JP4161391B2 - Method for producing grain-oriented silicon steel sheet having excellent magnetic properties and coating properties - Google Patents

Method for producing grain-oriented silicon steel sheet having excellent magnetic properties and coating properties Download PDF

Info

Publication number
JP4161391B2
JP4161391B2 JP28954897A JP28954897A JP4161391B2 JP 4161391 B2 JP4161391 B2 JP 4161391B2 JP 28954897 A JP28954897 A JP 28954897A JP 28954897 A JP28954897 A JP 28954897A JP 4161391 B2 JP4161391 B2 JP 4161391B2
Authority
JP
Japan
Prior art keywords
annealing
sio
lamellar
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28954897A
Other languages
Japanese (ja)
Other versions
JPH11124632A (en
Inventor
誠 渡辺
力 上
厚人 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP28954897A priority Critical patent/JP4161391B2/en
Publication of JPH11124632A publication Critical patent/JPH11124632A/en
Application granted granted Critical
Publication of JP4161391B2 publication Critical patent/JP4161391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は変圧器その他の電気機器の鉄心等に用いられる方向性けい素鋼板に関し、特に1次再結晶焼鈍後の内部酸化層の状態と焼鈍分離剤とを特定することにより磁気特性を改善する磁気特性および被膜特性に優れる方向性けい素鋼板の製造方法を提案しようとするものである。
【0002】
【従来の技術】
方向性けい素鋼の製造工程は、鋼スラブを熱間圧延後に冷間圧延を施し、ついで1次再結晶焼鈍を施したのち2次再結晶のために最終仕上げ焼鈍を行うのが一般的である。このうち、最終仕上げ焼鈍中に2次再結晶が起こり、圧延方向に磁化容易軸の揃った粗大な結晶粒が生成する。この最終仕上焼鈍は、長時間行う必要があるため、鋼板の焼付防止を目的として、通常はこの焼鈍前にMgOを主体とする焼鈍分離剤を水に懸濁させてスラリー状にして塗布する。
【0003】
このMgOは、かような焼鈍分離剤としての役割のほかに、最終仕上焼鈍に先んじて行われる1次再結晶焼鈍により鋼板表面に生成するSiO2を主体とする酸化層と反応することによって、フォルステライト (Mg2SiO4)被膜を形成させるという働きがある。この形成されたフォルステライト被膜は、上塗りされるりん酸塩系絶縁コーティングと地鉄部分とを密着させる一種のバインダーとしての働きや、それ自体絶縁被膜としての働きや、鋼板に張力を付与することにより磁気特性を改善する働き等がある。したがって、均一な厚みを持ち、鋼板との密着性のよいフォルステライト被膜を形成させることが必要であり、それゆえに焼鈍分離剤の影響は大である。
【0004】
また、焼鈍分離剤には、これまで述べた以外に鋼板の析出物の生成、成長挙動や2次再結晶挙動を変化させて磁気特性に影響を及ぼす作用もある。例えば、MgOをスラリー化した際に持ち込まれる水分量が多すぎると鋼板が酸化されて磁気特性が劣化したり、被膜に点状欠陥が生成したりする。また、MgOに含まれる不純物が焼鈍中に鋼板に浸入することにより2次再結晶挙動が変化することなども知られている。
したがって、焼鈍分離剤の成分、粉体特性の良否は、方向性けい素鋼板の磁気特性、被膜特性を左右する重要な要因といえる。
【0005】
このため焼鈍分離剤については、方向性電磁鋼板の品質改善のため様々な手段が提案されている。例えば、特開昭50−145315号公報では、目開き44μm ふるい通過分を98%以上含有し、かつ20μm 以下の粒子を80%以上含有する微細酸化チタンを焼鈍分離剤に1〜20重量%含有させることにより耐熱性絶縁被膜を形成させる方法が開示されている。この他、特公昭54−14566 号公報には、マッフル炉により高温焼成されたマグネシヤの不純物の濃度、水和量およびふるい通過性を特定することにより良好なフォルステライト被膜を形成させる方法が開示されている。また、特開昭62−156227号公報では低活性マグネシヤの粒子最表面層に焼成後のマグネシヤの重量あたり0.3 〜2.0 %の範囲で水和層形成処理を施して活性化することにより被膜特性、磁気特性を改善する方法が開示されている。
【0006】
さらに、MgOを主成分とする焼鈍分離剤に、助剤を添加することにより、磁気特性を改善することも試みられ、例えば、特公昭57−32716 号公報や特公昭57−57952 号公報にはSrSO4 などのSr化合物を、特開昭60−174881号公報にはTiO2を、また特開昭61−204314号公報にはBiまたはBi含有物質を、それぞれ添加させた焼鈍分離剤が提案されている。
【0007】
これらの技術によりある程度被膜特性、磁気特性は向上してきたものの、コストの増大を招いたり、製品特性が向上しても安定的に生産できず、歩留まりを低下させたりする場合が多く、十分な効果が得られているとはいい難かった。特に、1次再結晶焼鈍から仕上焼鈍にかけての被膜形成に関与する工程では、製造条件の微妙な変動により被膜形成不足や被膜欠陥、密着性不良などの問題が生じやすく、工業的に大量生産する観点からは、焼鈍分離剤をさらに改良する必要性が高かった。
【0008】
一方、脱炭焼鈍後焼鈍分離剤塗布前の鋼板表面性状と焼鈍分離剤との関係で、特開昭61−170515号公報には脱炭焼鈍時に形成される酸化膜量に応じて、MgOを主成分とする焼鈍分離剤中のS濃度を調整する技術が提案開示されている。
しかしながら、このように単なる酸化膜量を因子として選択する方法では、実際に磁気特性の向上効果は認められるものの、安定的に磁気特性を改善することや被膜特性を改善することに関しては未だ十分ではなかった。
【0009】
【発明が解決しようとする課題】
この発明は上記の事情に鑑みてなされたものであり、1次再結晶焼鈍条件ならびに焼鈍分離剤組成を調整することにより磁気特性、被膜特性を安定的に向上させうる磁気特性および被膜特性に優れる方向性けい素鋼板の製造方法を提案することを目的とする。
【0010】
【課題を解決するための手段】
この発明の要旨構成は以下の通りである。
【0011】
Cを 0.10wt %未満、Siを2〜4.5wt%およびMnを0.03〜0.10 wt%の範囲で含有し、さらに、S、 Se Al およびNから選ばれる1種または2種以上を、S+ Se 0.01 0.03wt %、 Al 0.01 0.04wt %、N: 50 120ppm にて含有し、残部 Fe および不可避不純物からなる鋼素材を、加熱炉にて加熱後熱間圧延し、1回もしくは中間焼鈍を挟む複数回の冷間圧延を施して最終冷延板厚に仕上げたのち、1次再結晶焼鈍をし、その後スラリー状焼鈍分剤を塗布し乾燥してから最終仕上焼鈍を行う一連の工程よりなる方向性けい素鋼板の製造方法において、
1次再結晶焼鈍時の雰囲気、温度および時間を制御することにより、1次再結晶焼鈍で被成される酸化層中において下記に定義される酸化層中のラメラ状SiO2を含むシリカ富化層の厚み:w (μm)を0.2μm以上、3.6μm以下の範囲にすること、
Sr、Mg、Ti、Cu、Pb、NiまたはSnの硫酸化合物の1種または2種以上の添加剤を含むMgOを主体とする焼鈍分離剤を用い、MgO中の不純物と添加剤とを含めた焼鈍分離剤全体のS含有量をSO3 として換算した値:s (wt%)を0.1wt%以上、2.8 wt%以下の範囲にすること、さらに上記wとsとの関係を0.15≦w・s≦3.3 を満たす範囲に調整することとからなる方向性けい素鋼板の製造方法。

