JP5729009B2 - Annealing separator - Google Patents
Annealing separator Download PDFInfo
- Publication number
- JP5729009B2 JP5729009B2 JP2011040143A JP2011040143A JP5729009B2 JP 5729009 B2 JP5729009 B2 JP 5729009B2 JP 2011040143 A JP2011040143 A JP 2011040143A JP 2011040143 A JP2011040143 A JP 2011040143A JP 5729009 B2 JP5729009 B2 JP 5729009B2
- Authority
- JP
- Japan
- Prior art keywords
- magnesia
- annealing
- coil
- less
- annealing separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000137 annealing Methods 0.000 title claims description 54
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 76
- 239000002245 particle Substances 0.000 claims description 41
- 239000000395 magnesium oxide Substances 0.000 claims description 37
- 229910000831 Steel Inorganic materials 0.000 description 30
- 239000010959 steel Substances 0.000 description 30
- 239000011362 coarse particle Substances 0.000 description 12
- 230000003068 static effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910052839 forsterite Inorganic materials 0.000 description 5
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 240000006829 Ficus sundaica Species 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- -1 silicate compound Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
Images
Classifications
-
- Y02P10/212—
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Description
本発明は、焼鈍分離剤であって、特に、方向性電磁鋼板をコイル状に巻き取った際に発生するコイル内径部のバックリングの発生を抑制するのに有効な、焼鈍分離剤に関するものである。 The present invention relates to an annealing separator, and more particularly to an annealing separator that is effective in suppressing the occurrence of buckling of a coil inner diameter portion that occurs when a grain-oriented electrical steel sheet is wound into a coil shape. is there.
例えば、方向性電磁鋼板の製造工程は、所定の成分組成に調整した鋼スラブに、熱間圧延、焼鈍および冷間圧延を施し、再結晶焼鈍、仕上焼鈍、そして平坦化焼鈍を行うのが一般的である。これらの工程のうち、再結晶焼鈍では、続く仕上焼鈍中に鋼板コイルが融着するのを防止するために、焼鈍分離剤を鋼板表面に塗布するのが通例である。 For example, the production process of grain-oriented electrical steel sheets is generally performed by subjecting a steel slab adjusted to a predetermined composition to hot rolling, annealing and cold rolling, and performing recrystallization annealing, finish annealing, and flattening annealing. Is. Of these steps, in recrystallization annealing, it is customary to apply an annealing separator to the surface of the steel sheet in order to prevent the steel sheet coil from fusing during subsequent finish annealing.
この焼鈍分離剤は、鋼板表面に形成されたシリカと反応させて、鋼板表面にフォルステライト質被膜を形成させるために、マグネシア(MgO)を主体とするものが多い。焼鈍分離剤が塗布された鋼板は、次いでコイル状に巻き取られる。その際、通常の冷延鋼板の場合と同等の巻き取り張力で巻き取ると、縦置き状態(アップエンド状態)で仕上焼鈍する間に、コイルの下部が自重で変形してしまうため、通常の冷延鋼板よりも高い張力で巻き取るのが一般的である。 Many of these annealing separators are mainly composed of magnesia (MgO) in order to react with silica formed on the steel sheet surface to form a forsterite film on the steel sheet surface. The steel sheet coated with the annealing separator is then wound into a coil. At that time, if the coil is wound at a winding tension equivalent to that of a normal cold-rolled steel sheet, the lower part of the coil will be deformed by its own weight during finish annealing in the vertical state (up-end state). It is common to wind up with a tension | tensile_strength higher than a cold-rolled steel plate.
しかしながら、高い張力で巻き取られているために、コイルがゆるんだ際に、コイル内径部に座屈(バックリング)が発生することが問題であった。即ち、バックリングが生じた部分をスクラップにする必要があるため歩留まりが低下し、また、平坦化焼鈍時にコイルを横置き状態(ダウンエンド状態)でペイオフリールに挿入する際に、バックリング部分を予め除去する必要が生じることも問題であった。 However, since the coil is wound with a high tension, when the coil is loosened, there has been a problem that buckling occurs in the inner diameter portion of the coil. That is, since it is necessary to scrape the portion where buckling has occurred, the yield is reduced, and when the coil is inserted into the payoff reel in the horizontal state (down-end state) during flattening annealing, the buckling portion is Another problem was the need to remove it in advance.
