JP3707144B2 - Method for producing grain-oriented silicon steel sheet with excellent coating properties - Google Patents

Method for producing grain-oriented silicon steel sheet with excellent coating properties Download PDF

Info

Publication number
JP3707144B2
JP3707144B2 JP20347596A JP20347596A JP3707144B2 JP 3707144 B2 JP3707144 B2 JP 3707144B2 JP 20347596 A JP20347596 A JP 20347596A JP 20347596 A JP20347596 A JP 20347596A JP 3707144 B2 JP3707144 B2 JP 3707144B2
Authority
JP
Japan
Prior art keywords
less
annealing
mgo
seconds
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20347596A
Other languages
Japanese (ja)
Other versions
JPH1046259A (en
Inventor
誠 渡辺
力 上
厚人 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP20347596A priority Critical patent/JP3707144B2/en
Publication of JPH1046259A publication Critical patent/JPH1046259A/en
Application granted granted Critical
Publication of JP3707144B2 publication Critical patent/JP3707144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、変圧器その他の電気機器の鉄芯等に用いられる方向性けい素鋼板の製造方法に関するもので、特に仕上焼鈍前に塗布する焼鈍分離剤に改良を加えることにより磁気特性、被膜特性を向上させ得る方法を提案しようとするものである。
【0002】
【従来の技術】
方向性けい素鋼板の製造工程は、鋼スラブを熱間圧延後に冷間圧延を施し、次いで脱炭焼鈍を施した後、二次再結晶のために最終仕上げ焼鈍を行うのが一般的である。このうち、最終仕上焼鈍において二次再結晶が起こり、圧延方向に磁化容易軸の揃った粗大な結晶粒が生成する。このような仕上焼鈍は長時間行われるために、鋼板の焼付き防止を目的として、通常焼鈍前にMgOを主体とする焼鈍分離剤を塗布する。
【0003】
このMgO は焼鈍分離剤としての役割以外に、脱炭焼鈍時に鋼板表面に生成するSiO2を主体とする酸化層と反応することによりフォルステライト被膜を形成させるという働きがある。このフォルステライト被膜は絶縁コーティングと地鉄部分とを密着させる一種のバインダとしての働きや、絶縁材としての働き、鋼板に張力を付与することによる磁気特性を改善する働き、等がある。したがって、均一な厚みを持ち、鋼板との密着性の良いフォルステライト被膜を形成させることが必要となり、そのために原料となるMgO の特性が重要となる。
【0004】
また焼鈍分離剤の働きは、これ以外に鋼板の析出物の生成,成長挙動や結晶粒の成長挙動を変化させて磁気特性に影響を及ぼす作用もある。例えば、MgO をスラリー化した際に持込まれる水分が多過ぎると鋼板が酸化されて磁気特性が劣化したり被膜に点状欠陥が生成したりする。あるいは、MgO 中に含まれる不純物が焼鈍中に鋼中に侵入することにより二次再結晶挙動が変化すること等も知られている。
したがって、焼鈍分離剤の成分や粉体特性の良否は方向性けい素鋼の磁気特性、被膜特性を左右する重要な要因となっている。
【0005】
このため焼鈍分離剤の品質改善のための様々な方法が開示されている。例えば、特公昭54−14566号公報ではマッフル炉により高温焼成されたマグネシアにつき不純物の濃度、水和量、ふるい通過性を特定することにより良好なフォルステライト被膜を形成させる方法が開示されている。また、特開昭58−193373号公報にはMgO の、X線回折幅広がりから測定した粒径を特定することにより磁気特性を改善する方法が開示されている。
【0006】
【発明が解決しようとする課題】
上述の技術により、ある程度は被膜特性、磁気特性が向上してきたものの、コストの増大を招いたり、製品特性が向上しても安定的に生産できず、歩留まりを低下させたりするものが多く、十分な効果が得られているとはいい難かった。特に近年、けい素鋼製造コスト低減のためにスラブ加熱温度を低下させる方法が検討されているが、この方法では成分系や、一次再結晶焼鈍条件の変更を伴うために被膜品質が不安定になり、被膜形成不足や被膜欠陥、密着性不良の問題が生じ易くなっている。したがって、これらの不具合を改善するためにも焼鈍分離剤を改良して被膜形成を安定化させる必要性は高い。
【0007】
この発明は上記の事情に鑑みてなされたものであり、焼鈍分離剤を改善することにより磁気特性、被膜特性を安定的に向上させる方法を提案するものである。
【0008】
【課題を解決するための手段】
この発明は、けい素鋼熱延板に1回又は中間焼鈍を含む複数回の冷間庄延を施して最終板厚に仕上げた後、一次再結晶焼鈍を施し、その後焼鈍分離剤を水でスラリー状にして鋼板表面に塗布、乾燥させてから最終仕上焼鈍を行う一連の工程よりなる方向性けい素鋼板の製造方法において、
焼鈍分離剤の主剤のMgOとして円相当径0.001μm以上0.1μm以下の範囲にある細孔容積を算出して、その値が0.03ml/g以上0.2ml/g以下の範囲にある粉体を選択し該粉体を、乾燥させた後のMgOの水和水分量MgOに対して1.0wt%以上3.9wt%以下となるように水和させて得た焼鈍分離剤を、一次再結晶焼鈍板に塗布、乾燥させることを特徴とする方向性けい素鋼の製造方法である。
ここに、細孔容積が0.03ml/g以上0.07ml/g以下ではCAA40%値が35秒以上75秒以下、細孔容積が0.07ml/g以上0.1 ml/g以下ではCAA40%値が65秒以上90秒以下、細孔容積が0.1 ml/g以上0.2 ml/g以下ではCAA40%値が75秒以上100 秒以下のMgOを用いることが、より好ましい。
【0009】
【発明の実施の形態】
さて、発明者らは被膜形成に最適なMgO 条件について種々の検討を行った結果、焼鈍分離剤の主剤であるMgO 中の細孔の状態により被膜品質が大きく異なることを新規に見い出した。以下にこの知見を得るに至った実験について述べる。
C:0.045 wt%(以下%で示す。)、Si:3.25%、Al:0.01%、N:0.0080%、Mn:0.07%、Se:0.02%、Sb:0.03%及びCu:0.08%を含み、残部は実質的にFeよりなるけい素鋼スラブを1200℃で30分加熱後、熱延して2.2mm の板厚にした。その後、900 ℃1分間での熱延板焼鈍の後にタンデム圧延機により120 ℃で0.35mm厚に冷延して最終板厚に仕上げた。この冷延板を脱炭焼鈍後、焼鈍分離剤を塗布、乾燥して最終仕上げ焼鈍を行った。
【0010】
ここで、焼鈍分離剤は主剤に種々の細孔容積を持つMgO と、さらにMgO に対して添加物にTiO2を6wt%、Sr(OH)2 を2wt%添加したものを用いた。ここで、この発明でいう細孔容積とは、定容量式ガス吸着法で測定したものであり、予備処理としてMgO を真空中で400 ℃,2時間熱処理したあと吸着ガスをN2、吸着温度を77KとしてBET多点法で測定し、この吸着データをDH法で解析することにより評価した。このDH法とは、Dollimore −Heal法の略で、細孔を円筒形と仮定して吸着ガスの相対圧と吸着量の増分から細孔の分布を求める方法である。また、MgO をスラリー化するときの水和温度を4℃から45℃までの範囲で種々に変更することにより水分吸着量を各種変更した。
【0011】
その後仕上げ焼鈍として850 ℃〜1150℃までを15℃/hrの昇温速度で加熱し、さらに引き続き1200℃,5時間の純化焼鈍を行った。このようにして得られた鋼板の被膜欠陥発生率を調査した。被膜欠陥発生率はレーザー式の表面検査装置を用いて評価した。円相当径0.001 μm 以上0.1 μm 以下の細孔容積及び水分吸着量と被膜欠陥発生率との関係を図1に示す。
【0012】
図1から分かるようにMgO の円相当径0.001 μm 以上0.1 μm 以下になる細孔部の容積を0.03〜0.2 ml/g、水分吸着量を1.0 wt%以上3.9 wt%以下にすることにより、良好な被膜が得られる。
【0013】
ところで、細孔容積、水分吸着量が上述の範囲内であっても、被膜欠陥発生率にも若干のばらつきが生じるという結果になった。この原因を調査するために、上述の実験結果を細孔容積を0.03ml/g以上0.2 ml/g以下、水分吸着量を1.0 wt%以上3.9 wt%以下の範囲に限定して、横軸に細孔容積を、縦軸にクエン酸活性度CAA40%の値をとって被膜欠陥発生率を測定した結果を図2に示す。ここで、CAA40%値は、以下の測定をした値を用いた。(以下同じ)
【0014】
クエン酸28.0g 、無水安息香酸ナトリウム0.25g 、1%フェノールフタレインアルコール液2.0 mlを純水に溶かし1000mlとした溶液を200 ml容ビーカーに100 mlをとり、30±0.5 ℃に温度を上げ、直径8mm、長さ35mmでプラスチック外装の磁石の回転子をいれ、30±0.5 ℃の温度に調整した高温槽付マグミキサーにセットし、pHメーターの電極をクエン酸溶液中に入れる。ここに、2.0 g のMgO を液中に投入して10秒後に回転子を900 rpm で回転させて液を攪拌し、液中に投入してからpHが8.0 になるまでの時間を測定する。
【0015】
図2の結果より細孔容積が0.03ml/g以上0.07ml/g以下ではCAA40%値が35秒以上75秒以下、細孔容積が0.07ml/g以上0.1 ml/g以下ではCAA40%値が65秒以上90秒以下、細孔容積が0.1 ml/g以上0.2 ml/g以下ではCAA40%値が75秒以上100 秒以下で良好な被膜品質が得られていることがわかる。
【0016】
このよう結果が得られた詳細なメカニズムについては明らかではないが、発明者らは次のように考える。
通常、焼鈍分離剤は水でスラリー化して鋼板に塗布する。このときMgO の表面に水分が吸着することになる。この水分吸着はMgO 表面の活性な部分から優先的に起る。MgO に細孔がある場合、細孔に優先的に水分が吸着することになる。
【0017】
焼鈍分離剤を塗布した後に仕上げ焼鈍を行うが、このときMgO の水和水は放出されて酸素源となり鋼板を酸化させる。また、MgO の外側に吸着した水分は結合力が弱いため比較的低温で速やかに脱離するために鋼板への影響はさほどないが、細孔に吸着した水分は結合力が強く、高温で放出されるために鋼板に及ぼす影響が大きい。したがって、水和水分量を限定するとともに、細孔部容積を所定の範囲に設定することにより鋼板に強い影響を及ぼす高温域での放出を適正な範囲に収め、被膜特性を良好なレベルにすることができるものと考えられる。
【0018】
また、細孔部容積の値によりクエン酸活性度の良好な範囲がずれる理由については、細孔部は反応性が高いため仕上焼鈍中に細孔部が起点となってMg2+イオンやO2-イオンの解離、再配列が起こりやすくなっており、細孔が多いほうが焼結性が高くなっていると考えられる。したがってMgO の細孔部の多少によりCAA40値を別々に設定する必要がある。即ち、細孔容積の大きいものはCAA40を大きめにし、細孔容積の小さいものはCAA40を小さめにすることにより適正な範囲の反応性を得ることができると推定される。
【0019】
次にこの発明の限定理由について述べる。この発明の素材である含けい素鋼としては、次のとおりである。
まず、Cは出鋼段階で低下させて脱炭焼鈍を行わない方法と、ある程度の量を確保して組織の改善を図り、その後の脱炭焼鈍により除去する方法がある。前者ではCの悪影響を避けるためには0.01wt%(以下単に%と示す)以下にし、後者では組織改善のための好適範囲は0.01%以上0.10%以下である。
Siは2〜4.5 %である。2%未満では鉄損の低減効果が弱まり、4.5 %超では冷延性が損なわれる。
【0020】
これらC,Siの他にインヒビター形成成分を添加する。インヒビターとしてはAl, MnS, MnSe 等がよく知られているが、これらのいずれを用いても良い。インヒビターにMnS 及び/又はMnSeを用いる場合はMn:0.03〜0.10%、S+Se:0.01〜0.03%にする。AlN をインヒビターに用いる場合はAl:0.01〜0.04%、N:50〜120 ppm とする。これらの範囲より少ないとインヒビターとして効果が働かず、多いと二次再結晶が不安定になる。
【0021】
また、上記のインヒビター成分の他に粒界濃化型インヒビターとして、Cu, Sn, Cr, Sb, Ge, Mo, Te, Bi, P,Vなども使うことができる。これらの成分につき、インヒビターとしての働きに有効な濃度としてはトータルで0.01%以上0.2 %以下である。これら各インヒビターは単独使用、複数使用いずれも可能である。
【0022】
上記の成分を含有する素材を公知の方法で熱間圧延を行った後、1回又は中間焼鈍を挟む複数回の冷間圧延を行って最終板厚にする。また、必要に応じて熱延板に冷延前の焼鈍を行うことも可能である。前述の処理の後は一次再結晶焼鈍を行い、焼鈍分離剤を塗布した後、最終仕上焼鈍を行う。
この一次再結晶焼鈍の雰囲気、温度、焼鈍時間は特に限定するものではないが、通常、雰囲気は水蒸気−水素分圧比PH2O/PH2で0.05以上0.68以下である。これは良好な内部酸化層を形成させるためのもので、0.05未満では酸化層が薄くなり過ぎ、0.68より高いと酸化層中の酸素分が大きくなり過ぎて、いずれも仕上げ焼鈍中のインヒビターの酸化が激しくなり磁気特性が劣化する。また、焼鈍温度は750 ℃以上900 ℃以下、焼鈍時間は30秒以上180 秒以下とするのが望ましい。これは、一次再結晶粒径を特定の範囲に納めるためで、この範囲内において磁気特性が良好となる。
【0023】
なお、一次再結晶焼鈍の加熱時の雰囲気と均熱時の雰囲気を別々に制御して磁気特性を向上させる方法が知られていて、この発明でもこの方法を用いることができる。更に、AlN をインヒビターとする場合において、一次再結晶焼鈍の前、途中又は後に窒化処理を行う方法が知られているが、この発明でもこのような方法を同時に行って差し支えない。但し、スラブ加熱温度を1300℃以下としてコストダウンを図ったAlN 系材料は、Al添加量を低減することで熱延板焼鈍時の昇温過程においてAlN を微細析出することにより一次再結晶を安定化させているため、仕上焼鈍時の二次再結晶まで間の途中窒化はAlN 形態を変化させてしまうことから非常に有害となる。この点、この発明に従う方法では、仕上焼鈍時のオリビン形成を促進し、フォルステライト形成を早めることにより、鋼板表面の保護性を高めて窒化を抑制するため、特に低スラブ加熱温度の材料にとっても有効である。
【0024】
一次再結晶焼鈍後にはMgO を主体とする焼鈍分離剤を鋼板表面に塗布する。このとき、MgO はスラリー化することにより持込まれる水分量を1.0 %以上3.9 %以下とする。これはMgO の反応性の制御とともに仕上焼鈍時の雰囲気の持込水分量を調整するためである。この範囲を超えるといずれも良好な被膜が形成されない。また、使用するMgO の粉体特性として、円相当径0.001 μm 以上0.1 μm 以下の範囲にある細孔の容積が0.03ml/g以上0.2 ml/g以下となるMgO を用い、またこれを水にてスラリー状にして塗布、乾燥した後のMgO への水分吸着量をMgO に対して1.0 %以上3.9 %以下とする。より好ましくは、細孔容積が0.03ml/g以上0.07ml/g以下ではCAA40%が35秒以上、75秒以下、細孔容積が0.07ml/g以上0.1 ml/g以下ではCAA40%が65秒以上、90秒以下、細孔容積が0.1 ml/g以上0.2 ml/g以下ではCAA40%が75秒以上、100 秒以下となるMgO を用いることにより被膜は改善される。
【0025】
この他、焼鈍分離剤に助剤を添加することにより磁気特性、被膜を改善することもできる。磁気特性、被膜改善のために使用できる助剤は従来より公知のものでよいが、一般的にはMn, Cu, Nb, Tl, Sr, Bi, Fe, Sn, Ti, Mgの酸化物、水酸化物、硫酸塩等が知られている。これらの化合物を添加する場合の添加量はトータルで0.5 %以上15%以下とする。0.5 %未満では効果なく、15%を超えるとMgO の比率が少なくなりフォルステライト形成が進まない。
最終仕上焼鈍は従来より公知の方法でよい。これら一連の処理の後、絶縁張力コートを施してフラットニング焼鈍をして製品に仕上げる。かる処理工程によって優れた磁気特性を有する方向性けい素鋼を得ることができる。
【0026】
【実施例】
(実施例1)
C:0.07%、Si:3.28%、Al:0.02%、N:75ppm 、Mn:0.07%、Se:0.02%、Cu:0.06%を含み、残部は実質的にFeよりなるけい素鋼スラブを1400℃に加熱し、2.2mm 厚に熱延し、1050℃,2分間の中間焼鈍をはさんで0.35mmまで冷延して最終板厚に仕上げた。これを脱炭焼鈍後、焼鈍分離剤としてMgOに6%のTiO2と1%のSrSO4 を添加し、塗布、乾燥させた。このとき、MgOの粉体特性を表1のように種々に変更した。その後、仕上げ焼鈍として850 ℃〜1150℃までを昇温速度20℃/hで昇温し、引続きドライH2雰囲気で1200℃,5h の純化焼鈍を行った。このようにして得られた鋼板の被膜特性、磁気特性を調査した結果を表2に示す。水和水分量と細孔部表面積、CAA40%値がこの発明の範囲内となる場合は被膜のみならず鉄損、磁束密度とも良好な値となっている。
【0027】
【表1】