酸化層中のラメラ状SiO2を含むシリカ富化層の厚み:酸化層−地鉄界面の位置からからラメラ状SiO2が消える位置までの板厚方向での平均間隔
また、前記鋼材に、さらに、 Cu Sn Sb Mo Te Bi 、P、 Ni およびVから選ばれる1種または2種以上を合計で 0.01 0.2wt %含有することも可能である。
【0013】
ここで、上記ラメラ状SiO2を含むシリカ富化層(以下単にラメラ状SiO2層という)とは、図2に示すラメラ状SiO2層の説明図のように、地鉄表面(酸化層−地鉄界面の位置)からラメラ層が消える位置までのことをいい、ラメラ状SiO2層の厚みは、その間の板厚方向での平均間隔のことをいう。
【0014】
【発明の実施の形態】
発明者らは、磁気特性、被膜特性を安定的に向上させることのできる1次再結晶焼鈍後の内部酸化膜の形成条件と焼鈍分離剤組成について種々検討した結果、焼鈍分離剤中のSO3 濃度と酸化膜中のラメラ状SiO2層の厚みにより被膜特性、磁気特性が変化することを発見した。以下にこの知見を得るに至った実験例について述べる。
【0015】
C:0.043 wt%(以下%で示す。)、Si:3.22%、Mn:0.06%、Se:0.02%を含み、残部は実質的にFeよりなるけい素鋼スラブを1380℃の温度で30分間加熱後熱間圧延して2.2mm の板厚にしたのち、1050℃・1分間での中間焼鈍をはさんで0.23mm厚に冷間圧延し、最終冷延板厚に仕上げた。これを1次再結晶焼鈍後、焼鈍分離剤をスラリー状にしてロールコーターにより塗布、乾燥して最終仕上焼鈍を行った。ここで、1次再結晶焼鈍時の雰囲気の酸化性すなわち、水分、水素分圧比:PH2O/PH2 を0.1 〜0.6 、温度を800 ℃〜850 ℃の範囲で種々の値に制御することにより1次再結晶焼鈍後に被成される内部酸化層中のラメラ状SiO2層の厚みを0.1 μm 〜5.0 μm の範囲内に調節した。また、焼鈍分離剤として0.08%の不純物のSO3 を含むMgOに2%のTiO2と、SO3 換算で0〜2.82%のSrSO4 を添加し(トータルSO3 量で0.08〜2.9 %) 、これらをスラリー化して塗布した。
【0016】
このようにして得られた仕上焼鈍後のサンプルの磁気特性、被膜特性を調査した。得られた結果を図1に示す。図1はラメラ状SiO2層厚み、分離剤中のSO3 濃度と製品特性との関係を示すグラフである。
この図からわかるようにラメラ状SiO2層厚み(w)と添加物中のSO3 濃度(s)により製品特性は大きく変化する。特にwとsとの積を特定範囲内とすることにより良好な製品特性が得られる。
【0017】
このようにラメラ状SiO2層厚みと添加剤中のSO3 濃度により製品品質が変化した理由は明らかではないが発明者らは次のように考える。
焼鈍分離剤中のSO3 は仕上焼鈍中に分離し、S分が鋼中に浸入することによりインヒビターを補強する効果がある。これに加え被膜形成を促進する働きがあり、過度に存在すると局所的に被膜形成が促進されすぎてそれが剥離し、点状の被膜欠陥が生成する。
一方、ラメラ状SiO2層はラメラ状SiO2層直下の地鉄部分と焼鈍雰囲気や焼鈍分離剤との相互作用を抑制する働きがある。また、酸素分が内部酸化層中にトラップされる結果、内部酸化層中の固溶酸素量が増大し、SiO2の解離浮上、沈降が起こりにくくなる。
【0018】
これらのことから考えると、まず磁性に関しては、ラメラ状SiO2が薄いと雰囲気中に微量に含まれる水分によりインヒビターの分解が起こりやすくなるため、分離剤にSO3 を多量に添加してSによりインヒビターを補強する必要がある。ラメラ状SiO2が厚いとSも酸素も鋼中には入りにくいが、分離剤中のSO3 が多く過度にSが浸入する場合は、抑制力が強くなりすぎて板厚方向内部にある方位のずれた2次再結晶核が2次再結晶するため、磁気特性が劣化する。従って、SO3 添加量はラメラ状SiO2が薄い場合は増量し、厚い場合は減量することにより各々の弱点を補完して良好な磁気特性が安定して得られることになる。
【0019】
次に被膜に関しては、ラメラ状SiO2層が薄いと焼鈍雰囲気の影響を受けやすくなり、SiO2が沈降して二重構造の被膜となる。これは被膜密着性にとって不利な構造であるため、これを補うためにSO3 を多くして被膜形成量を増やす必要ある。ラメラ状SiO2層が厚いと内部酸化層中の固溶酸素量が多いため、分離剤中のSO3 が多いとさらにこれが分解して酸素源となり、鉄系酸化物が生成しやすくなり、点状被膜欠陥の原因となる。従って、SO3 添加量はラメラ状SiO2層が薄い場合は増量し、厚い場合は減量することにより各々の弱点を補完して良好な被膜特性が安定して得られることになる。
【0020】
以上の点から添加剤中のSO3 濃度(s)はラメラ状SiO2の厚み(w)により添加量を調整する必要があり、これはsとwとの積により評価することができると考えられる。
【0021】
なお、前記したように、特開昭61−170515号公報の鋼板表面の酸化膜量に応じて焼鈍分離剤のS量を調整する技術では、安定的な磁気特性の改善や被膜特性の改善が十分でなかった。
【0022】
その理由は、まず安定した磁気特性の向上に関しては、インヒビターの解離固溶現象が酸化膜量を調節しても十分に制御できなかった点にある。これは、例えば酸化膜量が多い場合にその膜中の酸素がインヒビターを解離させる現象や、酸化膜量が同一でもラメラ状SiO2層の存在の有無やその厚みによってインヒビターの解離固溶に変化が生じることを予見できなかったことによるものである。この点、ラメラ状SiO2層の厚みが酸素やSの被膜中の透過能を左右する重要な因子となっていることを新規に見いだしたこの発明とは相違する。
【0023】
そして、被膜特性の向上に関しては、酸化膜層と焼鈍分離剤中のs(SO3)濃度との関係が影響することがこれまで知られていなく、今回この発明により、ラメラ状SiO2層厚みがフォルステライト被膜の構造を決定する要因になること、この厚みとs濃度との関係を適正化することにより、フォルステライト被膜特性の向上がはかれることなどを始めて見出したものである。
よって、以上の各点からこの発明は特開昭60−170515号公報とは異なる技術思想のもとなされたものといえる。
【0024】
次に、この発明の限定理由ならびに好適条件などについて述べる。
この発明の素材である含けい素鋼の成分組成としては、次の通りである。
【0025】
まず、Cは出鋼段階で低下させて脱炭焼鈍を行わない方法と、ある程度の量を確保して組織の改善をはかり、その後の脱炭・1次再結晶焼鈍により除去する方法とがある。前者の場合はCの悪影響を避けるためには0.01wt%未満がよく、後者の場合の組織改善のための好適範囲は0.01%以上、0.10%未満がよい。
【0026】
Siは2〜4.5 %とする。2%以下では鉄損の低減効果が弱まり、4.5 %以上では冷間圧延性が損なわれる。また、次に示すインヒビター構成成分として、 Mn 0.03 0.10wt% の範囲で含有する。
【0027】
C、Siの他にインヒビター構成成分を添加する。すなわち、インヒビターにMnSおよび/またはMnSeを用いる場合、上記Mn:0.03〜0.10%のほか、S+Se:0.01〜0.03%にすることがよい。一方、AlNをインヒビターに用いる場合はAl:0.01〜0.04%、N:50〜120ppmとすることがよい。これらの範囲よりも低いとインヒビターとして効果が十分でなく、高いと2次再結晶が不安定になる。また、これらの他にCu、SnSbMo、Te、Bi、P、NiまたはVなども用いることができる。これらの各インヒビターは単独使用、複合使用いずれも可能であり、有効な濃度としてはトータルで0.01%以上、0.2 %以下がよい。
【0028】
ついで、製造条件について述べる。
これらの素材を公知の方法で熱間圧延を行ったあと、1回もしくは中間焼鈍をはさむ複数回の冷間圧延を行って最終冷延板厚にする。また、必要に応じて熱延板を冷間圧延前に焼鈍することも可能である。
【0029】
上述の処理ののち1次再結晶焼鈍を行い、焼鈍分離剤を塗布してから、最終仕上焼鈍を行う。これらの工程はこの発明では良好な磁気特性及び被膜特性を得るために厳重に管理する必要があり、また、1次再結晶焼鈍は焼鈍の雰囲気、温度および時間を制御することにより内部酸化層中のラメラ状SiO2層の厚み:wを0.2 μm 以上、3.6 μm 以下にする。このwが薄すぎると仕上焼鈍中のインヒビターの分解が著しく起こることにより磁気特性が劣化し、被膜形成不足となって被膜特性も劣化する。一方、厚すぎると方位のずれた2次再結晶粒が生成して磁気特性不良となるとともに被膜形成が進みすぎて被膜の密着性も劣化する。ラメラ状SiO2層の厚みを制御するための焼鈍の雰囲気、温度および時間は特に限定するものではないが、通常、雰囲気は水蒸気で水素分圧比:PH2O/PH2 で0.05以上、0.68以下、温度は750 ℃以上、900 ℃以下、時間は30秒間以上、180 秒間以下が良好となる。
【0030】
なお、1次再結晶焼鈍の加熱時の雰囲気と均熱時の雰囲気とを別々に制御して被膜特性を向上させる方法が知られているが、この発明ではその方法を用いることによりラメラ状SiO2層厚みを調節することもできる。さらに、AlNをインヒビターとする場合に1次再結晶焼鈍の前または途中または後に窒化処理を行う方法が知られているが、この発明でこのような方法を同時に行っても差し支えない。
【0031】
1次再結晶焼鈍後にはMgOを主体とする焼鈍分離剤を用いる。このとき、添加剤とMgO不純物とを含めた焼鈍分離剤全体でのS含有量をSO3 として換算した値:sを0.1 以上、2.8 %以下とする。MgO不純物をこの範囲にまで高める方法としては、原料に海水その他S含有量の多いMg源を用いること、製造工程途中で硫酸化合物を添加することなどが有効である。添加剤にSr, Ti等の硫酸化合物を用いることはSO3 の効果の他にSr, Ti等の陽イオンの効果も加味されるためさらに効果的である。なお、MgSO4 の場合は特に分解したMgイオンが被膜形成を助勢する働きがあり、MgO中のMgとは異なる作用を持つため有効である。
【0032】
発明者らが検討した硫酸化合物で、特に効果があったのがSr, Mg, Ti, Cu, Pb, NiまたはSnの硫酸塩である。これらは、単独使用、複合使用いずれも可能である。添加量は焼鈍分離剤全体でSO3 換算値:sで0.1 以上、2.8 %以下とする。sが少なすぎると磁気特性、被膜特性いずれにも効果がなく、多すぎると点状の被膜欠陥が生成するとともに磁気特性も劣化する。
【0033】
さらにこの発明ではラメラ状SiO2層の厚みw (μm)と焼鈍分離剤中のSO3 換算値:s(%)との積を0.15以上、3.3 以下とする。0.15より低ければ2次再結晶不良となるとともに被膜形成不足となる。一方、3.3 より高ければ方位のずれた2次粒が成長すると共に被膜形成過多となり点状被膜欠陥が発生する。
【0034】
焼鈍分離剤を塗布後、仕上焼鈍を行う。仕上焼鈍は公知の方法でよい。その後、絶縁張力コートを施してフラットニング焼鈍をして製品に仕上げることもよい。かかる処理工程によって優れた磁気特性、被膜特性を有する方向性けい素鋼板を得ることができる。
【0035】
【実施例】
実施例1
C:0.06%、Si:3.28%、Al:0.02%、N:50ppm 、Mn:0.07%、S:0.005 %およびCu:0.06%を含み残部は実質的にFeよりなるスラブを1400℃の温度に加熱後、2.2mm 厚に熱間圧延し、1050℃・2分間の中間焼鈍をはさんで0.35mmまで冷間圧延したのち、最終冷延板厚に仕上げた。
上記において、冷間圧延後に1次再結晶焼鈍を行い、その焼鈍条件を、水蒸気の水素分圧比:PH2O/PH2 で0.10〜0.75、温度を700 ℃〜950 ℃、時間は20秒間〜240 秒間の範囲でそれぞれ変化させることにより内部酸化層中のラメラ状SiO2層の厚みを種々変化させた。その後、窒化処理を施したあと、スラリー化することにより持込まれる水分量が2.0 %、また不純物のSO3 濃度が0.1 %のMgOに6%のTiO2と3%のSrSO4(SO3 換算で1.3 %) を添加した焼鈍分離剤を塗布したのち乾燥した。しかるのち、仕上げ焼鈍として700 ℃〜1000℃までを昇温速度20℃/h で昇温し、引続きdryH2 雰囲気で1150℃・5時間の純化焼鈍を行った。
【0036】
このようにして得られた鋼板の磁気特性及び被膜密着性を調査した。それらの調査結果を表1にまとめて示す。
【0037】
【表1】

