JP2012001750A - METHOD FOR PRODUCING Co-CONTAINING SOLUTION - Google Patents

METHOD FOR PRODUCING Co-CONTAINING SOLUTION Download PDF

Info

Publication number
JP2012001750A
JP2012001750A JP2010135908A JP2010135908A JP2012001750A JP 2012001750 A JP2012001750 A JP 2012001750A JP 2010135908 A JP2010135908 A JP 2010135908A JP 2010135908 A JP2010135908 A JP 2010135908A JP 2012001750 A JP2012001750 A JP 2012001750A
Authority
JP
Japan
Prior art keywords
solution
cos
raw material
added
coni
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010135908A
Other languages
Japanese (ja)
Inventor
Taro Nojima
太郎 野島
Hiroshi Hata
洋志 端
Hisanao Mandokoro
久尚 萬所
Tsutomu Asai
務 浅井
Ryota Mori
亮太 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2010135908A priority Critical patent/JP2012001750A/en
Publication of JP2012001750A publication Critical patent/JP2012001750A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a Co-containing solution effectively separating and removing Ni from a CoNi material solution high in an Ni amount, and further selectively recovering Co.SOLUTION: In this method for producing a Co-containing solution, a reducing agent and CoS are added in a solution containing Ni and Co (called "a CoNi material solution") to adjust oxidation-reduction potential (reference electrode: silver-saturated silver chloride electrode) of the CoNi material solution to -550 to -400 mV to precipitate and remove the Ni element in the solution as a sulfide, and the Co-containing solution containing the Co element in an ionized state is obtained.

Description

本発明は、Co及びNiを含有する溶液(「CoNi原料溶液」と称する)から、Niを低減させてCoを多く含むCo含有溶液を製造する方法に関する。かかる製造方法は、例えばリチウムイオン電池の正極材料からCo含有溶液やCo(メタル)を製造する用途などに利用することができる。   The present invention relates to a method for producing a Co-containing solution containing a large amount of Co by reducing Ni from a solution containing Co and Ni (referred to as “CoNi raw material solution”). Such a manufacturing method can be used, for example, for a purpose of manufacturing a Co-containing solution or Co (metal) from a positive electrode material of a lithium ion battery.

リチウムイオン電池は、単位電気量当たりの重量が小さく、それでいてエネルギー密度が高いため、ビデオカメラ、ノートパソコン、携帯電話などの携帯型電子機器、さらには電気自動車やハイブリッド自動車などの電源として急速に普及しつつある。このため、使用済みのリチウムイオン電池(「廃リチウムイオン電池」と称する)などから有価金属を回収することは、資源の有効利用の観点から重要視されている。中でも、リチウム二次電池の正極には高価なCoが使用されているため、Coの回収は特に注目されている。   Lithium-ion batteries have a low weight per unit of electricity and yet high energy density, so they are rapidly becoming popular as power sources for portable electronic devices such as video cameras, laptop computers, and mobile phones, as well as electric vehicles and hybrid vehicles. I am doing. For this reason, recovery of valuable metals from used lithium ion batteries (referred to as “waste lithium ion batteries”) is regarded as important from the viewpoint of effective use of resources. Especially, since expensive Co is used for the positive electrode of the lithium secondary battery, the recovery of Co is particularly attracting attention.

リチウム二次電池の正極活物質には、従来から、4Vの高電圧を有する層構造のLiCoO2が使用されてきたが、最近では、高価なCoの一部をNiやMnなどの遷移金属で置換してなるリチウム複合酸化物が正極活物質として使用されるようになってきている。そのため、この種の廃リチウムイオン電池からCoを回収するには、Co以外の金属を如何に除去するか、特にCoとNiは化学的性質が似ているため、如何にNiを除去してCoのみを選択的に回収できるかが課題であった。 Conventionally, LiCoO 2 having a layer structure having a high voltage of 4 V has been used as a positive electrode active material of a lithium secondary battery. Recently, a part of expensive Co is made of a transition metal such as Ni or Mn. Substituted lithium composite oxides have been used as positive electrode active materials. Therefore, in order to recover Co from this kind of waste lithium ion battery, how to remove metals other than Co, especially Co and Ni are similar in chemical properties, so how to remove Ni and Co The only issue was whether it could be selectively recovered.

このような技術として、例えば特許文献1(特公平6−96455号公報)には、不純物を含有する硫酸コバルト水溶液にコバルト粉を加え、これに水硫化ソーダ、硫化ソーダまたは硫化水素を過剰に加えて反応させ、生成した沈殿を分離したろ液に少量の次亜塩素酸ソーダ若しくは過酸化水素を添加することにより、不純物として存在するニッケル,鉄,銅などを極低濃度まで沈殿除去して高純度硫酸コバルトを得る方法が開示されている。   As such a technique, for example, in Patent Document 1 (Japanese Patent Publication No. 6-96455), cobalt powder is added to an aqueous cobalt sulfate solution containing impurities, and sodium hydrosulfide, sodium sulfide, or hydrogen sulfide is added excessively thereto. By adding a small amount of sodium hypochlorite or hydrogen peroxide to the filtrate from which the generated precipitate has been separated, the impurities, such as nickel, iron and copper, are removed to a very low concentration. A method for obtaining pure cobalt sulfate is disclosed.

また、特許文献2(特開2006−8463号公報)には、不純物としてニッケル及び鉄を含有するコバルト金属を硫酸水溶液に溶解し、得られた溶液に、鉄粉及び硫化物イオンを生成する化合物を添加し、硫化ニッケルを析出させてニッケルを除去し、次に、得られた溶液に、2価の鉄を酸化させるための酸化剤を添加すると共に当該溶液のpHを3〜5に調整し、水酸化鉄を析出させて鉄を除去するようにして、硫酸コバルト水溶液を得る方法が開示されている。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2006-8463) discloses a compound that dissolves cobalt metal containing nickel and iron as impurities in an aqueous sulfuric acid solution, and generates iron powder and sulfide ions in the resulting solution. Then, nickel sulfide is precipitated to remove nickel, and then an oxidizing agent for oxidizing divalent iron is added to the obtained solution and the pH of the solution is adjusted to 3 to 5. A method of obtaining an aqueous cobalt sulfate solution by precipitating iron hydroxide to remove iron is disclosed.

特公平6−96455号公報Japanese Examined Patent Publication No. 6-96455 特開2006−8463号公報JP 2006-8463 A

前述のように、最近、リチウム二次電池の正極活物質などにおいて、Coに対するNiの比率が益々高くなって来ている。従来提案されていたCo回収法は、Niの比率がそれほど高くないことを前提とした方法であったため、Niの比率が低いうちはCoを十分に回収することができていたが、最近のようにNiの比率が高くなってくると、Niを十分に除去することができず、Coの回収率を高めることができないという課題を抱えていた。   As described above, recently, the ratio of Ni to Co is increasing in the positive electrode active material of lithium secondary batteries. The Co recovery method that has been proposed in the past was based on the premise that the Ni ratio was not so high, so Co could be recovered sufficiently while the Ni ratio was low. However, when the ratio of Ni increases, Ni cannot be sufficiently removed, and there is a problem that the recovery rate of Co cannot be increased.

そこで本発明は、Ni量が比較的高いCoNi原料溶液から、Niを効果的に分離除去することができ、Coをより一層選択的に回収することができる、新たなCo含有溶液を製造する方法を提供せんとするものである。   Accordingly, the present invention provides a method for producing a new Co-containing solution that can effectively separate and remove Ni from a CoNi raw material solution having a relatively high amount of Ni, and that can further selectively recover Co. Is intended to provide.

本発明は、Ni及びCoを含有する溶液(「CoNi原料溶液」と称する)に還元剤及びCoSを加えて該CoNi原料溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−550mV〜−400mVに調整して、溶液中のNi元素を硫化物として沈殿除去する一方、イオン化した状態のCo元素を含有するCo含有溶液を得ることを特徴とするCo含有溶液の製造方法を提案する。   In the present invention, a reducing agent and CoS are added to a solution containing Ni and Co (referred to as “CoNi raw material solution”), and the redox potential (reference electrode: silver-saturated silver chloride electrode) of the CoNi raw material solution is −550 mV. A method for producing a Co-containing solution, characterized by obtaining a Co-containing solution containing Co element in an ionized state while precipitating and removing Ni element in the solution as a sulfide by adjusting to ~ -400 mV, is proposed. .

このように、CoNi原料溶液に還元剤及びCoSを加えて酸化還元電位を−550mV〜−400mVに調整すると、次の式(1)のような反応が生じ、Co元素はイオン化されて溶液中に溶解する一方、Ni元素は硫化物として沈殿除去することができるから、イオン化した状態のCoを選択的に取り込んだCo含有溶液を回収することができる。
式(1)・・2CoS+3Ni2++Fe→2Co2++Ni32 ↓+Fe2+
Thus, when a reducing agent and CoS are added to the CoNi raw material solution to adjust the oxidation-reduction potential to -550 mV to -400 mV, a reaction represented by the following formula (1) occurs, and the Co element is ionized to enter the solution. On the other hand, Ni element can be precipitated and removed as a sulfide, so that a Co-containing solution that selectively takes in Co in an ionized state can be recovered.
Formula (1) .. 2 CoS + 3Ni 2+ + Fe → 2Co 2+ + Ni 3 S 2 ↓ + Fe 2+

そして、このようにして得られたCo含有溶液は、例えば、還元剤及び硫化剤を加えて該溶液の酸化還元電位を−550mV〜−400mVに調整することによって、溶液中のNi元素をさらに沈殿除去することができ、残りのCo元素が溶解した溶液(「Co高純度溶液」と称する)を得ることができる。   The Co-containing solution thus obtained is further precipitated, for example, by adding a reducing agent and a sulfurizing agent to adjust the oxidation-reduction potential of the solution to -550 mV to -400 mV. A solution in which the remaining Co element is dissolved (referred to as “Co high-purity solution”) can be obtained.

このようなCo含有溶液の製造方法並びにCo高純度溶液の製造方法は、Niの比率が高いCoNi原料溶液であっても、Niを効率的に分離除去でき、Coを効果的に回収することができるから、例えば、廃リチウムイオン電池の正極材料、特にNiの比率が高まっている最近の正極材料からCoを回収する方法に好適に利用可能である。具体的には、廃リチウムイオン電池の正極材料には、CoやNiのほかにMn、さらにはAl、Cuなどが含まれているから、回収した正極材料或いは正極活物質を硫酸などに溶解して、Co及びNi以外の含有物質を公知の方法によって除去した上で、本発明のCo含有溶液の製造方法並びにCo高純度溶液の製造方法を利用すれば、Niをより一層効果的に除去することができ、Coをより一層選択的に回収することができる。   Such a Co-containing solution manufacturing method and a Co high-purity solution manufacturing method can efficiently separate and remove Ni and effectively recover Co even in a CoNi raw material solution having a high Ni ratio. Therefore, for example, it can be suitably used for a method of recovering Co from a positive electrode material of a waste lithium ion battery, particularly a recent positive electrode material in which the ratio of Ni is increasing. Specifically, since the positive electrode material of the waste lithium ion battery includes Mn, Co, and Al in addition to Co and Ni, the recovered positive electrode material or positive electrode active material is dissolved in sulfuric acid or the like. Then, after removing contained substances other than Co and Ni by a known method, Ni can be more effectively removed by using the Co-containing solution manufacturing method and the Co high-purity solution manufacturing method of the present invention. Co can be recovered even more selectively.

後述する第1の実施形態の製造工程を示した図である。It is the figure which showed the manufacturing process of 1st Embodiment mentioned later. 後述する第2の実施形態の製造工程を示した図である。It is the figure which showed the manufacturing process of 2nd Embodiment mentioned later. 後述する第3の実施形態の製造工程を示した図である。It is the figure which showed the manufacturing process of 3rd Embodiment mentioned later. 試験1の結果として、ORPと液中のNi、Fe濃度との関係、並びに、ORPとCo回収率との関係を示したグラフである。4 is a graph showing the relationship between ORP and the concentrations of Ni and Fe in the liquid and the relationship between ORP and Co recovery rate as a result of Test 1.

以下に本発明の実施形態について詳細に述べるが、本発明の範囲が以下に説明する実施形態に限定されるものではない。   Embodiments of the present invention will be described in detail below, but the scope of the present invention is not limited to the embodiments described below.

<第1の実施形態>
本実施形態は、図1に示すように、Ni及びCoを含有する溶液(「CoNi原料溶液」と称する)に還元剤及びCoSを加えて該CoNi原料溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−550mV〜−400mVに調整して、溶液中のNi元素を硫化物として沈殿除去する一方、イオン化した状態のCo元素を含有するCo含有溶液を得ることを特徴とする実施形態である。
<First Embodiment>
In this embodiment, as shown in FIG. 1, a reducing agent and CoS are added to a solution containing Ni and Co (referred to as “CoNi raw material solution”), and the redox potential of the CoNi raw material solution (reference electrode: silver − (Saturated silver chloride electrode) is adjusted to -550 mV to -400 mV to precipitate and remove Ni elements in the solution as sulfides, while obtaining a Co-containing solution containing Co elements in an ionized state. It is a form.

このように、CoNi原料溶液に還元剤(例えば鉄粉)及びCoSを加えて酸化還元電位を−550mV〜−400mVに調整すると、次の式(1)のような反応が生じ、溶液中のNi元素は硫化物として沈殿除去することができ、CoSのCo元素はイオン化して溶液中に溶解させることができるから、イオン化した状態のCo元素としてCo含有溶液中にCoを回収することができる。
この際、例えば還元剤として鉄粉を添加した場合には、Niは式(1)のとおり硫化物となって沈殿する。
式(1)・・2CoS+3Ni2++Fe→2Co2++Ni32 ↓+Fe2+
Thus, when a reducing agent (for example, iron powder) and CoS are added to the CoNi raw material solution to adjust the oxidation-reduction potential to -550 mV to -400 mV, a reaction represented by the following formula (1) occurs, and Ni in the solution The element can be precipitated and removed as a sulfide, and the Co element of CoS can be ionized and dissolved in the solution, so that Co can be recovered in the Co-containing solution as the Co element in an ionized state.
At this time, for example, when iron powder is added as a reducing agent, Ni precipitates as a sulfide as shown in formula (1).
Formula (1) .. 2 CoS + 3Ni 2+ + Fe → 2Co 2+ + Ni 3 S 2 ↓ + Fe 2+

CoNi原料溶液は、少なくともNi及びCoを含んでいればよい。Ni及びCo以外の成分を含んでいてもよいが、他の金属元素が含まれていると、Niを除去する際の妨げになる可能性があるため、公知の方法によって除去するのが好ましい。
CoNi原料溶液は、例えばNi及びCoを含有する組成物(合金を含む)を、硫酸などに溶解し、必要に応じて公知の方法によってNi及びCo以外の金属成分を排除するのが好ましい。但し、Feが含まれていても支障が少なく、しかも後工程で排除可能であるため、CoNi原料溶液中にFeが含まれていてもよい。
この際、硫酸のほかに、塩酸、硝酸など公知の酸を用いて溶解してもよい。
また、コバルト酸リチウムなどNi及びCoを含有する化合物を酸溶解する場合には、H22や鉄粉などの還元剤を添加するのが好ましい。
The CoNi raw material solution only needs to contain at least Ni and Co. Components other than Ni and Co may be included, but if other metal elements are included, there is a possibility that Ni may be removed, so that it is preferably removed by a known method.
For the CoNi raw material solution, for example, a composition containing Ni and Co (including an alloy) is preferably dissolved in sulfuric acid or the like, and if necessary, metal components other than Ni and Co are excluded by a known method. However, even if Fe is contained, there is little trouble, and since it can be eliminated in a later process, Fe may be contained in the CoNi raw material solution.
At this time, in addition to sulfuric acid, a known acid such as hydrochloric acid or nitric acid may be used for dissolution.
In addition, when a compound containing Ni and Co such as lithium cobaltate is acid-dissolved, it is preferable to add a reducing agent such as H 2 O 2 or iron powder.

後述する試験2で示されるように、CoNi原料溶液において、初期Ni濃度が高いほど、CoSからのCo回収率は高くなるが、逆にNi分離率が低下する傾向があるため、両方を考慮すると、CoS中のCoに対するCoNi原料溶液のNiのモル比率(Ni/Co)は0.2〜0.8(mol/mol)であるのが好ましく、特に0.3(mol/mol)以上或いは0.7(mol/mol)以下、中でも特に0.4(mol/mol)以上或いは0.6(mol/mol)以下であるのがより一層好ましい。
CoNi原料溶液の初期温度、すなわち還元剤を加える際の液温は、鉄粉の溶解速度を適正にするため、30〜50℃とするのが好ましい。
As shown in Test 2 to be described later, in the CoNi raw material solution, the higher the initial Ni concentration, the higher the Co recovery rate from CoS, but conversely the Ni separation rate tends to decrease. The molar ratio (Ni / Co) of Ni in the CoNi raw material solution to Co in CoS is preferably 0.2 to 0.8 (mol / mol), particularly 0.3 (mol / mol) or more or 0. 0.7 (mol / mol) or less, more preferably 0.4 (mol / mol) or more or 0.6 (mol / mol) or less.
The initial temperature of the CoNi raw material solution, that is, the liquid temperature when the reducing agent is added, is preferably 30 to 50 ° C. in order to make the dissolution rate of the iron powder appropriate.

CoNi原料溶液の初期pH、すなわち還元剤を加える溶液の初期pHは3.0〜6.0に調整するのが好ましい。pH3.0以上であれば、生成した硫化物が硫化水素となって揮散するのを防止することができる。また、pH6.0以下であれば、水酸化物の生成を抑えて硫化物を優先的に生成させることができる。かかる観点から、還元剤を加える際の溶液のpHは4以上、或いは5以下、特に4.5以下であるのがより一層好ましい。   The initial pH of the CoNi raw material solution, that is, the initial pH of the solution to which the reducing agent is added is preferably adjusted to 3.0 to 6.0. If pH is 3.0 or more, it can prevent that the produced | generated sulfide volatilizes as hydrogen sulfide. Moreover, if it is pH 6.0 or less, the production | generation of a hydroxide can be suppressed and a sulfide can be produced preferentially. From this point of view, the pH of the solution when adding the reducing agent is more preferably 4 or more, or 5 or less, particularly 4.5 or less.

本実施形態では、溶液中のNi元素を硫化物として沈殿除去する効果の観点から、CoNi原料溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−400mV以下に調整することが重要である。すなわち、溶液の酸化還元電位を−400mV以下に調整した場合に初めてNi濃度を効果的に低減することができる。他方、−550mVより下げても、それ以上Niの除去率を高めることができないばかりか、還元剤が溶液に大量に溶解して、後工程の負荷が増大してしまう。
よって、還元剤を加えて調整するCoNi原料溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)としては、−550mV〜−400mVに調整するのが好ましく、中でも−550mV〜−450mVに調整するのがさらに好ましく、その中でも特に−550mV〜−500mVに調整するのがさらに好ましい。
In this embodiment, it is important to adjust the oxidation-reduction potential (reference electrode: silver-saturated silver chloride electrode) of the CoNi raw material solution to −400 mV or less from the viewpoint of the effect of precipitating and removing Ni element in the solution as sulfides. It is. That is, the Ni concentration can be effectively reduced only when the oxidation-reduction potential of the solution is adjusted to −400 mV or less. On the other hand, even if it lowers from -550 mV, the removal rate of Ni cannot be raised any more, but a reducing agent melt | dissolves in a solution in large quantities, and the load of a post process will increase.
Therefore, the redox potential (reference electrode: silver-saturated silver chloride electrode) of the CoNi raw material solution adjusted by adding a reducing agent is preferably adjusted to -550 mV to -400 mV, and in particular, adjusted to -550 mV to -450 mV. In particular, it is more preferable to adjust to −550 mV to −500 mV.

還元剤としては、鉄(Fe)、コバルト(Co)、亜鉛(Zn)、アルミニウム(Al)など、Niよりも卑な金属の粉体や、ヒドラジンなどを挙げることができるが、CoNi原料溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−550mV〜−400mVに調整するという観点からは、鉄粉を用いるのが特に好ましい。
還元剤の添加量は、CoNi原料溶液の酸化還元電位を所定範囲に調整することができるように調整すればよい。
Examples of the reducing agent include iron (Fe), cobalt (Co), zinc (Zn), aluminum (Al) and other base metal powders such as Ni and hydrazine. From the viewpoint of adjusting the oxidation-reduction potential (reference electrode: silver-saturated silver chloride electrode) to -550 mV to -400 mV, it is particularly preferable to use iron powder.
What is necessary is just to adjust the addition amount of a reducing agent so that the oxidation-reduction potential of a CoNi raw material solution can be adjusted to a predetermined range.

溶液中のNi元素を硫化物とする硫化剤としては、例えばNaHS、Na2S、H2S、K2Sなどの硫化剤を用いることも可能であるが、硫化剤としての効果、Niの低減効率、並びに余分な分離工程が不要であるという点などから、CoSを用いることが特に好ましい。 As the sulfiding agent that makes Ni element in the solution sulfide, for example, a sulfiding agent such as NaHS, Na 2 S, H 2 S, K 2 S can be used. It is particularly preferable to use CoS from the viewpoints of reduction efficiency and the need for an extra separation step.

<第2の実施形態>
本実施形態は、図2に示すように、Ni及びCoを含有するCoNi原料溶液に還元剤及びCoSを加えて該CoNi原料溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−550mV〜−400mVに調整して、溶液中のNi元素を硫化物として沈殿除去する一方、イオン化した状態のCo元素を含有するCo含有溶液を得るNi低減工程と、
前記Ni低減工程で得られたCo含有溶液に還元剤及び硫化剤を加えて該Co含有溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−550mV〜−400mVに調整して、溶液中のNi元素をNi硫化物として沈殿させると共に、溶液中のCo元素の一部をCoSとして沈殿させた後、固液分離して、該Ni硫化物及び該CoSを含有するCoS含有組成物と、残りのCo元素が溶解してなる残りのCo元素が溶解した溶液(「Co高純度溶液」と称する)とを分離回収するCoS作製工程とを備えた、実施形態である。
<Second Embodiment>
In the present embodiment, as shown in FIG. 2, a reducing agent and CoS are added to a CoNi raw material solution containing Ni and Co, and the redox potential (reference electrode: silver-saturated silver chloride electrode) of the CoNi raw material solution is- Adjusting to 550 mV to -400 mV to precipitate and remove Ni element in the solution as a sulfide, while reducing Ni to obtain a Co-containing solution containing Co element in an ionized state;
A reducing agent and a sulfurizing agent are added to the Co-containing solution obtained in the Ni reduction step to adjust the oxidation-reduction potential (reference electrode: silver-saturated silver chloride electrode) of the Co-containing solution to -550 mV to -400 mV, The Ni element in the solution is precipitated as Ni sulfide, and a part of the Co element in the solution is precipitated as CoS and then separated into solid and liquid, and the Ni sulfide and the CoS-containing composition containing the CoS are separated. And a CoS preparation step of separating and recovering a solution in which the remaining Co element is dissolved (referred to as “Co high-purity solution”) obtained by dissolving the remaining Co element.

このように、Ni低減工程で得られたCo含有溶液に還元剤(例えば鉄粉)及び硫化剤(例えばNaHS)を加えて酸化還元電位を−550mV〜−400mVに調整すると、次のような式(2)(3)反応が生じ、溶液中のCo元素の一部をCoSとして沈殿させると共に、溶液中のNi元素をNi硫化物(例えばN32)として沈殿させ、Co高純度溶液を得ることができる。
式(2)・・3Ni2++2NaHS+Fe→Ni32↓+2Na++2H++Fe2+
式(3)・・Co2++NaHS→CoS↓+Na++H+
Thus, when a reducing agent (for example, iron powder) and a sulfiding agent (for example, NaHS) are added to the Co-containing solution obtained in the Ni reduction step to adjust the oxidation-reduction potential to -550 mV to -400 mV, the following equation is obtained: (2) (3) A reaction occurs, and a part of Co element in the solution is precipitated as CoS, and Ni element in the solution is precipitated as Ni sulfide (for example, N 3 S 2 ). Obtainable.
Formula (2) ·· 3Ni 2+ + 2NaHS + Fe → Ni 3 S 2 ↓ + 2Na + + 2H + + Fe 2+
Formula (3) ·· Co 2+ + NaHS → CoS ↓ + Na + + H +

また、本実施形態において、CoS作製工程で回収したCoS含有組成物を、次回以降のバッチのNi低減工程においてCoSとして添加すれば、Coの回収率をさらに高めることができる。よって、このようにしてNi低減工程とCoS作製工程とを繰り返すことにより、Coの回収を連続的に行うことができる。   Moreover, in this embodiment, if the CoS-containing composition recovered in the CoS production process is added as CoS in the Ni reduction process of the next batch and subsequent batches, the Co recovery rate can be further increased. Therefore, Co can be continuously recovered by repeating the Ni reduction step and the CoS preparation step in this way.

本実施形態において、Ni低減工程は、上記第1の実施形態と同様に行えばよい。
Ni低減工程で生じる沈殿は、CoS作製工程の前に取り除くことが好ましい。
In the present embodiment, the Ni reduction process may be performed in the same manner as in the first embodiment.
It is preferable to remove the precipitate generated in the Ni reduction step before the CoS preparation step.

他方、CoS作製工程においては、Co含有溶液の初期pH、すなわち還元剤を加える際のpHは、第1の実施形態におけるCoNi原料溶液の初期pHと同様である。
また、CoS作製工程におけるCo含有溶液の初期温度、すなわち還元剤を加える際の液温は、第1の実施形態におけるCoNi原料溶液の初期温度と同様である。
On the other hand, in the CoS preparation step, the initial pH of the Co-containing solution, that is, the pH when the reducing agent is added is the same as the initial pH of the CoNi raw material solution in the first embodiment.
Further, the initial temperature of the Co-containing solution in the CoS production process, that is, the liquid temperature when the reducing agent is added is the same as the initial temperature of the CoNi raw material solution in the first embodiment.

CoS作製工程では、Niを低濃度まで除去するという観点から、Co含有溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−400mV以下に調整することが重要である。すなわち、溶液の酸化還元電位を−400mV以下に調整した場合に初めてNiを低濃度まで除去することができる。他方、−550mVより下げても、それ以上Niの除去率を高めることができないばかりか、還元剤が溶液に大量に溶解して、後工程の負荷が増大してしまう。
かかる観点から、還元剤を加えて調整するCo含有溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)としては、−550mV〜−400mVに調整するのが好ましく、中でも−550mV〜−450mVに調整するのがさらに好ましく、その中でも特に−550mV〜−500mVに調整するのがさらに好ましい。
In the CoS production process, it is important to adjust the oxidation-reduction potential (reference electrode: silver-saturated silver chloride electrode) of the Co-containing solution to −400 mV or less from the viewpoint of removing Ni to a low concentration. That is, Ni can be removed to a low concentration only when the oxidation-reduction potential of the solution is adjusted to −400 mV or less. On the other hand, even if it lowers from -550 mV, the removal rate of Ni cannot be raised any more, but a reducing agent melt | dissolves in a solution in large quantities, and the load of a post process will increase.
From this point of view, the redox potential of the Co-containing solution to be adjusted by adding a reducing agent (reference electrode: silver-saturated silver chloride electrode) is preferably adjusted to -550 mV to -400 mV, and in particular, -550 mV to -450 mV. It is more preferable to adjust to −550 mV, and it is more preferable to adjust to −550 mV to −500 mV among them.

CoS作製工程で使用する還元剤としては、鉄(Fe)、コバルト(Co)、亜鉛(Zn)、アルミニウム(Al)など、Niよりも卑な金属の粉体や、ヒドラジンなどを挙げることができるが、Co含有溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−550mV〜−400mVに調整するという観点からは、鉄粉が特に好ましい。
還元剤の添加量は、Co含有溶液の酸化還元電位を所定範囲に調整することができるように調整すればよい。
Examples of the reducing agent used in the CoS manufacturing process include iron (Fe), cobalt (Co), zinc (Zn), aluminum (Al), and other base metal powders such as Ni and hydrazine. However, from the viewpoint of adjusting the oxidation-reduction potential (reference electrode: silver-saturated silver chloride electrode) of the Co-containing solution to -550 mV to -400 mV, iron powder is particularly preferable.
What is necessary is just to adjust the addition amount of a reducing agent so that the oxidation-reduction potential of Co containing solution can be adjusted to a predetermined range.

CoS作製工程において、溶液中のNi元素を硫化物とする硫化剤としては、例えばNaHS、Na2S、H2S、K2Sなどを用いることが可能であるが、ハンドリング性や安全性など観点から、NaHSが特に好ましい。但し、NaHSに限定するものではない。
そして、この硫化剤は、Niを十分に除去できるという観点から、反応開始時の溶液中の初期Ni含有量に対して1〜10倍モル量の硫化物(S換算)を添加するのが好ましく、特に2〜10倍モル量、中でも特に5倍モル量以上の硫化物(S換算)を添加するのが好ましい。
In the CoS production process, for example, NaHS, Na 2 S, H 2 S, K 2 S, or the like can be used as a sulfiding agent that uses Ni element in the solution as a sulfide. From the viewpoint, NaHS is particularly preferable. However, it is not limited to NaHS.
From the viewpoint that Ni can be sufficiently removed, it is preferable to add 1 to 10 times the molar amount of sulfide (S conversion) with respect to the initial Ni content in the solution at the start of the reaction. In particular, it is preferable to add 2 to 10-fold molar amount, especially 5-fold molar amount or more of sulfide (S conversion).

他方、CoS作製工程で回収したCoS含有組成物を、次回以降のバッチのNi低減工程においてCoSとして添加する、すなわち、次回以降のバッチのNi低減工程に投入するようにしてNi低減工程及びCoS作製工程を繰り返すようにすれば、NiをCoSのCoと置換させてNi硫化物(例えばNi32)として沈殿除去することができるばかりか、CoSからCoを溶液中へ回収することができるため、Coの回収率をさら高めることができる。よって、Niの比率が高い原料であっても、Niを分離除去してCoの回収率を高めることができる点で優れている。
この際、CoS作製工程で回収したCoS含有組成物には、Ni硫化物(例えばN32)及びCoSが含まれているから、Ni硫化物(例えばN32)及びCoSを含有する組成物(「CoS含有組成物」と称する)をNi低減工程においてCoSとして添加してもよいし、Ni硫化物(例えばN32)を低減してCoSとして添加してもよい。
Ni低減工程に投入するCoS含有組成物に関しては、CoSの比率が高いほどNiの削減量が増えるため好ましいため、CoS含有組成物におけるCo:Niのモル比率は50:50〜100:0が好ましく、特に70:30〜100:0、中でも90:10〜100:0であるのがより一層好ましい。
On the other hand, the CoS-containing composition recovered in the CoS production process is added as CoS in the Ni reduction process of the next batch and thereafter, that is, the Ni reduction process and the CoS production are performed so as to be input to the Ni reduction process of the subsequent batch. If the process is repeated, Ni can be replaced with Co in CoS to precipitate and remove as Ni sulfide (for example, Ni 3 S 2 ), and Co can be recovered from the CoS into the solution. Co recovery rate can be further increased. Therefore, even a raw material having a high Ni ratio is excellent in that Ni can be separated and removed to increase the Co recovery rate.
At this time, since the CoS-containing composition recovered in the CoS manufacturing process contains Ni sulfide (for example, N 3 S 2 ) and CoS, it contains Ni sulfide (for example, N 3 S 2 ) and CoS. A composition (referred to as “CoS-containing composition”) may be added as CoS in the Ni reduction step, or Ni sulfide (eg, N 3 S 2 ) may be reduced and added as CoS.
Regarding the CoS-containing composition to be input to the Ni reduction step, the higher the CoS ratio, the more the Ni reduction amount is preferable, so the Co: Ni molar ratio in the CoS-containing composition is preferably 50:50 to 100: 0. In particular, 70:30 to 100: 0, more preferably 90:10 to 100: 0 is even more preferable.

<第3の実施形態>
本実施形態は、本発明の製造方法を、廃リチウムイオン電池の正極材料からCoを回収する方法に利用した実施形態である。
<Third Embodiment>
In this embodiment, the manufacturing method of the present invention is used in a method for recovering Co from a positive electrode material of a waste lithium ion battery.

リチウムイオン電池の正極活物質には、CoやNiのほかに、Mnが多く含まれており、正極集電体や負極材料に起因する不純物、例えばAl、Cuなどが不純物として含まれている可能性がある。そのため、本発明の製造方法を、リチウムイオン電池の正極材料からCoを回収するのに利用するには、廃リチウムイオン電池から正極材料を分離し、分離回収した正極材料を必要に応じて公知の処理を施した後、当該正極材料、好ましくは正極活物質を主体とする組成物、例えばNi、Mn及びCoを含有する組成物(「CoMnNi含有組成物」と称する)を、硫酸などを用いて溶解させ、次に、Co及びNi以外の金属元素を除去してCoNi原料溶液を調製し、これを上記第1の実施形態又は第2の実施形態と同様に処理すればよい。   In addition to Co and Ni, the positive electrode active material of the lithium ion battery contains a large amount of Mn, and impurities due to the positive electrode current collector and the negative electrode material, such as Al and Cu, may be contained as impurities. There is sex. Therefore, in order to use the manufacturing method of the present invention to recover Co from the positive electrode material of a lithium ion battery, the positive electrode material is separated from the waste lithium ion battery, and the separated positive electrode material is known as necessary. After the treatment, the positive electrode material, preferably a composition mainly composed of the positive electrode active material, for example, a composition containing Ni, Mn and Co (referred to as “CoMnNi-containing composition”) is used with sulfuric acid or the like. Next, a metal element other than Co and Ni is removed to prepare a CoNi raw material solution, which is then processed in the same manner as in the first embodiment or the second embodiment.

より具体的には、図3に示すように、先ずは、正極材料、好ましくは正極活物質を主体とする組成物を硫酸などに溶解して原料溶液とすればよい。
この際、硫酸のほかに、塩酸、硝酸など公知の酸を用いて溶解してもよい。
More specifically, as shown in FIG. 3, first, a positive electrode material, preferably a composition mainly composed of a positive electrode active material, may be dissolved in sulfuric acid to obtain a raw material solution.
At this time, in addition to sulfuric acid, a known acid such as hydrochloric acid or nitric acid may be used for dissolution.

次に、溶液中のMnを分離除去すればよい。
Mnの分離方法としては、例えばpH1〜4、40〜80℃程度において、原料溶液にKMnO4や次亜塩素酸ナトリウムどの酸化剤を添加して、二酸化マンガン(MnO2)などとして沈殿させ、公知の固液分離法により、沈殿物を除去すればよい。
こうしてMnを分離除去した溶液には、例えばCo、Ni、Al、Cuなどがイオンとして溶解している。
Next, Mn in the solution may be separated and removed.
As a method for separating Mn, for example, at pH 1 to 4 and about 40 to 80 ° C., an oxidizing agent such as KMnO 4 or sodium hypochlorite is added to the raw material solution, and precipitated as manganese dioxide (MnO 2 ) or the like. The solid may be removed by the solid-liquid separation method.
For example, Co, Ni, Al, Cu and the like are dissolved as ions in the solution in which Mn is separated and removed.

次に、溶液中のCuを分離除去すればよい。
Cuの分離方法としては、原料溶液に例えばFe粉などの還元剤を添加して、Cuメタルとして沈殿させ、公知の固液分離法により、沈殿物を除去すればよい。
この際、還元剤としては、Cuよりも卑な金属、例えばCo粉やAl箔なども用いることができる。
こうしてCuを分離除去した溶液には、例えばCo、Ni、Al、Feなどがイオンとして溶解している。
Next, Cu in the solution may be separated and removed.
As a Cu separation method, for example, a reducing agent such as Fe powder may be added to the raw material solution to precipitate as Cu metal, and the precipitate may be removed by a known solid-liquid separation method.
In this case, as the reducing agent, a metal that is baser than Cu, such as Co powder or Al foil, can also be used.
For example, Co, Ni, Al, Fe, and the like are dissolved as ions in the solution in which Cu is separated and removed.

次に、溶液中のAl及びFeを分離除去すればよい。
Alの分離方法としては、溶液にアルカリを添加してpHを3〜5に調整することで、液中のAlをAl(OH)3として沈殿させるAl沈殿処理1を行い、公知の固液分離法により、沈殿物を除去すれば、上記第1の実施形態又は第2の実施形態の原料として好ましいCoNi原料溶液を得ることができる。
この際、アルカリとしては、例えば水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(Ca(OH)2)、水酸化コバルト(Co(OH)2)等を用いることができる。
Next, Al and Fe in the solution may be separated and removed.
As a method for separating Al, an alkali is added to the solution and the pH is adjusted to 3 to 5, whereby Al precipitation treatment 1 for precipitating Al in the solution as Al (OH) 3 is performed, and a known solid-liquid separation is performed. If the precipitate is removed by the method, a CoNi raw material solution preferable as the raw material of the first embodiment or the second embodiment can be obtained.
In this case, for example, sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), cobalt hydroxide (Co (OH) 2 ), or the like can be used as the alkali.

さらに得られた溶液に、酸化剤としてH22を加えてFeを酸化させた後、例えばアルカリを添加してpHを5〜6に調整し、溶液中のFe及びAlを、それぞれFe(OH)3、Al(OH)3として沈殿させるAl沈殿処理2を行い、公知の固液分離法により、沈殿物を除去すれば、上記第1の実施形態又は第2の実施形態の原料として、より一層好ましいCoNi原料溶液を得ることができる。
この際、酸化剤としては、溶液中の2価の鉄を3価に酸化できるものであればよく、例えば過酸化水素のほかに、次亜塩素酸ナトリウムなどを挙げることができる。
また、pHを調整するアルカリとしては、例えば水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(Ca(OH)2)、水酸化コバルト(Co(OH)2)等を挙げることができる。
なお、Al沈殿処理2で得られた沈殿物中には、Co及びNiが若干含まれるため、再度Al沈殿処理1の処理液に戻して繰り返し処理することで、Co回収率をさらに高めることができる。
Further, H 2 O 2 was added as an oxidizing agent to the obtained solution to oxidize Fe, and then, for example, an alkali was added to adjust the pH to 5 to 6, and Fe and Al in the solution were respectively changed to Fe ( OH) 3 , Al precipitation treatment 2 for precipitation as Al (OH) 3 is performed, and if the precipitate is removed by a known solid-liquid separation method, as the raw material of the first embodiment or the second embodiment, An even more preferable CoNi raw material solution can be obtained.
In this case, any oxidizing agent may be used as long as it can oxidize divalent iron in the solution to trivalent, and examples thereof include sodium hypochlorite in addition to hydrogen peroxide.
Examples of the alkali for adjusting the pH include sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), cobalt hydroxide (Co (OH) 2 ) and the like. Can do.
In addition, since Co and Ni are slightly contained in the precipitate obtained in the Al precipitation treatment 2, it is possible to further increase the Co recovery rate by returning to the treatment liquid of the Al precipitation treatment 1 again and repeating the treatment. it can.

そして、このようにして得られたCoNi原料溶液を、上記第1の実施形態又は第2の実施形態と同様に処理すればよい。   Then, the CoNi raw material solution thus obtained may be treated in the same manner as in the first embodiment or the second embodiment.

第1〜第3の実施形態のようにして得られたCo高純度溶液は、必要に応じて溶液中の鉄(Fe)などCo以外の金属元素を公知の方法で除去した後、公知の方法で処理することにより、Co(メタル)として回収することができる。
例えば、Feを含んだCo高純度溶液に過酸化水素(H22)などの酸化剤を添加すると共に、酸化剤を添加した溶液のpHを、アルカリを添加して3〜5に調整することで、溶液中の鉄を水酸化鉄(Fe(OH)3)として沈殿除去することができる。
この際、酸化剤としては、溶液中の2価の鉄を3価に酸化できるものであればよく、例えば過酸化水素のほかに、次亜塩素酸ナトリウムなどを挙げることができる。
また、pHを調整するアルカリとしては、例えば水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(Ca(OH)2)、水酸化コバルト(Co(OH)2)等を挙げることができる。
その後、例えばCo高純度溶液に水酸化ナトリウムなどを添加して、液中のCo元素をCo(OH)2として析出させ、硫酸を用いて溶解させた後、電解採取してCo(メタル)として回収することができる。
The Co high-purity solution obtained as in the first to third embodiments is a known method after removing metal elements other than Co such as iron (Fe) in the solution by a known method as necessary. Can be recovered as Co (metal).
For example, an oxidizing agent such as hydrogen peroxide (H 2 O 2 ) is added to a Co high-purity solution containing Fe, and the pH of the solution to which the oxidizing agent is added is adjusted to 3 to 5 by adding an alkali. Thus, the iron in the solution can be precipitated and removed as iron hydroxide (Fe (OH) 3 ).
In this case, any oxidizing agent may be used as long as it can oxidize divalent iron in the solution to trivalent, and examples thereof include sodium hypochlorite in addition to hydrogen peroxide.
Examples of the alkali for adjusting the pH include sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), cobalt hydroxide (Co (OH) 2 ) and the like. Can do.
Thereafter, for example, sodium hydroxide or the like is added to a Co high-purity solution, and Co element in the solution is precipitated as Co (OH) 2 , dissolved using sulfuric acid, and then electrocollected to obtain Co (metal). It can be recovered.

なお、第1〜第3の実施形態で説明した各工程のほかに、公知の他の工程や処理を追加することは任意に可能である。例えば、上記で説明した以外の成分が原料中に含まれる場合に、当該成分を除去するために公知の工程や処理を追加することなどを挙げることができるが、これに限定されるものでもない。   In addition to the processes described in the first to third embodiments, other known processes and processes can be arbitrarily added. For example, when a component other than those described above is included in the raw material, a known process or treatment may be added to remove the component, but it is not limited thereto. .

<語句の説明>
本発明において、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含するものである。
また、「X以上」(Xは任意の数字)と記載した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と記載した場合、特にことわらない限り「好ましくはYより小さい」の意も包含するものである。
<Explanation of words>
In the present invention, when described as “X to Y” (X and Y are arbitrary numbers), unless otherwise specified, “X is preferably greater than X” or “preferably Y”. It also includes the meaning of “smaller”.
Further, when described as “X or more” (X is an arbitrary number), it means “preferably larger than X” unless otherwise specified, and described as “Y or less” (Y is an arbitrary number). In the case, unless otherwise specified, the meaning of “preferably smaller than Y” is also included.

以下、本発明に関する実施例及び比較例について説明する。但し、本発明は以下に説明する内容に限定されるものではない。   Examples of the present invention and comparative examples will be described below. However, the present invention is not limited to the contents described below.

<試験1>
Niに対してCo濃度が高いCoNi原料溶液を調製し、酸化還元電位(;ORP、参照電極:銀−飽和塩化銀電極)を所定値に調整すると共に、硫化剤としてのNaHSを添加して、ORPとNi濃度、Fe濃度、Co回収率との関係を検討した。
<Test 1>
A CoNi raw material solution having a high Co concentration relative to Ni is prepared, and the redox potential (ORP, reference electrode: silver-saturated silver chloride electrode) is adjusted to a predetermined value, and NaHS as a sulfiding agent is added, The relationship between ORP and Ni concentration, Fe concentration, and Co recovery rate was examined.

(第1工程:CoS作製工程)
Coを34g/L、Niを3.7g/Lの割合で含有するCoNi原料溶液(pH4.0〜4.5、40℃)200mLに、NaHS2.65gを水40mLに溶かしたものを添加すると共に、鉄粉1gを添加し、30分間攪拌した後、孔径5μmのメンブレンフィルターによってろ過して、沈殿物としてのCoS組成物を回収した。
(First step: CoS production step)
To 200 mL of CoNi raw material solution (pH 4.0 to 4.5, 40 ° C.) containing Co at a rate of 34 g / L and Ni at a rate of 3.7 g / L, a solution obtained by dissolving 2.65 g of NaHS in 40 mL of water is added. Then, 1 g of iron powder was added and stirred for 30 minutes, followed by filtration through a membrane filter having a pore size of 5 μm to recover a CoS composition as a precipitate.

(第2工程:Ni低減工程)
Coを21g/L、Niを21g/Lの割合で含有するCoNi原料溶液(pH4.0〜4.5、40℃)200mLに、鉄粉0.5g〜2.5gと第1工程で得られたCoS組成物全量とを添加して適宜ORPを変化させ、30分間攪拌した後、孔径5μmのメンブレンフィルターによってろ過して、ろ液中のNi濃度、ろ液中のFe濃度、さらにはCo濃度を測定し、CoS組成物からのCo回収率(%)を確認した。
(Second step: Ni reduction step)
CoNi raw material solution (pH 4.0 to 4.5, 40 ° C.) containing Co at a rate of 21 g / L and Ni at a rate of 21 g / L is obtained in the first step with 0.5 g to 2.5 g of iron powder. The total amount of the CoS composition was added and the ORP was appropriately changed, stirred for 30 minutes, and then filtered through a membrane filter having a pore size of 5 μm. The Ni concentration in the filtrate, the Fe concentration in the filtrate, and the Co concentration Was measured to confirm the Co recovery rate (%) from the CoS composition.

(考察)
図4に示されるように、鉄粉を添加しORPが下がると、Niが液中から分離され鉄粉が溶解していくことが確認された。このことから、式(4)のような反応が生じていると考えられる。
式(4) 3Ni+2+2CoS+Fe→Ni32+2Co2++Fe2+
(Discussion)
As shown in FIG. 4, it was confirmed that when iron powder was added and ORP was lowered, Ni was separated from the liquid and the iron powder was dissolved. From this, it is thought that reaction like Formula (4) has arisen.
Formula (4) 3Ni +2 + 2CoS + Fe → Ni 3 S 2 + 2Co 2+ + Fe 2+

多くの試験を重ねた結果、Ni低減工程では、初期Ni濃度(21g/L)を半減するためには、ORPを−400mV以下、特に−450mV以下とすることが好ましいことが分かった。
また、Ni低減工程では、Ni濃度を4〜6g/Lまで低減するのが最も効率的であることが判明しており、かかるNi濃度にするためには、ORPを−500mV以下にすることが好ましいことも分かった。
As a result of many tests, it was found that in the Ni reduction step, it is preferable to set the ORP to −400 mV or less, particularly −450 mV or less, in order to halve the initial Ni concentration (21 g / L).
In the Ni reduction step, it has been found that it is most efficient to reduce the Ni concentration to 4 to 6 g / L. In order to obtain such a Ni concentration, the ORP should be set to −500 mV or less. I also found it preferable.

また、図4に示されるように、鉄粉の添加量を多くすると、ORPが−550mVに近づき、溶解Fe濃度が増大することが分かった。但し、過剰に鉄粉を添加しても、ORPは低下しないため、ORPを−550mVよりも低くすることは鉄粉の無駄である。また、鉄粉が大量に溶解し後工程の負荷が増大するため、適切でない。さらに、式(5)のような反応が考えられ、Coが再度CoSとしてロスするおそれもある。
式(5) Ni32 + 2Co+2 + 2Fe→3Ni+ 2CoS+ 2Fe2+
Moreover, as FIG. 4 showed, when the addition amount of iron powder was increased, it turned out that ORP approaches -550mV and melt | dissolution Fe density | concentration increases. However, since ORP does not decrease even if iron powder is added excessively, it is wasteful of iron powder to make ORP lower than -550 mV. Moreover, since iron powder melt | dissolves in large quantities and the load of a post process increases, it is not appropriate. Furthermore, reaction like Formula (5) can be considered and Co may be lost as CoS again.
Formula (5) Ni 3 S 2 + 2Co +2 + 2Fe → 3Ni + 2CoS + 2Fe 2 +

さらに、ORP = −540mVのときのCoS組成物からのCo回収率は59%であり、Ni、Feの挙動から式(4)に従って添加したCoSからCoが液中へ回収されていると考えられる。
ろ過して得られた残渣の元素比は、S:Ni:Co =2:2.8:0.4であり、Ni32の組成に近い化合物ができていた。ORPがおおむね−400mV以上ではNi分離率が低くなる傾向が認められ、式(4)が十分進行せずにCo回収率が低いと考えられる。
以上の点から、第1工程及び第2工程のいずれにおいても、ORPを−400mV〜−550mVの範囲に調整して反応を進めるのが望ましいと考えることができる。
Furthermore, the Co recovery rate from the CoS composition when ORP = −540 mV is 59%, and it is considered that Co is recovered from the CoS added according to the formula (4) into the liquid from the behavior of Ni and Fe. .
The element ratio of the residue obtained by filtration was S: Ni: Co = 2: 2.8: 0.4, and a compound close to the composition of Ni 3 S 2 was formed. When the ORP is approximately −400 mV or more, the Ni separation rate tends to be low, and it is considered that the formula (4) does not proceed sufficiently and the Co recovery rate is low.
From the above points, it can be considered that it is desirable to adjust the ORP in the range of −400 mV to −550 mV in both the first step and the second step.

<試験2>
Ni及びCoを含有するCoNi原料溶液(原料)に、鉄粉と、添加量を変えてNaHS(水硫化ナトリウム)とを添加し、CoS沈殿(CoS高含有組成物)を作製し、CoS高含有組成物中のNi量及びCo量を測定した。
<Test 2>
To CoNi raw material solution (raw material) containing Ni and Co, iron powder and NaHS (sodium hydrosulfide) are added in different amounts to produce a CoS precipitate (CoS high content composition), and high CoS content The amount of Ni and the amount of Co in the composition were measured.

液温40℃、初期pH5のCoNi原料溶液(Co濃度:40g/L(68mmoL)、Ni濃度:1.0g/L(1.7mmoL))100mLに、Fe粉0.21g及びNaHS3.4〜6.8mmoLを添加して30分間反応させ、ろ過を行い、ろ液とCoS高含有組成物に分離し、CoS高含有組成物中のNi量及びCo量を算出した。   CoNi raw material solution (Co concentration: 40 g / L (68 mmol), Ni concentration: 1.0 g / L (1.7 mmol)) at 100 ° C. and an initial pH of 5 was added to 0.21 g of Fe powder and NaHS 3.4-6. .8 mmoL was added, reacted for 30 minutes, filtered, separated into a filtrate and a CoS-rich composition, and the amount of Ni and Co in the CoS-rich composition were calculated.

CoS高含有組成物中のNi量及びCo量は次のようにして算出した。
この際、CoS高含有組成物中のNiはNi32になっていると仮定した。
・CoS高含有組成物中Ni量=CoNi原料溶液中Ni量 −ろ液中Ni量
・CoS高含有組成物中Ni量=NaHS添加量−CoS高含有組成物中Ni量×2÷3
The amount of Ni and the amount of Co in the CoS-rich composition were calculated as follows.
At this time, it was assumed that Ni in the high CoS-containing composition was Ni 3 S 2 .
-Ni amount in CoS high content composition = Ni amount in CoNi raw material solution-Ni amount in filtrate-Ni amount in CoS high content composition = NaHS addition amount-Ni amount in CoS high content composition x 2/3

Figure 2012001750
Figure 2012001750

<試験3>
Ni及びCoを含有し、Ni量を変化させたCoNi原料溶液に、鉄粉、CoS及びNi32を添加し、Niを除去して、高濃度Niろ液と、高濃度Co組成物を得、Ni分離率とCo回収率を求めた。
<Test 3>
Iron powder, CoS and Ni 3 S 2 are added to a CoNi raw material solution containing Ni and Co, and the amount of Ni is changed, and Ni is removed to obtain a high concentration Ni filtrate and a high concentration Co composition. The Ni separation rate and the Co recovery rate were obtained.

液温40℃、初期pH5のCoNi原料溶液(Co濃度:40g/L(68mmoL)、Ni濃度:4〜8g/L(6.8〜13.6mmoL))100mLに、Fe粉0.84g、CoS2.4〜5.8mmoL、Ni320.5mmoLを添加して30分間反応させ、ろ過を行い、高濃度Niろ液と、高濃度Co組成物を得、それぞれのNi量及びCo量を測定した。 CoNi raw material solution (Co concentration: 40 g / L (68 mmol), Ni concentration: 4 to 8 g / L (6.8 to 13.6 mmol)) with a liquid temperature of 40 ° C. and an initial pH of 5 was added to 100 mL, Fe powder 0.84 g, CoS 2 .4~5.8mmoL, Ni 3 S 2 0.5mmoL were reacted 30 minutes added, was filtered, and the high concentration Ni filtrate, to obtain a high concentration Co composition, the respective amount of Ni and Co content It was measured.

Ni分離率及びCo回収率を次のようにして算出した。
・分離したNi量=CoNi原料溶液中Ni量 −高濃度Niろ液中Ni量
・Ni分離率 = 分離したNi量 /CoNi原料溶液中Ni量×100
・Co回収率 = 100−Ni残渣中Co量 /高濃度Co組成物中Co量×100
Ni separation rate and Co recovery rate were calculated as follows.
-Separated Ni amount = Ni amount in CoNi raw material solution-Ni amount in highly concentrated Ni filtrate-Ni separation rate = Separated Ni amount / Ni amount in CoNi raw material solution x 100
Co recovery rate = 100-Co amount in Ni residue / Co amount in high-concentration Co composition × 100

Figure 2012001750
Figure 2012001750

CoS添加量(1.8〜5.4mmoL)と初期Ni量(4〜8g/L)のmoL比を検討すると、CoS/初期Ni量が小さ過ぎるとNi分離率が不十分となる一方、CoS/初期Ni量が大き過ぎるとCo回収率が悪化することが分かった。
かかる観点から、CoS/初期Ni量は0.2〜0.8mol/molが好ましく、特に0.3〜0.7mol/mol、中でも特に0.4〜0.6mol/molであるのがより好ましいと考えることができる。
When the moL ratio between the CoS addition amount (1.8 to 5.4 mmoL) and the initial Ni amount (4 to 8 g / L) is examined, if the CoS / initial Ni amount is too small, the Ni separation rate becomes insufficient. / It was found that the Co recovery rate deteriorates when the initial Ni content is too large.
From this viewpoint, the amount of CoS / initial Ni is preferably 0.2 to 0.8 mol / mol, particularly 0.3 to 0.7 mol / mol, and more preferably 0.4 to 0.6 mol / mol. Can be considered.

Claims (8)

Ni及びCoを含有する溶液(「CoNi原料溶液」と称する)に還元剤及びCoSを加えて該CoNi原料溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−550mV〜−400mVに調整して、溶液中のNi元素を硫化物として沈殿除去する一方、イオン化した状態のCo元素を含有するCo含有溶液を得ることを特徴とするCo含有溶液の製造方法。   A reducing agent and CoS are added to a solution containing Ni and Co (referred to as “CoNi raw material solution”) to reduce the oxidation-reduction potential (reference electrode: silver-saturated silver chloride electrode) of the CoNi raw material solution to −550 mV to −400 mV. A method for producing a Co-containing solution, characterized in that a Co-containing solution containing Co element in an ionized state is obtained while Ni element in the solution is precipitated and removed as a sulfide. 還元剤として鉄粉を使用することを特徴とする請求項1記載のCo含有溶液の製造方法。   The method for producing a Co-containing solution according to claim 1, wherein iron powder is used as the reducing agent. 反応開始時の溶液中のNiに対して0.2〜0.8倍モル量のCoSを添加することを特徴とする請求項1又は2記載のCo含有溶液の製造方法。   The method for producing a Co-containing solution according to claim 1 or 2, wherein 0.2 to 0.8-fold molar amount of CoS is added to Ni in the solution at the start of the reaction. 請求項1〜3の何れかに記載の製造方法によって得られたCo含有溶液に還元剤及び硫化剤を加えて該Co含有溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−550mV〜−400mVに調整して、溶液中のNi元素をNi硫化物として沈殿させると共に、溶液中のCo元素の一部をCoSとして沈殿させ、残りのCo元素が溶解した溶液(「Co高純度溶液」と称する)を得ることを特徴とする、Co高純度溶液の製造方法。   A reducing agent and a sulfurizing agent are added to the Co-containing solution obtained by the production method according to any one of claims 1 to 3, and the oxidation-reduction potential (reference electrode: silver-saturated silver chloride electrode) of the Co-containing solution is- The solution was adjusted to 550 mV to -400 mV, Ni element in the solution was precipitated as Ni sulfide, and a part of Co element in the solution was precipitated as CoS, and the remaining Co element was dissolved (“Co high purity A method for producing a Co high-purity solution. 溶液中のNiに対して1〜10倍モル量の硫化剤(S換算)を添加することを特徴とする請求項4記載のCo含有溶液の製造方法。   5. The method for producing a Co-containing solution according to claim 4, wherein a 1 to 10-fold molar amount of a sulfurizing agent (in terms of S) is added to Ni in the solution. Ni及びCoを含有するCoNi原料溶液に還元剤及びCoSを加えて該CoNi原料溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−550mV〜−400mVに調整して、溶液中のNi元素を硫化物として沈殿除去する一方、イオン化した状態のCo元素を含有するCo含有溶液を得るNi低減工程と、
前記Ni低減工程で得られたCo含有溶液に還元剤及び硫化剤を加えて該Co含有溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−550mV〜−400mVに調整して、溶液中のNi元素をNi硫化物として沈殿させると共に、溶液中のCo元素の一部をCoSとして沈殿させた後、固液分離して、該Ni硫化物及び該CoSを含有するCoS含有組成物と、残りのCo元素が溶解したCo高純度溶液とを分離回収するCoS作製工程とを備え、
CoS作製工程で回収したCoS含有組成物を、次回以降のバッチのNi低減工程においてCoSとして添加するようにして、前記Ni低減工程及び前記CoS作製工程を繰り返すことを特徴とするCo高純度溶液の製造方法。
A reducing agent and CoS are added to a CoNi raw material solution containing Ni and Co, and the oxidation-reduction potential (reference electrode: silver-saturated silver chloride electrode) of the CoNi raw material solution is adjusted to -550 mV to -400 mV. Ni reduction step of obtaining a Co-containing solution containing Co element in an ionized state while precipitating and removing Ni element as sulfide,
A reducing agent and a sulfurizing agent are added to the Co-containing solution obtained in the Ni reduction step to adjust the oxidation-reduction potential (reference electrode: silver-saturated silver chloride electrode) of the Co-containing solution to -550 mV to -400 mV, The Ni element in the solution is precipitated as Ni sulfide, and a part of the Co element in the solution is precipitated as CoS and then separated into solid and liquid, and the Ni sulfide and the CoS-containing composition containing the CoS are separated. And a CoS preparation step of separating and recovering a Co high-purity solution in which the remaining Co element is dissolved,
A Co high purity solution characterized by repeating the Ni reduction step and the CoS preparation step so that the CoS-containing composition recovered in the CoS preparation step is added as CoS in the Ni reduction step of the next batch and subsequent batches. Production method.
CoNi原料溶液が、廃リチウムイオン電池の正極材料を溶解して得られたものであることを特徴とする請求項1〜6の何れかに記載のCo高純度溶液の製造方法。   The method for producing a Co high-purity solution according to any one of claims 1 to 6, wherein the CoNi raw material solution is obtained by dissolving a positive electrode material of a waste lithium ion battery. Ni、Mn及びCoを含有する組成物(「CoMnNi含有組成物」と称する)を酸に溶解してCoMnNi原料溶液を作製する溶解工程と、
前記CoMnNi原料溶液に酸化剤を加えて、該溶液中のMn元素をMn酸化物として沈殿除去して、Ni及びCoを含有するCoNi原料溶液を得るMn除去工程と、
前記Mn除去工程で得られたCoNi原料溶液に還元剤及びCoSを加えて該CoNi原料溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−550mV〜−400mVに調整して、溶液中のNi元素を硫化物として沈殿除去する一方、イオン化した状態のCo元素を含有するCo含有溶液を得るNi低減工程と、
前記Ni低減工程で得られたCo含有溶液に還元剤及び硫化剤を加えて該Co含有溶液の酸化還元電位(参照電極:銀−飽和塩化銀電極)を−550mV〜−400mVに調整して、溶液中のNi元素をNi硫化物として沈殿させると共に、溶液中のCo元素の一部をCoSとして沈殿させた後、固液分離して、該Ni硫化物及び該CoSを含有するCoS含有組成物と、残りのCo元素が溶解してなるCo高純度溶液とを分離回収するCoS作製工程とを備え、
CoS作製工程で回収したCoS含有組成物を、次回以降のバッチのNi低減工程においてCoSとして添加するようにして、前記Ni低減工程及び前記CoS作製工程を繰り返すことを特徴とするCo高純度溶液の製造方法。
A dissolution step of dissolving a composition containing Ni, Mn and Co (referred to as “CoMnNi-containing composition”) in an acid to prepare a CoMnNi raw material solution;
An Mn removal step of adding an oxidizing agent to the CoMnNi raw material solution, and precipitating and removing Mn element in the solution as a Mn oxide to obtain a CoNi raw material solution containing Ni and Co;
A reducing agent and CoS are added to the CoNi raw material solution obtained in the Mn removing step to adjust the oxidation-reduction potential (reference electrode: silver-saturated silver chloride electrode) of the CoNi raw material solution to -550 mV to -400 mV to obtain a solution. Ni reduction step of obtaining a Co-containing solution containing Co element in an ionized state while precipitating and removing Ni element therein as a sulfide,
A reducing agent and a sulfurizing agent are added to the Co-containing solution obtained in the Ni reduction step to adjust the oxidation-reduction potential (reference electrode: silver-saturated silver chloride electrode) of the Co-containing solution to -550 mV to -400 mV, The Ni element in the solution is precipitated as Ni sulfide, and a part of the Co element in the solution is precipitated as CoS and then separated into solid and liquid, and the Ni sulfide and the CoS-containing composition containing the CoS are separated. And a CoS preparation step of separating and recovering a Co high-purity solution in which the remaining Co element is dissolved,
A Co high purity solution characterized by repeating the Ni reduction step and the CoS preparation step so that the CoS-containing composition recovered in the CoS preparation step is added as CoS in the Ni reduction step of the next batch and subsequent batches. Production method.
JP2010135908A 2010-06-15 2010-06-15 METHOD FOR PRODUCING Co-CONTAINING SOLUTION Pending JP2012001750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135908A JP2012001750A (en) 2010-06-15 2010-06-15 METHOD FOR PRODUCING Co-CONTAINING SOLUTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135908A JP2012001750A (en) 2010-06-15 2010-06-15 METHOD FOR PRODUCING Co-CONTAINING SOLUTION

Publications (1)

Publication Number Publication Date
JP2012001750A true JP2012001750A (en) 2012-01-05

Family

ID=45534071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135908A Pending JP2012001750A (en) 2010-06-15 2010-06-15 METHOD FOR PRODUCING Co-CONTAINING SOLUTION

Country Status (1)

Country Link
JP (1) JP2012001750A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114470A (en) * 2012-12-07 2014-06-26 Sumitomo Metal Mining Co Ltd Method for separating and removing aluminum and method for recovering valuable metals from a lithium ion battery
WO2016052569A1 (en) * 2014-09-30 2016-04-07 Jx金属株式会社 Leaching method for lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
WO2016052568A1 (en) * 2014-09-30 2016-04-07 Jx金属株式会社 Leaching method for lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
JP2016069706A (en) * 2014-09-30 2016-05-09 Jx金属株式会社 Method for leaching metal and method for recovering metal using the same
WO2016159002A1 (en) * 2015-03-31 2016-10-06 Jx金属株式会社 Method for removing copper from lithium ion cell scrap, and method for recovering metal
JP2016191119A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 Method for removing copper and collecting valuable metals from copper ion-containing solution
WO2017159743A1 (en) * 2016-03-16 2017-09-21 Jx金属株式会社 Processing method for lithium ion battery scrap
WO2017159745A1 (en) * 2016-03-16 2017-09-21 Jx金属株式会社 Processing method for lithium ion battery scrap
JP2018040035A (en) * 2016-09-07 2018-03-15 Jx金属株式会社 Process for treating lithium-ion battery scrap
CN110492193A (en) * 2019-08-09 2019-11-22 珠海格力电器股份有限公司 A method of recycling iron, aluminium from waste and old ternary lithium ion battery
KR20200083578A (en) * 2017-11-24 2020-07-08 스미토모 긴조쿠 고잔 가부시키가이샤 How to dispose of lithium ion waste battery
JP2020147812A (en) * 2019-03-14 2020-09-17 Jx金属株式会社 Processing method of copper iron cobalt alloy
WO2023002917A1 (en) * 2021-07-20 2023-01-26 住友金属鉱山株式会社 Method for treating alloy
WO2023191030A1 (en) * 2022-03-31 2023-10-05 三菱マテリアル株式会社 Electrode material leaching method and method for separating cobalt and nickel
EP4289979A3 (en) * 2017-09-29 2024-03-13 Sumitomo Metal Mining Co., Ltd. Method for separating copper from nickel and cobalt
US12000018B2 (en) 2017-10-23 2024-06-04 Sumitomo Metal Mining Co., Ltd. Method for separating copper from nickel and cobalt

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114470A (en) * 2012-12-07 2014-06-26 Sumitomo Metal Mining Co Ltd Method for separating and removing aluminum and method for recovering valuable metals from a lithium ion battery
CN107208178A (en) * 2014-09-30 2017-09-26 捷客斯金属株式会社 The leaching method of lithium ion battery waste material and come from lithium ion battery waste material metal recovery method
JP2016069706A (en) * 2014-09-30 2016-05-09 Jx金属株式会社 Method for leaching metal and method for recovering metal using the same
EP4219777A1 (en) * 2014-09-30 2023-08-02 JX Nippon Mining & Metals Corporation Method for leaching lithium ion battery scrap and method for recovering metals from lithium ion battery scrap
CN107002171A (en) * 2014-09-30 2017-08-01 捷客斯金属株式会社 The leaching method of lithium ion battery waste material and come from lithium ion battery waste material metal recovery method
JP2016069732A (en) * 2014-09-30 2016-05-09 Jx金属株式会社 Leaching method for lithium ion battery scrap, and recovery method for metal from lithium ion battery scrap
WO2016052568A1 (en) * 2014-09-30 2016-04-07 Jx金属株式会社 Leaching method for lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
KR101919724B1 (en) * 2014-09-30 2018-11-16 제이엑스금속주식회사 Leaching method for lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
KR101919266B1 (en) * 2014-09-30 2018-11-15 제이엑스금속주식회사 Leaching method for lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
WO2016052569A1 (en) * 2014-09-30 2016-04-07 Jx金属株式会社 Leaching method for lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
JP2016069733A (en) * 2014-09-30 2016-05-09 Jx金属株式会社 Leaching method for lithium ion battery scrap, and recovery method for metal from lithium ion battery scrap
WO2016159002A1 (en) * 2015-03-31 2016-10-06 Jx金属株式会社 Method for removing copper from lithium ion cell scrap, and method for recovering metal
KR101979139B1 (en) * 2015-03-31 2019-05-15 제이엑스금속주식회사 METHOD FOR REMOVING COPPER FROM LITHIUM ION BATTERY SCRAP AND METHOD FOR RETAINING METAL
KR20170131625A (en) * 2015-03-31 2017-11-29 제이엑스금속주식회사 METHOD FOR REMOVING COPPER FROM LITHIUM ION BATTERY SCRAP AND METHOD FOR RETAINING METAL
CN107429313A (en) * 2015-03-31 2017-12-01 捷客斯金属株式会社 The method of copper and the method for recovery metal are removed from lithium ion battery waste material
CN107429313B (en) * 2015-03-31 2019-07-16 捷客斯金属株式会社 The method of copper and the method for recycling metal are removed from lithium ion battery waste material
JP2016191119A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 Method for removing copper and collecting valuable metals from copper ion-containing solution
JP2016191134A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 Method for removing copper and collecting metals from lithium ion battery scarp
US10400304B2 (en) 2015-03-31 2019-09-03 Jx Nippon Mining & Metals Corporation Method for removing copper from lithium ion battery scrap and method for recovering metals
JPWO2017159745A1 (en) * 2016-03-16 2019-01-24 Jx金属株式会社 Lithium-ion battery scrap processing method
WO2017159743A1 (en) * 2016-03-16 2017-09-21 Jx金属株式会社 Processing method for lithium ion battery scrap
WO2017159745A1 (en) * 2016-03-16 2017-09-21 Jx金属株式会社 Processing method for lithium ion battery scrap
US10807879B2 (en) 2016-03-16 2020-10-20 Jx Nippon Mining & Metals Corporation Processing method for lithium ion battery scrap
US10865462B2 (en) 2016-03-16 2020-12-15 Jx Nippon Mining & Metals Corporation Processing method for lithium ion battery scrap
JPWO2017159743A1 (en) * 2016-03-16 2019-01-24 Jx金属株式会社 Lithium-ion battery scrap processing method
JP2018040035A (en) * 2016-09-07 2018-03-15 Jx金属株式会社 Process for treating lithium-ion battery scrap
US11959151B2 (en) 2017-09-29 2024-04-16 Sumitomo Metal Mining Co., Ltd. Method for separating copper from nickel and cobalt
EP4289979A3 (en) * 2017-09-29 2024-03-13 Sumitomo Metal Mining Co., Ltd. Method for separating copper from nickel and cobalt
US12000018B2 (en) 2017-10-23 2024-06-04 Sumitomo Metal Mining Co., Ltd. Method for separating copper from nickel and cobalt
KR102427533B1 (en) * 2017-11-24 2022-08-01 스미토모 긴조쿠 고잔 가부시키가이샤 How to Dispose of Lithium Ion Waste Batteries
US11618959B2 (en) 2017-11-24 2023-04-04 Sumitomo Metal Mining Co., Ltd. Method for treating lithium ion battery waste
KR20200083578A (en) * 2017-11-24 2020-07-08 스미토모 긴조쿠 고잔 가부시키가이샤 How to dispose of lithium ion waste battery
JP2020147812A (en) * 2019-03-14 2020-09-17 Jx金属株式会社 Processing method of copper iron cobalt alloy
CN110492193A (en) * 2019-08-09 2019-11-22 珠海格力电器股份有限公司 A method of recycling iron, aluminium from waste and old ternary lithium ion battery
JPWO2023002917A1 (en) * 2021-07-20 2023-01-26
JP7311054B2 (en) 2021-07-20 2023-07-19 住友金属鉱山株式会社 Alloy treatment method
WO2023002917A1 (en) * 2021-07-20 2023-01-26 住友金属鉱山株式会社 Method for treating alloy
WO2023191030A1 (en) * 2022-03-31 2023-10-05 三菱マテリアル株式会社 Electrode material leaching method and method for separating cobalt and nickel

Similar Documents

Publication Publication Date Title
JP2012001750A (en) METHOD FOR PRODUCING Co-CONTAINING SOLUTION
Leal et al. Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications
WO2022161087A1 (en) Method for separating nickel and iron from nickel-iron alloy and use
JP6622998B2 (en) Method for removing iron and aluminum from lithium ion battery scrap and method for recovering valuable metals
WO2012011205A1 (en) Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
KR101325176B1 (en) Method of manufacturing chemical manganese dioxide from trivalent cathode active material, the chemical manganese dioxide manufactured by the method and secondary battery including the chemical manganese dioxide
CN104017995A (en) Method for recycling copper, indium, gallium and selenium from indium gallium selenium wastes containing copper
WO2019064996A1 (en) Method for separating copper from nickel and cobalt
JP2018040035A (en) Process for treating lithium-ion battery scrap
JP6365838B2 (en) Cobalt nickel leaching method
JP2010040458A (en) Lithium recovery method and metal-recovering method
TW202221145A (en) Method for separating cobalt and nickel
CN113942986A (en) Method for recovering nickel and iron from nickel-iron alloy
CA2986557C (en) Aqueous cobalt chloride solution refinement method
JP7052635B2 (en) Separation method of copper, nickel and cobalt
JP6996723B1 (en) Metal recovery method from lithium-ion batteries
JP4215547B2 (en) Cobalt recovery method
KR101553388B1 (en) Method of recovering effective metal material from positive electrode scrab
CN113215589B (en) Method for separating iron and other metal elements in iron alloy
CN113921932A (en) Precursor solution, preparation method thereof, positive electrode material and lithium ion battery
JP2004010929A (en) Method for recovering cobalt from scrap
WO2016194658A1 (en) Aqueous cobalt chloride solution purification method
KR102576614B1 (en) Method for recovering valuable metals from waste lithium ion batteries
CN115650319B (en) Method for synchronously and efficiently removing copper and cobalt ions from nickel sulfate solution
JP5962487B2 (en) Method for separating rare earth elements contained in nickel metal hydride battery and method for recovering valuable metals from nickel metal hydride battery