Figure 0003707144
【0028】
【表2】
Figure 0003707144
【0029】
(実施例2)
C:0.06%、Si:3.28%、Mn:0.07%、Se:0.02%、Sb:0.025 %を含み、残部実質的にFeよりなるスラブを1400℃に加熱し、2.2mm 厚に熱延し、1050℃,2分間の中間焼鈍をはさんで0.23mmまで冷延して最終板厚に仕上げた。これを脱炭焼鈍後、焼鈍分離剤としてMgO に2%のTiO2と種々の助剤を1%添加し、塗布、乾燥させた。このとき、MgO については表1に示すNo. 2及びNo. 5のMgO を使用した。その後仕上げ焼鈍として820 ℃で50h 保定した後、ドライH2雰囲気で1200℃,5h の純化焼鈍を行った。
このようにして得られた鋼板の磁気特性を調査した結果を表3に示す。いずれの分離剤助剤を用いた場合でもMgO がこの発明の範囲内の場合は磁気特性、被膜が良好となっている。
【0030】
【表3】
Figure 0003707144
【0031】
実施例3
化学成分の異なる種々のけい素鋼塊を1380℃で30分加熱後熱延して2.2mm の板厚にした後、1050℃1分間での中間焼鈍をはさんで0.22mm厚に冷延して最終板厚に仕上げた。これを脱炭焼鈍後、焼鈍分離剤としてMgO +6%TiO2+1%SrSO4 を塗布、乾燥させた。このとき、MgO については表1に示したNo. 2及びNo. 5のMgO を使用した。その後仕上げ焼鈍として800 ℃で15h 保定した後850 ℃〜1150℃までを15℃/hで昇温し、引続きドライH2雰囲気で1200℃,5h の純化焼鈍を行った。
このようにして得られた鋼板の磁気特性を調査した結果を表4に示す。この発明の範囲においては高い磁気特性が実現されている。
【0032】
【表4】
Figure 0003707144
【0033】
【発明の効果】
かくしてこの発明によれば、焼鈍分離剤の主剤にMgO を用い、そのMgO の粉体特性として円相当径が0.01μm 以上0.1 μm 以下の範囲にある細孔の容積が0.03ml/g以上0.2ml/g 以下とするMgO を用い、またこれを水にてスラリー状にして塗布、乾燥した後のMgO の水和水分量をMgO に対して1.0 wt%以上3.9 wt%以下とすることにより磁気特性、被膜特性の良好な方向性けい素鋼を安定的に製造することが可能となり、品質向上に大きく寄与できる。
また、このMgO について、細孔容積が0.03ml/g以上0.07ml/g以下ではCAA40%値が35秒以上75秒以下、細孔容積が0.07ml/g以上0.1 ml/g以下ではCAA40%値が65秒以上90秒以下、細孔容積が0.1 ml/g以上0.2 ml/g以下ではCAA40%値が75秒以上100 秒以下のMgO を用いることにより、更なる特性向上が可能となる。
【図面の簡単な説明】
【図1】円相当径0.001 μm 以上0.1 μm 以下の細孔部の容積と水和量、被膜欠陥発生率との関係を示したものである。
【図2】細孔容積を0.03ml/g以上0.2 ml/g以下、水分吸着量を1.0 wt%以上3.9 wt%以下に限定して横軸に細孔容積を、縦軸にクエン酸活性度CAA40%の値をとって被膜欠陥発生率を測定した結果を示したものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a grain-oriented silicon steel sheet used for iron cores of transformers and other electric devices, and particularly, by adding improvements to the annealing separator applied before finish annealing, magnetic characteristics and film characteristics. It is intended to propose a method that can improve the above.
[0002]
[Prior art]
The manufacturing process of grain-oriented silicon steel sheet is generally performed by cold rolling steel slab after cold rolling, followed by decarburization annealing and then final finishing annealing for secondary recrystallization. . Among these, secondary recrystallization occurs in the final finish annealing, and coarse crystal grains having easy magnetization axes aligned in the rolling direction are generated. For such finish annealing is carried out for a long time, for the purpose of baking-out prevention of the steel sheet is coated with an annealing separator composed mainly of MgO before normal annealing.
[0003]
In addition to the role as an annealing separator, this MgO has a function of forming a forsterite film by reacting with an oxide layer mainly composed of SiO 2 formed on the steel sheet surface during decarburization annealing. This forsterite film has a function as a kind of binder that makes the insulating coating and the ground iron part adhere to each other, a function as an insulating material, and a function of improving magnetic properties by applying tension to the steel sheet. Therefore, it is necessary to form a forsterite film having a uniform thickness and good adhesion to the steel sheet, and the properties of MgO as a raw material are therefore important.
[0004]
In addition, the action of the annealing separator has the effect of affecting the magnetic properties by changing the formation and growth behavior of steel plate precipitates and the growth behavior of crystal grains. For example, if too much moisture is brought in when MgO is slurried, the steel sheet is oxidized and the magnetic properties are deteriorated or point defects are generated in the coating. Alternatively, it is also known that the secondary recrystallization behavior is changed by the impurities contained in MgO entering the steel during annealing.
Therefore, the composition of the annealing separator and the quality of the powder properties are important factors that influence the magnetic properties and film properties of the oriented silicon steel.
[0005]
For this reason, various methods for improving the quality of the annealing separator have been disclosed. For example, Japanese Examined Patent Publication No. 54-14566 discloses a method for forming a good forsterite film by specifying the concentration of impurities, the amount of hydration, and the screenability of magnesia fired at high temperature in a muffle furnace. Japanese Patent Application Laid-Open No. 58-193373 discloses a method for improving magnetic properties by specifying the particle size of MgO measured from the X-ray diffraction width broadening.
[0006]
[Problems to be solved by the invention]
Although the coating properties and magnetic properties have been improved to some extent by the above-mentioned technology, there are many things that cause an increase in cost or that cannot be stably produced even if the product properties are improved, resulting in a decrease in yield. It was hard to say that a good effect was obtained. In recent years, in particular, a method for lowering the slab heating temperature has been studied in order to reduce the manufacturing cost of silicon steel, but this method involves changes in the component system and primary recrystallization annealing conditions, resulting in unstable coating quality. Thus, problems such as insufficient film formation, film defects, and poor adhesion are likely to occur. Therefore, in order to improve these problems, there is a high need to improve the annealing separator and stabilize the film formation.
[0007]
The present invention has been made in view of the above circumstances, and proposes a method for stably improving magnetic properties and film properties by improving an annealing separator.
[0008]
[Means for Solving the Problems]
In the present invention, a hot rolled sheet of silicon steel is subjected to cold rolling of one time or a plurality of times including intermediate annealing to finish to the final sheet thickness, and then subjected to primary recrystallization annealing, and then the annealing separator is made of water. In the method for producing a directional silicon steel sheet consisting of a series of steps in which the final finish annealing is performed after applying the slurry to the surface of the steel sheet and drying it,
As MgO main agent of annealing separator, to calculate the pore volume in the range of circle-equivalent diameter 0.001μm least 0.1 [mu] m, the value of the powder is in the range of less than 0.03 ml / g or more 0.2 ml / g selected, the powder, the annealing separating agent obtained by hydration as water of hydration content of MgO after drying is more than 1.0 wt% 3.9 wt% or less with respect to MgO, primary recrystallization coating the annealed sheet, a method for producing dried to this and towards tropism silicon steel plate you characterized.
When the pore volume is 0.03 ml / g or more and 0.07 ml / g or less, the CAA 40% value is 35 seconds or more and 75 seconds or less, and when the pore volume is 0.07 ml / g or more and 0.1 ml / g or less, the CAA 40% value is 65 seconds. If the pore volume is 0.1 ml / g or more and 0.2 ml / g or less for 90 seconds or less, it is more preferable to use MgO having a CAA 40% value of 75 seconds or more and 100 seconds or less.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As a result of various studies on the optimum MgO conditions for film formation, the inventors have newly found that the film quality varies greatly depending on the state of pores in MgO, which is the main component of the annealing separator. The experiment that led to this finding is described below.
C: 0.045 wt% (indicated by%), Si: 3.25%, Al: 0.01%, N: 0.0080%, Mn: 0.07%, Se: 0.02%, Sb: 0.03% and Cu: 0.08%, The remainder was a silicon steel slab consisting essentially of Fe, heated at 1200 ° C for 30 minutes, and then hot rolled to a thickness of 2.2 mm. Then, after hot-rolled sheet annealing at 900 ° C. for 1 minute, it was cold-rolled to a thickness of 0.35 mm at 120 ° C. by a tandem rolling mill and finished to the final sheet thickness. This cold-rolled sheet was decarburized and annealed, and then an annealing separator was applied and dried to perform final finish annealing.
[0010]
Here, the annealing separator used was MgO having various pore volumes as the main agent, and further 6 wt% of TiO 2 and 2 wt% of Sr (OH) 2 as additives with respect to MgO. Here, the pore volume referred to in the present invention is measured by a constant volume gas adsorption method. As a pretreatment, MgO is heat treated in a vacuum at 400 ° C. for 2 hours, and then the adsorbed gas is N 2 , the adsorption temperature. Was measured by BET multipoint method at 77K, and this adsorption data was analyzed by DH method. The DH method is an abbreviation for the Dollimore-Heal method, and is a method for obtaining the distribution of pores from the relative pressure of the adsorbed gas and the increment of the amount of adsorption assuming that the pores are cylindrical. Further, various amounts of moisture adsorption were changed by variously changing the hydration temperature when slurrying MgO in the range from 4 ° C to 45 ° C.
[0011]
After that, as final annealing, heating was performed from 850 ° C. to 1150 ° C. at a rate of temperature increase of 15 ° C./hr, followed by purification annealing at 1200 ° C. for 5 hours. The film defect occurrence rate of the steel sheet thus obtained was investigated. The film defect occurrence rate was evaluated using a laser type surface inspection apparatus. FIG. 1 shows the relationship between the pore volume and the moisture adsorption amount with a circle equivalent diameter of 0.001 μm or more and 0.1 μm or less and the film defect occurrence rate.
[0012]
As can be seen from Fig. 1, the MgO equivalent diameter is 0.001 μm or more and 0.1 μm or less. The pore volume is 0.03 to 0.2 ml / g, and the moisture adsorption is 1.0 wt% or more and 3.9 wt% or less. Can be obtained.
[0013]
By the way, even if the pore volume and the moisture adsorption amount are within the above-described ranges, the film defect occurrence rate slightly varies. In order to investigate this cause, the above experimental results were limited to the range of 0.03 ml / g or more and 0.2 ml / g or less, and the amount of water adsorption was limited to the range of 1.0 wt% or more and 3.9 wt% or less. FIG. 2 shows the results of measuring the film defect occurrence rate with the pore volume taken as the vertical axis and the citric acid activity CAA 40%. Here, as the CAA 40% value, the following measured value was used. (same as below)
[0014]
Add 20.0 g of citric acid, 0.25 g of anhydrous sodium benzoate, and 2.0 ml of 1% phenolphthalein alcohol solution in pure water to 1000 ml. Take 100 ml in a 200 ml beaker and raise the temperature to 30 ± 0.5 ° C. Insert a magnet rotor with a diameter of 8 mm and a length of 35 mm, and place it in a mag mixer with a high-temperature tank adjusted to a temperature of 30 ± 0.5 ° C. Place the electrode of the pH meter in the citric acid solution. Here, 2.0 g of MgO is put into the liquid, and after 10 seconds, the rotor is rotated at 900 rpm to stir the liquid, and the time from when it is put into the liquid until the pH reaches 8.0 is measured.
[0015]
From the results in FIG. 2, the CAA 40% value is 35 seconds to 75 seconds when the pore volume is 0.03 ml / g or more and 0.07 ml / g or less, and the CAA 40% value is when the pore volume is 0.07 ml / g or more and 0.1 ml / g or less. It can be seen that good film quality was obtained when the CAA 40% value was 75 seconds or more and 100 seconds or less when the pore volume was 0.1 ml / g or more and 0.2 ml / g or less for 65 seconds or more and 90 seconds or less.
[0016]
Although the detailed mechanism by which such a result was obtained is not clear, the inventors consider as follows.
Usually, the annealing separator is slurried with water and applied to the steel sheet. At this time, moisture is adsorbed on the surface of MgO. This moisture adsorption takes place preferentially from the active part of the MgO surface. When MgO has pores, moisture preferentially adsorbs to the pores.
[0017]
After the annealing separator is applied, the final annealing is performed. At this time, the MgO hydrated water is released to become an oxygen source and oxidize the steel sheet. In addition, the moisture adsorbed on the outside of MgO has a weak binding force, so it desorbs quickly at a relatively low temperature, so there is not much influence on the steel sheet, but the moisture adsorbed on the pores has a strong binding force and is released at a high temperature. Therefore, the influence on the steel sheet is great. Therefore, by limiting the amount of hydrated water and setting the pore volume in a predetermined range, release in a high temperature range that strongly affects the steel sheet is kept within an appropriate range, and the coating properties are made to a good level. Can be considered.
[0018]
The reason why the range of the citric acid activity is shifted depending on the value of the pore volume is that the pore is highly reactive, so the Mg 2+ ion and O 2 2- ion dissociation and rearrangement are likely to occur, and it is considered that the more pores, the higher the sinterability. Therefore, it is necessary to set the CAA40 value separately depending on the number of pores of MgO. That is, it is presumed that the reactivity of a proper range can be obtained by increasing the CAA40 with a large pore volume and decreasing the CAA40 with a small pore volume.
[0019]
Next, the reasons for limiting the present invention will be described. The silicon-containing steel that is the material of the present invention is as follows.
First, there is a method in which C is reduced at the steel-out stage and no decarburization annealing is performed, and a method of securing a certain amount to improve the structure and removing by decarburization annealing thereafter. In the former, in order to avoid the adverse effect of C, the content is set to 0.01 wt% (hereinafter simply referred to as “%”) or less. In the latter, a preferable range for improving the structure is 0.01% or more and 0.10% or less.
Si is 2 to 4.5%. If it is less than 2%, the effect of reducing iron loss is weakened, and if it exceeds 4.5%, the cold rolling property is impaired.
[0020]
In addition to these C and Si, an inhibitor forming component is added. As the inhibitor, Al, MnS, MnSe and the like are well known, and any of these may be used. When MnS and / or MnSe is used as an inhibitor, Mn: 0.03-0.10% and S + Se: 0.01-0.03%. When AlN is used as an inhibitor, Al: 0.01 to 0.04%, N: 50 to 120 ppm. If it is less than these ranges, the effect as an inhibitor does not work, and if it is more, secondary recrystallization becomes unstable.
[0021]
In addition to the above inhibitor components, Cu, Sn, Cr, Sb, Ge, Mo, Te, Bi, P, V, and the like can also be used as a grain boundary concentration type inhibitor. For these components, the total concentration effective for acting as an inhibitor is 0.01% or more and 0.2% or less. Each of these inhibitors can be used alone or in combination.
[0022]
The material containing the above components is hot-rolled by a known method, and then cold-rolled once or a plurality of times sandwiching intermediate annealing to obtain a final thickness. Moreover, it is also possible to anneal a hot-rolled sheet before cold rolling as needed. After the above-described treatment, primary recrystallization annealing is performed, and after the annealing separator is applied, final finishing annealing is performed.
The atmosphere, temperature, and annealing time of this primary recrystallization annealing are not particularly limited, but the atmosphere is usually 0.05 to 0.68 in terms of the steam-hydrogen partial pressure ratio PH 2 O / PH 2 . This is to form a good internal oxide layer.If it is less than 0.05, the oxide layer becomes too thin, and if it is higher than 0.68, the oxygen content in the oxide layer becomes too large. Becomes violent and magnetic properties deteriorate. The annealing temperature is preferably 750 ° C. or more and 900 ° C. or less, and the annealing time is preferably 30 seconds or more and 180 seconds or less. This is because the primary recrystallized grain size falls within a specific range, and the magnetic characteristics are good within this range.