これらの問題に対し、特許文献1では、コイルの巻き取り張力を適正化するとともに、コイルにゆるみが生じないように焼鈍分離剤の線収縮率を適正化し、また、スラリー化後の焼鈍分離剤中の粒径40μm以上の粒子を低減することにより、つぶれやバックリングを防止する技術が提案されている。 With respect to these problems, in Patent Document 1, the coil winding tension is optimized, the linear shrinkage rate of the annealing separator is optimized so that the coil does not loosen, and the annealed separator after slurrying is used. A technique for preventing crushing and buckling by reducing particles having a particle size of 40 μm or more is proposed.
しかしながら、特許文献1の技術により、形状不良が大きく低減され、歩留まりは改善するものの、圧延条件などの変動により鋼板表面の性状が変化し、鋼板と焼鈍分離剤との界面の摩擦係数が変化した際に、バックリングが依然として発生する点に問題を残していた。
そこで、本発明の目的は、鋼板をコイル状に巻き取った際のコイル内径部のバックリングの発生を抑制する焼鈍分離剤に関するものである。
However, although the shape defect is greatly reduced and the yield is improved by the technique of Patent Document 1, the property of the steel sheet surface changes due to fluctuations in rolling conditions and the friction coefficient at the interface between the steel sheet and the annealing separator changes. However, there was a problem in that buckling still occurred.
Then, the objective of this invention is related with the annealing separation agent which suppresses generation | occurrence | production of the buckling of the coil internal-diameter part at the time of winding up a steel plate in a coil shape.
発明者らは、上記課題を解決するための方途について鋭意究明した結果、焼鈍分離剤中に適正範囲径の粗大粒を適正量含有させることにより、ロール状に巻き取られた鋼板間にグリップ効果を生じさせ、鋼板間の滑りを機械的に抑制させることによりバックリングを防止できることを見出し、本発明を完成させるに到った。 As a result of diligent investigations on how to solve the above problems, the inventors have included a proper amount of coarse grains having an appropriate range diameter in the annealing separator, thereby providing a grip effect between the steel sheets wound up in a roll shape. It has been found that buckling can be prevented by mechanically suppressing slippage between steel plates, and the present invention has been completed.
即ち、本発明の要旨構成は以下の通りである。
(1)マグネシアを含む焼鈍分離剤であって、該マグネシアとして、粒径が25μm以上75μm未満のマグネシア:0.05質量%以上20質量%以下を少なくとも含有し、かつ粒径75μm以上のマグネシアを0.01質量%以下に抑制し、体積収縮率が20%以上80%以下であり、前記マグネシアの全含有量が60質量%以上であることを特徴とする焼鈍分離剤。
(2)前記マグネシアの全含有量が80質量%以上であることを特徴とする、(1)に記載の焼鈍分離剤。
That is, the summary and construction of the present invention is the following passage Ride.
(1) An annealing separator containing magnesia, the magnesia having a particle size of 25 μm or more and less than 75 μm: magnesia containing at least 0.05% by mass to 20% by mass and having a particle size of 75 μm or more suppressed to 0.01 mass% or less state, and are volumetric shrinkage less 80% 20%, annealing separator which total content of the magnesia is characterized der Rukoto least 60 wt%.
(2) The annealing separator according to (1), wherein the total content of magnesia is 80% by mass or more.
本発明によれば、コイル状に巻き取った際に生じるコイル内径部に発生するバックリングを防止することができる。その結果、スクラップコイルの発生が防止されるため製品の歩留まりが向上し、コイルを抜き取ることができない等のライントラブルを防止することができる。 According to the present invention, it is possible to prevent buckling that occurs at the inner diameter of the coil that occurs when the coil is wound. As a result, since the generation of scrap coils is prevented, the product yield is improved, and line troubles such as failure to pull out the coils can be prevented.
