WO2020174573A1 - Residue processing method and sulfatizing roasting method - Google Patents

Residue processing method and sulfatizing roasting method Download PDF

Info

Publication number
WO2020174573A1
WO2020174573A1 PCT/JP2019/007272 JP2019007272W WO2020174573A1 WO 2020174573 A1 WO2020174573 A1 WO 2020174573A1 JP 2019007272 W JP2019007272 W JP 2019007272W WO 2020174573 A1 WO2020174573 A1 WO 2020174573A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
residue
roasting
iron oxide
sulfate
Prior art date
Application number
PCT/JP2019/007272
Other languages
French (fr)
Japanese (ja)
Inventor
賢三 左右田
Original Assignee
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮グローバル株式会社 filed Critical 日揮グローバル株式会社
Priority to PCT/JP2019/007272 priority Critical patent/WO2020174573A1/en
Priority to JP2021501425A priority patent/JPWO2020174573A1/en
Priority to AU2019431265A priority patent/AU2019431265A1/en
Publication of WO2020174573A1 publication Critical patent/WO2020174573A1/en
Priority to PH12021550518A priority patent/PH12021550518A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel

Definitions

  • the present invention relates to a residue treatment method and a sulfated roasting method.
  • nickel sulfate compounds have been used as raw materials for various nickel compounds or metallic nickel for electrolytic nickel plating, electroless nickel plating, catalyst materials, etc.
  • demand for secondary batteries using a nickel compound or metallic nickel as a positive electrode material will increase as a power source for transportation equipment such as electric vehicles and electronic equipment.
  • stable supply of high-purity nickel sulfate compound is desired.
  • Impurities that may be contained in low-purity nickel compounds include other metal compounds such as iron, copper, cobalt, manganese, and magnesium.
  • a method for obtaining a high-purity nickel compound there are a method of dissolving metallic nickel whose nickel purity is increased by an electrolytic extraction method with a sulfuric acid solution, and a solvent extraction method. In the solvent extraction method, another metal compound is selectively extracted and removed, or a nickel compound is selectively extracted and taken out. In either case, a special agent was required to selectively extract a specific metal ion, resulting in high cost.
  • Patent Document 1 describes a method of obtaining water-soluble nickel sulfate by subjecting green nickel oxide powder having a specific gravity of more than 6.30 to heat treatment in sulfuric acid and then leaching with hot water. ing.
  • a sulfuric acid used for the heat treatment a sulfuric acid solution having a concentration of 30% to 60% (claims 1 to 5) and concentrated sulfuric acid having a concentration of 95% (claims 6 to 7) are mentioned.
  • concentrated sulfuric acid having a concentration of 95% is used in Patent Document 1 (Examples 7 to 9), a high temperature of 275° C. or higher is required.
  • An object of the present invention is to provide a residue treatment method capable of efficiently treating a residue containing nickel and iron oxide, and a sulfation roasting method using the same.
  • a first aspect of the present invention is a residue treatment method, characterized in that a residue containing nickel and iron oxide is subjected to centrifugal force to separate the nickel and iron oxide.
  • a second aspect of the present invention is the residue treatment method according to the first aspect, characterized in that the average particle size of nickel and the average particle size of iron oxide are different.
  • a third aspect of the present invention is the residue treatment method according to the first or second aspect, characterized in that the average particle size of nickel is larger than the average particle size of iron oxide.
  • a fourth aspect of the present invention is the residue treatment method according to the first to third aspects, characterized in that the average particle diameter of the residue is within a range of 50 ⁇ m to 150 ⁇ m.
  • the residue has a partial pressure of oxygen and a partial pressure of sulfur dioxide of which nickel sulfate is more thermodynamically stable than nickel oxide in a Ni—S—O system, and Fe—S—
  • the residue treatment method according to any one of the first to fourth aspects is characterized in that it is a residue obtained from sulfation roasting under the condition that iron oxide is more thermodynamically stable than iron sulfate. ..
  • a sixth aspect of the present invention is the residue treatment method according to any one of the first to fifth aspects, characterized in that the nickel component obtained by separating iron oxide from the residue is treated in a sulfation roasting furnace.
  • a seventh aspect of the present invention is the residue treatment method according to the sixth aspect, characterized in that a nickel component obtained by separating iron oxide from the residue is supplied to the sulfation roasting furnace in a slurry state.
  • An eighth aspect of the present invention is the residue treatment method according to the sixth aspect, characterized in that the nickel component from which iron oxide has been separated from the residue is dried and supplied to the sulfation roasting furnace.
  • a ninth aspect of the present invention is the residue treatment method according to the eighth aspect, characterized in that the nickel component obtained by separating iron oxide from the residue is dried by exhaust heat of the sulfation roasting furnace.
  • a tenth aspect of the present invention is that, in the above-mentioned sulfation roasting furnace, the oxygen partial pressure and the sulfur dioxide partial pressure are such that nickel sulfate is thermodynamically more stable than nickel oxide in the Ni—S—O system, and
  • the residue treatment method according to any of the sixth to ninth aspects is characterized in that the Fe—S—O system is under the condition that iron oxide is thermodynamically more stable than iron sulfate.
  • An eleventh aspect of the present invention is a roasting step of treating a nickel-containing raw material containing iron in a sulfation roasting furnace, and an extraction for extracting a nickel sulfate compound from the roasted product obtained in the roasting step. And a residue treatment step of treating the residue obtained after extracting the nickel sulfate compound in the extraction step by the residue treatment method of the first to tenth aspects to separate nickel content and iron oxide. And a reuse step of supplying the nickel component obtained in the residue treatment step to a sulfation roasting furnace used in the roasting step, which is a sulfation roasting method.
  • the specific gravity of iron oxide is larger than the specific gravity of nickel component, centrifugal force is applied to the residue containing nickel component and iron oxide, so that the nickel component and iron oxide are efficiently separated. be able to.
  • the nickel component and the iron oxide can be efficiently separated by the centrifugal force.
  • the nickel component and the iron oxide can be efficiently separated by the centrifugal force.
  • the nickel content and the iron oxide can be efficiently separated even when the average particle size of the residue is in the range of 50 ⁇ m to 150 ⁇ m.
  • the nickel content of the raw material is converted to nickel sulfate and the conversion of iron content to iron sulfate is suppressed, so that the sulfur content consumption by the iron content is suppressed.
  • the production efficiency of nickel sulfate can be improved.
  • the nickel component from which iron oxide has been separated from the residue can be converted to nickel sulfate for effective use.
  • the nickel content can be easily transported and steam can be generated in the sulfation roasting furnace.
  • the efficiency of the sulfur source existing in the sulfation roasting furnace being oxidized to generate the sulfur oxide necessary for the sulfation roasting is improved.
  • the eighth aspect by drying the nickel content and supplying it to the sulfation roasting furnace, it is possible to reduce the weight of the nickel content during transportation and reduce the loss.
  • the energy recovery rate can be improved by drying the nickel component by the exhaust heat of the sulfation roasting furnace.
  • the nickel content of the residue is converted to nickel sulfate and the conversion of iron content to iron sulfate is suppressed, the sulfur content consumption by the iron content is suppressed, and the nickel sulfate production efficiency is reduced. Can be improved. Further, since the nickel content derived from the residue is in the form of fine powder at the residue stage, the conversion reaction is efficient even in the sulfation roasting, and the treatment becomes easy.
  • the nickel component and the iron oxide can be efficiently separated by applying a centrifugal force to the residue after extracting the nickel sulfate compound from the roasted product of the nickel-containing raw material. .. Further, by recycling the recovered nickel content as at least a part of the nickel-containing raw material, the yield of sulfation roasting of the nickel-containing raw material can be improved.
  • FIG. 2 is a conceptual state diagram of Ni—S—O system and Fe—S—O system.
  • the roasting target is roasted in a roasting furnace to obtain a roasted product.
  • the object to be roasted include nickel-containing raw materials.
  • the roasted product contains a sulfate such as nickel sulfate.
  • the nickel-containing raw material may be a nickel compound or metallic nickel as long as it contains nickel element.
  • the nickel compound is not particularly limited, but examples thereof include nickel salts such as nickel oxide, nickel hydroxide, nickel sulfide, and nickel chloride.
  • the nickel compound may be a hydrate.
  • the metallic nickel may be a nickel alloy such as ferronickel. When metallic nickel (a simple substance or an alloy) is used as a nickel-containing raw material, shots obtained by slicing molten metal into small pieces may be used. Nickel ore can also be used as the nickel-containing raw material. Examples of the nickel ore include one or more of nickel oxide ore and nickel sulfide ore. A nickel matte containing nickel sulfide as a main component can also be used as the nickel-containing raw material.