[0023]
A method for improving the magnetic characteristics by separately controlling the atmosphere during heating and the soaking atmosphere in primary recrystallization annealing is known, and this method can also be used in the present invention. Furthermore, in the case where AlN is used as an inhibitor, a method of performing nitriding before, during or after the primary recrystallization annealing is known. However, in the present invention, such a method may be performed simultaneously. However, AlN-based materials that reduce costs by reducing the slab heating temperature to 1300 ° C or less stabilize primary recrystallization by precipitating AlN finely during the temperature rising process during hot-rolled sheet annealing by reducing the amount of Al added. Therefore, nitriding in the middle of the secondary recrystallization during finish annealing is very harmful because it changes the AlN morphology. In this regard, the method according to the present invention promotes olivine formation during finish annealing and accelerates forsterite formation, thereby enhancing the protection of the steel sheet surface and suppressing nitriding, and therefore, especially for materials with low slab heating temperatures. It is valid.
[0024]
After the primary recrystallization annealing, an annealing separator mainly composed of MgO is applied to the steel plate surface. At this time, the amount of moisture brought in by making MgO slurry is set to 1.0% or more and 3.9% or less. This is to adjust the amount of moisture brought into the atmosphere during finish annealing as well as controlling the reactivity of MgO. When this range is exceeded, no good film is formed. In addition, as the powder characteristics of MgO to be used, MgO having a pore volume in the range of the circle equivalent diameter of 0.001 μm to 0.1 μm in the range of 0.03 ml / g to 0.2 ml / g is used. The amount of moisture adsorbed on MgO after being applied in slurry form and dried is set to 1.0% to 3.9% with respect to MgO. More preferably, when the pore volume is 0.03 ml / g or more and 0.07 ml / g or less, CAA 40% is 35 seconds or more and 75 seconds or less, and when the pore volume is 0.07 ml / g or more and 0.1 ml / g or less, CAA 40% is 65 seconds. As mentioned above, when the pore volume is 0.1 ml / g or more and 0.2 ml / g or less for 90 seconds or less, the coating film can be improved by using MgO with CAA 40% of 75 seconds or more and 100 seconds or less.
[0025]
In addition, the magnetic properties and the film can be improved by adding an auxiliary agent to the annealing separator. Auxiliary agents that can be used for improving magnetic properties and coatings may be conventionally known, but in general, oxides of Mn, Cu, Nb, Tl, Sr, Bi, Fe, Sn, Ti, Mg, water Oxides, sulfates and the like are known. When these compounds are added, the total addition amount is 0.5% to 15%. If it is less than 0.5%, there is no effect, and if it exceeds 15%, the proportion of MgO decreases and forsterite formation does not proceed.
The final finish annealing may be a conventionally known method. After these series of treatments, an insulation tension coat is applied and flattening annealing is performed to finish the product. Directional silicon steel having excellent magnetic properties can be obtained by such a treatment process.
[0026]
【Example】
(Example 1)
C: 0.07%, Si: 3.28%, Al: 0.02%, N: 75ppm, Mn: 0.07%, Se: 0.02%, Cu: 0.06%, the balance is 1400 silicon steel slab substantially consisting of Fe It was heated to ℃, hot-rolled to 2.2mm thickness, and cold-rolled to 0.35mm with intermediate annealing at 1050 ℃ for 2 minutes to finish to the final thickness. After decarburization annealing, 6% TiO 2 and 1% SrSO 4 were added to MgO as an annealing separator, and the mixture was applied and dried. At this time, the powder characteristics of MgO were variously changed as shown in Table 1. Thereafter, as final annealing, the temperature was raised from 850 ° C. to 1150 ° C. at a rate of temperature increase of 20 ° C./h, followed by purification annealing at 1200 ° C. for 5 hours in a dry H 2 atmosphere. Table 2 shows the results of investigating the coating properties and magnetic properties of the steel sheet thus obtained. When the hydrated water content, the pore surface area, and the CAA 40% value are within the scope of the present invention, not only the film but also the iron loss and magnetic flux density are good values.
[0027]
[Table 1]
Figure 0003707144
[0028]
[Table 2]
Figure 0003707144
[0029]
(Example 2)
C: 0.06%, Si: 3.28%, Mn: 0.07%, Se: 0.02%, Sb: 0.025%, the remainder substantially Fe slab is heated to 1400 ° C, hot rolled to 2.2mm thickness, It was cold-rolled to 0.23mm with intermediate annealing at 1050 ℃ for 2 minutes and finished to the final thickness. After decarburization annealing, 2% TiO 2 and 1% of various auxiliary agents were added to MgO as an annealing separator, and the mixture was applied and dried. At this time, MgO of No. 2 and No. 5 shown in Table 1 was used. After that, it was held at 820 ° C. for 50 hours as final annealing, and then subjected to purification annealing at 1200 ° C. for 5 hours in a dry H 2 atmosphere.
Table 3 shows the results of investigating the magnetic properties of the steel sheet thus obtained. Regardless of which separating agent aid is used, when MgO is within the range of the present invention, the magnetic properties and the coating are good.
[0030]
[Table 3]
Figure 0003707144
[0031]
Example 3
Various silicon steel ingots with different chemical compositions are heated at 1380 ° C for 30 minutes, hot rolled to a thickness of 2.2mm, then cold-rolled to 0.22mm with intermediate annealing at 1050 ° C for 1 minute. And finished to the final thickness. After decarburization annealing, MgO + 6% TiO 2 + 1% SrSO 4 was applied as an annealing separator and dried. At this time, MgO of No. 2 and No. 5 shown in Table 1 was used for MgO. After that, it was held at 800 ° C. for 15 hours as a final annealing, and then heated from 850 ° C. to 1150 ° C. at 15 ° C./h, followed by purification annealing at 1200 ° C. for 5 hours in a dry H 2 atmosphere.
Table 4 shows the results of investigating the magnetic properties of the steel sheet thus obtained. High magnetic properties are realized within the scope of the present invention.
[0032]
[Table 4]
Figure 0003707144
[0033]
【The invention's effect】
Thus, according to the present invention, MgO is used as the main component of the annealing separator, and the volume characteristics of the MgO powder having a circle equivalent diameter in the range of 0.01 μm to 0.1 μm are 0.03 ml / g to 0.2 ml. Magnetic properties can be obtained by using MgO of less than / g or less, and making the water content of MgO hydrated in a slurry form with water and making it dry to 1.0 wt% or more and 3.9 wt% or less of MgO. Further, it becomes possible to stably produce a directional silicon steel with good coating properties, which can greatly contribute to quality improvement.
Also, regarding this MgO, when the pore volume is 0.03 ml / g or more and 0.07 ml / g or less, the CAA 40% value is 35 seconds or more and 75 seconds or less, and when the pore volume is 0.07 ml / g or more and 0.1 ml / g or less, the CAA 40% value. When the pore volume is 0.1 ml / g or more and 0.2 ml / g or less, MgA having a CAA 40% value of 75 seconds or more and 100 seconds or less can be further improved.
[Brief description of the drawings]
FIG. 1 shows the relationship between the volume of pores with an equivalent circle diameter of 0.001 μm or more and 0.1 μm or less, the amount of hydration, and the incidence of film defects.
[Figure 2] The pore volume is limited to 0.03 ml / g or more and 0.2 ml / g or less, the moisture adsorption amount is limited to 1.0 wt% or more and 3.9 wt% or less, the horizontal axis represents the pore volume, and the vertical axis represents the citric acid activity. The result of measuring the film defect occurrence rate by taking the value of CAA 40% is shown.