以下、本発明について具体的に説明する。
鋼板をコイル状に巻き取った際に、コイル内径部にバックリングが発生する問題は、電磁鋼板に限った問題ではなく、冷延鋼板においても発生する問題である。コイル内径部にバックリングが発生する原因は、コイルを巻き取る際の巻き取り張力が過大なために、コイルがゆるんだ際にコイル内径部が圧縮応力に耐えられないことにある。このバックリングは、鋼板間の摩擦係数が小さい場合、コイルの真円度が低い場合、または鋼板が薄い場合に起こりやすいことが知られている。そのため、従来は、例えば特許文献1に記載されているように、含有する粗大粒を低減することにより最大静止摩擦係数を高めた焼鈍分離剤が提案されてきた。
Hereinafter, the present invention will be specifically described.
The problem that buckling occurs at the inner diameter portion of the coil when the steel sheet is wound in a coil shape is not limited to the electromagnetic steel sheet but also occurs in the cold-rolled steel sheet. The cause of buckling in the coil inner diameter portion is that the coil inner diameter portion cannot withstand compressive stress when the coil is loosened because the winding tension when winding the coil is excessive. It is known that this buckling is likely to occur when the coefficient of friction between the steel plates is small, when the roundness of the coil is low, or when the steel plate is thin. Therefore, conventionally, as described in, for example, Patent Document 1, an annealing separator having a maximum static friction coefficient increased by reducing coarse particles contained has been proposed.
しかしながら、発明者らは、バックリングが発生するか否かは、鋼板間の最大静止摩擦係数によって必ずしも決定されず、粗大粒を含んで最大静止摩擦係数が小さいにもかかわらず、バックリングが発生しない焼鈍分離剤が存在することを見出したのである。以下に、この知見を得るに至った実験結果について説明する。 However, the inventors do not necessarily determine whether or not buckling occurs depending on the maximum coefficient of static friction between the steel sheets, and buckling occurs even though the maximum coefficient of static friction including coarse grains is small. It has been found that there is an annealing separator that does not. The experimental results that led to this knowledge will be described below.
標準篩で390メッシュ以上、330メッシュ未満(即ち、38μm以上45μm未満)の粒径を有するマグネシアの粗大粒を1.0質量%含み、残部が標準篩で500メッシュ未満(即ち、25μm未満)のマグネシアからなる焼鈍分離剤と、上記粗大粒を含まない同組成の焼鈍分離剤とを、それぞれ塗布した、150mm×80mm×0.27mm厚のサイズの鋼板をそれぞれ3枚用意し、これらを積層して、2.9×105N/m2(3.0kgf/cm2)の面圧を付与し、2枚目(即ち、真ん中)の鋼板を0.2mm/sの速度で引き抜いた。その際の引き抜き荷重の時間変化を図1に示す。 1.0% by mass of coarse magnesia particles having a particle size of 390 mesh or more and less than 330 mesh (that is, 38 μm or more and less than 45 μm) with a standard sieve, and the balance is less than 500 mesh (that is, less than 25 μm) with a standard sieve Prepare three steel plates each having a size of 150 mm x 80 mm x 0.27 mm, each coated with an annealing separator made of magnesia and an annealing separator of the same composition that does not contain the coarse particles. Then, a surface pressure of 2.9 × 10 5 N / m 2 (3.0 kgf / cm 2 ) was applied, and the second (that is, the middle) steel plate was pulled out at a speed of 0.2 mm / s. FIG. 1 shows the time variation of the drawing load at that time.
この図から明らかなように、引き抜き荷重の最大値は、粗大粒を含まない場合には400Nであるのに対し、粗大粒を含む場合には390Nとなった。これは、最大静止摩擦係数は、粗大粒を含む場合の方が小さいことを示している。しかし、コイル状鋼板のバックリングは、焼鈍分離剤が粗大粒を含まない場合に発生し、粗大粒を含む場合には発生しなかったのである。 As is apparent from this figure, the maximum value of the drawing load is 400 N when coarse particles are not included, but is 390 N when coarse particles are included. This indicates that the maximum coefficient of static friction is smaller when coarse particles are included. However, the buckling of the coiled steel sheet occurred when the annealing separator did not contain coarse grains, and did not occur when the coarse steel grains contained coarse grains.
この理由は明らかではないが、おおよそ次のメカニズムによるものと考えられる。即ち、粗大粒を含まない焼鈍分離剤では、最大静止摩擦力を超える応力が付与されると、摩擦力は減少する一方である。これに対して、粗大粒が存在する場合には、最大静止摩擦力は粗大粒を含まない場合よりも小さいものの、最大静止摩擦力を超える応力が付与されると、滑りが徐々に発生することにより応力を緩和しつつ、粗大粒により鋼板間にグリップ効果が生じて動摩擦力が上昇して滑りが止まったためと考えられる。 The reason for this is not clear, but is probably due to the following mechanism. That is, with an annealing separator that does not contain coarse particles, the frictional force is decreasing when a stress exceeding the maximum static frictional force is applied. On the other hand, when coarse particles are present, the maximum static friction force is smaller than when no coarse particles are included, but slippage occurs gradually when stress exceeding the maximum static friction force is applied. This is considered to be due to the fact that the coarse effect causes a grip effect between the steel plates while the stress is relieved, and the dynamic friction force increases and the slippage stops.
以上の実験結果および粗大粒の粒径範囲や含有量を鋭意検討した結果、発明者らは、コイル内径部に発生するバックリングを防止するためには、適正範囲径の粗大粒を適正量だけ焼鈍分離剤に含有させることが有効であることを見出したのである。 As a result of earnestly examining the above experimental results and the particle size range and content of coarse particles, the inventors have found that the appropriate amount of coarse particles having an appropriate range diameter is used in order to prevent buckling occurring in the inner diameter portion of the coil. It has been found that it is effective to contain it in an annealing separator.
以下に、本発明について、各構成要件の限定理由について説明する。
まず、焼鈍分離剤中のマグネシアの含有率は任意であるが、優れた被膜性状を得る点から、60%以上とすることが好ましい。これは、マグネシアの含有率を60%以上とすることにより、鋼板表面のシリカと反応させてフォルステライト質被膜を形成させることが容易になるためである。より好ましくは80%以上である。
Below, the reason for limitation of each structural requirement is demonstrated about this invention.
First, the content of magnesia in the annealing separator is arbitrary, but it is preferably 60% or more from the viewpoint of obtaining excellent film properties. This is because by setting the content of magnesia to 60% or more, it becomes easy to react with silica on the surface of the steel sheet to form a forsterite film. More preferably, it is 80% or more.
また、マグネシアとして、粒径が25μm以上75μm未満のマグネシア:0.05質量%以上20質量%以下を少なくとも含有するようにする。ここで、粒径を上記範囲に限定する理由は、マグネシアの粒径が25μmよりも小さい場合には、粒径が小さいために鋼板間のグリップ効果が小さいためである。また、75μmよりも大きい場合には、粗大粒がコロとなって最大静止摩擦力の低下が大きくなり、逆にバックリングが生じやすくなるためである。以下、25μm以上の粒径を有する粒子を「粗大粒」と称する。 Further, as magnesia, magnesia having a particle size of 25 μm or more and less than 75 μm: at least 0.05 mass% or more and 20 mass% or less is contained. Here, the reason why the particle size is limited to the above range is that when the magnesia particle size is smaller than 25 μm, the grip effect between the steel plates is small because the particle size is small. On the other hand, when it is larger than 75 μm, coarse grains become rollers and the reduction of the maximum static frictional force is increased, and conversely, buckling is likely to occur. Hereinafter, particles having a particle size of 25 μm or more are referred to as “coarse particles”.
上記範囲径のマグネシアの含有率は、0.05質量%以上20質量%以下とする。即ち、0.05質量%未満では、粗大粒による鋼板間のグリップ効果が小さいためであり、また、20質量%よりも大きい場合には、鋼板表面に形成されたフォルステライト質被膜の表面がざらつきやすくなるためである。 The content of magnesia having the above range diameter is 0.05% by mass or more and 20% by mass or less. That is, if it is less than 0.05% by mass, the grip effect between the steel plates due to coarse grains is small, and if it is more than 20% by mass, the surface of the forsterite film formed on the steel plate surface is rough. This is because it becomes easier.
一方、粒径が75μm以上のマグネシアを0.01質量%以下に抑制する。これは、含有率が0.01質量%を超えると、鋼板表面に押し疵が生じやすくなるためである。
尚、粒径の制御は、一般的なレーザー散乱方式の粒径分布測定装置では、正確な粒径管理が困難である。そこで、本発明においては、篩残渣によりマグネシアの粒径を規定する。
具体的には、標準篩で200メッシュを通過しない粒子の粒径を75μm以上、通過する粒子の粒径を75μm未満と規定する。また、標準篩で500メッシュ、635メッシュを通過しない粒子の粒径をそれぞれ25μm以上、20μm以上と規定し、標準篩で500メッシュ、635メッシュを通過する粒子の粒径をそれぞれ25μm未満、20μm未満と規定する。本発明においては、上記の方法により篩い分けされたマグネシアを、粒径が25μm未満に予め調整された焼鈍分離剤に適正量添加することにより、所定の粒径を有するマグネシアの含有率を制御する。
On the other hand, magnesia having a particle size of 75 μm or more is suppressed to 0.01% by mass or less. This is because if the content exceeds 0.01% by mass, creases are likely to occur on the steel sheet surface.
Note that it is difficult to control the particle size accurately with a general laser scattering type particle size distribution measuring apparatus. Therefore, in the present invention, the particle size of magnesia is defined by the sieve residue.
Specifically, the particle size of particles that do not pass through 200 mesh with a standard sieve is defined as 75 μm or more, and the particle size of particles that pass through is defined as less than 75 μm. In addition, the particle size of particles that do not pass through 500 mesh and 635 mesh with the standard sieve is specified as 25 μm or more and 20 μm or more, respectively, and the particle size of particles that pass through 500 mesh and 635 mesh with the standard sieve is less than 25 μm and less than 20 μm, respectively. It prescribes. In the present invention, the content of magnesia having a predetermined particle size is controlled by adding an appropriate amount of magnesia sieved by the above method to an annealing separator whose particle size is adjusted to less than 25 μm. .
また、焼鈍分離剤の体積収縮率は、20%以上、80%以下であることが好ましい。これは、体積収縮率が80%以下であれば、次工程の通板時におけるペイオフリール挿入が容易なためであり、また、20%以上であれば、焼鈍中におけるコイル層間への雰囲気ガスの流通性が良好となり、フォルステライト質被膜の外観が良好となるからである。 Moreover, it is preferable that the volumetric shrinkage rate of the annealing separator is 20% or more and 80% or less. This is because if the volumetric shrinkage is 80% or less, it is easy to insert the payoff reel during the next sheet passing, and if it is 20% or more, the atmospheric gas between the coil layers during annealing is reduced. This is because the flowability is good and the appearance of the forsterite film is good.
ここで、焼鈍分離剤の体積収縮率(%)は、
(焼成前の体積−焼成後の体積)÷(焼成前の体積)×100
で算出する。
また、体積収縮率を求めるに当たり、焼鈍分離剤2.0gを圧力200kgf/cm2(19.6MPa)で外径20mmにプレス成形したものを測定に供した。そして、焼成は、1200℃×20hで窒素雰囲気下にて実施した。
Here, the volume shrinkage (%) of the annealing separator is
(Volume before firing−volume after firing) ÷ (volume before firing) × 100
Calculate with
Moreover, when calculating | requiring a volume contraction | shrinkage rate, what was press-molded by the pressure 200kgf / cm < 2 > (19.6MPa) to the outer diameter 20mm was used for the measurement. The firing was performed at 1200 ° C. × 20 h in a nitrogen atmosphere.
なお、焼鈍分離剤の体積収縮率を調整するには様々な手法が存在するが、例えばマグネシアを主体とする場合は、窯業協会誌70〔2〕1962 P335「MgOとFe2O3との反応とそのマグネシアの焼結に対する影響」に記載があるように、Fe2O3の含有量を制御することにより調整でき、同様にFe2O3以外の微量元素の含有量制御によっても調整できる。
また、マグネシアの焼成温度が高いほうが、鋼板塗布後の焼鈍に於ける体積収縮率が低くなる。
There are various methods for adjusting the volumetric shrinkage of the annealing separator. For example, when magnesia is mainly used, the ceramic industry magazine 70 [2] 1962 P335 “Reaction of MgO and Fe 2 O 3 and as is described in its effect on the sintering of magnesia "can be adjusted by controlling the content of Fe 2 O 3, it can be similarly adjusted by the content control of trace elements other than Fe 2 O 3.