Figure 0004161391
【0038】
表1から明らかなように、ラメラ状SiO2層厚みがこの発明の範囲内にあるとき良好な磁気特性及び被膜特性を得ることができる。
【0039】
実施例2
C:0.04%、Si:3.28%、Mn:0.07%、Se:0.02%およびSb:0.025 %を含み残部は実質的にFeよりなるスラブを1400℃の温度に加熱後、2.6mm 厚に熱間圧延し、1000℃・2分間の中間焼鈍をはさんで0.30mmまで冷間圧延し、最終冷延板厚に仕上げた。これを表2の1,2の条件で1次再結晶焼鈍することにより内部酸化層中のラメラ状SiO2層厚みを0.2 μm と1.3 μm とに変化させた。その後、不純物のSO3 濃度が0.1 %、水和水分量1.2 %のMgOと1.5 %のTiO2及び各種の硫酸化合物をSO3 換算で0.5 %添加した焼鈍分離剤を塗布したのち乾燥した。しかるのち仕上焼鈍として820 ℃の温度で50時間保定した後dryH2 雰囲気で1150℃・5時間の純化焼鈍を行った。
【0040】
【表2】
Figure 0004161391
【0041】
このようにして得られた鋼板の磁気特性を調査した。それらの調査結果を表3にまとめて示す。
【0042】
【表3】
Figure 0004161391
【0043】
表3から明らかなように、Sr, Mg, Ti, Cu, Pb, NiまたはSnの各硫酸塩を用いたこの発明の適合例は良好な磁気特性と被膜特性が得られている。
【0044】
実施例3
各種の化学組成を持つスラブを1400℃の温度に加熱し、2.2mm 厚に熱間圧延し、1050℃・2分間の中間焼鈍をはさんで0.30mmまで冷間圧延し、最終冷延板厚に仕上げた。これを前掲表2の条件で1次再結晶焼鈍することにより内部酸化層中のラメラ状SiO2層厚みを0.2 μm と1.3 μm とに変化させた。その後、持ち込み水分量2.0 %、不純物SO3 濃度0.1 %のMgOと0.8 %のCuSO4(SO3 換算で0.4 %) を添加した焼鈍分離剤を、塗布したのち乾燥した。しかるのち仕上焼鈍として700 ℃〜1000℃までの昇温速度を20℃/h で昇温後dryH2 雰囲気で1150℃・5時間の純化焼鈍を行った。
このようにして得られた鋼板の磁気特性を調査した。それらの調査結果を表4にまとめて示す。
【0045】
【表4】
Figure 0004161391
【0046】
表4から明らかなようにこの発明範囲(適合例)においては高い磁気特性が実現されている。
【0047】
【発明の効果】
この発明は、方向性けい素鋼板の製造において、1次再結晶焼鈍で被成される酸化膜層中のラメラ状SiO2層の厚み:wおよび焼鈍分離剤中のS量をSO3 として換算した値:sをそれぞれ特定するとともに、上記両者の積を特定するものであり、
この発明によれば、磁気特性、被膜特性の良好な方向性けい素鋼板を安定して製造することが可能となり、品質向上、歩留り向上に大きく寄与できる。
【図面の簡単な説明】
【図1】ラメラ状SiO2層厚み、分離剤中のSO3 濃度と製品特性の関係を示すグラフである。
【図2】ラメラ状SiO2層の説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to grain-oriented silicon steel sheets used for iron cores and the like of transformers and other electrical equipment, and particularly improves magnetic properties by specifying the state of the internal oxide layer after primary recrystallization annealing and the annealing separator. An object of the present invention is to propose a method for producing a grain-oriented silicon steel sheet having excellent magnetic properties and coating properties.
[0002]
[Prior art]
The production process of grain oriented silicon steel is generally performed by hot rolling a steel slab after cold rolling, followed by primary recrystallization annealing and then final finishing annealing for secondary recrystallization. is there. Among these, secondary recrystallization occurs during the final finish annealing, and coarse crystal grains having easy magnetization axes aligned in the rolling direction are generated. Since this final finish annealing needs to be performed for a long time, for the purpose of preventing seizing of the steel sheet, an annealing separator mainly composed of MgO is usually suspended in water and applied in the form of a slurry before this annealing.
[0003]
In addition to its role as an annealing separator, this MgO reacts with an oxide layer mainly composed of SiO 2 formed on the steel sheet surface by primary recrystallization annealing performed prior to final finish annealing. It works to form a forsterite (Mg 2 SiO 4 ) film. This formed forsterite film acts as a kind of binder that adheres the phosphate-based insulating coating to the base iron part, or acts as an insulating film itself, or imparts tension to the steel sheet. To improve magnetic characteristics. Therefore, it is necessary to form a forsterite film having a uniform thickness and good adhesion to the steel plate, and therefore the influence of the annealing separator is great.
[0004]
In addition, the annealing separator has an effect of affecting the magnetic properties by changing the formation, growth behavior, and secondary recrystallization behavior of the steel plate precipitates, as described above. For example, if the amount of moisture brought in when MgO is slurried is too large, the steel sheet is oxidized and the magnetic properties are deteriorated, or point defects are generated in the coating. In addition, it is also known that secondary recrystallization behavior is changed when impurities contained in MgO enter a steel plate during annealing.
Therefore, it can be said that the components of the annealing separator and the quality of the powder characteristics are important factors that influence the magnetic characteristics and film characteristics of the grain-oriented silicon steel sheet.
[0005]
For this reason, various means have been proposed for annealing separators for improving the quality of grain-oriented electrical steel sheets. For example, in Japanese Patent Application Laid-Open No. 50-145315, fine titanium oxide containing 98% or more of the sieve 44 μm sieve passage and 80% or more of particles of 20 μm or less is contained in the annealing separator in an amount of 1 to 20% by weight. A method of forming a heat-resistant insulating film by causing the film to form is disclosed. In addition, Japanese Patent Publication No. 54-14566 discloses a method for forming a good forsterite film by specifying the impurity concentration, hydration amount, and sieving ability of magnesia fired at high temperature in a muffle furnace. ing. Further, in JP-A-62-156227, the outermost surface layer of the low-activity magnesium particles is activated by subjecting it to activation by subjecting it to hydration layer formation treatment in the range of 0.3 to 2.0% per weight of magnesium after firing. A method for improving magnetic properties is disclosed.
[0006]
Furthermore, attempts have been made to improve magnetic properties by adding an auxiliary agent to an annealing separator mainly composed of MgO. For example, Japanese Patent Publication Nos. 57-32716 and 57-57952 disclose An annealing separator containing Sr compounds such as SrSO 4, TiO 2 in JP-A-60-174881, and Bi or Bi-containing substances in JP-A-61-204314 has been proposed. ing.
[0007]
Although these technologies have improved film properties and magnetic properties to some extent, there are many cases where cost increases, production is not stable even if product properties are improved, and yields are often reduced. It was difficult to be obtained. In particular, in processes involved in film formation from primary recrystallization annealing to finish annealing, problems such as insufficient film formation, film defects, and poor adhesion are likely to occur due to subtle variations in manufacturing conditions, and industrial production is mass-produced. From the point of view, the need to further improve the annealing separator was high.
[0008]
On the other hand, according to the relationship between the steel sheet surface properties after decarburization annealing and before annealing separation agent application and annealing separation agent, JP-A-61-170515 discloses MgO according to the amount of oxide film formed during decarburization annealing. Techniques for adjusting the S concentration in the annealing separator as the main component have been proposed and disclosed.
However, although the method of selecting the amount of oxide film as a factor in this way can actually improve the magnetic characteristics, it is still not sufficient to improve the magnetic characteristics stably and to improve the film characteristics. There wasn't.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and is excellent in magnetic properties and coating properties that can stably improve the magnetic properties and coating properties by adjusting the primary recrystallization annealing conditions and the annealing separator composition. It aims at proposing the manufacturing method of a grain-oriented silicon steel plate.
[0010]
[Means for Solving the Problems]
The gist of the present invention is as follows.
[0011]
C less than 0.10 wt%, Si contained in the range of 2~4.5Wt% and Mn of 0.03 to 0.10 wt%, further, S, Se, 1 kind or more selected from Al and N, S + Se : 0.01 ~ 0.03wt%, Al: 0.01 ~ 0.04wt%, N: contains at 50 ~ 120 ppm, a steel material balance consisting of Fe and unavoidable impurities, was rolled after heating the heat at the heating furnace, or once after finishing the final cold-rolled sheet thickness by performing a plurality of times of cold rolling sandwiching the intermediate annealing, and primary recrystallization annealing, a final finish annealing after then coating a slurry annealing partial release agent dry In the method for producing a directional silicon steel sheet comprising a series of steps,
Enriching silica containing lamellar SiO 2 in the oxide layer defined below in the oxide layer formed by primary recrystallization annealing by controlling the atmosphere, temperature and time during the primary recrystallization annealing Layer thickness: w (μm) should be in the range of 0.2 μm to 3.6 μm,
An MgO-based annealing separator containing one or more additives of Sr, Mg, Ti, Cu, Pb, Ni or Sn sulfate compounds, including impurities and additives in MgO The value converted to SO 3 for the S content of the entire annealing separator: s (wt%) should be in the range of 0.1 wt% to 2.8 wt%, and the relationship between w and s is 0.15 ≦ w · production process towards tropic silicon steel sheet and a can be adjusted to a range that satisfies s ≦ 3.3 ing.
The thickness of the silica-enriched layer containing lamellar SiO 2 in the oxide layer: the average distance in the thickness direction from the position of the oxide layer-base iron interface to the position where the lamellar SiO 2 disappears
The steel material may further contain 0.01 to 0.2 wt % of one or more selected from Cu , Sn , Sb , Mo , Te , Bi , P, Ni and V in total .
[0013]
Here, the silica-enriched layer (hereinafter simply referred to as lamellar SiO 2 layer) containing the lamellar SiO 2, as in the illustration of lamellar SiO 2 layer shown in FIG. 2, the base steel surface (oxide layer - It refers to the position from the position of the iron ground interface) to the position where the lamellar layer disappears, and the thickness of the lamellar SiO 2 layer refers to the average interval in the plate thickness direction therebetween.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
As a result of various studies on the formation conditions of the internal oxide film after the primary recrystallization annealing and the composition of the annealing separator that can stably improve the magnetic characteristics and the film characteristics, the inventors have found that the SO 3 in the annealing separator. It was discovered that the film properties and magnetic properties change depending on the concentration and the thickness of the lamellar SiO 2 layer in the oxide film. The following describes experimental examples that have led to this finding.
[0015]
C: 0.043 wt% (hereinafter referred to as “%”), Si: 3.22%, Mn: 0.06%, Se: 0.02%, the balance being substantially Fe Fe silicon steel slab at a temperature of 1380 ° C. for 30 minutes After heating and hot rolling to a thickness of 2.2 mm, it was cold-rolled to 0.23 mm with intermediate annealing at 1050 ° C. for 1 minute, and finished to the final cold-rolled thickness. After the primary recrystallization annealing, the annealing separator was made into a slurry and applied and dried by a roll coater to perform final finish annealing. Here, the oxidizability of the atmosphere during the primary recrystallization annealing, that is, the moisture and hydrogen partial pressure ratio: PH 2 O / PH 2 is controlled to various values in the range of 0.1 to 0.6 and the temperature in the range of 800 ° C. to 850 ° C. The thickness of the lamellar SiO 2 layer in the internal oxide layer formed after the primary recrystallization annealing was adjusted within the range of 0.1 μm to 5.0 μm. Further, annealing and TiO 2 2% in MgO containing SO 3 0.08% impurities as separating agent, the addition of SrSO 4 of from 0 to 2.82% converted to SO 3 (0.08 to 2.9% in total SO 3 content), These were slurried and applied.
[0016]
The magnetic properties and film properties of the samples after finish annealing thus obtained were investigated. The obtained results are shown in FIG. FIG. 1 is a graph showing the relationship between lamellar SiO 2 layer thickness, SO 3 concentration in a separating agent, and product characteristics.
As can be seen from this figure, the product characteristics vary greatly depending on the lamellar SiO 2 layer thickness (w) and the SO 3 concentration (s) in the additive. In particular, good product characteristics can be obtained by setting the product of w and s within a specific range.
[0017]
The reason why the product quality has changed due to the lamellar SiO 2 layer thickness and the SO 3 concentration in the additive is not clear, but the inventors consider as follows.
SO 3 in the annealing separator is separated during the finish annealing, and the S component penetrates into the steel, thereby having an effect of reinforcing the inhibitor. In addition to this, it has a function of promoting film formation. When it is excessively present, film formation is promoted locally, and it is peeled off to generate point-like film defects.
On the other hand, the lamellar SiO 2 layer has a function of suppressing the interaction between the base metal portion immediately below the lamellar SiO 2 layer and the annealing atmosphere or the annealing separator. In addition, as a result of trapping oxygen in the internal oxide layer, the amount of dissolved oxygen in the internal oxide layer increases, and SiO 2 dissociation and floating and precipitation are less likely to occur.
[0018]
Considering these facts, regarding magnetism, when lamellar SiO 2 is thin, decomposition of the inhibitor is likely to occur due to moisture contained in a trace amount in the atmosphere. Therefore, a large amount of SO 3 is added to the separating agent and S is added. Inhibitors need to be reinforced. If the lamellar SiO 2 is thick, neither S nor oxygen can enter the steel, but if SO 3 in the separating agent is too much and S penetrates too much, the suppression force becomes too strong and the orientation is in the thickness direction. The secondary recrystallized nuclei that are shifted from each other undergo secondary recrystallization, so that the magnetic properties are deteriorated. Therefore, the amount of SO 3 added is increased when the lamellar SiO 2 is thin, and is decreased when the lamellar SiO 2 is thick, so that each weak point can be compensated to stably obtain good magnetic properties.
[0019]
Referring now to the coating more susceptible to thin the annealing atmosphere lamellar SiO 2 layer, SiO 2 is a film of In to dual structure sedimentation. Since this is a disadvantageous structure for film adhesion, it is necessary to increase the amount of film formation by increasing SO 3 in order to compensate for this. If the lamellar SiO 2 layer is thick, the amount of dissolved oxygen in the internal oxide layer is large, so if there is a large amount of SO 3 in the separating agent, this further decomposes and becomes an oxygen source, and iron-based oxides are easily generated. Cause a film defect. Therefore, the amount of SO 3 added is increased when the lamellar SiO 2 layer is thin, and is decreased when the lamellar SiO 2 layer is thick, so that each of the weak points can be compensated to stably obtain good film properties.
[0020]
From the above points, the SO 3 concentration (s) in the additive needs to be adjusted depending on the thickness (w) of the lamellar SiO 2 , which can be evaluated by the product of s and w. It is done.
[0021]
As described above, in the technique of adjusting the amount of S of the annealing separator according to the amount of oxide film on the surface of the steel sheet disclosed in JP-A-61-170515, stable magnetic properties and coating properties can be improved. It was not enough.
[0022]
The reason is that, with regard to stable magnetic property improvement, the dissociation and solid solution phenomenon of the inhibitor could not be sufficiently controlled even if the amount of oxide film was adjusted. This is because, for example, when the amount of oxide film is large, oxygen in the film dissociates the inhibitor, and even if the amount of oxide film is the same, the presence or absence of lamellar SiO 2 layer and its thickness change to dissociated solid solution of the inhibitor This is because it was impossible to foresee that this would occur. In this respect, the present invention is newly found that the thickness of the lamellar SiO 2 layer is an important factor affecting the permeability of oxygen and S in the coating.
[0023]
Then, with respect to improvement of film properties, s (SO 3) in the oxide film layer annealing separator not have it is the heretofore known relationship between the concentration is affected by this present invention, lamellar SiO 2 layer thickness It has been found for the first time that, for example, the forsterite film structure can be determined, and the forsterite film characteristics can be improved by optimizing the relationship between the thickness and the s concentration.
Therefore, it can be said from the above points that the present invention is based on a technical idea different from that of Japanese Patent Laid-Open No. 60-170515.
[0024]
Next, the reason for limitation and preferred conditions of the present invention will be described.
The component composition of the silicon-containing steel that is the material of the present invention is as follows.
[0025]
First, there is a method in which C is reduced in the steelmaking stage and decarburization annealing is not performed, and a method in which a certain amount is secured to improve the structure and then removed by subsequent decarburization and primary recrystallization annealing. . In the former case, the amount is preferably less than 0.01 wt% in order to avoid the adverse effects of C, and the preferred range for improving the structure in the latter case is preferably 0.01% or more and less than 0.10%.
[0026]
Si is 2 to 4.5%. If it is 2% or less, the effect of reducing the iron loss is weakened, and if it is 4.5% or more, the cold rolling property is impaired. Further, Mn is contained in the range of 0.03 to 0.10 wt% as an inhibitor constituent component shown below.
[0027]
In addition to C and Si, an inhibitor component is added. That is, when MnS and / or MnSe is used as an inhibitor, it is preferable to set S + Se: 0.01-0.03% in addition to the above Mn: 0.03-0.10%. On the other hand, when AlN is used as an inhibitor, Al: 0.01 to 0.04% and N: 50 to 120 ppm are preferable. If it is lower than these ranges, the effect as an inhibitor is not sufficient, and if it is higher, secondary recrystallization becomes unstable. Besides these, Cu, Sn , Sb , Mo, Te, Bi, P, Ni, V, or the like can also be used. Each of these inhibitors can be used alone or in combination, and the effective concentration is preferably 0.01% or more and 0.2% or less in total.