Claims (2)

けい素鋼熱延板に1回又は中間焼鈍を含む複数回の冷間庄延を施して最終板厚に仕上げた後、一次再結晶焼鈍を施し、その後焼鈍分離剤を水でスラリー状にして鋼板表面に塗布、乾燥させてから最終仕上焼鈍を行う一連の工程よりなる方向性けい素鋼板の製造方法において、
焼鈍分離剤の主剤のMgOとして円相当径0.001μm以上0.1μm以下の範囲にある細孔容積を算出して、その値が0.03ml/g以上0.2ml/g以下の範囲にある粉体を選択し該粉体を、乾燥させた後のMgOの水和水分量MgOに対して1.0wt%以上3.9wt%以下となるように水和させて得た焼鈍分離剤を、一次再結晶焼鈍板に塗布、乾燥させることを特徴とする方向性けい素鋼の製造方法。
After the hot rolling of silicon steel is performed once or multiple times including cold annealing and finished to the final thickness, primary recrystallization annealing is performed, and then the annealing separator is slurried with water. In the method for producing a directional silicon steel sheet comprising a series of steps in which the final finish annealing is performed after coating and drying on the steel sheet surface,
As MgO main agent of annealing separator, to calculate the pore volume in the range of circle-equivalent diameter 0.001μm least 0.1 [mu] m, the value of the powder is in the range of less than 0.03 ml / g or more 0.2 ml / g selected, the powder, the annealing separating agent obtained by hydration as water of hydration content of MgO after drying is more than 1.0 wt% 3.9 wt% or less with respect to MgO, primary recrystallization coating the annealed sheet, dried to this manufacturing method towards tropic silicon steel plate you characterized.
前記算出された細孔容積が0.03ml/g以上0.2ml/g以下となる場合はCAA40%値が35秒以上75秒以下となる粉体を選択し、前記算出された細孔容積が0.07ml/g以上0.1ml/g以下となる場合はCAA40%値が65秒以上90秒以下となる粉体を選択し前記算出された細孔容積が0.1ml/g以上0.2ml/g以下となる場合はCAA40%値が75秒以上100秒以下となる粉体を選択することを特徴とする請求項1記載の方向性けい素鋼の製造方法。 When the calculated pore volume is 0.03 ml / g or more and 0.2 ml / g or less , a powder having a CAA 40% value of 35 seconds or more and 75 seconds or less is selected, and the calculated pore volume is 0.07 ml. / g or more 0.1 ml / g when the following become selects powder CAA40% value is 90 seconds or less than 65 seconds, the calculated pore volume is less than 0.1 ml / g or more 0.2 ml / g method for producing tropism silicon steel plate toward the claim 1, wherein the selecting the powder CAA40% value is less than or equal to 100 seconds 75 seconds for.
JP20347596A 1996-08-01 1996-08-01 Method for producing grain-oriented silicon steel sheet with excellent coating properties Expired - Lifetime JP3707144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20347596A JP3707144B2 (en) 1996-08-01 1996-08-01 Method for producing grain-oriented silicon steel sheet with excellent coating properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20347596A JP3707144B2 (en) 1996-08-01 1996-08-01 Method for producing grain-oriented silicon steel sheet with excellent coating properties

Publications (2)

Publication Number Publication Date
JPH1046259A JPH1046259A (en) 1998-02-17
JP3707144B2 true JP3707144B2 (en) 2005-10-19

Family

ID=16474766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20347596A Expired - Lifetime JP3707144B2 (en) 1996-08-01 1996-08-01 Method for producing grain-oriented silicon steel sheet with excellent coating properties

Country Status (1)

Country Link
JP (1) JP3707144B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4123652B2 (en) * 1999-10-05 2008-07-23 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
WO2001083848A1 (en) * 2000-05-01 2001-11-08 Tateho Chemical Industries Co., Ltd. Magnesium oxide particle aggregate
JP4018537B2 (en) 2000-10-25 2007-12-05 タテホ化学工業株式会社 Magnesium oxide particle aggregate
JP5000054B2 (en) * 2001-09-11 2012-08-15 新日本製鐵株式会社 Manufacturing method of grain-oriented electrical steel sheet having excellent magnetic properties with annealing separator and glass coating
JP6494554B2 (en) 2016-03-30 2019-04-03 タテホ化学工業株式会社 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator

Also Published As

Publication number Publication date
JPH1046259A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JP4288054B2 (en) Method for producing grain-oriented silicon steel sheet
KR101480498B1 (en) Oriented electrical steel sheet and method for manufacturing the same
EP2940158B1 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
JP4784347B2 (en) Method for producing grain-oriented electrical steel sheet
JP3536775B2 (en) Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties
JPH0756048B2 (en) Method for manufacturing thin grain oriented silicon steel sheet with excellent coating and magnetic properties
JP3707144B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating properties
KR101089303B1 (en) Method for making forsterite film of grain-oriented electrical steel sheets
JP5857983B2 (en) Manufacturing method of grain-oriented electrical steel sheet and MgO for annealing separator
JP3043975B2 (en) Annealing separator for grain-oriented silicon steel sheet
JP4310996B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used in this method
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
JP3277058B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP5853968B2 (en) Method for producing grain-oriented electrical steel sheet
JP3021241B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP2599069B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JP3695008B2 (en) Method for evaluating MgO for annealing separator during production of grain-oriented silicon steel sheet and method for producing grain-oriented silicon steel sheet
JP3294977B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP7392848B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used therein
JP3921807B2 (en) Method for producing grain-oriented silicon steel sheet
JP2706039B2 (en) Method for manufacturing mirror-oriented silicon steel sheet
JP4161391B2 (en) Method for producing grain-oriented silicon steel sheet having excellent magnetic properties and coating properties
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JPH0663029B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with excellent iron loss characteristics

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

EXPY Cancellation because of completion of term