JP2020147812A - Processing method of copper iron cobalt alloy - Google Patents

Processing method of copper iron cobalt alloy Download PDF

Info

Publication number
JP2020147812A
JP2020147812A JP2019047632A JP2019047632A JP2020147812A JP 2020147812 A JP2020147812 A JP 2020147812A JP 2019047632 A JP2019047632 A JP 2019047632A JP 2019047632 A JP2019047632 A JP 2019047632A JP 2020147812 A JP2020147812 A JP 2020147812A
Authority
JP
Japan
Prior art keywords
iron
cobalt
copper
cobalt alloy
leaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019047632A
Other languages
Japanese (ja)
Inventor
直樹 樋口
Naoki Higuchi
直樹 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019047632A priority Critical patent/JP2020147812A/en
Publication of JP2020147812A publication Critical patent/JP2020147812A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a processing method of a copper iron cobalt alloy, which can recover cobalt from the copper iron cobalt alloy.SOLUTION: A processing method of a copper iron cobalt alloy includes the steps of: pulverizing for pulverizing a copper iron cobalt alloy; leaching for leaching iron and cobalt in the copper iron cobalt alloy pulverized in the pulverizing; removing for removing iron by solid liquid separation by oxidizing and neutralizing the leaching liquid obtained in the leaching; adding for adding metallic cobalt in a solution obtained by the removing; and separating for separating a cobalt-containing solution by applying the solid liquid separation to the solution obtained by the adding.SELECTED DRAWING: Figure 1

Description

本件は、銅鉄コバルト合金の処理方法に関する。 This case relates to a method for treating a copper-iron-cobalt alloy.

銅製錬炉において、銅品位の高い粗銅とは別に、銅品位の低い銅合金が回収される。また、スクラップとして、銅品位の低い銅合金が回収される。これらの銅合金には、鉄およびコバルトも含まれている(例えば、特許文献1参照)。 In the copper smelting furnace, a copper alloy having a low copper grade is recovered in addition to the blister copper having a high copper grade. In addition, copper alloys with low copper grade are recovered as scrap. These copper alloys also contain iron and cobalt (see, for example, Patent Document 1).

特開2016−191093号公報Japanese Unexamined Patent Publication No. 2016-191093

鉄およびコバルトが含まれている銅鉄コバルト合金を銅製錬炉に繰り返して銅原料として用いると、コバルトは鉄と共にスラグへ分配される傾向にある。したがって、コバルトを回収することが困難であった。 When a copper-iron-cobalt alloy containing iron and cobalt is repeatedly used as a copper raw material in a copper smelting furnace, cobalt tends to be distributed to slag together with iron. Therefore, it was difficult to recover cobalt.

本件は上記の課題に鑑み、銅鉄コバルト合金からコバルトを回収することができる銅鉄コバルト合金の処理方法を提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide a method for treating a copper-iron-cobalt alloy capable of recovering cobalt from a copper-iron-cobalt alloy.

1つの態様では、銅鉄コバルト合金の処理方法は、銅鉄コバルト合金を破砕する破砕工程と、前記破砕工程で破砕された前記銅鉄コバルト合金中の鉄およびコバルトを浸出する浸出工程と、前記浸出工程によって得られる浸出液を酸化中和し、固液分離によって鉄を除去する除去工程と、前記除去工程によって得られる溶液に金属コバルトを添加する添加工程と、前記添加工程によって得られる溶液に対して固液分離することによってコバルト含有溶液を分離する分離工程と、含むことを特徴とする。 In one embodiment, the method for treating the copper-iron-cobalt alloy includes a crushing step of crushing the copper-iron-cobalt alloy, an leaching step of leaching iron and cobalt in the copper-iron-cobalt alloy crushed in the crushing step, and the above-mentioned. For the removal step of oxidatively neutralizing the leachate obtained by the leaching step and removing iron by solid-liquid separation, the addition step of adding metallic cobalt to the solution obtained by the removal step, and the solution obtained by the addition step. It is characterized by including a separation step of separating a cobalt-containing solution by solid-liquid separation.

上記銅鉄コバルト合金の処理方法において、前記分離工程によって分離された前記コバルト含有溶液を溶媒抽出・逆抽出後、電解によりコバルトを回収する電解工程を含んでいてもよい。 The method for treating a copper-iron-cobalt alloy may include an electrolysis step of recovering cobalt by electrolysis after solvent extraction / back-extraction of the cobalt-containing solution separated by the separation step.

上記銅鉄コバルト合金の処理方法の前記破砕工程において、銅鉄コバルト合金の粒子径が500μm以下となるように、前記銅鉄コバルト合金を破砕してもよい。 In the crushing step of the method for treating a copper-iron-cobalt alloy, the copper-iron-cobalt alloy may be crushed so that the particle size of the copper-iron-cobalt alloy is 500 μm or less.

上記銅鉄コバルト合金の処理方法の前記浸出工程において、鉄およびコバルトの当量に対して、浸出の酸の当量を1.0〜1.3倍としてもよい。 In the leaching step of the method for treating a copper-iron-cobalt alloy, the equivalent of leaching acid may be 1.0 to 1.3 times the equivalent of iron and cobalt.

上記銅鉄コバルト合金の処理方法の前記除去工程において、鉄を酸化中和する際に、前記浸出液のpHを3以上、4以下に調整してもよい。 In the removal step of the method for treating a copper-iron-cobalt alloy, the pH of the leachate may be adjusted to 3 or more and 4 or less when oxidatively neutralizing iron.

本発明によれば、銅鉄コバルト合金からコバルトを回収することができる。 According to the present invention, cobalt can be recovered from a copper-iron cobalt alloy.

銅鉄コバルト合金の処理方法を例示するフロー図である。It is a flow figure which illustrates the processing method of a copper-iron-cobalt alloy. 破砕後の銅鉄コバルト合金の粒度分布を示す図である。It is a figure which shows the particle size distribution of a copper-iron-cobalt alloy after crushing. 浸出時間と浸出率との関係を示す図である。It is a figure which shows the relationship between the leaching time and the leaching rate. 酸化中和時間とORPとの関係を示す図である。It is a figure which shows the relationship between the oxidation neutralization time and ORP.

以下、本発明を実施するための実施形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described.

本実施形態では、銅鉄コバルト合金を処理する方法について説明する。対象とする銅鉄コバルト合金は、少なくとも銅、鉄およびコバルトを含む合金である。例えば、銅鉄コバルト合金は、銅製錬所のコバルト回収炉で発生するRed Alloyなどである。銅鉄コバルト合金は、例えば、銅を50mass%〜80mass%含み、鉄を1mass%〜30mass%含み、コバルトを1mass%〜30mass%含む。 In this embodiment, a method for treating a copper-iron-cobalt alloy will be described. The copper-iron-cobalt alloy of interest is an alloy containing at least copper, iron and cobalt. For example, the copper-iron-cobalt alloy is Red Alloy generated in a cobalt recovery furnace of a copper smelter. The copper-iron-cobalt alloy contains, for example, 50 mass% to 80 mass% of copper, 1 mass% to 30 mass% of iron, and 1 mass% to 30 mass% of cobalt.

図1は、銅鉄コバルト合金の処理方法を例示するフロー図である。以下、図1を参照しつつ、銅鉄コバルト合金の処理方法について説明する。 FIG. 1 is a flow chart illustrating a method for treating a copper-iron-cobalt alloy. Hereinafter, a method for treating a copper-iron-cobalt alloy will be described with reference to FIG.

(破砕工程)
図1で例示するように、まず、銅鉄コバルト合金を破砕する。例えば、ディスクミルを用いて銅鉄コバルト合金を破砕することができる。例えば、ディスクミルを10g/回かつ3分/回に設定する。銅鉄コバルト合金に含まれるコバルトを十分に浸出するためには、銅鉄コバルト合金を十分に破砕することが好ましい。そこで、破砕後の銅鉄コバルト合金の粒子径が500μm以下になるまで、破砕工程を行うことが好ましい。一方、銅鉄コバルト合金を過度に破砕すると、全般的に細かくなるものの、細かい粉が、装置への投入の際に舞い上がる、浸出の際には液表面に浮いて溶液と混ざらないといった不具合が生じる場合もある。そこで、銅鉄コバルト合金を過度に破砕する必要はなく、粒子径が2μm未満にならないような破砕にとどめておくことが好ましい。このように過度な破砕を抑えた場合の銅鉄コバルト合金の平均粒径は、30μm〜100μmとなる。
(Crushing process)
As illustrated in FIG. 1, first, the copper-iron-cobalt alloy is crushed. For example, a disc mill can be used to crush a copper-iron-cobalt alloy. For example, the disc mill is set to 10 g / time and 3 minutes / time. In order to sufficiently leached the cobalt contained in the copper-iron-cobalt alloy, it is preferable to sufficiently crush the copper-iron-cobalt alloy. Therefore, it is preferable to carry out the crushing step until the particle size of the copper-iron-cobalt alloy after crushing becomes 500 μm or less. On the other hand, if the copper-iron-cobalt alloy is crushed excessively, although it becomes finer in general, there are problems that fine powders fly up when they are put into the device and float on the liquid surface and do not mix with the solution when they are leached. In some cases. Therefore, it is not necessary to crush the copper-iron-cobalt alloy excessively, and it is preferable to crush the copper-iron-cobalt alloy so that the particle size does not become less than 2 μm. The average particle size of the copper-iron-cobalt alloy when excessive crushing is suppressed in this way is 30 μm to 100 μm.

(浸出工程)
次に、破砕工程で破砕された銅鉄コバルト合金中の鉄およびコバルトを浸出する。浸出液には、希硫酸などの、酸化力の弱い酸を用いる。鉄およびコバルトを十分に浸出するためには、鉄およびコバルトの当量に対する酸の当量に下限を設けることが好ましい。一方、鉄およびコバルトの当量に対して酸の量を過剰にすると、銅が溶解するおそれがあるとともに、後工程の中和で要するアルカリ量が増えるといった不具合が生じるおそれがある。そこで、鉄およびコバルトの当量に対する酸の当量に上限を設けることが好ましい。例えば、鉄およびコバルトの当量に対して、浸出の酸の当量を1.0〜1.3倍とすることが好ましい。また、浸出液の温度は、50℃〜80℃の範囲に調整することが好ましい。
(Leaching process)
Next, iron and cobalt in the copper-iron-cobalt alloy crushed in the crushing step are leached. An acid with weak oxidizing power such as dilute sulfuric acid is used as the leachate. In order to leached iron and cobalt sufficiently, it is preferable to set a lower limit on the equivalent of acid with respect to the equivalent of iron and cobalt. On the other hand, if the amount of acid is excessive with respect to the equivalent of iron and cobalt, copper may be dissolved and the amount of alkali required for neutralization in the subsequent process may increase. Therefore, it is preferable to set an upper limit on the equivalent of acid with respect to the equivalent of iron and cobalt. For example, it is preferable that the equivalent of the leaching acid is 1.0 to 1.3 times the equivalent of iron and cobalt. The temperature of the leachate is preferably adjusted to the range of 50 ° C to 80 ° C.

(除去工程)
次に、浸出工程によって得られる浸出後液を酸化中和する。酸化中和によって鉄が沈殿するため、固液分離によって鉄を除去する。中和剤は、特に限定されるものではないが、例えば、水酸化ナトリウムである。鉄を酸化中和する際に、浸出後液のpHを3以上、4以下に維持することが好ましい。pHが4を上回るとコバルトのロスが大きくなり、pHが3未満では鉄が沈殿しにくくなるからである。浸出後液の温度は、50℃〜80℃の範囲に維持することが好ましい。また、酸化中和の際に、浸出後液に対して空気などを吹き込んでもよい。
(Removal process)
Next, the post-leaching liquid obtained by the leaching step is oxidatively neutralized. Since iron is precipitated by oxidative neutralization, iron is removed by solid-liquid separation. The neutralizing agent is not particularly limited, but is, for example, sodium hydroxide. When oxidatively neutralizing iron, it is preferable to maintain the pH of the leaching solution at 3 or more and 4 or less. This is because when the pH exceeds 4, the loss of cobalt increases, and when the pH is less than 3, iron is less likely to precipitate. The temperature of the liquid after leaching is preferably maintained in the range of 50 ° C to 80 ° C. Further, at the time of oxidation neutralization, air or the like may be blown into the liquid after leaching.

(添加工程)
なお、除去工程によって得られる溶液には、銅も溶解している。例えば、銅は、上述した浸出工程などで少量ではあるが溶解する。そこで、除去工程によって得られる溶液から銅を沈殿させる。例えば、硫化処理によって銅を硫化銅として沈殿させることが考えられる。しかしながら、硫化処理によって硫化水素が発生するため、大掛かりな設備を要することになる。そこで、本実施形態においては、金属コバルトを用いる。具体的には、除去工程によって得られる溶液に、金属コバルト片を添加する。それにより、下記式(1)に従って、銅が析出する。なお、金属コバルト片は、細かいほど反応性が高くなる。そこで、金属コバルトの端材や研磨粉等を用いることが好ましい。これらの金属コバルトは、低コストである点でも有利である。
Cu2++Co→Cu+Co2+ (1)
(Addition process)
Copper is also dissolved in the solution obtained by the removal step. For example, copper dissolves in a small amount in the above-mentioned leaching step. Therefore, copper is precipitated from the solution obtained by the removal step. For example, it is conceivable to precipitate copper as copper sulfide by sulfurization treatment. However, since hydrogen sulfide is generated by the sulfurization treatment, a large-scale facility is required. Therefore, in this embodiment, metallic cobalt is used. Specifically, a metal cobalt piece is added to the solution obtained by the removal step. As a result, copper is deposited according to the following formula (1). The finer the metal cobalt piece, the higher the reactivity. Therefore, it is preferable to use metal cobalt offcuts, polishing powder, or the like. These metallic cobalts are also advantageous in that they are low in cost.
Cu 2+ + Co → Cu + Co 2+ (1)

(分離工程)
次に、添加工程によって得られる溶液に対して固液分離することによって銅とコバルト含有溶液とに分離する。以上の工程により、銅鉄コバルト合金から、銅および鉄が除去されたコバルト含有溶液を回収することができる。
(Separation process)
Next, copper and a cobalt-containing solution are separated by solid-liquid separation with respect to the solution obtained by the addition step. By the above steps, the cobalt-containing solution from which copper and iron have been removed can be recovered from the copper-iron-cobalt alloy.

(電解工程)
次に、分離工程によって分離されたコバルト含有溶液に対して、例えば酸性溶媒中にコバルトを抽出し、酸性溶液中にコバルトを逆抽出することで不純物濃度を低下させ、電解によりコバルトを回収する。
(Electrolysis process)
Next, for the cobalt-containing solution separated by the separation step, for example, cobalt is extracted in an acidic solvent, cobalt is back-extracted in the acidic solution to reduce the impurity concentration, and cobalt is recovered by electrolysis.

本実施形態によれば、破砕工程で破砕された銅鉄コバルト合金中の鉄およびコバルトを浸出することで、鉄およびコバルト十分に浸出することができる。浸出工程によって得られる浸出液を酸化中和し、固液分離によって鉄を除去すること、鉄を十分に除去することができる。鉄の除去によって得られる溶液に金属コバルトを添加することで、銅を析出させることができる。銅の析出によって得られる溶液に対して固液分離することによってコバルト含有溶液を分離する。以上の工程により、銅鉄コバルト合金からコバルトを回収することができる。 According to the present embodiment, iron and cobalt can be sufficiently leached by leaching iron and cobalt in the copper-iron-cobalt alloy crushed in the crushing step. The leachate obtained by the leaching step is oxidatively neutralized, and iron can be removed by solid-liquid separation, and iron can be sufficiently removed. Copper can be precipitated by adding metallic cobalt to the solution obtained by removing iron. The cobalt-containing solution is separated by solid-liquid separation from the solution obtained by precipitating copper. By the above steps, cobalt can be recovered from the copper-iron-cobalt alloy.

上記実施形態に従って、銅鉄コバルト合金を処理した。銅鉄コバルト合金として、銅が61mass%、鉄が33mass%、コバルトが6mass%のものを用いた。この銅鉄コバルト合金の粒子径が500μm以下になるまで破砕した。図2は、破砕後の銅鉄コバルト合金の粒度分布を示す図である。破砕後の銅鉄コバルト合金のD50%粒子径は、48μmであった。次に、破砕後の銅鉄コバルト合金を、パルプ濃度が30g/L、硫酸量が22g/L(コバルトおよび鉄に対して1.1の当量)、温度が80℃の浸出液を用い、銅鉄コバルト合金中の鉄およびコバルトを浸出した。 The copper-iron-cobalt alloy was treated according to the above embodiments. As the copper-iron-cobalt alloy, one in which copper was 61 mass%, iron was 33 mass%, and cobalt was 6 mass% was used. The copper-iron-cobalt alloy was crushed until the particle size became 500 μm or less. FIG. 2 is a diagram showing the particle size distribution of the copper-iron-cobalt alloy after crushing. The D50% particle size of the copper-iron-cobalt alloy after crushing was 48 μm. Next, the crushed copper-iron-cobalt alloy was used as a leachate having a pulp concentration of 30 g / L, a sulfuric acid amount of 22 g / L (1.1 equivalents to cobalt and iron), and a temperature of 80 ° C. Iron and cobalt in the cobalt alloy were leached out.

図3は、浸出時間と浸出率との関係を示す図である。図3に示すように、時間の経過とともに、コバルトおよび鉄の浸出率が高くなった。一方、少量の銅は浸出したが、銅の浸出は抑制された。これは、酸の当量を鉄およびコバルトに対して1.0以上としたことで鉄およびコバルトを十分に浸出できたとともに、酸の当量を1.3以下としたことで銅の溶解が抑制されたからであると考えられる。 FIG. 3 is a diagram showing the relationship between the leaching time and the leaching rate. As shown in FIG. 3, the leaching rate of cobalt and iron increased with the passage of time. On the other hand, a small amount of copper leached, but copper leaching was suppressed. This is because iron and cobalt could be sufficiently leached by setting the acid equivalent to 1.0 or more with respect to iron and cobalt, and copper dissolution was suppressed by setting the acid equivalent to 1.3 or less. It is thought that this is because of the fact.

次に、浸出後液に対して酸化中和を行った。浸出後液の温度を80℃とし、空気の吹き込みを毎分1L/液1Lとし、pHを3.5に調整した。図4は、酸化中和時間とORP(酸化還元電位)との関係を示す図である。図4に示すように、時間の経過とともに、ORPが高くなった。ORPの上昇を確認した後に濾過し、ICP分析で液中のFe濃度を測定した。測定結果を表1に示す。表1に示すように、時間の経過とともに、Feが沈殿によって除去されていることがわかる。

Figure 2020147812
Next, the leaching solution was oxidatively neutralized. The temperature of the liquid after leaching was set to 80 ° C., the air was blown in at 1 L / min, and the pH was adjusted to 3.5. FIG. 4 is a diagram showing the relationship between the oxidation neutralization time and the ORP (oxidation-reduction potential). As shown in FIG. 4, the ORP increased with the passage of time. After confirming the increase in ORP, filtration was performed, and the Fe concentration in the liquid was measured by ICP analysis. The measurement results are shown in Table 1. As shown in Table 1, it can be seen that Fe is removed by precipitation over time.
Figure 2020147812

その後、金属コバルトを添加し、銅を析出させた。その結果、銅の濃度が0.4g/Lから100mg/Lに低下した。 Then, metallic cobalt was added to precipitate copper. As a result, the copper concentration decreased from 0.4 g / L to 100 mg / L.

以上のことから、銅鉄コバルト合金を破砕し、破砕後の銅鉄コバルト合金中の鉄およびコバルトを浸出し、得られた浸出液を酸化中和して固液分離することによって鉄を除去し、得られた溶液に金属コバルトを添加することで、コバルトが回収された。 From the above, iron was removed by crushing the copper-iron-cobalt alloy, leaching iron and cobalt in the crushed copper-iron-cobalt alloy, oxidatively neutralizing the obtained leachate, and solid-liquid separation. Cobalt was recovered by adding metallic cobalt to the obtained solution.

次に、酸化中和の際のpHを段階的に設定し、鉄の除去度合を調べた。具体的には、浸出後液に対する酸化中和の際のpH濃度の設定値を4.0(反応時間:8h)、3.7(反応時間:13)、3.5(反応時間:15)とした。反応時間後のコバルトよび鉄の濃度を測定し、溶液側へのコバルトおよび鉄の分配率を測定した。結果を表2に示す。表2に示すように、いずれのpHにおいても、鉄を十分に沈殿させることができた。このように、酸化中和の際のpHを3以上、4以下とすることで、コバルトのロスを抑制しつつ鉄を十分に沈殿除去できることがわかった。

Figure 2020147812
Next, the pH at the time of oxidative neutralization was set stepwise, and the degree of iron removal was examined. Specifically, the set values of the pH concentration at the time of oxidative neutralization of the leaching solution are 4.0 (reaction time: 8h), 3.7 (reaction time: 13), 3.5 (reaction time: 15). And said. The concentration of cobalt and iron after the reaction time was measured, and the distribution ratio of cobalt and iron to the solution side was measured. The results are shown in Table 2. As shown in Table 2, iron was able to be sufficiently precipitated at any pH. As described above, it was found that by setting the pH at the time of oxidative neutralization to 3 or more and 4 or less, iron can be sufficiently precipitated and removed while suppressing the loss of cobalt.
Figure 2020147812

以上、本発明の実施例について詳述したが、本発明は係る特定の実施形態または実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the examples of the present invention have been described in detail above, the present invention is not limited to such specific embodiments or examples, and various within the scope of the gist of the present invention described in the claims. Can be transformed / changed.

Claims (5)

銅鉄コバルト合金を破砕する破砕工程と、
前記破砕工程で破砕された前記銅鉄コバルト合金中の鉄およびコバルトを浸出する浸出工程と、
前記浸出工程によって得られる浸出液を酸化中和し、固液分離によって鉄を除去する除去工程と、
前記除去工程によって得られる溶液に金属コバルトを添加する添加工程と、
前記添加工程によって得られる溶液に対して固液分離することによってコバルト含有溶液を分離する分離工程と、含むことを特徴とする、銅鉄コバルト合金の処理方法。
The crushing process for crushing copper-iron-cobalt alloys,
An leaching step of leaching iron and cobalt in the copper-iron-cobalt alloy crushed in the crushing step,
A removal step of oxidatively neutralizing the leachate obtained by the leaching step and removing iron by solid-liquid separation.
An addition step of adding metallic cobalt to the solution obtained by the removal step,
A method for treating a copper-iron-cobalt alloy, which comprises a separation step of separating a cobalt-containing solution by solid-liquid separation of the solution obtained by the addition step, and a method of comprising the cobalt-containing solution.
前記分離工程によって分離された前記コバルト含有溶液を溶媒抽出・逆抽出後、電解によりコバルトを回収する電解工程を含むことを特徴とする請求項1に記載の銅鉄コバルト合金の処理方法。 The method for treating a copper-iron-cobalt alloy according to claim 1, further comprising an electrolysis step of recovering cobalt by electrolysis after solvent extraction / back-extraction of the cobalt-containing solution separated by the separation step. 前記破砕工程において、銅鉄コバルト合金の粒子径が500μm以下になるように、前記銅鉄コバルト合金を破砕することを特徴とする請求項1または2に記載の銅鉄コバルト合金の処理方法。 The method for treating a copper-iron-cobalt alloy according to claim 1 or 2, wherein in the crushing step, the copper-iron-cobalt alloy is crushed so that the particle size of the copper-iron-cobalt alloy is 500 μm or less. 前記浸出工程において、鉄およびコバルトの当量に対して、浸出の酸の当量を1.0〜1.3倍とすることを特徴とする請求項1〜3のいずれか一項に記載の銅鉄コバルト合金の処理方法。 The copper iron according to any one of claims 1 to 3, wherein in the leaching step, the equivalent of the leaching acid is 1.0 to 1.3 times the equivalent of iron and cobalt. Cobalt alloy processing method. 前記除去工程において、鉄を酸化中和する際に、前記浸出液のpHを3以上、4以下に調整することを特徴とする請求項1〜4のいずれか一項に記載の銅鉄コバルト合金の処理方法。 The copper-iron-cobalt alloy according to any one of claims 1 to 4, wherein the pH of the leachate is adjusted to 3 or more and 4 or less when iron is oxidatively neutralized in the removal step. Processing method.
JP2019047632A 2019-03-14 2019-03-14 Processing method of copper iron cobalt alloy Pending JP2020147812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019047632A JP2020147812A (en) 2019-03-14 2019-03-14 Processing method of copper iron cobalt alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019047632A JP2020147812A (en) 2019-03-14 2019-03-14 Processing method of copper iron cobalt alloy

Publications (1)

Publication Number Publication Date
JP2020147812A true JP2020147812A (en) 2020-09-17

Family

ID=72430360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019047632A Pending JP2020147812A (en) 2019-03-14 2019-03-14 Processing method of copper iron cobalt alloy

Country Status (1)

Country Link
JP (1) JP2020147812A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834728A (en) * 1971-07-23 1973-05-22
US6245125B1 (en) * 1999-09-15 2001-06-12 Billiton S.A. Limited Copper, nickel and cobalt recovery
JP2012001750A (en) * 2010-06-15 2012-01-05 Mitsui Mining & Smelting Co Ltd METHOD FOR PRODUCING Co-CONTAINING SOLUTION
CN102560100A (en) * 2012-02-21 2012-07-11 海南金亿新材料股份有限公司 Process for preparing high-purity superfine cobalt powder from copper-cobalt-iron alloy
JP2013194269A (en) * 2012-03-17 2013-09-30 Mitsubishi Materials Corp Impurity removal method of cobalt content liquid
JP2014189848A (en) * 2013-03-27 2014-10-06 Iwate Univ Method for recovering samarium and cobalt from samarium-cobalt based alloy
WO2017159745A1 (en) * 2016-03-16 2017-09-21 Jx金属株式会社 Processing method for lithium ion battery scrap

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834728A (en) * 1971-07-23 1973-05-22
US6245125B1 (en) * 1999-09-15 2001-06-12 Billiton S.A. Limited Copper, nickel and cobalt recovery
JP2012001750A (en) * 2010-06-15 2012-01-05 Mitsui Mining & Smelting Co Ltd METHOD FOR PRODUCING Co-CONTAINING SOLUTION
CN102560100A (en) * 2012-02-21 2012-07-11 海南金亿新材料股份有限公司 Process for preparing high-purity superfine cobalt powder from copper-cobalt-iron alloy
JP2013194269A (en) * 2012-03-17 2013-09-30 Mitsubishi Materials Corp Impurity removal method of cobalt content liquid
JP2014189848A (en) * 2013-03-27 2014-10-06 Iwate Univ Method for recovering samarium and cobalt from samarium-cobalt based alloy
WO2017159745A1 (en) * 2016-03-16 2017-09-21 Jx金属株式会社 Processing method for lithium ion battery scrap

Similar Documents

Publication Publication Date Title
JP5904459B2 (en) Manufacturing method of high purity nickel sulfate
CN107312930B (en) A kind of method that low nickel matte leaching solution pyrolysis removes iron
JP2008533294A (en) Continuous or simultaneous leaching of ores containing nickel and cobalt
JP5176053B2 (en) Wet treatment method for zinc leaching residue
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP5760954B2 (en) Method for recovering copper from sulfide minerals containing copper and iron
JP2008266774A (en) Zinc recovery method
JP2016040412A (en) Method for treating zinc sulfate-containing solution
JP6703077B2 (en) Lithium recovery method
JP5516534B2 (en) Nickel recovery loss reduction method, nickel oxide ore hydrometallurgy method, and sulfurization treatment system
WO2019244527A1 (en) Method for producing nickel sulfate compound
JP3197288B2 (en) Simultaneous wet treatment of zinc concentrate and zinc leaching residue
JP5565282B2 (en) Method for separating copper ion and method for producing electrolytic nickel
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
WO2020174573A1 (en) Residue processing method and sulfatizing roasting method
US9561972B2 (en) Method for effluent treatment in smelting of nickel oxide ore
JP2006316293A (en) Method for removing manganese from cobalt sulfate solution
JP2020147812A (en) Processing method of copper iron cobalt alloy
JP2019081920A (en) Method for leaching mixed sulfide containing nickel and cobalt
JP4109501B2 (en) Zinc hydrometallurgical process
FI126884B (en) Method and arrangement for separating arsenic from starting material
JP5765459B2 (en) Nickel recovery loss reduction method, nickel oxide ore hydrometallurgy method, and sulfurization treatment system
JP2011074406A (en) Method for recovering valuables from noble metal-containing metal sulfide
JP6869053B2 (en) How to collect antimony
JP2011058018A (en) Method for recovering gold concentrate from leach residue of copper sulfide minerals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307