[0028]
Next, manufacturing conditions will be described.
These materials are hot-rolled by a known method, and then cold-rolled once or a plurality of times including intermediate annealing to obtain a final cold-rolled sheet thickness. Moreover, it is also possible to anneal a hot-rolled sheet before cold rolling as needed.
[0029]
After the above-described treatment, primary recrystallization annealing is performed, an annealing separator is applied, and then final finish annealing is performed. In the present invention, these steps need to be strictly controlled in order to obtain good magnetic properties and film properties, and primary recrystallization annealing is performed in the internal oxide layer by controlling the annealing atmosphere, temperature and time. lamellar SiO 2 layer thickness: w of 0.2 [mu] m or more, the 3.6 [mu] m or less. If this w is too thin, the decomposition of the inhibitor during the finish annealing will remarkably cause deterioration of the magnetic characteristics, resulting in insufficient film formation and deterioration of the film characteristics. On the other hand, if the thickness is too large, secondary recrystallized grains having a misaligned orientation are generated, resulting in poor magnetic properties, and the formation of the coating proceeds so much that the adhesion of the coating also deteriorates. The annealing atmosphere, temperature and time for controlling the thickness of the lamellar SiO 2 layer are not particularly limited, but the atmosphere is usually water vapor and the hydrogen partial pressure ratio: PH 2 O / PH 2 is 0.05 or more and 0.68 or less The temperature is 750 ° C. or higher and 900 ° C. or lower, and the time is 30 seconds or longer and 180 seconds or shorter.
[0030]
A method for improving the film properties by separately controlling the atmosphere during heating and soaking in the primary recrystallization annealing is known. The two- layer thickness can also be adjusted. Furthermore, when AlN is used as an inhibitor, a method of performing nitriding before, during or after the primary recrystallization annealing is known. However, such a method may be simultaneously performed in the present invention.
[0031]
After the primary recrystallization annealing, an annealing separator mainly composed of MgO is used. At this time, the S content of the entire annealing separator including additives and the MgO impurity was calculated as SO 3 value: s 0.1 or more and 2.8% or less. As a method for increasing the MgO impurity to this range, it is effective to use seawater or another Mg source with a high S content as a raw material, or to add a sulfuric acid compound during the production process. It is more effective to use a sulfuric acid compound such as Sr or Ti as an additive because the effect of a cation such as Sr or Ti is taken into account in addition to the effect of SO 3 . In the case of MgSO 4, the decomposed Mg ions have an effect of assisting film formation and are effective because they have an action different from that of Mg in MgO.
[0032]
Among the sulfate compounds investigated by the inventors, the sulfates of Sr, Mg, Ti, Cu, Pb, Ni or Sn are particularly effective. These can be used alone or in combination. Addition amount is set to 0.1 to 2.8% in terms of SO 3 conversion value: s for the entire annealing separator. If s is too small, there is no effect on both the magnetic properties and the film properties, and if it is too large, dot-like film defects are generated and the magnetic properties are deteriorated.
[0033]
Furthermore, in this invention, the product of the thickness w (μm) of the lamellar SiO 2 layer and the SO 3 equivalent value in the annealing separator: s (%) is set to 0.15 or more and 3.3 or less. If it is lower than 0.15, secondary recrystallization will be poor and film formation will be insufficient. On the other hand, if it is higher than 3.3, secondary grains with misorientation grow and film formation becomes excessive, resulting in point film defects.
[0034]
After applying the annealing separator, finish annealing is performed. Finish annealing may be a known method. Thereafter, an insulating tension coat may be applied and flattened annealing may be performed to finish the product. A grain-oriented silicon steel sheet having excellent magnetic properties and coating properties can be obtained by such treatment steps.
[0035]
【Example】
Example 1
C: 0.06%, Si: 3.28%, Al: 0.02%, N: 50ppm, Mn: 0.07%, S: 0.005% and Cu: 0.06%, with the balance being a Fe slab made of Fe at a temperature of 1400 ° C After heating, it was hot-rolled to a thickness of 2.2 mm, cold-rolled to 0.35 mm with intermediate annealing at 1050 ° C. for 2 minutes, and finished to the final cold-rolled sheet thickness.
In the above, primary recrystallization annealing is performed after cold rolling, and the annealing conditions are as follows: steam hydrogen partial pressure ratio: PH 2 O / PH 2 of 0.10 to 0.75, temperature of 700 ° C. to 950 ° C., time of 20 seconds to The thickness of the lamellar SiO 2 layer in the internal oxide layer was varied by changing each within a range of 240 seconds. Then, after subjected to nitriding treatment, the amount of water brought by slurrying 2.0%, also impurities SO 3 concentration of 0.1% of MgO 6 percent TiO 2 3% of SrSO 4 (SO 3 in terms of 1.3%) was added to the annealing separator and then dried. After that, as final annealing, the temperature was raised from 700 ° C. to 1000 ° C. at a rate of temperature increase of 20 ° C./h, followed by purification annealing at 1150 ° C. for 5 hours in a dry H 2 atmosphere.
[0036]
The magnetic properties and film adhesion of the steel sheet thus obtained were investigated. The survey results are summarized in Table 1.
[0037]
[Table 1]
Figure 0004161391
[0038]
As is apparent from Table 1, good magnetic properties and coating properties can be obtained when the lamellar SiO 2 layer thickness is within the scope of the present invention.
[0039]
Example 2
C: 0.04%, Si: 3.28%, Mn: 0.07%, Se: 0.02% and Sb: 0.025%, and the balance is heated to 1400 ° C after heating the slab consisting essentially of Fe to a thickness of 2.6mm. Rolled, cold-rolled to 0.30 mm with intermediate annealing at 1000 ° C for 2 minutes, and finished to the final cold-rolled sheet thickness. By subjecting this to primary recrystallization annealing under the conditions of 1 and 2 in Table 2, the thickness of the lamellar SiO 2 layer in the internal oxide layer was changed to 0.2 μm and 1.3 μm. Thereafter, an annealing separator containing 0.5% of SO 3 in terms of SO 3 concentration of MgO, 1.5% hydrated water of 1.2%, TiO 2 of 1.5% and various sulfuric acid compounds was applied and dried. After that, as final annealing, it was held at a temperature of 820 ° C. for 50 hours, and then purified annealing was performed in a dry H 2 atmosphere at 1150 ° C. for 5 hours.
[0040]
[Table 2]
Figure 0004161391
[0041]
The magnetic properties of the steel sheet thus obtained were investigated. The survey results are summarized in Table 3.
[0042]
[Table 3]
Figure 0004161391
[0043]
As can be seen from Table 3, the examples of adaptation of the present invention using the sulfates of Sr, Mg, Ti, Cu, Pb, Ni or Sn have good magnetic characteristics and film characteristics.
[0044]
Example 3
Slabs with various chemical compositions are heated to a temperature of 1400 ° C, hot-rolled to 2.2mm thickness, cold-rolled to 0.30mm with intermediate annealing at 1050 ° C for 2 minutes, and the final cold-rolled sheet thickness Finished. By subjecting this to primary recrystallization annealing under the conditions shown in Table 2, the thickness of the lamellar SiO 2 layer in the internal oxide layer was changed to 0.2 μm and 1.3 μm. Thereafter, an annealing separator added with 2.0% MgO and a 0.1% impurity SO 3 concentration of MgO and 0.8% CuSO 4 (0.4% in terms of SO 3 ) was applied and then dried. After that, as a final annealing, the temperature was increased from 700 ° C. to 1000 ° C. at a rate of 20 ° C./h, and then purified annealing was performed in a dryH 2 atmosphere at 1150 ° C. for 5 hours.
The magnetic properties of the steel sheet thus obtained were investigated. The survey results are summarized in Table 4.
[0045]
[Table 4]
Figure 0004161391
[0046]
As is apparent from Table 4, high magnetic characteristics are realized within the scope of the present invention (conformance example).
[0047]
【The invention's effect】
In the production of grain-oriented silicon steel sheet, the present invention converts the thickness of the lamellar SiO 2 layer in the oxide film layer formed by primary recrystallization annealing: w and the amount of S in the annealing separator as SO 3 And specifying each of the values: s and the product of both
According to the present invention, it becomes possible to stably produce a grain-oriented silicon steel sheet having good magnetic properties and coating properties, which can greatly contribute to quality improvement and yield improvement.
[Brief description of the drawings]
[1] lamellar SiO 2 layer thickness, is a graph showing the relationship between the SO 3 concentration and product properties in the separating agent.
FIG. 2 is an explanatory diagram of a lamellar SiO 2 layer.

Claims (2)

Cを 0.10wt %未満、Siを2〜4.5wt%およびMnを0.03〜0.10 wt%の範囲で含有し、さらに、S、 Se Al およびNから選ばれる1種または2種以上を、S+ Se 0.01 0.03wt %、 Al 0.01 0.04wt %、N: 50 120ppm にて含有し、残部 Fe および不可避不純物からなる鋼素材を、加熱炉にて加熱後熱間圧延し、1回もしくは中間焼鈍を挟む複数回の冷間圧延を施して最終冷延板厚に仕上げたのち、1次再結晶焼鈍をし、その後スラリー状焼鈍分剤を塗布し乾燥してから最終仕上焼鈍を行う一連の工程よりなる方向性けい素鋼板の製造方法において、
1次再結晶焼鈍時の雰囲気、温度および時間を制御することにより、1次再結晶焼鈍で被成される酸化層中において下記に定義される酸化層中のラメラ状SiO2を含むシリカ富化層の厚み:w (μm)を0.2μm以上、3.6μm以下の範囲にすること、
Sr、Mg、Ti、Cu、Pb、NiまたはSnの硫酸化合物の1種または2種以上の添加剤を含むMgOを主体とする焼鈍分離剤を用い、MgO中の不純物と添加剤とを含めた焼鈍分離剤全体のS含有量をSO3 として換算した値:s (wt%)を0.1wt%以上、2.8 wt%以下の範囲にすること、さらに上記wとsとの関係を0.15≦w・s≦3.3 を満たす範囲に調整することとからなる方向性けい素鋼板の製造方法。

酸化層中のラメラ状SiO2を含むシリカ富化層の厚み:酸化層−地鉄界面の位置からからラメラ状SiO2が消える位置までの板厚方向での平均間隔
C less than 0.10 wt%, Si contained in the range of 2~4.5Wt% and Mn of 0.03 to 0.10 wt%, further, S, Se, 1 kind or more selected from Al and N, S + Se : 0.01 ~ 0.03wt%, Al: 0.01 ~ 0.04wt%, N: contains at 50 ~ 120 ppm, a steel material balance consisting of Fe and unavoidable impurities, was rolled after heating the heat at the heating furnace, or once after finishing a final cold-rolled sheet thickness by performing a plurality of times of cold rolling sandwiching the intermediate annealing, and primary recrystallization annealing, a final finish annealing after then coating a slurry annealing partial release agent dry In the method for producing a directional silicon steel sheet comprising a series of steps,
Enriching silica containing lamellar SiO 2 in the oxide layer defined below in the oxide layer formed by primary recrystallization annealing by controlling the atmosphere, temperature and time during the primary recrystallization annealing Layer thickness: w (μm) should be in the range of 0.2 μm to 3.6 μm,
An MgO-based annealing separator containing one or more additives of Sr, Mg, Ti, Cu, Pb, Ni or Sn sulfate compounds, including impurities and additives in MgO The value converted to SO 3 for the S content of the entire annealing separator: s (wt%) should be in the range of 0.1 wt% to 2.8 wt%, and the relationship between w and s is 0.15 ≦ w · production process towards tropic silicon steel sheet and a can be adjusted to a range that satisfies s ≦ 3.3 ing.
The thickness of the silica-enriched layer containing lamellar SiO 2 in the oxide layer: the average distance in the thickness direction from the position of the oxide layer-base iron interface to the position where the lamellar SiO 2 disappears
前記鋼材に、さらに、In addition to the steel material, CuCu , SnSn , SbSb , MoMo , TeTe , BiBi 、P、, P, NiNi およびVから選ばれる1種または2種以上を合計でAnd one or more selected from V in total 0.010.01 ~ 0.2wt0.2wt %含有する請求項1に記載の方向性けい素鋼板の製造方法。The manufacturing method of the grain-oriented silicon steel plate of Claim 1 containing%.
JP28954897A 1997-10-22 1997-10-22 Method for producing grain-oriented silicon steel sheet having excellent magnetic properties and coating properties Expired - Fee Related JP4161391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28954897A JP4161391B2 (en) 1997-10-22 1997-10-22 Method for producing grain-oriented silicon steel sheet having excellent magnetic properties and coating properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28954897A JP4161391B2 (en) 1997-10-22 1997-10-22 Method for producing grain-oriented silicon steel sheet having excellent magnetic properties and coating properties

Publications (2)

Publication Number Publication Date
JPH11124632A JPH11124632A (en) 1999-05-11
JP4161391B2 true JP4161391B2 (en) 2008-10-08

Family

ID=17744678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28954897A Expired - Fee Related JP4161391B2 (en) 1997-10-22 1997-10-22 Method for producing grain-oriented silicon steel sheet having excellent magnetic properties and coating properties

Country Status (1)

Country Link
JP (1) JP4161391B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114854960B (en) * 2022-03-30 2023-09-05 武汉钢铁有限公司 Annealing isolating agent for reducing surface defects of oriented silicon steel and use method thereof

Also Published As

Publication number Publication date
JPH11124632A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
CN107614725B (en) Grain-oriented electromagnetic steel sheet and method for producing same
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JPH0756048B2 (en) Method for manufacturing thin grain oriented silicon steel sheet with excellent coating and magnetic properties
JP3846064B2 (en) Oriented electrical steel sheet
JP7392848B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used therein
JP4161391B2 (en) Method for producing grain-oriented silicon steel sheet having excellent magnetic properties and coating properties
JPH11302730A (en) Production of grain-oriented silicon steel sheet excellent in coating characteristic and low magnetic field characteristic
KR0181947B1 (en) Method of producing grain oriented silicon steel sheets having less iron loss
JP2691828B2 (en) Ultra low iron loss grain oriented electrical steel sheet with extremely high magnetic flux density.
JP3043975B2 (en) Annealing separator for grain-oriented silicon steel sheet
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JP3707144B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating properties
JP4310996B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used in this method
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
KR0178537B1 (en) Method of producing grain oriented silicon steel sheets having improved magnetic properties and bending rpoperties
JP3021241B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP4291733B2 (en) Annealing separator and method for producing grain-oriented electrical steel sheet using the same
JP3336547B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JPH08143975A (en) Annealing releasing agent and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic characteristics
JPH08165525A (en) Production of grain-oriented silicon steel sheet excellent in good glass coating and extremely good in magnetic characteristic
JP3921807B2 (en) Method for producing grain-oriented silicon steel sheet
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JPH05295447A (en) Annealing method for finishing grain oriented electrical steel sheet in short time
JP2749783B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent glass coating performance and magnetic properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees