JPH07188937A - Production of grain-oriented silicon steel sheet - Google Patents

Production of grain-oriented silicon steel sheet

Info

Publication number
JPH07188937A
JPH07188937A JP5335642A JP33564293A JPH07188937A JP H07188937 A JPH07188937 A JP H07188937A JP 5335642 A JP5335642 A JP 5335642A JP 33564293 A JP33564293 A JP 33564293A JP H07188937 A JPH07188937 A JP H07188937A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
mgo
grain
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5335642A
Other languages
Japanese (ja)
Other versions
JP3277058B2 (en
Inventor
Tsutomu Kami
力 上
Hirotake Ishitobi
宏威 石飛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP33564293A priority Critical patent/JP3277058B2/en
Publication of JPH07188937A publication Critical patent/JPH07188937A/en
Application granted granted Critical
Publication of JP3277058B2 publication Critical patent/JP3277058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet excellent in film characteristics and magnetic characteristics by subjecting a silicon-contg. cold rolled steel sheet to decarburizing annealing, thereafter coating it with a separation agent for annealing consisting essentially of MgO in which characteristics are controlled and executing final finish annealing. CONSTITUTION:A silicon-contg. slab is subjected to hot rolling and is thereafter subjected to cold rolling for one time or for two times including process annealing to regulate its sheet thickness into a final one. Next, this cold rolled steel sheet is subjected to decarburizing annealing, is thereafter coated with a separation agent for annealing consisting essentially of MgO and is subjected to final finish annealing. In the method for producing the grain-oriented silicon steel sheet, as MgO in the separation agent for annealing, the one having 0.3 to 2.5mum average grain size and 10 to 22% coefficient of linear constraction by self-sintering at 1100 deg.C is used. Thus, a good forsterite film is formed, and excellent magnetic properties are imparted thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、一方向性電磁鋼板の
製造方法に関し、とくに良好なフォルステライト質絶縁
被膜を形成することによって、被膜特性のみならず磁気
特性の有利な改善を図ろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet, and by forming a particularly good forsterite insulating coating, it is intended to improve not only the coating characteristics but also the magnetic characteristics. It is a thing.

【0002】[0002]

【従来の技術】一方向性電磁鋼板において、表面に形成
される絶縁被膜は、単に電気絶縁性の面からだけでな
く、磁気特性及び外観上極めて重要な意味を持つ。かか
る絶縁被膜の形成に当たっては、所望の最終板厚に冷間
圧延した冷延板を、湿水素中にて 700〜900 ℃の温度範
囲で脱炭焼鈍し、その鋼板表面にSiO2を含む内部酸化層
を生成させたのち、マグネシウム(MgO)を主成分とす
る焼鈍分離剤を塗布しコイル状に巻き取ってから、高温
仕上げ焼鈍を施すことにより、MgO−SiO2系フォルステ
ライト質絶縁被膜を被成する方法が一般に行われてい
る。
2. Description of the Related Art In a unidirectional electrical steel sheet, an insulating coating formed on the surface has an extremely important meaning not only in terms of electrical insulation but also in magnetic characteristics and appearance. In forming such an insulating coating, a cold-rolled sheet cold-rolled to a desired final thickness is decarburized and annealed in a temperature range of 700 to 900 ° C in wet hydrogen, and the inner surface containing SiO 2 is contained on the surface of the steel sheet. After the oxide layer is formed, an annealing separator containing magnesium (MgO) as a main component is applied, wound into a coil, and then subjected to high-temperature finish annealing to obtain a MgO-SiO 2 based forsterite insulating film. The method of forming is common.

【0003】このフォルステライト質絶縁被膜は、焼鈍
分離剤中のMgOが高温仕上げ焼鈍中に鋼板表面に存在す
るSiO2と固相反応を起こすことによって生成し、鋼板に
対して熱応力に起因する引張応力を付与することによっ
て、渦電流損を低下させる役割を担うだけでなく、製品
外観の良否を決定づけるものでもある。
This forsterite insulating coating film is formed by causing MgO in the annealing separator to undergo a solid phase reaction with SiO 2 existing on the surface of the steel sheet during high temperature finish annealing, and is caused by thermal stress on the steel sheet. By imparting tensile stress, it not only plays the role of reducing eddy current loss, but also determines the quality of the product appearance.