Further, the higher the magnesia firing temperature, the lower the volumetric shrinkage in annealing after coating the steel sheet.
さらに、マグネシアの粒径分布を制御することによっても、体積収縮率を調整することができる。これは、単一分散粒子よりも複数の粒径の粒子を混合したほうが充填率は上昇し、焼鈍による体積収縮率が低下するためである。このことに関して、例えば化学工学論文集11,433(1985)において、最密充填を得る粒径分布を計算するアルゴリズムが公開されている。マグネシアの粒径分布制御のみにて体積収縮率を適切な範囲に調整できない場合は、シリカ、珪酸化合物、アルミナなどを混合して調整することができる。 Further, the volume shrinkage can be adjusted by controlling the particle size distribution of magnesia. This is because mixing with particles having a plurality of particle sizes rather than single dispersed particles increases the filling rate and decreases the volumetric shrinkage due to annealing. In this regard, for example, in Chemical Engineering Journal 11,433 (1985), an algorithm for calculating a particle size distribution for obtaining the closest packing is disclosed. When the volume shrinkage cannot be adjusted to an appropriate range only by controlling the particle size distribution of magnesia, it can be adjusted by mixing silica, a silicate compound, alumina, or the like.
C:0.045質量%、Si:3.25質量%、Mn:0.070質量%、Al:80ppm、N:40ppm、S:20ppmを含有し、残部がFeと不可避的不純物からなる電磁鋼板用スラブを1200℃の温度に加熱後、熱間圧延し、2.2mm厚の熱延板とした。この熱延板に1000℃×30秒間の熱延板焼鈍を施し、鋼板表面のスケールを除去した。次に、タンデム圧延機により冷間圧延し、最終冷延板厚を0.30mmとした。その後、均熱温度850℃で90秒間保持する脱炭焼鈍を施して、マグネシア(MgO)90gに対してTiO2を10g添加した焼鈍分離剤を鋼板表面に塗布し、内径500mm、外径1000mmのコイル状に巻き取った。このコイルを縦置き(軸を鉛直に)して、1200℃まで25℃/hで昇熱を行う仕上焼鈍を施した後、平坦化焼鈍を施した。ここで、MgOは、粒径が20μm未満のMgOに、表1に記載の粒径に篩い分けした粗大粒のMgOを添加して90gに調整した。尚、焼鈍分離剤の体積収縮率は40%であった。また、焼鈍分離剤中のMgOの含有率は、全て90%以上である。 C: 0.045% by mass, Si: 3.25% by mass, Mn: 0.070% by mass, Al: 80ppm, N: 40ppm, S: 20ppm, electrical steel sheet consisting of Fe and inevitable impurities The steel slab was heated to a temperature of 1200 ° C. and then hot-rolled to obtain a hot-rolled sheet having a thickness of 2.2 mm. The hot-rolled sheet was subjected to hot-rolled sheet annealing at 1000 ° C. for 30 seconds to remove the scale on the surface of the steel sheet. Next, it cold-rolled with the tandem rolling mill, and the final cold-rolled sheet thickness was 0.30 mm. Thereafter, decarburization annealing is performed for 90 seconds at a soaking temperature of 850 ° C., and an annealing separator in which 10 g of TiO 2 is added to 90 g of magnesia (MgO) is applied to the surface of the steel plate, and the inner diameter is 500 mm and the outer diameter is 1000 mm. The coil was wound up. This coil was placed vertically (the axis was vertical) and subjected to finish annealing for heating up to 1200 ° C. at 25 ° C./h, followed by planarization annealing. Here, MgO was adjusted to 90 g by adding coarse MgO sieved to the particle sizes shown in Table 1 to MgO having a particle size of less than 20 μm. The volume shrinkage of the annealing separator was 40%. Further, the MgO content in the annealing separator is 90% or more.
表1から、25μm以上、75μm未満の粒子を0.05質量%以上、20質量%以下だけ含み、且つ75μm以上の粒子の割合が0.01質量%以下であるときに、バックリングの発生率が1%以下となり、フォルステライト質被膜外観が良好となることが分かる。
尚、被膜外観は目視で観察し、模様または欠陥があるものを不均一、ないものを均一と判定した。
From Table 1, the occurrence rate of buckling when particles of 25 μm or more and less than 75 μm are contained in an amount of 0.05% by mass or more and 20% by mass or less and the ratio of the particles of 75 μm or more is 0.01% by mass or less. Is 1% or less, indicating that the appearance of the forsterite film is good.
The appearance of the film was visually observed, and it was determined that a pattern or a defect was non-uniform and a non-uniform one was uniform.
C:0.06質量%、Si:2.95質量%、Mn:0.07質量%、Se:0.015質量%およびCr:0.03質量%を含み、残部がFeおよび不可避的不純物からなる珪素鋼スラブを、1350℃で40分だけ加熱後、熱間圧延して2.6mm厚の板厚にした後、900℃×60Sの熱延板焼鈍を施した後、1050℃×60Sの中間焼鈍を挟んで冷間圧延し、0.23mmの最終冷延板厚に仕上げ、次いで、均熱温度850℃で90秒間保持する脱炭焼鈍を施して、MgOと粒径が20μm未満のTiO2を、表2の割合で混合した焼鈍分離剤を塗布し、内径1000mm、外径2000mmのコイル状に巻き取った。ここで、MgOは、表2に示す割合の粗大粒を含有し、残部は粒径が25μm未満となるように調整した。続いて、コイルを縦置きし、1200℃まで25℃/hで昇熱を行う仕上焼鈍を施した後、平坦化焼鈍を施した。このとき、MgOの活性を変化させ、焼鈍分離剤の体積収縮率を表2のように変化させた。 C: 0.06% by mass, Si: 2.95% by mass, Mn: 0.07% by mass, Se: 0.015% by mass and Cr: 0.03% by mass, the balance being Fe and inevitable impurities The silicon steel slab is heated at 1350 ° C. for 40 minutes, hot rolled to a thickness of 2.6 mm, then subjected to hot rolling of 900 ° C. × 60 S, and then 1050 ° C. × 60 S. Cold-rolled with intermediate annealing, finished to a final cold-rolled sheet thickness of 0.23 mm, and then decarburized and annealed at a soaking temperature of 850 ° C. for 90 seconds to produce MgO and TiO with a particle size of less than 20 μm 2 was coated with an annealing separator mixed in the ratio of Table 2, and wound into a coil having an inner diameter of 1000 mm and an outer diameter of 2000 mm. Here, MgO contained coarse particles in the proportions shown in Table 2, and the remainder was adjusted so that the particle size was less than 25 μm. Subsequently, the coil was placed vertically and subjected to finish annealing for heating up to 1200 ° C. at 25 ° C./h, followed by flattening annealing. At this time, the activity of MgO was changed, and the volumetric shrinkage of the annealing separator was changed as shown in Table 2.
表2から、焼鈍分離剤中のMgOが60%以上(つまりMgOが主体)であれば、被膜均一性に優れ、体積収縮率が20%以上であれば、被膜均一性に優れ、80%以下であれば、ペイオフリールへの挿入も非常に容易な焼鈍分離剤となることが分かる。 From Table 2, if the MgO in the annealing separator is 60% or more (that is, mainly MgO), the film uniformity is excellent, and if the volume shrinkage is 20% or more, the film uniformity is excellent, and 80% or less. Then, it turns out that it becomes an annealing separation agent which is very easy to insert into the payoff reel.
尚、被膜外観は目視で観察し、模様、欠陥があるものを不均一、ないものを均一と判定した。ペイオフリールへの挿入の難易判定は、コイルを横置き状態にして挿入準備ができてから変形によってコイル内径が980mm以下になる時間が10分以上の場合に容易と判定し、10分未満の場合に困難と判定した。ただし、挿入はいずれの条件でも可能であった。 The appearance of the film was visually observed, and it was determined that the pattern and defect were non-uniform and the non-uniform one was uniform. The difficulty determination of the insertion into the payoff reel is judged as easy when the coil inner diameter becomes 980 mm or less due to deformation after the coil is placed in the horizontal state and the deformation is less than 10 minutes. It was judged difficult. However, insertion was possible under either condition.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011040143A JP5729009B2 (en) | 2011-02-25 | 2011-02-25 | Annealing separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011040143A JP5729009B2 (en) | 2011-02-25 | 2011-02-25 | Annealing separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012177148A JP2012177148A (en) | 2012-09-13 |
JP5729009B2 true JP5729009B2 (en) | 2015-06-03 |
Family
ID=46979182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011040143A Active JP5729009B2 (en) | 2011-02-25 | 2011-02-25 | Annealing separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5729009B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101796751B1 (en) * | 2016-05-02 | 2017-11-10 | 주식회사 포스코 | Annealing separating agent composition, method for manufacturing the same, and method for manufacturing steel sheet using the same |
US20240043950A1 (en) | 2021-03-15 | 2024-02-08 | Jfe Steel Corporation | Powder for annealing separator and production method for grain-oriented electrical steel sheet using same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55138021A (en) * | 1979-04-11 | 1980-10-28 | Nippon Steel Corp | Manufacture of annealing separation agent for electromagnetic steel plate |
JP3277058B2 (en) * | 1993-12-28 | 2002-04-22 | 川崎製鉄株式会社 | Manufacturing method of unidirectional electrical steel sheet |
JP3043975B2 (en) * | 1995-09-05 | 2000-05-22 | 川崎製鉄株式会社 | Annealing separator for grain-oriented silicon steel sheet |
JP3420936B2 (en) * | 1998-05-26 | 2003-06-30 | 新日本製鐵株式会社 | MgO annealing separator for producing unidirectional silicon steel sheet having excellent primary film forming ability and method for producing unidirectional silicon steel sheet using the same |
JP3536775B2 (en) * | 2000-04-25 | 2004-06-14 | Jfeスチール株式会社 | Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties |
JP3885463B2 (en) * | 2000-04-25 | 2007-02-21 | Jfeスチール株式会社 | Method for producing grain-oriented silicon steel sheet |
-
2011
- 2011-02-25 JP JP2011040143A patent/JP5729009B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012177148A (en) | 2012-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2770075B1 (en) | Grain-oriented electrical steel sheet and method of producing the same | |
JP5240334B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
KR101498404B1 (en) | Method for manufacturing grain oriented electrical steel sheet | |
WO2014017589A1 (en) | Method for producing oriented electromagnetic steel sheet | |
CN109477186B (en) | Hot-rolled steel sheet for grain-oriented electrical steel sheet, method for producing same, and method for producing grain-oriented electrical steel sheet | |
JP6123960B1 (en) | High silicon steel sheet and manufacturing method thereof | |
EP3178965B1 (en) | Pre-coating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet comprising same, and manufacturing method therefor | |
EP2963130B1 (en) | Method for producing grain-orientated electrical steel sheets | |
JP2012052230A (en) | Oriented magnetic steel plate and production method for the same | |
WO2011148849A1 (en) | Process for production of unidirectional electromagnetic steel sheet | |
US20150243419A1 (en) | Method for producing grain-oriented electrical steel sheet | |
CN113727788B (en) | Method for producing non-oriented electromagnetic steel sheet | |
JP6721135B1 (en) | Method for producing grain-oriented electrical steel sheet and cold rolling equipment | |
JP5729009B2 (en) | Annealing separator | |
JP6191568B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5287641B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2015190022A (en) | Method for estimating primary recrystallization texture and method for manufacturing grain oriented electrical steel sheet | |
JP7028215B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP5434560B2 (en) | Finishing annealing method for annealing separator and grain-oriented electrical steel sheet | |
JP5494268B2 (en) | Annealing separator and method for producing grain-oriented electrical steel sheet | |
JP6676952B2 (en) | Hot rolled sheet for unidirectional magnetic steel sheet, method for producing the same, and method for producing the same | |
JP2020169366A (en) | Method for manufacturing grain oriented electrical steel sheet | |
TWI773412B (en) | Production method of grain-oriented electrical steel sheet and line of production equipment for grain-oriented electrical steel sheet | |
JP2014173103A (en) | Method of producing grain-oriented magnetic steel sheet | |
JP7159594B2 (en) | Manufacturing method of grain-oriented electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140701 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20140820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150310 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150323 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5729009 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |