JPH05247661A - Production of grain oriented silicon steel sheet having uniform glass film and excellent in magnetic property - Google Patents

Production of grain oriented silicon steel sheet having uniform glass film and excellent in magnetic property

Info

Publication number
JPH05247661A
JPH05247661A JP4736592A JP4736592A JPH05247661A JP H05247661 A JPH05247661 A JP H05247661A JP 4736592 A JP4736592 A JP 4736592A JP 4736592 A JP4736592 A JP 4736592A JP H05247661 A JPH05247661 A JP H05247661A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
silicon steel
slurry
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4736592A
Other languages
Japanese (ja)
Inventor
Osamu Tanaka
収 田中
Keisuke Yamochi
啓介 矢持
Hiroshi Sato
弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP4736592A priority Critical patent/JPH05247661A/en
Publication of JPH05247661A publication Critical patent/JPH05247661A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture a grain oriented silicon steel sheet in which glass film of good quality is formed and excellent in magnetic properties by subjecting the cold rolled sheet of high silicon steel to decarburizing annealing to form an oxidized film thickness consisting essentially of SiO2 on the surface, thereafter coating it with a separation agent for annealing having a specified compsn. and executing final finish annealing. CONSTITUTION:A high silicon steel slag is subjected to hot rolling, annealing and cold rolling into a cold rolled sheet having a final sheet thickness, which is thereafter subjected to decarburizing annealing to form an oxidized film thickness contg. SiOS2 by the quantity of 0.5 to 1.3g/m<2> on the surface of the cold rolled sheet. Next, 0.1 to 10 pts.wt. of one or >= two kinds selected from the oxides, sulfides, sulfates, phosphates and borates of Al, Mg, Ca, Na, K, V, B, P, Sb and Sr are added to 100 pts.wt. MgO, which is pulverized by a ultrafinely pulverizing apparatus to uniformize the size of the grains and is subjected to activating treatment into slurry. The surface of the cold rolled sheet subjected to the decarburizing annealing is coated with the slurry as a separation agent for annealing, which is dried, is coiled round a coil and is subjected to final finish annealing. The objective grain oriented silicon steel sheet in which a uniform glass film is formed and excellent in magnetic properties can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は方向性電磁鋼板の製造に
際し、最終仕上焼鈍において、膜厚が薄く良質のグラス
被膜を形成すると共に磁気特性が優れ、更に磁区細分化
能の優れた方向性電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention, in the production of grain-oriented electrical steel sheet, in the final annealing, forms a thin glass film of high quality and has excellent magnetic properties, and also has a high degree of magnetic domain refinement. The present invention relates to a method for manufacturing an electromagnetic steel sheet.

【0002】[0002]

【従来の技術】通常、方向性電磁鋼板はSi4.5%以
下を含有する素材を熱延し、焼鈍と1回又は中間焼鈍を
含む2回以上の冷延により最終板厚とされる。次いでN
2 +H 2 又はH2 等の湿潤雰囲気中でPH2O/PH2をコ
ントロールして脱炭焼鈍を行い、脱炭とSiO2 を主体
とする酸化膜の形成を行う。その後MgOを主成分とす
る焼鈍分離剤をスラリー状としてコーティングロール等
で塗布し、最終仕上焼鈍を行い、二次再結晶、純化、グ
ラス被膜形成を行い、更に必要に応じて絶縁被膜処理と
ヒートフラットニングを行って最終製品とされる。更に
高磁束密度方向性電磁鋼板の場合、用途によっては絶縁
被膜剤処理の前又は後にレーザー、プレスロール、圧延
ロール、歯形ロール、ケガキ等により磁区細分化処理を
行って鉄損改善が施される。
2. Description of the Related Art Generally, grain-oriented electrical steel sheets have a Si content of 4.5% or less.
Hot-rolling the material containing the bottom, annealing and one time or intermediate annealing
The final plate thickness is obtained by cold rolling twice or more. Then N
2+ H 2Or H2PH in a humid atmosphere such as2O / PH2The
Control and decarburization annealing to decarburize and SiO2Subject to
Forming an oxide film. After that, the main component is MgO
Coating roll etc.
Coating, final finishing annealing, secondary recrystallization, purification,
Lath film is formed, and if necessary, insulation film treatment
Heat flattening is done to make the final product. Further
High magnetic flux density grain oriented electrical steel sheet is insulated depending on the application
Laser, press roll, rolling before or after coating agent treatment
Magnetic domain subdivision processing using rolls, tooth profile rolls, scribing, etc.
Go to improve iron loss.

【0003】この方向性電磁鋼板は<001>軸を持つ
(110)<001>結晶が高温の二次再結晶で優先的
に成長する現象を利用している。この二次再結晶過程で
低表面エネルギーを持つ(110)面結晶が優先的に成
長し、鋼中のインヒビターとして微細に分散しているA
lN、MnS等によりその成長を抑えられている他の結
晶を侵食するために(110)<001>結晶が優先的
に成長するものと考えられている。
This grain-oriented electrical steel sheet utilizes a phenomenon in which a (110) <001> crystal having a <001> axis grows preferentially by high temperature secondary recrystallization. During this secondary recrystallization process, (110) face crystals with low surface energy grow preferentially and are finely dispersed as an inhibitor in steel A
It is considered that the (110) <001> crystal grows preferentially in order to erode other crystals whose growth is suppressed by 1N, MnS and the like.

【0004】従って、優れた方向性電磁鋼板を製造する
ためには、鋼中のAlN、MnS等の分散制御とこれら
の分解までの制御が重要である。最終焼鈍におけるイン
ヒビターの変化は、脱炭焼鈍で形成した鋼板表面の酸化
膜、焼鈍分離剤及び最終仕上焼鈍での熱サイクルや雰囲
気条件等により影響を受ける。これらの中で、とりわけ
焼鈍分離剤としてのMgOの性状や添加剤の影響は大き
い。これらは、最終焼鈍での昇温過程における表面酸化
層の変化やグラス被膜形成段階での形成速度、形成量、
グラス被膜の質等に影響をもたらして、これにより前記
インヒビターの安定性に影響を及ぼすからである。
Therefore, in order to produce an excellent grain-oriented electrical steel sheet, it is important to control the dispersion of AlN, MnS, etc. in the steel and the control until their decomposition. The change of the inhibitor in the final annealing is affected by the oxide film on the surface of the steel sheet formed by the decarburization annealing, the annealing separator, the thermal cycle in the final finishing annealing, the atmospheric conditions and the like. Among these, the properties of MgO as an annealing separator and the effects of additives are particularly large. These are the change of the surface oxide layer in the temperature rising process in the final annealing, the formation rate in the glass film formation stage, the formation amount,
This is because it affects the quality of the glass film and the like, which affects the stability of the inhibitor.

【0005】焼鈍分離剤のMgO及び添加剤は脱炭焼鈍
で形成されるSiO2 主体の酸化層と反応して通常グラ
ス被膜と称するフォルステライト主体の被膜を形成する
(2MgO+SiO2 →Mg2 SiO4 )。このグラス
被膜形成においては前述のようにMgOを主成分とする
焼鈍分離剤と共に脱炭焼鈍で形成した酸化層のSiO 2
の量、質が大きい影響を及ぼす。即ち、フォルステライ
ト主体のグラス被膜の形成量は脱炭焼鈍で形成したSi
2 量及び仕上焼鈍の昇温過程で生じた追加酸化による
SiO2 の増量のトータルに比例するからである。更
に、グラス被膜の質及び均一性についてもこれらの要因
によって決まると言っても過言ではない。
Annealing Separator MgO and Additives are Decarburization Annealing
SiO formed by2It reacts with the main oxide layer
Forming a film mainly composed of forsterite
(2MgO + SiO2→ Mg2SiOFour). This glass
In forming the film, MgO is the main component as described above.
SiO of oxide layer formed by decarburization annealing with annealing separator 2
The quantity and quality of the product have a great influence. That is, Forsterai
The amount of glass coating mainly composed of g
O2Amount and due to additional oxidation generated during the temperature rising process of finish annealing
SiO2This is because it is proportional to the total amount of increase. Change
In addition, these factors also affect the quality and uniformity of the glass coating.
It is no exaggeration to say that it depends on

【0006】特にグラス被膜は、鋼板自体熱膨張してい
る高温で熱膨張率の小さいMg2 SiO4 を形成するた
め、仕上焼鈍終了後の冷却時には鋼板に張力を与える。
このため、高張力のグラス被膜を形成することは、その
張力効果によって鉄損改善効果を増大する。しかし、グ
ラス被膜自体は非磁性体であり、その厚みを増すほど鋼
板の磁束密度を低下させ、鉄損低下をもたらす弊害を持
つ。特に、近年では光学的、機械的、化学的等の手段で
圧延方向とほぼ直角方向に線状、点状等の歪み、溝、合
金層を形成して磁区を細分化し鉄損を改善する方法が開
発された。この場合にもその磁区細分化効果は磁束密度
が高いほうが優れることが知られている。更にグラス被
膜と地鉄界面に存在する内部酸化層は磁区細分化のバリ
ヤーになって磁区細分化を妨げるため有害で、このよう
な用途では内部酸化層のない、薄く、良質のグラス被膜
を形成することが重要である。
In particular, the glass coating forms Mg 2 SiO 4 having a small coefficient of thermal expansion at a high temperature where the steel sheet itself is thermally expanded, and therefore gives tension to the steel sheet during cooling after finishing annealing.
Therefore, forming a glass film with high tension increases the iron loss improving effect due to the tension effect. However, the glass coating itself is a non-magnetic material, and as the thickness increases, the magnetic flux density of the steel sheet decreases, which has the adverse effect of reducing iron loss. In particular, in recent years, a method for improving core loss by subdividing magnetic domains by forming linear, point-like strains, grooves, and alloy layers in a direction substantially perpendicular to the rolling direction by means of optical, mechanical, chemical, etc. Was developed. Also in this case, it is known that the higher the magnetic flux density is, the better the magnetic domain subdivision effect is. Furthermore, the internal oxide layer existing at the interface between the glass coating and the base steel is harmful because it acts as a barrier to the magnetic domain subdivision and hinders the magnetic domain subdivision. In such applications, a thin, high-quality glass coating with no internal oxide layer is formed. It is important to.

【0007】また、このグラス被膜の形成過程において
はフォルステライトの形成時期によっては鋼板の追加酸
化量の変化や、雰囲気ガス中のNの侵入、逆に鋼中の
N、S等の減少に影響を与えたり、酸化膜中のSiO2
によるAlNの分解反応が生じてインヒビターに多大な
影響を及ぼすことになる。このように方向性電磁鋼板の
商品価値を決定する上で最も重要な磁気特性及びグラス
被膜特性に対する脱炭酸化膜層の形成条件及び焼鈍分離
剤の条件は重要であり、良質で薄いグラス被膜の形成技
術の開発は方向性電磁鋼板製造の同業各社にとって重要
な開発課題になっている。
Further, in the process of forming the glass film, depending on the time of formation of forsterite, the change in the amount of additional oxidation of the steel sheet, the penetration of N in the atmosphere gas, and the conversely the decrease of N, S, etc. in the steel are affected. Or SiO 2 in the oxide film
As a result, a decomposition reaction of AlN occurs, which has a great influence on the inhibitor. Thus, the conditions for forming the decarboxylation film layer and the conditions for the annealing separator for the magnetic properties and glass film properties that are most important in determining the commercial value of grain-oriented electrical steel sheet are important, The development of forming technology has become an important development issue for companies in the same industry that manufacture grain-oriented electrical steel sheets.

【0008】焼鈍分離剤MgOの性状の中でグラス被膜
の形成やインヒビターの安定性に影響する因子としては
粒度、活性度、純度、付着性等があり、鋼板に塗布され
る場合には水和の進行度合い、粒子の分散状態、塗布膜
の密度及び塗布量等がある。また、反応促進剤として添
加される添加剤についても、MgOの場合と同様にMg
OとSiO2 の反応のための低融点化の反応性に関わる
粒度、溶解状態として、特にMgO表面や鋼板表面への
均一分散性や添加量等がある。このため、優れた製品特
性を得るために、脱炭酸化膜の形成条件と共にこれらの
最適化の努力がなされている。
Among the properties of the annealing separator MgO, factors that influence the formation of the glass film and the stability of the inhibitor include particle size, activity, purity and adhesion, and when applied to steel sheets, hydration The degree of progress, the dispersion state of particles, the density of the coating film, the coating amount, and the like. In addition, as for the additive added as the reaction accelerator, as in the case of MgO,
The particle size and the melting state relating to the reactivity of lowering the melting point for the reaction of O and SiO 2 include, in particular, the uniform dispersibility on the surface of MgO and the surface of the steel sheet and the addition amount. For this reason, in order to obtain excellent product characteristics, efforts are being made to optimize them together with the conditions for forming the decarboxylated film.

【0009】焼鈍分離剤のMgOは水酸化マグネシウ
ム、炭酸マグネシウム、塩基性炭酸マグネシウム等の原
料を平均粒子径0.2〜5.0μm程度のサイズの一次
粒子径を持つ結晶に調整し、700〜1200℃の高温
で焼成してMgOとして用いる。通常、このMgOは必
要に応じて添加剤を配合して、水に懸濁させてスラリー
とし、プロペラ状の攪拌装置を備えたタンク内等で攪拌
し、ゴムロール方式或いはスプレー方式等で鋼板に塗布
し、乾燥される。この際MgOや添加剤は製造段階での
焼成時の焼結或いは製造から使用段階までの保存時の吸
湿、経時変化による凝集や水に懸濁させる段階での凝集
により、平均粒径で数μm〜数10μmの粗大粒子とな
る。このため、塗布乾燥後の鋼板表面上では接触面積及
び密度が小さく、密着性の悪い塗膜を形成する。更に、
このような場合にはスラリーの粘性が低くなり、高速作
業での塗布性が悪くなり、均一な塗布膜が得られない。
For MgO as an annealing separator, raw materials such as magnesium hydroxide, magnesium carbonate and basic magnesium carbonate are adjusted to crystals having an average particle diameter of 0.2 to 5.0 μm and a primary particle diameter of 700 to It is fired at a high temperature of 1200 ° C. and used as MgO. Usually, this MgO is mixed with an additive as needed, suspended in water to form a slurry, stirred in a tank equipped with a propeller-like stirrer, and applied to a steel plate by a rubber roll method or a spray method. And then dried. At this time, MgO and additives may have an average particle diameter of several μm due to sintering during firing in the manufacturing stage, moisture absorption during storage from the manufacturing stage to the use stage, aggregation due to aging and aggregation during suspension in water. ˜Coarse particles of several tens of μm. Therefore, a contact area and density are small on the surface of the steel sheet after coating and drying, and a coating film having poor adhesion is formed. Furthermore,
In such a case, the viscosity of the slurry becomes low, the coating property at high speed operation becomes poor, and a uniform coating film cannot be obtained.

【0010】特に、添加剤を添加する場合には、添加剤
自体も焼結、凝集を生じており、これがMgOの凝集体
の一部に付着したり、粗大粒子のままで塗布膜中或いは
鋼板面上に存在するためフォルステライト被膜の形成反
応性が悪くなったり、不均一が生じたりする。このよう
な焼鈍分離剤成分の焼結や凝集による反応性の低下や、
密着性の低下による問題を解決する手段としては、従来
はMgOの物性値を製造段階でコントロールして凝集を
防止する方法が行われてきた。特開昭62−15622
6号公報には本発明者らによってMgO粒子の最表面層
を活性化処理する方法が行われている。この方法では、
高温焼成で得たMgOの最表面層のみにMgOの製造段
階で水和層(Mg(OH)2 )を形成するもので、グラ
ス被膜の均一性が向上し、磁気特性の改善効果が得られ
ている。また、特開平2−267278号公報では焼成
したMgOを100℃以上の水蒸気含有気層中で処理
し、MgO表面にOH化学吸着相をH2 O換算でMgO
重量に基づいて0.8〜2.5%形成したMgOを含む
焼鈍分離剤を脱炭焼鈍後の鋼板に塗布し、仕上焼鈍する
方向性電磁鋼板の製造方法を提案している。これによ
り、均一なグラス被膜を有し、磁気特性の優れた方向性
電磁鋼板が得られるものである。
In particular, when the additive is added, the additive itself also sinters and agglomerates, which adheres to a part of the MgO agglomerate or remains as coarse particles in the coating film or the steel sheet. Since it exists on the surface, the formation reactivity of the forsterite coating is deteriorated or nonuniformity occurs. Such a decrease in reactivity due to sintering and aggregation of the annealing separator component,
As a means for solving the problem due to the decrease in adhesion, a method of controlling the physical properties of MgO at the manufacturing stage to prevent agglomeration has been conventionally used. JP-A-62-15622
In the publication No. 6, a method of activating the outermost surface layer of MgO particles is performed by the present inventors. in this way,
A hydrated layer (Mg (OH) 2 ) is formed only on the outermost surface layer of MgO obtained by high temperature firing in the MgO production stage, which improves the uniformity of the glass coating and improves the magnetic properties. ing. Further, in Japanese Patent Laid-Open No. 2-267278, the calcined MgO is treated in a vapor-containing gas layer at 100 ° C. or higher, and the OH chemisorption phase on the MgO surface is converted to H 2 O as MgO.
A method for producing a grain-oriented electrical steel sheet is proposed in which an annealing separator containing 0.8 to 2.5% by weight of MgO is applied to a steel sheet after decarburizing and annealing, and finish annealing is performed. As a result, a grain-oriented electrical steel sheet having a uniform glass coating and excellent magnetic properties can be obtained.

【0011】これらの技術は焼鈍分離剤スラリーの塗布
時におけるMgO粒子の凝集の問題解決法として、焼成
後のMgO粒子表面を高温での特殊な表面処理を行うこ
とにより改質し、表面エネルギーを低下させ水との相溶
性を向上させるもので、この効果により鋼板面に分散の
良い状態で塗布され、かなりの効果が得られている。し
かし、MgOの製造条件や、焼結による問題、化学吸着
相の安定性の問題があり、また、添加剤の分散状態まで
コントロール出来ないため更に新技術の開発が望まれて
いる。
These techniques are for solving the problem of agglomeration of MgO particles at the time of applying the annealing separator slurry, by modifying the surface of the MgO particles after firing by performing a special surface treatment at a high temperature to reduce the surface energy. It lowers and improves the compatibility with water. Due to this effect, it is applied to the steel sheet surface in a well-dispersed state, and a considerable effect is obtained. However, MgO production conditions, problems due to sintering, problems with stability of chemisorbed phases, and the inability to control the dispersed state of the additive cannot be controlled, and further development of new technology is desired.

【0012】[0012]

【発明が解決しようとする課題】本発明は、方向性電磁
鋼板の製造における焼鈍分離剤の鋼板への塗布に際し、
MgO及び添加剤の製造時に生じた焼結体や凝集体及び
スラリー調整時に生じる凝集体によるグラス被膜形成性
劣化の解決策として、焼鈍分離剤スラリーの新規な調整
法を提供することを目的とする。更に、本発明は、脱炭
焼鈍時の酸化膜の形成条件を特定することにより、薄
く、均一で高品質のグラス被膜を形成し、これによって
磁気特性と共に磁区制御による鉄損改善効果能の優れた
グラス方向性電磁鋼板を製造する方法を提供することを
目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to the application of an annealing separating agent to a steel sheet in the production of grain-oriented electrical steel sheet,
An object of the present invention is to provide a new method for adjusting an annealing separator slurry as a solution to the deterioration of the glass film forming property due to a sintered body or an aggregate formed during the production of MgO and an additive and an aggregate formed during the adjustment of the slurry. .. Furthermore, the present invention forms a thin, uniform, and high-quality glass film by specifying the conditions for forming an oxide film during decarburization annealing, which makes it possible to improve the magnetic properties and the iron loss improving effect by controlling magnetic domains. It is an object of the present invention to provide a method of manufacturing a glass grain oriented electrical steel sheet.

【0013】[0013]

【課題を解決するための手段】本発明者らは方向性電磁
鋼板の脱炭焼鈍〜焼鈍分離剤塗布〜仕上焼鈍工程までの
グラス被膜形成及び二次再結晶工程において、内部酸化
層の少ない、薄くて高品質のグラス被膜を形成し、磁気
特性の優れる製品の製造法について検討した。この中で
は、特に脱炭酸化膜の形成条件と焼鈍分離剤スラリーの
調整法について着目して研究を行った。
Means for Solving the Problems In the glass film formation and the secondary recrystallization process from the decarburization annealing of the grain-oriented electrical steel sheet to the application of the annealing separator to the finishing annealing step, the present inventors have a small internal oxide layer, A thin and high quality glass coating was formed and the manufacturing method of the product with excellent magnetic properties was examined. Among them, the research was conducted focusing on the conditions for forming the decarboxylated film and the method of adjusting the annealing separator slurry.

【0014】焼鈍分離剤のスラリー調整法としては、従
来は、攪拌用の容器(タンク等)にプロペラ状、シャー
状等の回転体を設けた装置が一般的には使用されてい
る。このような装置でスラリーの攪拌処理を行う場合、
攪拌スピードや長時間の攪拌の必要があり、かなりの強
力な攪拌条件で処理しても十分な粒子の分散が得られな
い。特に、このような場合には、MgO等の焼鈍分離剤
の製造時の焼結体、凝集体の分散、破砕する効果を得る
ことが困難である。
As a method for preparing an annealing separator slurry, an apparatus in which a stirring vessel (tank or the like) is provided with a propeller-shaped or shear-shaped rotating body is generally used. When stirring the slurry with such a device,
The stirring speed and stirring for a long time are required, and sufficient particle dispersion cannot be obtained even if the treatment is carried out under considerably strong stirring conditions. In particular, in such a case, it is difficult to obtain the effect of dispersing and crushing the sintered body and the agglomerate during the production of the annealing separator such as MgO.

【0015】更に、このような方法での大きな問題は、
高速或いは長時間の攪拌によるスラリー中の粒子同士或
いは粒子と攪拌装置の回転体との摩擦によりスラリー温
度の上昇等が生じ、水和水分が上昇することである。こ
の結果グラス被膜特性、磁気特性を劣化させるという問
題がある。そこで、短時間のスラリーの処理で、確実に
焼鈍分離剤の焼結体、凝集体が解砕でき、水和水分の増
加等の問題のない方法を膨大な実験と研究により検討し
た。この結果、前記問題を解決できる焼鈍分離剤の塗布
方法として、超微粒粉砕装置による短時間での分散破砕
技術を利用する新スラリー調整法を開発した。これによ
り、従来の焼鈍分離剤の焼結体、凝集体等による粒子粗
大化と成分の不均一さ及び塗布膜の不均一さがもたらす
前記問題を一挙に解決するに至ったものである。
Further, the major problem with such a method is that
This is because the slurry temperature rises due to the friction between the particles in the slurry or the friction between the particles and the rotor of the stirrer due to high speed or long time stirring, and the hydrated water content increases. As a result, there is a problem that the glass coating characteristics and magnetic characteristics are deteriorated. Therefore, a large amount of experiments and researches have been conducted on a method in which a sintered body and an agglomerate of an annealing separator can be reliably crushed by treating a slurry for a short time without causing a problem such as an increase in hydrated water content. As a result, as a method for applying an annealing separator which can solve the above problems, a new slurry preparation method utilizing a dispersion crushing technique in a short time by an ultrafine particle pulverizer was developed. As a result, the above problems caused by coarsening of particles due to a sintered body, agglomerate or the like of the conventional annealing separator, non-uniformity of the components and non-uniformity of the coating film have been solved all at once.

【0016】以下、本発明を実験結果に基づいて詳細に
説明する。この実験においては、重量でC:0.075
%、Si:3.25%、Mn:0.066%、S:0.
024%、Al:0.029%、N:0.0078%、
Cu:0.080%、Sn:0.080%、残部Feと
不可避の不純物からなる高磁束密度方向性電磁鋼板素材
スラブを公知の方法で熱延−焼鈍−冷延して最終板厚
0.225mmとした。この後、N2 25%+H2 75
%で露点65℃の雰囲気中で850℃、120秒間の脱
炭焼鈍を行った。この時の酸化膜中のSiO2は鋼板1
2 あたり0.9gであった。次いで、表1に示す組成
の焼鈍分離剤を同表に示す条件でスラリーを調整した。
スラリーの攪拌にあたっては、本発明の調整法では、ま
ず従来のホモミキサーと呼ばれるシャー状の回転子を有
する装置で1000RPM×30分間の攪拌を行った。
次にこれを図1に示すような超微粒粉砕装置のスラリー
供給口(ホッパー)1より供給し、一定のクリアランス
を設けた回転体砥石2、3(形状を図2に示す)の間を
通過させ、解砕処理し、流出口4より取り出した。
The present invention will be described in detail below based on the experimental results. In this experiment, C: 0.075 by weight
%, Si: 3.25%, Mn: 0.066%, S: 0.
024%, Al: 0.029%, N: 0.0078%,
Cu: 0.080%, Sn: 0.080%, high magnetic flux density grain-oriented electrical steel sheet material slab consisting of balance Fe and unavoidable impurities is hot rolled-annealed-cold rolled by a known method to obtain a final sheet thickness of 0. It was 225 mm. After this, N 2 25% + H 2 75
%, Decarburization annealing was performed at 850 ° C. for 120 seconds in an atmosphere having a dew point of 65 ° C. SiO 2 in the oxide film at this time is steel plate 1
It was 0.9 g per m 2 . Next, an annealing separator having the composition shown in Table 1 was prepared into a slurry under the conditions shown in the same table.
In stirring the slurry, according to the adjusting method of the present invention, first, stirring was performed at 1000 RPM × 30 minutes with a device having a shear-shaped rotor called a conventional homomixer.
Next, this is supplied from a slurry supply port (hopper) 1 of an ultrafine pulverizer as shown in FIG. 1 and passes between rotating body grinding stones 2 and 3 (the shape of which is shown in FIG. 2) provided with a certain clearance. Then, it was crushed and taken out from the outlet 4.

【0017】その際、砥石クリアランスは表1の条件で
解砕処理を行った。このようにして得たスラリーを前記
脱炭焼鈍板に塗布し、乾燥後、1200℃×20Hrの
仕上焼鈍を行った。次いで絶縁被膜剤として、30%コ
ロイダルシリカ70l+50%Al(H2 PO4 3
0l+CrO3 7kgよりなるコーティング液を塗布し
て最終製品とした。この実験工程において焼鈍分離剤の
塗布状況の観察、製品のグラス被膜、磁気特性を調査し
た結果を表2に示す。
At that time, the grindstone clearance was crushed under the conditions shown in Table 1. The slurry thus obtained was applied to the decarburized annealed plate, dried and then subjected to finish annealing at 1200 ° C. × 20 Hr. Then as an insulating film agent, 30% colloidal silica 70l + 50% Al (H 2 PO 4) 3 5
A coating liquid consisting of 0 l + 7 kg of CrO 3 was applied to obtain a final product. Table 2 shows the results of observing the coating state of the annealing separator, and examining the glass coating and magnetic properties of the product in this experimental process.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】この実験の結果、本発明のスラリーの超微
粒粉砕処理を行ったものは焼鈍分離剤の焼結凝集体がな
く、均一に密着性良く塗布された。また、仕上焼鈍後の
グラス被膜はいずれも均一に且つ緻密に形成され、グラ
ス形成量も適切なものが得られた。また、磁気特性も非
常に良好であった。一方、比較例のホモミキサーのみの
攪拌によるものは、焼鈍分離剤の焼結体や凝集体が多く
見受けられ、不均一な塗布膜となり、密着性も著しく悪
かった。この場合は、グラス被膜が不均一な部分が多
く、本発明に比較するとかなり薄い状況であった。また
磁気特性も本発明に比較して磁束密度、鉄損値ともかな
り悪い結果となった。
As a result of this experiment, the slurry obtained by subjecting the slurry of the present invention to ultrafine particle pulverization was uniformly applied with good adhesion without any sintered aggregate of the annealing separator. Further, the glass coatings after the finish annealing were uniformly and densely formed, and the glass formation amount was appropriate. The magnetic properties were also very good. On the other hand, in the case where only the homomixer of the comparative example was stirred, many sintered bodies and aggregates of the annealing separator were found, resulting in a non-uniform coating film and significantly poor adhesion. In this case, there were many non-uniform portions of the glass coating, which was considerably thinner than in the present invention. In addition, the magnetic characteristics were considerably poor in both magnetic flux density and iron loss value as compared with the present invention.

【0021】次に本発明の限定理由について述べる。本
発明は方向性電磁鋼板の脱炭焼鈍後の鋼板表面に焼鈍分
離剤を塗布し、乾燥し、コイルに巻き取る際に適用され
るもので、脱炭工程を含む以後の工程で適用される。本
発明の脱炭焼鈍での鋼板の酸化膜量はSiO2 量で0.
5〜1.3g/m2の範囲である。仕上焼鈍で形成され
るフォルステライト量は、基本的には脱炭焼鈍時に形成
されたSiO2 量と仕上焼鈍時の追加酸化によって生じ
るSiO2 量のトータルSiO2 量に比例する。通常の
製造工程では、フォルステライトを薄膜化しようとする
と、脱炭焼鈍時のSiO2 形成量を減らさざるを得ない
が、そのためには焼鈍温度、露点等を低下させなければ
ならず、この場合には、必然的にファイヤライト(Fe
2 SiO4 )等が減少し、グラス被膜の形成反応性が極
端に低下する。このため、従来技術では焼鈍分離剤のM
gOや添加物の条件を厳密にコントロールする等の方法
が考えられていたが、磁気特性のために有益な薄い良質
のグラス被膜を形成することは非常に困難であった。
Next, the reasons for limitation of the present invention will be described. INDUSTRIAL APPLICABILITY The present invention is applied when an annealing separator is applied to the surface of a steel sheet after decarburization annealing of a grain-oriented electrical steel sheet, dried and wound into a coil, and is applied in the subsequent steps including the decarburization step. .. 0 oxide film weight SiO 2 of the steel sheet in the decarburization annealing of the present invention.
It is in the range of 5 to 1.3 g / m 2 . Forsterite amount formed by finish annealing is basically proportional to the total amount of SiO 2 SiO 2 amount generated by additional oxidation during formed SiO 2 amount and final annealing at decarburization annealing. In the usual manufacturing process, if the film of forsterite is made thin, the amount of SiO 2 formed during decarburization annealing must be reduced, but in order to do so, the annealing temperature, dew point, etc. must be lowered. Inevitably, firelite (Fe
2 SiO 4 ) and the like are reduced, and the reactivity of forming a glass film is extremely lowered. Therefore, in the prior art, the annealing separator M
Although methods such as strictly controlling the conditions of gO and additives have been considered, it has been very difficult to form a thin, good-quality glass film useful for magnetic properties.

【0022】本発明は、上記のような脱炭酸化膜中のS
iO2 量を低下せしめた条件でも、焼鈍分離剤の塗布条
件の開発によって、被膜の形成反応性を著しく改善し、
薄い良質のグラス被膜を形成することを可能ならしめる
ものである。脱炭焼鈍時の酸化膜中のSiO2 量が0.
5g/m2 未満では形成するフォルステライトが少なく
なって、本発明の技術をもってしても良質被膜が均一に
得られない。また、仕上焼鈍の昇温時のインヒビターの
減少も早まって、極端な場合二次再結晶粒の方位が悪く
なるという問題が生じる。一方、1.3g/m2 超で
は、形成するフォルステライト量が多くなり過ぎたり、
サブスケールと呼ぶ内部酸化層の増大によって磁性が劣
化する。特に、本発明で特徴とするような磁区細分化時
に超低鉄損材が得られない。また、1.3g/m2超の
SiO2 量では酸化膜中の(Fe、Mn)2 SiO4
の低級酸化物が増大して、ピンホール、スケール等の過
酸化現象特有の被膜欠陥を生じ易くなる。
According to the present invention, S in the decarboxylated film as described above is used.
Even under conditions where the amount of iO 2 was reduced, the development of coating conditions for the annealing separator significantly improved the film forming reactivity,
It makes it possible to form a thin, good quality glass coating. The amount of SiO 2 in the oxide film during decarburization annealing is 0.
If it is less than 5 g / m 2 , the amount of forsterite formed is small, and a good quality film cannot be obtained uniformly even with the technique of the present invention. In addition, the decrease in the inhibitor during the temperature rise of the finish annealing is accelerated, and in the extreme case, the orientation of the secondary recrystallized grains becomes worse. On the other hand, if it exceeds 1.3 g / m 2 , the amount of forsterite formed becomes too large,
Magnetism deteriorates due to an increase in the internal oxide layer called subscale. In particular, an ultra-low iron loss material cannot be obtained when the magnetic domains are subdivided, which is the feature of the present invention. Further, when the amount of SiO 2 exceeds 1.3 g / m 2 , lower oxides such as (Fe, Mn) 2 SiO 4 in the oxide film increase, causing film defects such as pinholes and scales peculiar to the peroxidation phenomenon. It tends to occur.

【0023】本発明で最も特徴とするところは次の焼鈍
分離剤スラリーの調整法である。スラリーの均一、超微
粒子分散法として超微粒粉砕装置を用いて行う。これに
よって従来のプロペラ状、シャー状等の回転体を設けた
装置では解決できなかった焼鈍分離剤の超微粒分散及び
破砕による表面の活性化が得られる。超微粒粉砕装置に
よる分散処理は、焼鈍分離剤スラリーの調整中、調整後
の鋼板に塗布するまでの過程で図1に示すように回転体
砥石を設けた装置で行う。この時の粉砕、破砕条件は砥
石の表面形状、砥石のクリアランス、焼鈍分離剤の濃度
等を変えて、処理流量をコントロールしながら行う。
The most characteristic feature of the present invention is the following method for preparing an annealing separator slurry. As a method for uniformly dispersing the ultrafine particles of the slurry, an ultrafine particle pulverizer is used. As a result, surface activation can be obtained by dispersing and crushing ultrafine particles of the annealing separator, which cannot be solved by the conventional apparatus provided with a propeller-shaped or shear-shaped rotating body. The dispersion treatment by the ultra-fine particle pulverizer is performed by an apparatus provided with a rotary grindstone as shown in FIG. 1 during the process of adjusting the annealing separator slurry and before applying it to the steel plate after the adjustment. The grinding and crushing conditions at this time are controlled by changing the surface shape of the grindstone, the clearance of the grindstone, the concentration of the annealing separator, and the like, while controlling the processing flow rate.

【0024】また、これらの設定条件は供給される焼鈍
分離剤の焼結状態、凝集性等に応じて行われる。この超
微粒粉砕処理は、従来の攪拌装置でのミキシングと同様
に水和水分を増加する。好ましくはスラリーの液温度を
冷却調節しながら行うのが良く、超微粒粉砕処理は1〜
10パス程度が好ましい。このような条件では水和水分
の増加がなく、効果が絶大である。
These setting conditions are determined according to the sintering state, cohesiveness, etc. of the supplied annealing separator. This ultra-fine pulverization treatment increases hydrated water similarly to mixing in a conventional stirring device. It is preferable to perform the cooling while adjusting the liquid temperature of the slurry, and the ultrafine particle pulverization treatment is 1 to
About 10 passes are preferable. Under such conditions, the hydrated water content does not increase and the effect is great.

【0025】実際、超微粒粉砕処理では、かなり強固な
焼結体や凝集体でも1回の通過処理で、ほぼ70〜80
%まで超微粒化が完了する。本発明における超微粒粉砕
装置の適用にあたっては、焼鈍分離剤スラリーの調整〜
鋼板塗布までの間において、通常の攪拌装置との併用が
好ましい。即ち、前述の如く超微粒粉砕処理は極短時間
で完了し、この後長時間の通常の攪拌を行っても再凝集
が生じないため、通常の攪拌との併用で十分である。こ
のため、工業的に適用する場合、スラリーの攪拌装置を
設置した通常の攪拌装置との連結、或いはバイパスに設
置した装置により1回以上の超微粒化処理を行ってスラ
リーを循環しながらコイルへの塗布作業を行うのが最適
である。
In fact, in the ultrafine particle crushing process, even a considerably strong sintered body or agglomerate can be processed in approximately 70 to 80 in one pass.
Ultra-fine graining is completed up to%. In applying the ultrafine particle pulverizer in the present invention, adjustment of the annealing separator slurry-
It is preferable to use it together with an ordinary stirring device before coating the steel sheet. That is, as described above, the ultrafine particle pulverization treatment is completed in an extremely short time, and reaggregation does not occur even if a normal stirring for a long time is performed thereafter, so that the combined use with the normal stirring is sufficient. For this reason, when industrially applied, the slurry is circulated to the coil while circulating the slurry by performing one or more ultra-fine atomization treatments with a device installed in a bypass or connected to a normal agitator equipped with a slurry agitator. It is best to carry out the coating work.

【0026】本発明の焼鈍分離剤の調整にあたっては焼
鈍分離剤はMgO100重量部に対し、Al、Mg、C
a、Na、K、B、V、P、Sb、Sr等の酸化物、硫
化物、硫酸塩、燐酸塩、硼酸塩等の1種又は2種以上
0.1〜10重量部を添加して用いられる。これらの添
加剤はフォルステライト形成反応における反応促進剤或
いはインヒビター強化及び安定剤として作用する。
In preparing the annealing separator of the present invention, the annealing separator is Al, Mg, C based on 100 parts by weight of MgO.
a, Na, K, B, V, P, Sb, Sr and other oxides, sulfides, sulfates, phosphates, borates, etc. Used. These additives act as reaction accelerators or inhibitor enhancers and stabilizers in the forsterite formation reaction.

【0027】それぞれの添加物の化合物の形態によって
効果は異なるが、添加量が0.1重量部未満では十分な
効果が得られない。一方、10重量部より多いとグラス
被膜形成時に融点が下がり過ぎたり、過酸化現象が生じ
てシモフリ状、スケール状等の欠陥が生じる。また、仕
上焼鈍中の追加酸化によって酸化膜中のSiO2 量が増
大する結果、フォルステライト形成量が増大したり、内
部酸化層が増加して磁性劣化の原因になるので好ましく
ない。
The effect varies depending on the form of each additive compound, but if the amount added is less than 0.1 part by weight, a sufficient effect cannot be obtained. On the other hand, if the amount is more than 10 parts by weight, the melting point is lowered too much at the time of forming the glass film, or a peroxide phenomenon occurs to cause defects such as shimofuri and scale. Further, the additional oxidation during finish annealing increases the amount of SiO 2 in the oxide film, resulting in an increase in the amount of forsterite formed or an increase in the internal oxide layer, which is a cause of magnetic deterioration, which is not preferable.

【0028】次に本発明によりグラス被膜が均一に形成
され、磁気特性が向上する理由を述べる。本発明では、
脱炭焼鈍における酸化膜中のSiO2量を制御した条件
で、表面に塗布される焼鈍分離剤の分散状態、付着状
態、均一性等を向上する。この際必要に応じて添加され
る酸化物、硫化物、硫酸塩、燐酸塩、硼酸塩等の化合物
も同時に超微細に分散、破砕され、超微粒子となってM
gO表面や鋼板表面に均一に分布する。この結果、従来
技術では得られなかった高反応性、反応の均一性が得ら
れ、グラス被膜の形成性を向上し、薄く均一に高密度の
グラス被膜を形成し、且つその反応過程でインヒビター
の強化や安定化等を適度にコントロールすることで磁性
を向上させる。更に、この良質グラス被膜を形成する結
果、被膜厚みの減少と磁区細分化処理における磁壁移動
の際のバリヤーの減少によって鉄損改善効果が高められ
る。
Next, the reason why the glass film is uniformly formed and the magnetic characteristics are improved by the present invention will be described. In the present invention,
Under the conditions in which the amount of SiO 2 in the oxide film during decarburization annealing is controlled, the dispersion state, adhesion state, uniformity, etc. of the annealing separator applied to the surface are improved. At this time, compounds such as oxides, sulfides, sulfates, phosphates, borates, etc., which are added if necessary, are also finely dispersed and crushed at the same time to form ultrafine particles.
It is evenly distributed on the gO surface and the steel plate surface. As a result, high reactivity and uniformity of reaction, which were not obtained by the conventional technology, are obtained, the forming property of the glass film is improved, a thin and high-density glass film is formed, and the inhibitor Improve the magnetism by controlling the strengthening and stabilization appropriately. Further, as a result of forming this high-quality glass coating, the iron loss improving effect is enhanced by the reduction of the coating thickness and the reduction of the barrier at the time of domain wall movement in the domain segmentation treatment.

【0029】[0029]

【実施例】【Example】

実施例1 重量%でC:0.075%、Si:3.30%、Mn:
0.062%、S:0.025%、Al:0.026
%、N:0.0078%、残部Feと不可避の不純物か
らなる高磁束密度方向性電磁鋼板用素材を公知の方法で
処理し、最終板厚0.22mmの冷延板を得た。この鋼
板をN2 25%+H2 75%で露点を変更して850℃
×120秒間の脱炭焼鈍を行い、酸化膜中のSiO2
の異なるコイルを製造した。
Example 1 C: 0.075% by weight, Si: 3.30%, Mn:
0.062%, S: 0.025%, Al: 0.026
%, N: 0.0078%, the balance being Fe and inevitable impurities, a material for high magnetic flux density grain-oriented electrical steel sheet was treated by a known method to obtain a cold rolled sheet having a final sheet thickness of 0.22 mm. This steel plate is N 2 25% + H 2 75% and the dew point is changed to 850 ° C.
Decarburization annealing was performed for 120 seconds to manufacture coils having different amounts of SiO 2 in the oxide film.

【0030】次いで、この鋼板に表3に示すように焼鈍
分離剤の組成とスラリーの調整条件を変えて塗布し、巻
き取り、1200℃×20Hrの最終仕上焼鈍を行っ
た。この後、絶縁被膜剤として50%りん酸Al50l
+30%コロイダルシリカ70l+CrO3 7kgから
なる張力付与型コーティング剤を塗布し、850℃×3
0秒間の焼付処理を行った。この試験工程において焼鈍
分離剤の塗布状況、製品特性等を調査した結果を表4に
示す。
Then, as shown in Table 3, the steel sheet was coated by changing the composition of the annealing separator and the adjusting condition of the slurry, wound, and subjected to final finishing annealing at 1200 ° C. × 20 Hr. After this, 50l of 50% phosphoric acid Al as an insulating coating agent
+ 30% colloidal silica 70l + CrO 3 7kg was applied and a tensioning type coating agent was applied, and 850 ° C x 3
A baking process was performed for 0 seconds. Table 4 shows the results of an examination of the application state of the annealing separator, product characteristics, etc. in this test process.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】この結果、本発明によるものは、いずれも
焼鈍分離剤が均一、微細に且つ密着性良く塗布された。
一方、比較例のホモミキサーのみの攪拌では、粗大粒が
多く見られ、不均一で、ザラツキが非常に多かった。ま
た、鋼板に対する付着性も非常に悪く、剥離しやすい状
況であった。仕上焼鈍後の特性も、本発明では光沢のあ
る良質のグラス被膜が均一に形成され、磁気特性も非常
に良好な結果が得られた。特に、脱炭焼鈍後のSiO2
形成量0.8g以下のものは著しく良好な特性が得られ
た。しかし、比較例では、グラス被膜が薄く、不均一に
形成され、磁気特性も本発明に比較してかなり悪い結果
となった。
As a result, in all of the products according to the present invention, the annealing separator was applied uniformly, finely and with good adhesion.
On the other hand, when only the homomixer of Comparative Example was used for stirring, many coarse particles were observed, the particles were uneven, and the graininess was very large. Further, the adhesiveness to the steel plate was also very poor, and the situation was such that peeling was likely to occur. Regarding the characteristics after finish annealing, a high-quality glossy glass film was uniformly formed in the present invention, and very good magnetic characteristics were obtained. In particular, SiO 2 after decarburization annealing
When the amount formed was 0.8 g or less, remarkably good characteristics were obtained. However, in the comparative example, the glass coating was thin and formed nonuniformly, and the magnetic characteristics were considerably worse than those of the present invention.

【0034】実施例2 実施例1と同一の素材を出発材とし、同様に処理して最
終板厚0.20mmに冷延した。このコイルをN2 25
%+H2 75%、露点65℃雰囲気中で脱炭焼鈍し、表
5に示すように焼鈍分離剤組成とスラリー調整条件を変
えて鋼板に塗布し、1200℃×20Hrの仕上焼鈍を
行った。次いで実施例1と同様にして絶縁被膜材を塗布
し、焼付処理を行った。この製品にYAGレーザーを用
いて圧延方向と直角方向に間隔5mmで線状歪みを付与
し、磁区細分化処理を行った。
Example 2 The same material as in Example 1 was used as a starting material, and processed in the same manner, and cold rolled to a final plate thickness of 0.20 mm. This coil is N 2 25
% + H 2 75%, decarburization annealing was performed in an atmosphere with a dew point of 65 ° C., the annealing separator composition and slurry adjusting conditions were changed as shown in Table 5, and the steel sheet was applied and finish annealing was performed at 1200 ° C. × 20 Hr. Then, in the same manner as in Example 1, an insulating coating material was applied and baked. A linear distortion was applied to this product at a distance of 5 mm in the direction perpendicular to the rolling direction using a YAG laser, and magnetic domain subdivision processing was performed.

【0035】この試験における焼鈍分離剤スラリーの粒
度、塗布状況及び製品の被膜特性、磁気特性を表6に示
す。
Table 6 shows the particle size of the annealing separating agent slurry, the coating state, the coating properties of the product, and the magnetic properties in this test.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】この結果、本発明によるものは、スラリー
中での粒度が著しく微細で、鋼板表面への塗布後は表面
が微細且つ均一に塗布され、鋼板に対する密着性も強く
良好であった。また、仕上焼鈍後のグラス被膜の形成状
況はいずれも均一で光沢のある良質のグラス被膜が形成
された。磁気特性も本発明によるものは磁束密度、鉄損
値共に良好で、特に磁区細分化処理後では著しく良好な
改善効果が得られた。一方、比較例の条件ではスラリー
中の凝集粒により、粒度がかなり大きく、鋼板への塗布
後は表面がザラザラで付着性が悪かった。このため、仕
上焼鈍後のグラス被膜はいずれも薄く、ムラが多い状況
であった。また、磁気特性も本発明に比較すると、かな
り悪い結果となった。
As a result, according to the present invention, the particle size in the slurry was extremely fine, the surface of the steel sheet was finely and uniformly applied after the application, and the adhesion to the steel sheet was strong and good. In addition, the glass coating film after finishing annealing was formed in a uniform and glossy quality. Regarding the magnetic properties, the magnetic flux density and iron loss value according to the present invention were good, and a particularly good improvement effect was obtained after the magnetic domain refining treatment. On the other hand, under the conditions of the comparative example, the particle size was considerably large due to the agglomerated particles in the slurry, and the surface was rough and the adhesion was poor after the application to the steel sheet. For this reason, the glass films after finish annealing were all thin and uneven. Also, the magnetic properties were considerably worse than those of the present invention.

【0039】[0039]

【発明の効果】本発明に従い、焼鈍分離剤を鋼板に塗布
する際、超微粒粉砕装置によりスラリーを解砕すること
により、焼結体、凝集体が超微粒に分散し、鋼板面に均
一に密着性良く塗布され、これによりグラス被膜形成反
応性が顕著に改善される。また本発明に従い、脱炭焼鈍
時の鋼板酸化量を制御することにより、薄く、均一で良
質のグラス被膜が形成され、これにより磁気特性を向上
できる。また、このようにして得られた鋼板は磁区細分
化効果が大きく、良好な鉄損特性が得られる。
According to the present invention, when the annealing separator is applied to the steel sheet, the slurry is crushed by the ultrafine particle crushing device to disperse the sintered body and the agglomerates into the ultrafine particles, so that the steel sheet surface is evenly distributed. It is applied with good adhesion, whereby the reactivity of glass film formation is significantly improved. Further, according to the present invention, by controlling the amount of steel sheet oxidation during decarburization annealing, a thin, uniform and high-quality glass film is formed, which can improve the magnetic properties. Further, the steel sheet thus obtained has a large magnetic domain refining effect, and good iron loss characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超微粒粉砕装置の概略図である。FIG. 1 is a schematic view of an ultrafine particle crushing device of the present invention.

【図2】砥石の形状の代表例を示す図である。FIG. 2 is a diagram showing a typical example of the shape of a grindstone.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 弘 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Sato 59 Nittetsu Plant Design Co., Ltd., 46 Nakahara, Tobata-ku, Kitakyushu, Fukuoka

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 方向性電磁鋼板用素材を最終板厚に冷延
し、脱炭焼鈍し、SiO2 を主成分とする酸化膜層を形
成し、MgOを主成分とする焼鈍分離剤を塗布し、仕上
焼鈍を行うことからなる工程において、脱炭焼鈍時に形
成する鋼板酸化膜中のSiO2 を0.5〜1.3g/m
2 として焼鈍し、焼鈍分離剤を塗布するに際し、水に懸
濁させた焼鈍分離剤スラリーを超微粒粉砕装置により粒
子の均一微細化と活性化処理を行った後、塗布、乾燥
し、コイルに巻き取り、最終仕上焼鈍することからなる
均一なグラス被膜を有し、磁気特性の優れた方向性電磁
鋼板の製造方法。
1. A material for a grain-oriented electrical steel sheet is cold rolled to a final thickness, decarburized and annealed to form an oxide film layer containing SiO 2 as a main component, and an annealing separator containing MgO as a main component is applied. Then, in a process consisting of performing finish annealing, 0.5 to 1.3 g / m of SiO 2 in the steel sheet oxide film formed during decarburization annealing
Annealing as 2 , when applying the annealing separating agent, after the annealing separating agent slurry suspended in water is subjected to uniform fineness and activation treatment of particles with an ultrafine pulverizer, coating, drying, coil A method for producing a grain-oriented electrical steel sheet which has a uniform glass coating formed by winding and final annealing and has excellent magnetic properties.
【請求項2】 焼鈍分離剤組成がMgO100重量部に
対し、Al、Mg、Ca、Na、K、V、B、P、S
b、Sr等の酸化物、硫化物、硫酸塩、燐酸塩、硼酸塩
等の中から選ばれる1種又は2種以上を0.1〜10重
量部添加することからなる請求項1記載の均一なグラス
被膜を有し、磁気特性の優れた方向性電磁鋼板の製造方
法。
2. An annealing separator composition is Al, Mg, Ca, Na, K, V, B, P, S based on 100 parts by weight of MgO.
The homogeneous composition according to claim 1, wherein 0.1 to 10 parts by weight of one or more selected from oxides such as b and Sr, sulfides, sulfates, phosphates, borates, etc. is added. Method for producing grain-oriented electrical steel sheet with excellent glass properties and excellent glass coating.
JP4736592A 1992-03-04 1992-03-04 Production of grain oriented silicon steel sheet having uniform glass film and excellent in magnetic property Withdrawn JPH05247661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4736592A JPH05247661A (en) 1992-03-04 1992-03-04 Production of grain oriented silicon steel sheet having uniform glass film and excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4736592A JPH05247661A (en) 1992-03-04 1992-03-04 Production of grain oriented silicon steel sheet having uniform glass film and excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH05247661A true JPH05247661A (en) 1993-09-24

Family

ID=12773087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4736592A Withdrawn JPH05247661A (en) 1992-03-04 1992-03-04 Production of grain oriented silicon steel sheet having uniform glass film and excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH05247661A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025820A1 (en) * 1994-03-22 1995-09-28 EBG Gesellschaft für elektromagnetische Werkstoffe mbH Process for producing magnetic steel sheets with a glass coating
EP0699771A1 (en) 1994-05-13 1996-03-06 Nippon Steel Corporation Annealing separator having excellent reactivity for grain-oriented electrical steel sheet and method of use the same
EP0789093A1 (en) 1994-11-16 1997-08-13 Nippon Steel Corporation Process for producing directional electrical sheet excellent in glass coating and magnetic properties
JP2012001752A (en) * 2010-06-15 2012-01-05 Jfe Steel Corp Annealing separating-agent and method for producing grain-oriented magnetic steel sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025820A1 (en) * 1994-03-22 1995-09-28 EBG Gesellschaft für elektromagnetische Werkstoffe mbH Process for producing magnetic steel sheets with a glass coating
US5863356A (en) * 1994-03-22 1999-01-26 Ebg Gesellschaft Fur Elektromagnetische Werkstoffe Mbh Method for producing electric sheets with a glass coating
KR100367985B1 (en) * 1994-03-22 2003-08-02 에베게 게젤샤프트 퓌어 엘렉트로마그네티체 베르크스토페 엠베하 Manufacturing method of electronic steel sheet coated with glass
EP0699771A1 (en) 1994-05-13 1996-03-06 Nippon Steel Corporation Annealing separator having excellent reactivity for grain-oriented electrical steel sheet and method of use the same
US5685920A (en) * 1994-05-13 1997-11-11 Nippon Steel Corporation Annealing separator having excellent reactivity for grain-oriented electrical steel sheet and method of use the same
EP0789093A1 (en) 1994-11-16 1997-08-13 Nippon Steel Corporation Process for producing directional electrical sheet excellent in glass coating and magnetic properties
EP0789093B2 (en) 1994-11-16 2005-02-09 Nippon Steel Corporation Process for producing directional electrical sheet excellent in glass coating and magnetic properties
JP2012001752A (en) * 2010-06-15 2012-01-05 Jfe Steel Corp Annealing separating-agent and method for producing grain-oriented magnetic steel sheet

Similar Documents

Publication Publication Date Title
US4979996A (en) Process for preparation of grain-oriented electrical steel sheet comprising a nitriding treatment
KR0157539B1 (en) Annealing separator having excellent reactivity for grain-oriented electrical steel sheet and method of use the same
US4775430A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic properties
JP4192282B2 (en) Method for producing MgO for annealing separator
JP4632775B2 (en) Method for producing MgO for annealing separator
JPH05247661A (en) Production of grain oriented silicon steel sheet having uniform glass film and excellent in magnetic property
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
JP3356933B2 (en) Annealing separator with excellent film-forming ability and method for producing grain-oriented electrical steel sheet using the same
JP2711614B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent film properties and magnetic properties
JP3091096B2 (en) Annealing separator and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic properties
JP3043975B2 (en) Annealing separator for grain-oriented silicon steel sheet
JP3059338B2 (en) Annealing separating agent for grain-oriented electrical steel sheet having extremely excellent reactivity and method of using the same
JPH0225433B2 (en)
JP3103953B2 (en) Ultrafine and uniform coating method of annealing separator MgO and pulverizing device of annealing separator MgO
JP3707249B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating uniformity
JP2721466B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent coating and magnetic properties
JPH0949028A (en) Production of grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating
JP3933225B2 (en) Method for preparing MgO powder for annealing separator during production of grain-oriented electrical steel sheet
JPS633008B2 (en)
KR100900660B1 (en) Coating composition with superior powder coating and surface properties
JPH05295423A (en) Production of grain-oriented silicon steel sheet excellent in film charactierstic and magnetic property
JP2001192738A (en) Method for producing grain oriented silicon steel sheet excellent in glass film characteristic and magnetic property
JP2001192737A (en) Method for producing grain oriented silicon steel sheet excellent in glass film characteristic and magnetic property
JP3179703B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPH08143961A (en) Production of grain oriented silicon steel sheet extremely excellent in glass film and magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518