【0004】従って、一方向性電磁鋼板の表面に優れた
被膜特性を有するフォルステライト質絶縁被膜を形成さ
せることは極めて重要であり、これまでにも数多くの研
究がなされてきた。たとえば、MgOの活性度や粒度分布
及び粒子形態の適正条件などについては、特開昭55-583
31号、特開昭50-11912号および特開昭58−193373号各公
報等において種々の提案がなされている。
Therefore, it is extremely important to form a forsterite insulating coating having excellent coating characteristics on the surface of a grain-oriented electrical steel sheet, and many studies have been conducted so far. For example, regarding the activity of MgO, the particle size distribution, and the appropriate conditions for the particle morphology, see JP-A-55-583.
Various proposals have been made in JP-A No. 31, JP-A-50-11912 and JP-A-58-193373.

【0005】[0005]

【課題を解決するための手段】一方向性電磁鋼板の製造
プロセスにおいて、最終冷間圧延後に脱炭焼鈍を施した
鋼板に対してMgOを主成分とする焼鈍分離剤スラリーを
塗布・乾燥して、コイル状に巻き取り、コイルを仕上げ
焼鈍する間にフォルステライト質絶縁被膜が形成され
る。ここに、フォルステライト質絶縁被膜を形成形態
は、仕上げ焼鈍中のコイル層間雰囲気に大きく影響さ
れ、またこのコイル層間雰囲気ガスの流通性は、焼鈍分
離剤の粒度や焼鈍分離剤塗布・乾燥後のコイル巻取り張
力などに左右される。さらに焼鈍分離剤中のMgO自身
が、仕上げ焼鈍中に自己焼結収縮して、コイル層間雰囲
気ガス流通性を変化させる。
[Means for Solving the Problems] In a manufacturing process of a grain-oriented electrical steel sheet, an annealing separator slurry containing MgO as a main component is applied to a steel sheet subjected to decarburization annealing after final cold rolling and dried. , Forsterite insulating coating is formed during coiling and finish annealing of the coil. Here, the form of forming the forsterite insulating coating is greatly affected by the coil interlayer atmosphere during finish annealing, and the flowability of this coil interlayer atmosphere gas is determined by the grain size of the annealing separator and the annealing separator after coating and drying. It depends on the coil winding tension. Further, MgO itself in the annealing separator undergoes self-sintering shrinkage during the final annealing to change the gas flowability between the coil interlayer atmospheres.

【0006】従来は、焼鈍分離剤用のMgOについて、仕
上げ焼鈍中の特性変化に着目していなかったため、被膜
特性に優れたフォルステライト質絶縁被膜を形成するに
は、必ずしも十分というわけではなかった。この発明
は、上記の問題を有利に解決するもので、焼鈍分離剤の
主成分として用いるMgOの特性を規制することによっ
て、良好なフォルステライト質被膜を形成し、もって優
れた磁気特性を得ることができる一方向性電磁鋼板の製
造方法を提案することを目的とする。
[0006] Conventionally, since no attention has been paid to the change in properties of MgO for an annealing separator during finish annealing, it was not always sufficient to form a forsterite insulating film having excellent film properties. . The present invention advantageously solves the above problems, and by controlling the characteristics of MgO used as the main component of the annealing separator, it is possible to form a good forsterite coating and obtain excellent magnetic characteristics. It is an object of the present invention to propose a method for manufacturing a grain-oriented electrical steel sheet capable of achieving the above.

【0007】[0007]

【課題を解決するための手段】さて、発明者らは、仕上
げ焼鈍中におけるフォルステライト形成反応と焼鈍分離
剤の主成分であるMgO粒子の焼結による自己収縮変化と
の対応を研究する過程で、フォルステライト被膜形成反
応が進行する温度域におけるMgO粒子の自己焼結の程度
がフォルステライト被膜の膜質に影響を及ぼすことを見
出した。そこで、被膜形成及び磁気特性に及ぼすMgOの
自己焼結による収縮率度とMgOの平均粒子径との影響に
ついて調査したところ、かかる収縮率度と平均粒子径を
所定の範囲に規制することによって、所期した目的が有
利に達成されることの知見を得た。この発明は、上記の
知見に立脚するものである。
In the process of studying the correspondence between the forsterite formation reaction during finish annealing and the self-shrinkage change due to the sintering of MgO particles which is the main component of the annealing separator, It was found that the degree of self-sintering of MgO particles in the temperature range where the forsterite film formation reaction proceeds affects the film quality of the forsterite film. Therefore, the effect of the shrinkage rate of MgO by self-sintering and the average particle size of MgO on the film formation and magnetic properties was investigated, and by controlling the shrinkage rate and the average particle size within a predetermined range, We have found that the intended purpose can be achieved advantageously. The present invention is based on the above findings.

【0008】すなわち、この発明は、含けい素鋼スラブ
を、熱間圧延したのち、1回又は中間焼鈍を含む2回の
冷間圧延を施して最終板厚とし、ついで脱炭焼鈍後、Mg
Oを主成分とする焼鈍分離剤を塗布してから、最終仕上
げ焼鈍を施すことによって一方向性電磁鋼板を製造する
に当たり、上記焼鈍分離剤中のMgOとして、平均粒子径
が 0.3〜2.5 μm でかつ、1100℃における自己焼結によ
る線収縮率が10〜22%であるものを用いることを特徴と
する一方向性電磁鋼板の製造方法である。
That is, according to the present invention, a silicon steel-containing slab is hot-rolled, and then cold-rolled once or twice including intermediate annealing to obtain a final plate thickness, and then decarburized and annealed, and then Mg.
When a unidirectional electrical steel sheet is manufactured by applying an annealing separator containing O as a main component and then performing final finishing annealing, the MgO in the annealing separator has an average particle size of 0.3 to 2.5 μm. Moreover, the method for producing a grain-oriented electrical steel sheet is characterized by using a material having a linear shrinkage rate of 10 to 22% by self-sintering at 1100 ° C.

【0009】[0009]

【作用】この発明において、MgOの平均粒子径及び線収
縮率を上記の範囲に限定した理由は次のとおりである。
まず、MgO粉体の平均粒子径については、該粒子径が
0.3μm 未満ではコイル層間における雰囲気ガスの流通
性が劣化するため、フォルステライトの生成が遅れて外
観不良を招き易く、一方 2.5μm を超えるとコイル層間
の雰囲気ガスの流通性が高すぎるため、脱炭焼鈍時に形
成される酸化層内のSiO2の鋼板表面への解離浮上が進行
し易くなり、密着性が劣化するので、平均粒子径は 0.3
〜2.5 μmの範囲に限定した。
In the present invention, the reason why the average particle size of MgO and the linear shrinkage ratio are limited to the above ranges is as follows.
First, regarding the average particle size of MgO powder,
If it is less than 0.3 μm, the flowability of the atmospheric gas between the coil layers is deteriorated, so that the generation of forsterite is delayed and the appearance is apt to be deteriorated.On the other hand, if it exceeds 2.5 μm, the flowability of the atmospheric gas between the coil layers is too high. The average particle size is 0.3 because the dissociation and floating of SiO 2 in the oxide layer formed during carbon annealing on the surface of the steel sheet easily progresses and the adhesiveness deteriorates.
Limited to the range of ~ 2.5 μm.

【0010】次に、MgO粉体の1100℃における線収縮率
が10%に満たないと、コイル層間のガス流通性が十分で
なく、フォルステライト形成反応の進行が遅くなるた
め、鋼板のフォルステライト被膜の密着性が劣化し、一
方22%を超えると、仕上げ焼鈍中に鋼板表面が酸化され
易くなり、インヒビターの分解やフォルステライト被膜
の結晶粒粗大化を招くので、線収縮率は10〜22%の範囲
に限定した。ここに、焼鈍分離剤を塗布・乾燥した鋼板
のコイル巻き取り時における面圧は約100 kg/cm2である
ので、上記の線収縮率の測定に際しては、MgOの成形圧
力を100 kg/cm2とし、非酸化性ガス中で焼成し、焼成前
後の寸法変化により求めた。このとき、目標温度での保
定処理は行わなかった。なお、1100℃における線収縮率
を10〜22%の範囲に制御するには、MgO 製造工程の Mg
(OH)2焼成条件すなわち焼成温度パターン、焼成炉内水
蒸気圧力、雰囲気およびガス流量等を調整すれば良い。
Next, if the linear shrinkage of the MgO powder at 1100 ° C. is less than 10%, the gas flowability between the coil layers is not sufficient and the forsterite formation reaction slows down. The adhesion of the coating deteriorates. On the other hand, if it exceeds 22%, the surface of the steel sheet is easily oxidized during finish annealing, which causes decomposition of the inhibitor and coarsening of the crystal grains of the forsterite coating. It was limited to the range of%. Since the surface pressure of the steel sheet coated with the annealing separator and dried is about 100 kg / cm 2 , the MgO forming pressure is 100 kg / cm 2 when measuring the linear shrinkage ratio. It was determined as 2 by calcination in a non-oxidizing gas and dimensional change before and after calcination. At this time, the retention process at the target temperature was not performed. In addition, in order to control the linear shrinkage ratio at 1100 ° C within the range of 10 to 22%, the MgO manufacturing process Mg
(OH) 2 firing conditions, that is, the firing temperature pattern, steam pressure in the firing furnace, atmosphere, gas flow rate, etc. may be adjusted.

【0011】この発明の素材である含けい素鋼の組成は
特に限定されることはなく、従来公知のものいずれもが
適合する。参考のために、好適組成範囲を例示すると次
のとおりである。 C:0.001 〜0.10% Cは、熱間圧延及び冷間圧延中における組織の均一微細
化だけでなく、ゴス方位の発達に有用な元素であり、少
なくとも 0.001%含有することが好ましい。しかしなが
ら、0.10%を超えて含有した場合には脱炭が困難とな
り、かえってゴス方位に乱れが生じるので、上限は0.10
%とすることが好ましい。
The composition of the silicon-containing steel which is the material of the present invention is not particularly limited, and any conventionally known one is suitable. For reference, the preferable composition range is as follows. C: 0.001 to 0.10% C is an element useful for not only the refinement of the structure during hot rolling and cold rolling but also the development of Goss orientation, and it is preferable to contain at least 0.001%. However, if the content exceeds 0.10%, decarburization becomes difficult and the Goss orientation is disturbed, so the upper limit is 0.10%.
% Is preferable.

【0012】Si:2.5 〜4.5 % Siは、鋼板の比抵抗を高め鉄損の低減に寄与するが、含
有量が 4.5%を上回ると冷延性が損なわれ、一方 2.5%
に満たないと比抵抗が低下するだけでなく、二次再結晶
及び純化のために行われる最終焼鈍中にα−γ変態によ
って結晶方位のランダム化を生じ、十分な鉄損改善効果
が得られないので、Siは 2.5〜4.5 %程度とするのが好
ましい。
Si: 2.5-4.5% Si increases the specific resistance of the steel sheet and contributes to the reduction of iron loss, but if the content exceeds 4.5%, the cold rolling property is impaired, while 2.5%
If not less than, not only the resistivity decreases, but also the random orientation of the crystal orientation due to α-γ transformation during the final annealing performed for secondary recrystallization and purification, sufficient iron loss improvement effect can be obtained. Since Si is not present, it is preferable to set Si to about 2.5 to 4.5%.

【0013】Mn:0.02〜0.12% Mnは、熱間脆化を防止するためには少なくとも0.02%程
度を必要とするが、あまり多すぎると磁気特性を劣化さ
せるので、上限は0.12%程度とするのが好ましい。
Mn: 0.02 to 0.12% Mn requires at least about 0.02% to prevent hot embrittlement, but if it is too much, the magnetic properties deteriorate, so the upper limit is made 0.12%. Is preferred.

【0014】インヒビターとしては、いわゆるMnS, Mn
Se系とAlN系とがある。 MnS, MnSe系の場合 S, Seのうちから選ばれる少なくとも一種:0.005 〜0.
06% S, Seはいずれも、方向性けい素鋼板の二次再結晶を制
御するインヒビターとして有力な元素である。抑制力の
観点からは、少なくとも 0.005%程度を必要とするが0.
06%を超えるとその効果が損なわれる。従って、その上
限、下限はそれぞれ 0.005%、0.06%程度とするのが好
ましい。 AlN系の場合 Al:0.005〜0.10, N:0.004 〜0.015 % Al及びNの範囲についても、上述のMnS, MnSe系の場合
と同様の理由から上記の範囲に定めた。なお、上述のMn
S, MnSe系及びAlN系はそれぞれ併用が可能である。さ
らに、インヒビター成分としては、上記したS, Se, Al
の他、Cu, Sn, Sb,Mo, Te及びBi等も有利に作用するの
でそれぞれ少量併せて含有させることもできる。これら
の成分の好適添加範囲はそれぞれ、Cu, Sn:0.01〜0.15
%、Sb, Mo,Te, Bi:0.005 〜0.1 %であり、これらの
各インヒビター成分についても、単独使用及び複合使用
のいずれもが可能である。
As inhibitors, so-called MnS, Mn
There are Se type and AlN type. In the case of MnS, MnSe system At least one selected from S and Se: 0.005 to 0.
06% S and Se are both effective elements as inhibitors that control the secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of restraint, at least 0.005% is required, but 0.
If it exceeds 06%, its effect is impaired. Therefore, it is preferable that the upper and lower limits are about 0.005% and 0.06%, respectively. In the case of AlN system Al: 0.005 to 0.10, N: 0.004 to 0.015% The range of Al and N is set to the above range for the same reason as in the case of MnS and MnSe systems. Note that the above Mn
S, MnSe type and AlN type can be used together. Furthermore, as the inhibitor component, the above-mentioned S, Se, Al
In addition, Cu, Sn, Sb, Mo, Te, Bi and the like also act advantageously, so that a small amount of each can be contained together. The preferred addition range of these components is Cu, Sn: 0.01 to 0.15, respectively.
%, Sb, Mo, Te, Bi: 0.005 to 0.1%, and each of these inhibitor components can be used alone or in combination.

【0015】鋼板の製造方法については、特に限定され
ることはなく、従来公知の製造条件で行えば良い。すな
わち、含けい素鋼スラブを、熱間圧延した後、1回また
は中間焼鈍を含む2回の冷間圧延を施して最終板厚と
し、ついで脱炭焼鈍後、鋼板表面に焼鈍分離剤を塗布し
てから、2次再結晶焼鈍および純化焼鈍を施せば良い。
The method of manufacturing the steel sheet is not particularly limited and may be carried out under conventionally known manufacturing conditions. That is, a silicon steel-containing slab is hot-rolled and then cold-rolled once or twice including intermediate annealing to obtain a final plate thickness, and then decarburized and annealed, and then an annealing separator is applied to the steel plate surface. After that, secondary recrystallization annealing and purification annealing may be performed.

【0016】[0016]

【実施例】C:0.07wt%,Si:3.25wt%,Mn:0.07wt
%,Se:0.017 wt%,Al:0.023 wt%及びN:0.0085wt
%を含み、残部は実質的にFeの組成になるスラブを、熱
間圧延したのち、中間焼鈍を含む2回の冷間圧延を施し
て最終板厚:0.23mmの冷延板し、ついで脱炭焼鈍後、表
1に示す種々のMgOを主成分とする焼鈍分離剤をそれぞ
れ塗布してから、仕上げ焼鈍を施した。得られた製品の
被膜特性及び鉄損値について調べた結果を図1に示す。
[Example] C: 0.07 wt%, Si: 3.25 wt%, Mn: 0.07 wt%
%, Se: 0.017 wt%, Al: 0.023 wt% and N: 0.0085 wt%
% Of the slab, the balance of which is substantially Fe, is hot-rolled, then cold-rolled twice including intermediate annealing to obtain a cold-rolled sheet with a final thickness of 0.23 mm, and then de-rolled. After charcoal annealing, various annealing separators containing MgO shown in Table 1 as a main component were applied, and then finish annealing was performed. The results of examining the coating characteristics and the iron loss value of the obtained product are shown in FIG.

【0017】[0017]

【表1】 [Table 1]

【0018】図1から明らかなように、この発明に従い
得られたNo.1〜5 はいずれも、被膜形成が均一であり、
フォルステライト被膜と地鉄との密着性も十分であるた
め、良好な鉄損値が得られている。これに対し、平均粒
子径や線収縮率が適正範囲を逸脱したNo.6〜10の比較例
は、被膜特性が不良であるため、鉄損も劣化している。
As is apparent from FIG. 1, all of Nos. 1 to 5 obtained according to the present invention have uniform film formation,
Since the adhesion between the forsterite coating and the base iron is sufficient, a good iron loss value is obtained. On the other hand, in Comparative Examples Nos. 6 to 10 in which the average particle diameter and the linear shrinkage ratio deviate from the proper ranges, the coating properties are poor and the iron loss is also deteriorated.

【0019】[0019]

【発明の効果】かくしてこの発明に従い、焼鈍分離剤と
して、平均粒子径が 0.3〜2.5 μm でかつ、1100℃にお
ける自己焼結による線収縮率が10〜22%のMgOを用いる
ことにより、仕上げ焼鈍中のコイル層間のガス流通性や
MgOの活性度が最適となるので、良好なフォルステライ
ト被膜を形成することができ、被膜特性のみならず磁気
特性も優れた方向性電磁鋼板を得ることができる。
As described above, according to the present invention, finish annealing is performed by using MgO having an average particle size of 0.3 to 2.5 μm and a linear shrinkage rate of 10 to 22% by self-sintering at 1100 ° C. as an annealing separator. Gas distribution between the coil layers
Since the activity of MgO is optimized, a good forsterite coating can be formed, and a grain-oriented electrical steel sheet excellent not only in coating characteristics but also in magnetic characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼鈍分離剤として種々のMgOを用いた場合にお
ける被膜特性及び鉄損値を示した図である。
FIG. 1 is a diagram showing coating characteristics and iron loss values when various MgO is used as an annealing separator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 含けい素鋼スラブを、熱間圧延したの
ち、1回又は中間焼鈍を含む2回の冷間圧延を施して最
終板厚とし、ついで脱炭焼鈍後、MgOを主成分とする焼
鈍分離剤を塗布してから、最終仕上げ焼鈍を施すことに
よって一方向性電磁鋼板を製造するに当たり、 上記焼鈍分離剤中のMgOとして、平均粒子径が 0.3〜2.
5 μm でかつ、1100℃における自己焼結による線収縮率
が10〜22%であるものを用いることを特徴とする一方向
性電磁鋼板の製造方法。
1. A silicon steel-containing slab is hot-rolled and then cold-rolled once or twice including intermediate annealing to obtain a final plate thickness, and then decarburized and annealed, and MgO is used as a main component. When the unidirectional electrical steel sheet is manufactured by applying the final annealing after applying the annealing separator, the average particle diameter of MgO in the annealing separator is 0.3 to 2.
A method for producing a grain-oriented electrical steel sheet, characterized in that a linear shrinkage rate of 5 µm and a self-sintering rate at 1100 ° C of 10 to 22% is used.
JP33564293A 1993-12-28 1993-12-28 Manufacturing method of unidirectional electrical steel sheet Expired - Fee Related JP3277058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33564293A JP3277058B2 (en) 1993-12-28 1993-12-28 Manufacturing method of unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33564293A JP3277058B2 (en) 1993-12-28 1993-12-28 Manufacturing method of unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH07188937A true JPH07188937A (en) 1995-07-25
JP3277058B2 JP3277058B2 (en) 2002-04-22

Family

ID=18290887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33564293A Expired - Fee Related JP3277058B2 (en) 1993-12-28 1993-12-28 Manufacturing method of unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3277058B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088244A (en) * 1996-09-12 1998-04-07 Kawasaki Steel Corp Magnesium oxide for separation agent at annealing used fixed at manufacture of grain oriented silicon steel sheet
JP2004277765A (en) * 2003-03-13 2004-10-07 Jfe Steel Kk Finish annealing method for grain-oriented magnetic steel sheet with low core loss
JP2005171387A (en) * 2004-12-22 2005-06-30 Jfe Steel Kk MANUFACTURING METHOD OF MgO FOR ANNEALING SEPARATING AGENT
JP2011127179A (en) * 2009-12-17 2011-06-30 Jfe Steel Corp Annealing separating-agent and method for finish-annealing grain-oriented magnetic steel sheet
JP2012001752A (en) * 2010-06-15 2012-01-05 Jfe Steel Corp Annealing separating-agent and method for producing grain-oriented magnetic steel sheet
JP2012177148A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Annealing separating agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088244A (en) * 1996-09-12 1998-04-07 Kawasaki Steel Corp Magnesium oxide for separation agent at annealing used fixed at manufacture of grain oriented silicon steel sheet
JP2004277765A (en) * 2003-03-13 2004-10-07 Jfe Steel Kk Finish annealing method for grain-oriented magnetic steel sheet with low core loss
JP4569070B2 (en) * 2003-03-13 2010-10-27 Jfeスチール株式会社 Finish annealing method for grain-oriented electrical steel sheets
JP2005171387A (en) * 2004-12-22 2005-06-30 Jfe Steel Kk MANUFACTURING METHOD OF MgO FOR ANNEALING SEPARATING AGENT
JP2011127179A (en) * 2009-12-17 2011-06-30 Jfe Steel Corp Annealing separating-agent and method for finish-annealing grain-oriented magnetic steel sheet
JP2012001752A (en) * 2010-06-15 2012-01-05 Jfe Steel Corp Annealing separating-agent and method for producing grain-oriented magnetic steel sheet
JP2012177148A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Annealing separating agent

Also Published As

Publication number Publication date
JP3277058B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
KR101062127B1 (en) Method for manufacturing directional electromagnetic steel sheet with high magnetic flux density
WO2014126089A1 (en) Method for producing grain-oriented electrical steel sheet
JP6350398B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2016513358A (en) Oriented electrical steel sheet and manufacturing method thereof
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
CN108474055B (en) Method for manufacturing oriented electrical steel sheet
KR100967049B1 (en) Method for manufacturing a high-silicon steel sheet
JP3277058B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4484710B2 (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
JP7231888B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3707144B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating properties
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JP4075258B2 (en) Manufacturing method of bi-directional electrical steel sheet
JP3921807B2 (en) Method for producing grain-oriented silicon steel sheet
JP3056895B2 (en) Method for forming forsterite insulating coating on grain-oriented electrical steel sheet
JP2014148723A (en) Method of manufacturing oriented electromagnetic steel sheet and primary recrystallization steel sheet for manufacturing oriented electromagnetic steel sheet
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JP2991613B2 (en) Method for producing grain-oriented silicon steel sheet with good magnetic properties
JP2786577B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPH01119622A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic and glass film characteristic
JP2735929B2 (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic properties and coating properties
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees