MgO for annealing separator during production of grain-oriented silicon steel sheet and method for producing grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JP3695008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001752A (en) * 2010-06-15 2012-01-05 Jfe Steel Corp Annealing separating-agent and method for producing grain-oriented magnetic steel sheet
CN115989333A (en) * 2020-09-01 2023-04-18 杰富意钢铁株式会社 Method for producing grain-oriented electromagnetic steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001752A (en) * 2010-06-15 2012-01-05 Jfe Steel Corp Annealing separating-agent and method for producing grain-oriented magnetic steel sheet
CN115989333A (en) * 2020-09-01 2023-04-18 杰富意钢铁株式会社 Method for producing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP3695008B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
JP6220891B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5245277B2 (en) Method for producing magnesia and grain-oriented electrical steel sheet for annealing separator
JPWO2019146694A1 (en) Directional electrical steel sheet
JP3536775B2 (en) Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties
JPH11158558A (en) Magnesium oxide for annealing-separating agent and production thereof
JPS6247924B2 (en)
JP4632775B2 (en) Method for producing MgO for annealing separator
JP3695008B2 (en) Method for evaluating MgO for annealing separator during production of grain-oriented silicon steel sheet and method for producing grain-oriented silicon steel sheet
JPH1088244A (en) Magnesium oxide for separation agent at annealing used fixed at manufacture of grain oriented silicon steel sheet
JP3707144B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating properties
JP4310996B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used in this method
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
JP3021241B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP3043975B2 (en) Annealing separator for grain-oriented silicon steel sheet
JP2786576B2 (en) Manufacturing method of grain-oriented silicon steel sheet
KR102080168B1 (en) Annealing separating agent composition for grain oriented electrical steel sheet, method for manufacturing magnesium oxide for annealing separating agent, and method for manufacturing grain oriented electrical steel sheet
JPH07188937A (en) Production of grain-oriented silicon steel sheet
JP2004353054A (en) Production method for grain-oriented magnetic steel sheet with good magnetic properties and film properties
JP3277059B2 (en) Annealing separator for grain-oriented electrical steel sheets
JPH1088241A (en) Production of grain oriented silicon steel sheet excellent in film characteristic
JP4559865B2 (en) Method for producing grain-oriented electrical steel sheet
JP2786577B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP3294977B2 (en) Manufacturing method of grain-oriented silicon steel sheet
US20230326638A1 (en) Method of producing grain-oriented electrical steel sheet
JPH0641642A (en) Manufacture of high magnetic flux density grain-oriented silicon steel sheet free from forsterite film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

EXPY Cancellation because of completion of term