  • nickel mat examples include a composition (weight ratio) in which Ni is 45 to 55%, Fe is about 20%, S is 20 to 25%, and Co is about 1% or less. Further, as the nickel matte whose nickel concentration is increased in the converter, for example, there is a composition (weight ratio) in which Ni is about 78%, Co is about 1%, Fe is about 1%, and S is about 20%. This nickel mat is in a state where Ni 3 S 2 and metallic nickel (Ni) are mixed due to the amount of sulfur content. Examples of ferronickel include a composition (weight ratio) in which Ni is 18 to 23%, Co is approximately 1%, and Fe is 76 to 81%.
  • the nickel oxide ores include laterite ores containing nickel such as limonite and saprolite.
  • the limonite may be a limonite having a low iron content or a limonite having a high iron content
  • the saprolite may have a high nickel content (for example, a Ni content of 1.8 wt% or more) or a low nickel content (for example, a low nickel content. (Less than 1.8 wt%) Saprolite may be used.
  • the nickel sulfide ore include nickel sulfide ore (Pentland ore), needle nickel ore, chalcopyrite containing nickel, and pyrrhotite containing nickel.
  • the nickel-containing raw material in the roasting step preferably contains at least one selected from the group consisting of nickel sulfide ore, nickel oxide ore, nickel sulfide, nickel matte, nickel oxide, and ferronickel.
  • the nickel-containing raw material may not contain iron, but in many cases iron coexists with nickel.
  • the iron content is separated from the nickel sulfate compound in a later step, but from the viewpoint of energy consumption, the smaller the iron content in the raw material, the more desirable. Although it is possible to treat even if the iron content is higher than the nickel content, it is preferable that the iron content is lower than the nickel content.
  • the nickel-containing raw material is not limited to one type, and two or more types may be used.
  • nickel-containing raw materials When using two or more kinds of nickel-containing raw materials, these raw materials may be mixed and supplied separately.
  • a nickel-containing raw material containing no sulfur may be used, and/or a nickel-containing raw material containing a sulfur content as at least a part of the raw material, for example, nickel sulfide ore, nickel. Sulfide, nickel matte or the like may be used.
  • the particle size of the nickel-containing raw material Prior to the roasting process, it is preferable to reduce the particle size of the nickel-containing raw material by operations such as shredding, crushing and abrasion. Since the reaction starts from the surface of the nickel-containing raw material in the roasting step, the smaller the particle size of the nickel-containing raw material, the shorter the reaction time, which is preferable.
  • the means for pulverizing the nickel-containing raw material is not particularly limited, and one or more types of ball mill, rod mill, hammer mill, fluid energy mill, vibration mill and the like can be used.
  • the particle size of the nickel-containing raw material after pulverization is not particularly limited. When a nickel-containing raw material such as limonite ore is available in the form of fine particles, it may be supplied to the roasting step as it is.
  • an oxidizing roasting step may be provided for the purpose of oxidizing iron, sulfur, etc. contained in the nickel-containing raw material.
  • O 2 gas or the like may be supplied as an oxidant.
  • the oxidation roasting step may be performed in the same roasting furnace as the sulfate roasting step, or an oxidation roasting furnace different from the sulfate roasting step may be provided.
  • the roasting product of the oxidation roasting furnace may be supplied as a raw material to the sulfation roasting furnace.
  • Examples of the roasting furnace for performing the sulfation roasting include a stirring roasting furnace, a rotary furnace roasting furnace, and a fluidized roasting furnace having a fluidized bed.
  • roasting of ores and the like conventionally, sulfated roasting using a stirring type roasting furnace or a rotary furnace type roasting furnace is performed after roughly crushing the mined ore.
  • the burden of pre-treating the object to be roasted is small and the rotation speed is slow, but the reaction speed is slow and the apparatus becomes large. Therefore, a fluidized roasting furnace of a type in which a to-be-roasted object is roasted while being floated with combustion air and flowing has become popular.
  • the device can be downsized.
  • the sulfated roasting method of the present embodiment is a roasting step in which a nickel-containing raw material containing iron is treated in a sulfated roasting furnace, and a nickel sulfate compound is extracted from the roasted product obtained in this roasting step. And a residue treatment step of treating the residue obtained after extracting the nickel sulfate compound in this extraction step by the residue treatment method of the present embodiment to separate nickel content and iron oxide, and this residue treatment And a reuse step of supplying the nickel component obtained in the step to a sulfation roasting furnace used in the roasting step.
  • FIG. 1 shows a schematic configuration of a system for performing a sulfation roasting method using the residue treatment method according to this embodiment.
  • the treatment system according to the present embodiment includes a sulfate roasting furnace 10 for carrying out a roasting step, a dissolution tank 20 and a solid-liquid separation tank 30 for carrying out an extraction step, and a residue processing method. And a separator 40.
  • the nickel component 42 obtained by the separator 40 can be reused for the sulfation roasting by supplying it to the sulfation roasting furnace 10.
  • the sulfation roasting furnace 10 processes the raw material 11 containing the nickel-containing raw material by the sulfation roasting to convert the nickel content contained in the nickel-containing raw material into nickel sulfate.
  • the raw material 11 supplied to the sulfation roasting furnace 10 may include a sulfur content lacking in the nickel-containing raw material, oxygen for oxidizing the sulfur content, and the like. In FIG. 1, for simplification, the supply paths of the respective raw materials 11 are not distinguished.
  • An auxiliary substance or material may be supplied to the sulfate roasting furnace 10 together with the raw material 11 for the purpose of improving the conversion efficiency of the sulfate roasting.
  • a roasted product 12 containing a nickel sulfate compound is obtained by the sulfation roasting process.
  • Water 21 is supplied to the roasted product 12 in the dissolution tank 20 to dissolve the nickel sulfate compound in water to obtain a melt 22 containing the nickel sulfate compound.
  • the roasted product 12 may be crushed before adding the water 21 to the roasted product 12.
  • the iron component contained in the roasted product 12 is insoluble in water, such as iron oxide and iron sulfide, so that the melt 22 contains a solid phase.
  • a nickel sulfate solution 31 is obtained as a liquid phase, and a residue 32 containing iron oxide as a solid phase is separated. Further, if necessary, for example, to separate nickel sulfate from cobalt sulfate or the like, a nickel sulfate compound in which impurities such as cobalt are removed can be obtained by performing a purification step of the nickel sulfate solution 31.
  • the residue 32 contains nickel and iron oxide.
  • the nickel component and the iron oxide can be separated. Since the specific gravity of iron oxide is larger than the specific gravity of nickel component, the nickel component and iron oxide can be efficiently separated.
  • the average particle size of the nickel component contained in the residue 32 may be different from the average particle size of the iron oxide. In the above-mentioned sulfated roasting, iron oxide tends to become fine. Therefore, the average particle size of the nickel component may be larger than the average particle size of iron oxide.
  • the average particle diameter of the residue 32 is, for example, in the range of 50 ⁇ m to 150 ⁇ m.
  • the nickel component is a component of the nickel-containing raw material that has not been converted into nickel sulfate, and is, for example, nickel sulfide or oxide. Examples of iron oxide include Fe 2 O 3 , FeO, and Fe 3 O 4 .
  • a separator 40 is provided to separate the residue 32.
  • the separator 40 or its separation method include cyclone, centrifugal separation, and centrifugal filtration.
  • the cyclone include a gas cyclone that uses a gas as a fluid, a liquid cyclone that uses a liquid as a fluid, and a hydrocyclone that uses water as a fluid. It is preferable to use water as the fluid because the difference in specific gravity from the residue 32 is small and the cost is low. It is preferable that water is added to the residue 32 and pressure-fed by the pump 33 to supply the residue 32 to the separator 40 as a residue liquid 34 in which the residue 32 is dispersed in water.
  • the residue liquid 34 may include the residue 32 in a slurry form.
  • a pipe that circulates in a loop is provided between the solid-liquid separation tank 30 and the pump 33 so that a part of the residue or water contained in the residual liquid 34 can be collected. It may be returned to the solid-liquid separation tank 30.
  • the solid fine powder residue 32 may be directly supplied to the separator 40.
  • the particle diameter (classification point) that serves as a reference when the iron oxide 41 and the nickel component 42 are separated by the separator 40 is preferably about 100 to 150 ⁇ m.
  • classification point (separation limit particle diameter) of the coarse powder having a large particle diameter and the fine powder having a small particle diameter include, for example, 50% separated particle diameter and equilibrium particle diameter (particles in which the coarse powder and the fine powder have the same mass). Diameter), the minimum particle size in the coarse powder, the maximum particle size in the fine powder, and the like.
  • particles larger than 100 ⁇ m may be nickel 42, and particles smaller than 100 ⁇ m may be iron oxide 41.
  • the inner surface of the separator 40 is preferably made of soft rubber or the like to improve wear resistance.
  • the separator 40 may be provided in one stage, or may be provided in two or more stages in series, such as a separator 40 having a large classification point and a separator 40 having a small classification point.
  • a plurality of separators 40 are provided in parallel, and the path of the residual liquid 34 supplied from the solid-liquid separation tank 30 or the pump 33 is branched toward the plurality of separators 40. May be.
  • the nickel content 42 separated from the iron oxide 41 can be supplied to the sulfation roasting furnace 10 for processing. Thereby, the nickel content in the residue 32 can be effectively utilized.
  • the nickel content 42 is returned to the sulfation roasting furnace 10 if the nickel content 42 is dispersed in the liquid, it may be returned to the sulfation roasting furnace 10 as it is.
  • the nickel content 44 may be supplied to the sulfation roasting furnace 10 after being processed by the processing device 43.
  • the processing device 43 when the separated nickel component 42 is dispersed in the gas, a device that disperses the nickel component 42 in water to form a slurry, or the separated nickel component 42 is water or the like.
  • a drying device for drying the nickel component 42 when it is dispersed in a liquid may be used.
  • the processing device 43 makes the nickel component 42 into a slurry form
  • the nickel component 44 supplied to the sulfation roasting furnace 10 becomes a slurry form.
  • the processing device 43 dries the nickel component 42
  • the nickel component 44 supplied to the sulfation roasting furnace 10 is in a dry state.
  • nickel sulfate (NiSO 4 ) can be obtained as the roasted product 12 by the dry smelting method without the need for treatment by a hydrometallurgical method using liquid sulfuric acid.
  • SO 2 is generated as a gas by burning the sulfur content in the raw material 11 or the sulfur content supplied from the outside, and is brought into contact with the nickel content in the raw material 11 to produce nickel sulfate.
  • the reaction formula with the external sulfur content (S) and oxygen (O 2 ) is as follows.
  • NiSO 4 a salt of NiSO 4 is deposited on the surface of the particles and the reaction proceeds.
  • the volume of NiSO 4 deposited at this time is larger than that of Ni 3 S 2 .
  • the SO 2 gas diffuses through the voids generated by the precipitation of NiSO 4 , so that the internal Ni 3 S 2 is sulphated and roasted.
  • the conversion of Ni 3 S 2 to NiSO 4 causes volume expansion of the nickel component, and as a result, the particles are broken and a residue having a smaller particle size remains.
  • the finer the particle size of the raw material 11 the faster the rate of conversion to NiSO 4 , but the harder the nickel matte, the greater the energy required for fine pulverization.
  • the crushing operation has problems of time and energy, and there are restrictions or limitations in preparing a nickel mat raw material having a small particle size. Further, as described above, after the NiSO 4 coating film is formed on the surface of the raw material particles, the diffusion of SO 2 gas becomes rate-determining and the efficiency of the conversion reaction decreases. For this reason, it is not easy to increase the residence time in the roasting furnace to increase the NiSO 4 conversion rate to 100% in one sulfation roasting step, and the productivity is also reduced. Therefore, from the viewpoint of economic efficiency, the conversion rate should be kept within a certain range, and nickel sulfate which is easily dissolved from the roasted product 12 should be dissolved in the dissolution tank 20 and then the residue 32 should be subjected to sulfation roasting again.
  • the iron oxide contained in the residue 32 is generated as the fine particles of the raw material 11 are cracked under the above-mentioned circumstances, and therefore, they are ultrafine particles having a very small particle size, and generally, filtration is difficult.
  • various filtration methods for example, when pressure filtration, vacuum filtration, or the like is adopted, it is difficult to separate the nickel component unless a filter aid is used. Therefore, in the separator 40, a centrifugal force is applied to the residue 32 to separate the nickel component and the iron oxide, so that the iron oxide 41 and the nickel component 42 can be easily separated.
  • the nickel components 42, 44 When the nickel components 42, 44 are in a slurry state when the nickel components 42, 44 are supplied to the sulfation roasting furnace 10, the nickel components 42, 44 can be easily transported and the inside of the sulfation roasting furnace 10 can be easily transported. Water vapor can be generated with. Therefore, the efficiency of generating the sulfur oxides required for the sulfation roasting by oxidizing them from the sulfur source is improved.
  • the nickel components 42, 44 are in a dry state, the weight of the nickel components 42, 44 can be reduced during transportation, and the loss can be reduced. it can.
  • the energy recovery rate can be improved.
  • a transport pipe for a heat medium such as hot water or steam or a heat transport path such as a heat pipe (not shown) May be connected to the sulfation roasting furnace 10.
  • the waste heat of the sulfation roasting furnace 10 may be accumulated in the heat storage material as latent heat such as a phase change, and the stored heat storage material may be transported to the processing device 43 and used for drying.
  • the ratio of the nickel component contained in the nickel sulfate solution 31 and the nickel component contained in the residue 32 is not particularly limited after passing through the sulfation roasting step and the water dissolution step, but the nickel content contained in the residue 32 is from several% to several percent. Even if it becomes 10%, the nickel content contained in the residue 32 is separated from the iron content and then returned to the sulfation roasting furnace 10 to continue the treatment, thereby obtaining the nickel sulfate solution 31 from the nickel content of the raw material 11. The rate can be improved.
  • the sulfuric acid roasting furnace 10 from which the residue 32 is discharged and the sulfuric acid roasting furnace 10 from which the nickel components 42 and 44 separated from the residue 32 are supplied may be the same sulfuric acid roasting furnace 10. However, different sulfation roasting furnaces 10 may be used. It is preferable to carry out the sulfation roasting method for obtaining nickel sulfate from a nickel-containing raw material containing iron under a predetermined condition in any of the sulfation roasting furnaces 10. Next, preferable conditions of the sulfation roasting method will be described in more detail.
  • the nickel component in the sulfation roasting step includes the nickel component contained in the nickel-containing raw material of the raw material 11 and the nickel components 42 and 44 separated from the residue 32.
  • the oxygen partial pressure and the sulfur dioxide partial pressure are such that nickel sulfate is more thermodynamically stable than nickel oxide in the Ni—S—O system and the Fe—S—O system is used.
  • the iron oxide is thermodynamically more stable than iron sulfate.
  • FIG. 2 is an example of a conceptual state diagram of Ni—S—O system and Fe—S—O system.
  • the boundary line of each phase in the Ni-S-O system is shown by a broken line (---), and the boundary line of each phase in the Fe-S-O system is shown by a one-dot chain line (-.-.-). ..
  • the chemical formulas attached to the arrows indicate thermodynamically stable phases on the side from each boundary toward the arrow.
  • the horizontal axis in the state diagram shown in FIG. 2 shows the logarithm of the partial pressure of O 2, the right side as the O 2 partial pressure is high, the left as O 2 partial pressure is low.
  • the vertical axis in the state diagram shown in FIG. 2 shows the logarithm of the SO 2 partial pressure, the upper as SO 2 partial pressure is high, the lower the lower SO 2 partial pressure.
  • Examples of nickel sulfate contained in the Ni—S—O system include NiSO 4 , and examples of nickel oxide include NiO.
  • a boundary line L Ni indicates a boundary line between a region where nickel sulfate is thermodynamically stable and a region where nickel oxide is thermodynamically stable.
  • nickel sulfate is a thermodynamically stable phase.
  • nickel oxide becomes a thermodynamically stable phase.
  • Examples of the iron sulfate contained in the Fe—S—O system include FeSO 4 and Fe 2 (SO 4 ) 3 , and examples of the iron oxide include Fe 2 O 3 .
  • a boundary line L Fe indicates a boundary line between a region where iron sulfate is thermodynamically stable and a region where iron oxide is thermodynamically stable.
  • iron sulfate is a thermodynamically stable phase.
  • iron oxide becomes a thermodynamically stable phase.
  • Ni Nickel sulfate is a thermodynamically stable phase in the —SO system and iron oxide is a Fe—S—O system. Therefore, under the conditions of the overlapping region A, by roasting a system containing nickel (Ni), oxygen (O), and sulfur (S), iron sulfate is produced even if iron is present in the system. The nickel content can be converted to nickel sulfate while suppressing.
  • the roasting temperature (sulfate roasting temperature) in the sulfation roasting step of the present embodiment is preferably in the range of 400 to 750°C, more preferably in the range of 550 to 750°C.
  • Specific examples of the sulfation roasting temperature include 400° C., 450° C., 500° C., 550° C., 600° C., 650° C., 700° C., 750° C., or a temperature range before, after, or in the middle thereof.
  • the sulfation roasting temperature is preferably 600 to 700°C.
  • manganese manganese
  • the object to be roasted contains manganese (Mn) as an impurity derived from the nickel-containing raw material, manganese forms a spinel structure with iron to remove manganese as an insoluble material. Easier to do.
  • the common logarithm of the O 2 partial pressure in terms of atmospheric pressure (atm) log p(O 2 ) is preferably in the range of ⁇ 4 to ⁇ 6, and depending on the conditions etc., log p (O 2) is -4 to -5, or log p (O 2) is more preferably in the range of -5 to -6.
  • the SO 2 partial pressure tends to increase even in the overlapping region A of FIG. 2, so that the generation of nickel sulfate can be promoted while suppressing the generation of iron sulfate.
  • log p(O 2 ) may be selected from the range of ⁇ 8 to 0, for example.
  • the common logarithm of the SO 2 partial pressure in atmospheric pressure (atm) log p(SO 2 ) is preferably in the range of ⁇ 1 to +1 and log p(SO 2 ) is ⁇ The range of 1 to 0 is more preferable. In the overlapping region A in FIG. 2, the SO 2 partial pressure can be made higher to promote the production of sulfate. Furthermore, by setting the SO 2 partial pressure to about normal pressure or less (the common logarithm of partial pressure is approximately 0 or less), the total pressure of the roasting atmosphere in the sulfation roasting step does not become excessive, The equipment can be easily handled.
  • the log p(SO 2 ) may be selected from the range of ⁇ 4 or more and +1 or less depending on the relationship with the log p(O 2 ) and the sulfation roasting temperature.
  • an inert gas such as nitrogen (N 2 ) or argon (Ar) may be supplied to the roasting furnace.
  • N 2 nitrogen
  • Ar argon
  • These inert gases can also be used as a carrier when supplying volatile components such as gas and steam to the roasting furnace.
  • the SO 2 partial pressure can be adjusted, for example, by controlling the supply amount of the sulfur source.
  • the sulfur content may be supplied to the sulfation roasting step.
  • sulfur source solid sulfur (elementary sulfur, S) that is solid at room temperature, sulfur oxides (SO 2, etc.), sulfuric acid (H 2 SO 4 ), sulfate, sulfide, Examples thereof include sulfide ores such as pyrite (FeS 2 ).
  • S sulfur
  • SO 2 sulfur oxide
  • H 2 SO 4 sulfuric acid
  • sulfate sulfurate
  • sulfide examples thereof include sulfide ores such as pyrite (FeS 2 ).
  • Sulfur oxides may be generated by burning sulfur in an atmosphere containing oxygen.
  • the preferable partial pressure range can be determined from the positions of the boundary line L Ni and the boundary line L Fe by examining the above-mentioned phase diagram according to the sulfation roasting temperature. For example, when the sulfation roasting temperature is 650 to 750° C., the preferable partial pressure range is as follows: log p(O 2 ) is about ⁇ 8 to ⁇ 4, log p(SO 2 ) is about ⁇ 2 to +2, log p(O 2 ) is about -3 to -2, log p(SO 2 ) is about -3 to +1, log p(O 2 ) is about -1 to 0, log p(SO 2 ) is -4 to 0 is mentioned.
  • the water 21 added to the roasted product 12 in the dissolving tank 20 in the water dissolving step is preferably pure water treated so as not to contain impurities.
  • the water treatment method is not particularly limited and may be one or more of filtration, membrane separation, ion exchange, distillation, disinfection, chemical treatment, adsorption and the like.
  • tap water obtained from a water source, industrial water, or the like may be used, or water obtained by treating wastewater generated in another process may be used. You may use 2 or more types of water. Not only pure water but also a sulfuric acid acidic solution having a pH of about 4 can be used for dissolution.
  • nickel sulfate compound is suppressed while suppressing dissolution of other impurities such as sulfates. Is preferred because it is advantageous to selectively extract the broth in the aqueous phase.
  • the solubility of nickel sulfate in water is highest at 150° C., 55 g of NiSO 4 dissolves in 100 g of solution, but 22 g of NiSO 4 dissolves in 100 g of solution even at 0° C. Therefore, it is desirable to carry out the dissolving operation at a temperature not higher than the boiling point of water. Further, it is preferable that the melt 22 obtained in the water dissolving step has a concentration at which NiSO 4 does not precipitate even at room temperature, and it is preferable to maintain the heated state of the melt 22 when the concentration of NiSO 4 is higher than that. In order to adjust the temperature of the melt 22, it is preferable to adjust the temperature of the roasted product 12 or the temperature of the water 21 before performing the melting operation. The residual heat of the roasted product 12 may be used as at least a part of the heat source that maintains the heated state of the melt 22. Therefore, the temperature of the roasted product 12 before being dissolved in the water 21 is preferably set to an appropriate temperature.
  • the cooling unit 13 is provided between the sulfation roasting furnace 10 and the melting tank 20.
  • the cooling unit 13 may be a batch type or a continuous type.
  • the roasted product 12 may be allowed to stand without being added with water until the temperature thereof decreases to a desired temperature.
  • the cooling unit 13 may be provided in the pipe connecting between the sulfation roasting furnace 10 and the dissolution tank 20.
  • a heat exchanger may be provided to recover excess residual heat from the roasted product 12, and the recovered residual heat may be used as various heat sources.
  • the particles of the roasted product 12 are solidified, or the particles are A water-insoluble film may be formed on the surface of the. Therefore, a step of crushing the roasted product 12 may be added before adding the water 21 to the roasted product 12.
  • the crushing means for the roasted product 12 is not particularly limited, but one or more of a ball mill, a rod mill, a hammer mill, a fluid energy mill, a vibration mill and the like can be used. Grinding of the roasted product 12 may be started before cooling the roasted product 12 or may be started after cooling the roasted product 12.
  • the solid-liquid separation method after the water dissolution step is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method.
  • the solid-liquid separation tank 30 is a device having a high performance of separating solid-phase fine particles to be the residue 32.
  • one or two kinds such as a filtration tank, a centrifugal separation tank, a sedimentation tank, and a precipitation tank.
  • the filtration method is not particularly limited, and examples thereof include gravity filtration, reduced pressure filtration, pressure filtration, centrifugal filtration, filter aid addition type filtration, squeezing filtration and the like. Pressure filtration is preferable because the differential pressure can be easily adjusted and rapid separation is possible.
  • impurities that can coexist with the nickel sulfate compound include iron (Fe), cobalt (Co), and aluminum (Al).
  • iron (Fe) iron
  • Co cobalt
  • Al aluminum
  • iron sulfate, cobalt sulfate, etc. are also dissolved.
  • iron precipitates as oxides such as FeOOH, Fe 2 O 3 , Fe 3 O 4 and the like, which facilitates removal of impurities from the nickel sulfate compound.
  • the condition in which the iron content is less likely to be iron sulfate is set, and therefore, the nickel sulfate solution 31 having a low iron content can be obtained through the water dissolution and the solid-liquid separation.
  • the residue 32 containing iron oxide or the like after separating the nickel sulfate solution 31 can be reused as the iron content of cement.
  • the iron oxide 41 separated from the residue 32 can be used for producing pig iron or the like as an iron-making raw material using a smelting reduction furnace, an electric furnace or the like, or for pigments, ferrites, magnetic materials, sintered materials and the like. ..
  • the area producing nickel-containing raw materials is an industrial area or a remote place away from cities, it is advantageous from the viewpoint of transportation cost to commercialize iron as well as nickel. is there.
  • pig iron is produced using an electric furnace provided in the ferronickel smelting process and the volume of the pig iron is reduced, it can be easily carried out as iron ingot.
  • impurities for example, metals having a lower ionization tendency than hydrogen (H) such as copper (Cu), gold (Au), silver (Ag), and platinum group metal (PGM) remain as solids in the water dissolution step, and thus solid It can be removed by a liquid separation step.
  • the solids removed by the solid-liquid separation step may include compounds such as As, Pb, and Zn in addition to the above impurities.
  • the solid containing these impurities can also be recycled as a valuable resource.
  • the nickel sulfate solution 31 obtained through water dissolution and solid-liquid separation has a nickel sulfate compound as a main component, it is transported and used as a solution of the nickel sulfate compound or as a solid of the nickel sulfate compound by drying or the like. be able to.
  • solvent extraction, electrodialysis, electrowinning, electrorefining, electrorefining, Technologies such as ion exchange and crystallization can be used.
  • an extractant that can preferentially or selectively extract cobalt over nickel over the solvent. This allows the nickel sulfate compound to remain in the aqueous solution for efficient purification.
  • the extractant include organic compounds having a functional group capable of binding to a metal ion, such as a phosphinic acid group and a thiophosphinic acid group.
  • an organic solvent capable of separating the extractant from water may be used as the diluent. Dissolving the extractant combined with a metal ion such as cobalt in the diluent facilitates separation from the aqueous solution containing the nickel sulfate compound without using a large amount of the extractant.
  • the diluent is preferably an organic solvent that is difficult to mix with water.
  • the target nickel sulfate compound may be crystallized from the solution by at least one factor such as temperature change, solvent reduction, addition of another substance, and the like.
  • purification can be performed by leaving at least a part of the impurities in the liquid phase.
  • Specific examples include an evaporation crystallization method and a poor solvent crystallization method.
  • the solution is concentrated by boiling or evaporation under reduced pressure to crystallize the nickel sulfate compound.
  • the poor solvent crystallization method is a crystallization method utilized in the production of pharmaceuticals, for example, a solution containing a nickel sulfate compound is added with an organic solvent to precipitate a nickel sulfate compound.
  • the organic solvent used for crystallization is preferably an organic solvent miscible with water, and examples thereof include one or more selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol, and acetone. Two or more kinds of organic solvents may be used. Regarding the concentration range in which the organic solvent is miscible with water, it is preferred that the organic solvent is miscible at a concentration at which the nickel sulfate compound is precipitated, and it is more preferred that the organic solvent is freely mixed at an arbitrary ratio.
  • the organic solvent added in the crystallization step is not limited to an anhydrous organic solvent, and may be a water-containing organic solvent as long as it does not hinder crystallization.
  • the ratio of water to the organic solvent is not particularly limited and may be set, for example, in the range of 1:20 to 20:1, but is preferably about 1:1 and is preferably 1:2 to 2:1.
  • the nickel sulfate compound deposited by crystallization can be separated from the solution by solid-liquid separation.
  • the solid-liquid separation method is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method.
  • the metal dissolved on the solution side is preferably removed from the solution by a method such as neutralization and precipitation.
  • the purified solution is mainly composed of a mixture of water and an organic solvent, the water and the organic solvent can be separated by a method such as distillation.
  • the following effects can be obtained.
  • the nickel content contained in the residue can be effectively used to improve the yield of the nickel sulfate compound.
  • the conversion reaction from the nickel-containing raw material to nickel sulfate can be accelerated, and the reactivity is improved.
  • a high-purity nickel sulfate compound can be produced from a nickel-containing raw material by sulfation and roasting.
  • Generation of iron sulfate can be suppressed in the sulfation roasting process. Further, generation of hydrogen (H 2 ) gas can also be suppressed.
  • the iron content becomes a chemical species that is difficult to dissolve in water, and the nickel content easily dissolves in water as a nickel sulfate compound, so that the iron content is easily removed.
  • the equipment cost can be reduced as compared with the conventional method.
  • iron oxide Since it is possible to accelerate the conversion reaction of the nickel-containing raw material, for example, when iron is supplied in the state of iron oxide, iron oxide forms an opportunity to form iron sulfate and forms an iron-nickel ferrite alloy. The conversion reaction proceeds without giving the opportunity to do so. Therefore, a roasting product containing high-purity nickel sulfate can be obtained.
  • the object to be roasted is not limited to a nickel-containing raw material, and a raw material containing a metal other than nickel (Cu, Zn, Co, Fe, etc.) may be considered. It is also possible to apply roasting of the nickel-containing raw material according to the above-described embodiment to roasting for obtaining a compound of the metal from a raw material containing another metal.
  • the above residue treatment method can also be used to treat residues discharged from a process different from the sulfate roasting.
  • a nickel matte containing iron (Ni 3 S 2 ) was roasted with a sulfation roasting tester.
  • the roasting conditions were a roasting temperature of 650° C., a log p(O 2 ) of ⁇ 2.0, and a log p(SO 2 ) of ⁇ 2.0.
  • the roasted product obtained was dissolved in pure water at a temperature of 80°C.
  • the obtained dissolved material was allowed to stand for 1 hour, and the residue containing the nickel sulfate solution and iron oxide in the supernatant was separated by a filtration device using MILLIPORE (registered trademark).
  • MILLIPORE registered trademark
  • the average particle size (p50) was 100 to 150 ⁇ m.
  • the fraction having a larger particle size was nickel and the fraction having a smaller particle size was iron oxide.
  • Example 1 The nickel matte was sulphated and roasted under the same conditions as in the above experimental example, and the obtained roasted product was dissolved in pure water at a temperature of 80°C. The obtained dissolved material was allowed to stand for 1 hour, and the residue containing the nickel sulfate solution and iron oxide in the supernatant was separated by a filtration device using MILLIPORE (registered trademark). The residue remaining on this filtration membrane was dispersed in pure water to obtain a dispersion liquid of the residue.
  • MILLIPORE registered trademark
  • the pump pressure (discharge pressure) was set to 1.0 kgf/cm 2 and the flow rate of 38.0 L/min was used to cyclone the dispersion liquid of the residue (a hydrocyclone made by Lhasa Kogyo Co., Ltd.: Super-150-Cyclone alone).
  • the amount of treatment at the time of being used was 2.2 m 3 /h.
  • the pump pressure was changed to change the amount of the dispersion liquid of the residue supplied to the cyclone, and the treatment amount was changed as shown in Table 1. Note that 1 kgf/cm 2 is 9.80665 N/cm 2, that is, 98066.5 Pa.
  • Example 2 A dispersion liquid of the residue was obtained in the same manner as in Example 1.
  • the pump pressure discharge pressure
  • the amount of treatment when it was subjected to 13.6 m 3 /h.
  • the pump pressure was changed to change the amount of the dispersion liquid of the residue supplied to the cyclone, and the treatment amount was changed as shown in Table 2.
  • the separation efficiency is the weight ratio of the nickel content with the total of the nickel content recovered from the cyclone and the iron oxide as 100%. Iron oxide with a small particle size was separated upward from the center of the cyclone, and nickel with a large particle size was separated downward from the peripheral wall of the cyclone. When the amount of cyclone treated was large, the fluctuation range of the separation efficiency was slightly increased.
  • the present invention can be used for producing high-purity nickel sulfate compounds useful as raw materials for various nickel compounds or metallic nickel used in electric parts such as secondary batteries and chemical products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

This residue processing method is characterized by the application of a centrifugal force on a residue containing a nickel fraction and iron oxide to separate the nickel fraction from the iron oxide.

Description

残渣処理方法及び硫酸化焙焼方法Residue treatment method and sulfated roasting method
 本発明は、残渣処理方法及び硫酸化焙焼方法に関する。 The present invention relates to a residue treatment method and a sulfated roasting method.
 従来、硫酸ニッケル化合物は、各種のニッケル化合物又は金属ニッケルの原料として、電解ニッケルメッキ、無電解ニッケルメッキ、触媒材料等の用途に利用されている。近年、電気自動車等の輸送機器、電子機器等の電源として、ニッケル化合物又は金属ニッケルを正極材料に用いた二次電池の需要拡大が見込まれる。高性能な二次電池を得るため、高純度の硫酸ニッケル化合物の安定供給が望まれている。 Conventionally, nickel sulfate compounds have been used as raw materials for various nickel compounds or metallic nickel for electrolytic nickel plating, electroless nickel plating, catalyst materials, etc. In recent years, it is expected that demand for secondary batteries using a nickel compound or metallic nickel as a positive electrode material will increase as a power source for transportation equipment such as electric vehicles and electronic equipment. In order to obtain a high-performance secondary battery, stable supply of high-purity nickel sulfate compound is desired.
 低純度のニッケル化合物に含まれる可能性がある不純物としては、鉄、銅、コバルト、マンガン、マグネシウム等の、他の金属化合物が挙げられる。従来、高純度のニッケル化合物を得る方法として、電解採取法でニッケル純度を高めた金属ニッケルを硫酸溶液で溶解する方法と、溶媒抽出法が挙げられる。溶媒抽出法では、他の金属化合物を選択的に抽出して除去するか、ニッケル化合物を選択的に抽出して取り出す工程が実施される。いずれの場合も、特定の金属イオンを選択的に抽出するためには、特殊な薬剤が必要となり、高コストであった。 Impurities that may be contained in low-purity nickel compounds include other metal compounds such as iron, copper, cobalt, manganese, and magnesium. Conventionally, as a method for obtaining a high-purity nickel compound, there are a method of dissolving metallic nickel whose nickel purity is increased by an electrolytic extraction method with a sulfuric acid solution, and a solvent extraction method. In the solvent extraction method, another metal compound is selectively extracted and removed, or a nickel compound is selectively extracted and taken out. In either case, a special agent was required to selectively extract a specific metal ion, resulting in high cost.
 硫酸ニッケルを製造する方法として、イオン交換法によりニッケル化合物の陰イオンを硫酸根に交換する方法や、硫酸溶液中でニッケル金属粉末を、水素ガスを発生させながら溶解する方法も知られている。また特許文献1には、比重が6.30を超える緑色の酸化ニッケル粉末を硫酸中で加熱処理した後、熱水で浸出(leach)することにより、水溶性の硫酸ニッケルを得る方法が記載されている。特許文献1では、加熱処理に用いる硫酸として、濃度30%~60%の硫酸溶液(クレーム1~5)、濃度95%の濃硫酸(クレーム6~7)が挙げられている。特許文献1で濃度95%の濃硫酸を用いる場合(実施例7~9)には、275℃以上の高温が必要とされている。 As a method for producing nickel sulfate, a method of exchanging the anion of a nickel compound with a sulfate group by an ion exchange method and a method of dissolving nickel metal powder in a sulfuric acid solution while generating hydrogen gas are also known. Further, Patent Document 1 describes a method of obtaining water-soluble nickel sulfate by subjecting green nickel oxide powder having a specific gravity of more than 6.30 to heat treatment in sulfuric acid and then leaching with hot water. ing. In Patent Document 1, as a sulfuric acid used for the heat treatment, a sulfuric acid solution having a concentration of 30% to 60% (claims 1 to 5) and concentrated sulfuric acid having a concentration of 95% (claims 6 to 7) are mentioned. When concentrated sulfuric acid having a concentration of 95% is used in Patent Document 1 (Examples 7 to 9), a high temperature of 275° C. or higher is required.
米国特許第3002814号明細書U.S. Pat. No. 3,002,814
 本発明の課題は、ニッケル分及び酸化鉄を含む残渣を、効率的に処理することが可能な残渣処理方法、及びこれを利用した硫酸化焙焼方法を提供することである。 An object of the present invention is to provide a residue treatment method capable of efficiently treating a residue containing nickel and iron oxide, and a sulfation roasting method using the same.
 本発明の第1の態様は、ニッケル分及び酸化鉄を含む残渣に遠心力を作用させて、ニッケル分と酸化鉄とを分離することを特徴とする残渣処理方法である。 A first aspect of the present invention is a residue treatment method, characterized in that a residue containing nickel and iron oxide is subjected to centrifugal force to separate the nickel and iron oxide.
 本発明の第2の態様は、ニッケル分の平均粒子径と酸化鉄の平均粒子径とが異なることを特徴とする第1の態様の残渣処理方法である。 A second aspect of the present invention is the residue treatment method according to the first aspect, characterized in that the average particle size of nickel and the average particle size of iron oxide are different.
 本発明の第3の態様は、ニッケル分の平均粒子径が酸化鉄の平均粒子径よりも大きいことを特徴とする第1又は第2の態様の残渣処理方法である。 A third aspect of the present invention is the residue treatment method according to the first or second aspect, characterized in that the average particle size of nickel is larger than the average particle size of iron oxide.
 本発明の第4の態様は、前記残渣の平均粒子径が50μm~150μmの範囲内であることを特徴とする第1~第3の態様の残渣処理方法である。 A fourth aspect of the present invention is the residue treatment method according to the first to third aspects, characterized in that the average particle diameter of the residue is within a range of 50 μm to 150 μm.
 本発明の第5の態様は、前記残渣が、酸素分圧及び二酸化硫黄分圧を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる条件下とした硫酸化焙焼から得られた残渣であることを特徴とする第1~第4の態様の残渣処理方法である。 In a fifth aspect of the present invention, the residue has a partial pressure of oxygen and a partial pressure of sulfur dioxide of which nickel sulfate is more thermodynamically stable than nickel oxide in a Ni—S—O system, and Fe—S— In the O-system, the residue treatment method according to any one of the first to fourth aspects is characterized in that it is a residue obtained from sulfation roasting under the condition that iron oxide is more thermodynamically stable than iron sulfate. ..
 本発明の第6の態様は、前記残渣から酸化鉄を分離したニッケル分を硫酸化焙焼炉で処理することを特徴とする第1~第5の態様の残渣処理方法である。 A sixth aspect of the present invention is the residue treatment method according to any one of the first to fifth aspects, characterized in that the nickel component obtained by separating iron oxide from the residue is treated in a sulfation roasting furnace.
 本発明の第7の態様は、前記残渣から酸化鉄を分離したニッケル分をスラリー状態で前記硫酸化焙焼炉に供給することを特徴とする第6の態様の残渣処理方法である。 A seventh aspect of the present invention is the residue treatment method according to the sixth aspect, characterized in that a nickel component obtained by separating iron oxide from the residue is supplied to the sulfation roasting furnace in a slurry state.
 本発明の第8の態様は、前記残渣から酸化鉄を分離したニッケル分を乾燥させて前記硫酸化焙焼炉に供給することを特徴とする第6の態様の残渣処理方法である。 An eighth aspect of the present invention is the residue treatment method according to the sixth aspect, characterized in that the nickel component from which iron oxide has been separated from the residue is dried and supplied to the sulfation roasting furnace.
 本発明の第9の態様は、前記残渣から酸化鉄を分離したニッケル分を、前記硫酸化焙焼炉の排熱により乾燥させることを特徴とする第8の態様の残渣処理方法である。 A ninth aspect of the present invention is the residue treatment method according to the eighth aspect, characterized in that the nickel component obtained by separating iron oxide from the residue is dried by exhaust heat of the sulfation roasting furnace.
 本発明の第10の態様は、前記硫酸化焙焼炉において、酸素分圧及び二酸化硫黄分圧を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる条件下とすることを特徴とする第6~第9の態様の残渣処理方法である。 A tenth aspect of the present invention is that, in the above-mentioned sulfation roasting furnace, the oxygen partial pressure and the sulfur dioxide partial pressure are such that nickel sulfate is thermodynamically more stable than nickel oxide in the Ni—S—O system, and The residue treatment method according to any of the sixth to ninth aspects is characterized in that the Fe—S—O system is under the condition that iron oxide is thermodynamically more stable than iron sulfate.
 本発明の第11の態様は、鉄分を含むニッケル含有原料を硫酸化焙焼炉で処理する焙焼工程と、前記焙焼工程で得られた焙焼生成物から、硫酸ニッケル化合物を抽出する抽出工程と、前記抽出工程で前記硫酸ニッケル化合物を抽出した後に得られる残渣を、第1~第10の態様の残渣処理方法により処理して、ニッケル分と酸化鉄とを分離する残渣処理工程と、前記残渣処理工程で得られた前記ニッケル分を、前記焙焼工程に用いる硫酸化焙焼炉に供給する再利用工程と、を有することを特徴とする硫酸化焙焼方法である。 An eleventh aspect of the present invention is a roasting step of treating a nickel-containing raw material containing iron in a sulfation roasting furnace, and an extraction for extracting a nickel sulfate compound from the roasted product obtained in the roasting step. And a residue treatment step of treating the residue obtained after extracting the nickel sulfate compound in the extraction step by the residue treatment method of the first to tenth aspects to separate nickel content and iron oxide. And a reuse step of supplying the nickel component obtained in the residue treatment step to a sulfation roasting furnace used in the roasting step, which is a sulfation roasting method.
 第1の態様によれば、酸化鉄の比重がニッケル分の比重より大きいことから、ニッケル分及び酸化鉄を含む残渣に遠心力を作用させるので、ニッケル分と酸化鉄とを効率的に分離することができる。 According to the first aspect, since the specific gravity of iron oxide is larger than the specific gravity of nickel component, centrifugal force is applied to the residue containing nickel component and iron oxide, so that the nickel component and iron oxide are efficiently separated. be able to.
 第2の態様によれば、ニッケル分の平均粒子径と酸化鉄の平均粒子径とが異なる場合であっても、ニッケル分と酸化鉄とを遠心力により効率的に分離することができる。 According to the second aspect, even when the average particle size of the nickel component and the average particle size of the iron oxide are different, the nickel component and the iron oxide can be efficiently separated by the centrifugal force.
 第3の態様によれば、ニッケル分の平均粒子径が酸化鉄の平均粒子径よりも大きい場合であっても、ニッケル分と酸化鉄とを遠心力により効率的に分離することができる。 According to the third aspect, even when the average particle size of the nickel component is larger than the average particle size of the iron oxide, the nickel component and the iron oxide can be efficiently separated by the centrifugal force.
 第4の態様によれば、残渣の平均粒子径が50μm~150μmの範囲内であっても、ニッケル分と酸化鉄とを効率的に分離することができる。 According to the fourth aspect, the nickel content and the iron oxide can be efficiently separated even when the average particle size of the residue is in the range of 50 μm to 150 μm.
 第5の態様によれば、硫酸化焙焼において、原料のニッケル分が硫酸ニッケルに転換されると共に、鉄分から硫酸鉄への変換が抑制されるので、鉄分による硫黄分の消費を抑制して、硫酸ニッケルの生成効率を向上することができる。 According to the fifth aspect, in the sulfation roasting, the nickel content of the raw material is converted to nickel sulfate and the conversion of iron content to iron sulfate is suppressed, so that the sulfur content consumption by the iron content is suppressed. The production efficiency of nickel sulfate can be improved.
 第6の態様によれば、残渣から酸化鉄を分離したニッケル分を硫酸ニッケルに転換して、有効活用することができる。 According to the sixth aspect, the nickel component from which iron oxide has been separated from the residue can be converted to nickel sulfate for effective use.
 第7の態様によれば、ニッケル分をスラリー状態で硫酸化焙焼炉に供給することにより、ニッケル分の輸送が容易であると共に、硫酸化焙焼炉内で水蒸気を発生させることができるので、硫酸化焙焼炉内に存在する硫黄源が酸化して硫酸化焙焼に必要な硫黄酸化物を発生させる効率が向上する。 According to the seventh aspect, by supplying the nickel content in a slurry state to the sulfation roasting furnace, the nickel content can be easily transported and steam can be generated in the sulfation roasting furnace. The efficiency of the sulfur source existing in the sulfation roasting furnace being oxidized to generate the sulfur oxide necessary for the sulfation roasting is improved.
 第8の態様によれば、ニッケル分を乾燥させて硫酸化焙焼炉に供給することにより、輸送に際してニッケル分の重量が少なくて済み、ロスを減少させることができる。 According to the eighth aspect, by drying the nickel content and supplying it to the sulfation roasting furnace, it is possible to reduce the weight of the nickel content during transportation and reduce the loss.
 第9の態様によれば、ニッケル分を、硫酸化焙焼炉の排熱により乾燥させることにより、エネルギー回収率を向上することができる。 According to the ninth aspect, the energy recovery rate can be improved by drying the nickel component by the exhaust heat of the sulfation roasting furnace.
 第10の態様によれば、残渣のニッケル分が硫酸ニッケルに転換されると共に、鉄分から硫酸鉄への変換が抑制されるので、鉄分による硫黄分の消費を抑制して、硫酸ニッケルの生成効率を向上することができる。また、残渣に由来するニッケル分については、残渣の段階で微粉状となっているため、硫酸化焙焼においても転換反応が効率よく、処理が容易になる。 According to the tenth aspect, since the nickel content of the residue is converted to nickel sulfate and the conversion of iron content to iron sulfate is suppressed, the sulfur content consumption by the iron content is suppressed, and the nickel sulfate production efficiency is reduced. Can be improved. Further, since the nickel content derived from the residue is in the form of fine powder at the residue stage, the conversion reaction is efficient even in the sulfation roasting, and the treatment becomes easy.
 第11の態様によれば、ニッケル含有原料の焙焼生成物から硫酸ニッケル化合物を抽出した後の残渣に遠心力を作用させることで、ニッケル分と酸化鉄とを効率的に分離することができる。さらに、回収したニッケル分をニッケル含有原料の少なくとも一部として再利用することにより、ニッケル含有原料の硫酸化焙焼の収率を向上することができる。 According to the eleventh aspect, the nickel component and the iron oxide can be efficiently separated by applying a centrifugal force to the residue after extracting the nickel sulfate compound from the roasted product of the nickel-containing raw material. .. Further, by recycling the recovered nickel content as at least a part of the nickel-containing raw material, the yield of sulfation roasting of the nickel-containing raw material can be improved.
実施形態の残渣処理方法を用いた硫酸化焙焼方法の構成図である。It is a block diagram of the sulfation roasting method using the residue treatment method of embodiment. Ni-S-O系及びFe-S-O系の概念的な状態図である。FIG. 2 is a conceptual state diagram of Ni—S—O system and Fe—S—O system.
 本実施形態の残渣処理方法を用いた硫酸化焙焼方法において、焙焼対象物は、焙焼炉内で焙焼され、焙焼生成物が得られる。焙焼対象物としては、ニッケル含有原料が挙げられる。焙焼生成物は、硫酸ニッケル等の硫酸塩を含む。 In the sulfation roasting method using the residue treatment method of the present embodiment, the roasting target is roasted in a roasting furnace to obtain a roasted product. Examples of the object to be roasted include nickel-containing raw materials. The roasted product contains a sulfate such as nickel sulfate.
 ニッケル含有原料としては、ニッケル元素を含有するのであれば、ニッケル化合物でも、金属ニッケルでもよい。ニッケル化合物としては、特に限定されないが、酸化ニッケル、水酸化ニッケル、硫化ニッケル、塩化ニッケル等のニッケル塩類が挙げられる。ニッケル化合物は、水和物でもよい。金属ニッケルは、フェロニッケル等のニッケル合金でもよい。金属状のニッケル(単体又は合金)をニッケル含有原料として用いるときは、溶融金属を小片化したショット等としてもよい。ニッケル含有原料として、ニッケル鉱石を使用することもできる。ニッケル鉱石としては、ニッケル酸化鉱、ニッケル硫化鉱等の1種以上が挙げられる。硫化ニッケルを主成分とするニッケルマット等をニッケル含有原料として用いることもできる。 The nickel-containing raw material may be a nickel compound or metallic nickel as long as it contains nickel element. The nickel compound is not particularly limited, but examples thereof include nickel salts such as nickel oxide, nickel hydroxide, nickel sulfide, and nickel chloride. The nickel compound may be a hydrate. The metallic nickel may be a nickel alloy such as ferronickel. When metallic nickel (a simple substance or an alloy) is used as a nickel-containing raw material, shots obtained by slicing molten metal into small pieces may be used. Nickel ore can also be used as the nickel-containing raw material. Examples of the nickel ore include one or more of nickel oxide ore and nickel sulfide ore. A nickel matte containing nickel sulfide as a main component can also be used as the nickel-containing raw material.
 ニッケルマットとしては、例えばNiが45~55%、Feが約20%、Sが20~25%、Coが約1%以下の組成(重量比)が挙げられる。さらに、転炉でニッケル濃度を上昇させたニッケルマットとして、例えばNiが約78%、Coが約1%、Feが約1%、Sが約20%の組成(重量比)が挙げられる。このニッケルマットは、硫黄分の量から、Niと金属ニッケル(Ni)が混合している状態である。フェロニッケルとしては、例えばNiが18~23%、Coが約1%、Feが76~81%の組成(重量比)が挙げられる。 Examples of the nickel mat include a composition (weight ratio) in which Ni is 45 to 55%, Fe is about 20%, S is 20 to 25%, and Co is about 1% or less. Further, as the nickel matte whose nickel concentration is increased in the converter, for example, there is a composition (weight ratio) in which Ni is about 78%, Co is about 1%, Fe is about 1%, and S is about 20%. This nickel mat is in a state where Ni 3 S 2 and metallic nickel (Ni) are mixed due to the amount of sulfur content. Examples of ferronickel include a composition (weight ratio) in which Ni is 18 to 23%, Co is approximately 1%, and Fe is 76 to 81%.
 ニッケル酸化鉱としては、リモナイト、サプロライト等のニッケル分を含むラテライト鉱石が挙げられる。リモナイトは、鉄分が少ないリモナイトでも、鉄分が多いリモナイトでもよく、サプロライトは、ニッケル含有量が高い(例えばNi含有量が1.8wt%以上)サプロライトでも、ニッケル含有量が低い(例えばNi含有量が1.8wt%未満)サプロライトでもよい。ニッケル硫化鉱としては、硫鉄ニッケル鉱(ペントランド鉱)、針ニッケル鉱、ニッケル分を含む黄銅鉱、ニッケル分を含む磁硫鉄鉱等が挙げられる。 The nickel oxide ores include laterite ores containing nickel such as limonite and saprolite. The limonite may be a limonite having a low iron content or a limonite having a high iron content, and the saprolite may have a high nickel content (for example, a Ni content of 1.8 wt% or more) or a low nickel content (for example, a low nickel content. (Less than 1.8 wt%) Saprolite may be used. Examples of the nickel sulfide ore include nickel sulfide ore (Pentland ore), needle nickel ore, chalcopyrite containing nickel, and pyrrhotite containing nickel.
 焙焼工程におけるニッケル含有原料は、ニッケル硫化鉱、ニッケル酸化鉱、ニッケル硫化物、ニッケルマット、酸化ニッケル、フェロニッケルからなる群から選択される1種以上を含むことが好ましい。ニッケル含有原料は、鉄分を含まなくてもよいが、多くの場合、ニッケル分に鉄分が共存する。鉄分は後工程で硫酸ニッケル化合物から分離されるが、エネルギー消費の観点から、原料中の鉄分が少ないほど望ましい。ニッケル分より鉄分が多くても処理は可能だが、ニッケル分より鉄分が少ないことが好ましい。ニッケル含有原料は、1種に限らず、2種以上を用いてもよい。2種以上のニッケル含有原料を用いる場合は、これらの原料を混合した状態で供給されてもよく、別々に供給されてもよい。ニッケル含有原料の硫酸化焙焼に際して、硫黄分を含有しないニッケル含有原料を用いてもよく、及び/又は、原料の少なくとも一部として、硫黄分を含有するニッケル含有原料、例えばニッケル硫化鉱、ニッケル硫化物、ニッケルマット等を用いてもよい。 The nickel-containing raw material in the roasting step preferably contains at least one selected from the group consisting of nickel sulfide ore, nickel oxide ore, nickel sulfide, nickel matte, nickel oxide, and ferronickel. The nickel-containing raw material may not contain iron, but in many cases iron coexists with nickel. The iron content is separated from the nickel sulfate compound in a later step, but from the viewpoint of energy consumption, the smaller the iron content in the raw material, the more desirable. Although it is possible to treat even if the iron content is higher than the nickel content, it is preferable that the iron content is lower than the nickel content. The nickel-containing raw material is not limited to one type, and two or more types may be used. When using two or more kinds of nickel-containing raw materials, these raw materials may be mixed and supplied separately. When sulfating and roasting a nickel-containing raw material, a nickel-containing raw material containing no sulfur may be used, and/or a nickel-containing raw material containing a sulfur content as at least a part of the raw material, for example, nickel sulfide ore, nickel. Sulfide, nickel matte or the like may be used.
 焙焼工程に先立って、細断、粉砕、磨滅などの操作でニッケル含有原料の粒子径を小さくすることが好ましい。焙焼工程において反応はニッケル含有原料の表面から開始するので、ニッケル含有原料の粒子径が小さいほど反応時間が短くなり、好ましい。ニッケル含有原料の粉砕手段としては、特に限定されないが、ボールミル、ロッドミル、ハンマーミル、流体エネルギーミル、振動ミル等の1種又は2種以上を用いることができる。粉砕後のニッケル含有原料の粒子径は、特に限定されない。リモナイト鉱石のように、ニッケル含有原料を微粒子の状態で入手できる場合は、そのまま焙焼工程に供給してもよい。 Prior to the roasting process, it is preferable to reduce the particle size of the nickel-containing raw material by operations such as shredding, crushing and abrasion. Since the reaction starts from the surface of the nickel-containing raw material in the roasting step, the smaller the particle size of the nickel-containing raw material, the shorter the reaction time, which is preferable. The means for pulverizing the nickel-containing raw material is not particularly limited, and one or more types of ball mill, rod mill, hammer mill, fluid energy mill, vibration mill and the like can be used. The particle size of the nickel-containing raw material after pulverization is not particularly limited. When a nickel-containing raw material such as limonite ore is available in the form of fine particles, it may be supplied to the roasting step as it is.
 本実施形態の硫酸化焙焼工程を行う前に、ニッケル含有原料に含まれる鉄分、硫黄分等を酸化させる等の目的で、酸化焙焼工程を設けてもよい。この酸化焙焼工程においては、酸化剤としてOガス等を供給してもよい。酸化焙焼工程は、硫酸化焙焼工程と同じ焙焼炉で実施してもよく、硫酸化焙焼とは別の酸化焙焼炉を設けてもよい。別の酸化焙焼炉を設けた場合、酸化焙焼炉の焙焼生成物を原料として硫酸化焙焼炉に供給してもよい。 Before performing the sulfation roasting step of the present embodiment, an oxidizing roasting step may be provided for the purpose of oxidizing iron, sulfur, etc. contained in the nickel-containing raw material. In this oxidation roasting process, O 2 gas or the like may be supplied as an oxidant. The oxidation roasting step may be performed in the same roasting furnace as the sulfate roasting step, or an oxidation roasting furnace different from the sulfate roasting step may be provided. When another oxidation roasting furnace is provided, the roasting product of the oxidation roasting furnace may be supplied as a raw material to the sulfation roasting furnace.
 硫酸化焙焼を行う焙焼炉としては、例えば、撹拌型焙焼炉、回転炉型焙焼炉、流動層を有する流動焙焼炉等が挙げられる。鉱石等の焙焼については、従来、採鉱した鉱石を粗粉砕した後に撹拌型焙焼炉、回転炉型焙焼炉を使用した硫酸化焙焼が行われている。この場合、焙焼対象物を前処理する負担が少なく、回転数も遅いが、反応速度が遅く、装置が大型化する。このため、焙焼対象物を燃焼空気で浮遊状態として流動させながら焙焼する方式の流動焙焼炉が普及した。流動焙焼炉を採用することで、装置を小型化することができる。 Examples of the roasting furnace for performing the sulfation roasting include a stirring roasting furnace, a rotary furnace roasting furnace, and a fluidized roasting furnace having a fluidized bed. Regarding roasting of ores and the like, conventionally, sulfated roasting using a stirring type roasting furnace or a rotary furnace type roasting furnace is performed after roughly crushing the mined ore. In this case, the burden of pre-treating the object to be roasted is small and the rotation speed is slow, but the reaction speed is slow and the apparatus becomes large. Therefore, a fluidized roasting furnace of a type in which a to-be-roasted object is roasted while being floated with combustion air and flowing has become popular. By adopting a fluidized roasting furnace, the device can be downsized.
 本実施形態の硫酸化焙焼方法は、鉄分を含むニッケル含有原料を硫酸化焙焼炉で処理する焙焼工程と、この焙焼工程で得られた焙焼生成物から、硫酸ニッケル化合物を抽出する抽出工程と、この抽出工程で硫酸ニッケル化合物を抽出した後に得られる残渣を、本実施形態の残渣処理方法により処理して、ニッケル分と酸化鉄とを分離する残渣処理工程と、この残渣処理工程で得られたニッケル分を、焙焼工程に用いる硫酸化焙焼炉に供給する再利用工程と、を有する。 The sulfated roasting method of the present embodiment is a roasting step in which a nickel-containing raw material containing iron is treated in a sulfated roasting furnace, and a nickel sulfate compound is extracted from the roasted product obtained in this roasting step. And a residue treatment step of treating the residue obtained after extracting the nickel sulfate compound in this extraction step by the residue treatment method of the present embodiment to separate nickel content and iron oxide, and this residue treatment And a reuse step of supplying the nickel component obtained in the step to a sulfation roasting furnace used in the roasting step.
 図1に、本実施形態による残渣処理方法を用いた硫酸化焙焼方法を行うシステムの概略構成を示す。本実施形態の処理システムは、焙焼工程を実施するための硫酸化焙焼炉10と、抽出工程を実施するための溶解槽20及び固液分離槽30と、残渣処理方法を実施するための分離器40とを含む。分離器40により得られたニッケル分42は、硫酸化焙焼炉10に供給することで、硫酸化焙焼に再利用することが可能である。 FIG. 1 shows a schematic configuration of a system for performing a sulfation roasting method using the residue treatment method according to this embodiment. The treatment system according to the present embodiment includes a sulfate roasting furnace 10 for carrying out a roasting step, a dissolution tank 20 and a solid-liquid separation tank 30 for carrying out an extraction step, and a residue processing method. And a separator 40. The nickel component 42 obtained by the separator 40 can be reused for the sulfation roasting by supplying it to the sulfation roasting furnace 10.
 硫酸化焙焼炉10は、ニッケル含有原料を含む原料11を硫酸化焙焼により処理して、ニッケル含有原料に含まれるニッケル分を硫酸ニッケルに転換する。硫酸化焙焼炉10に供給される原料11は、ニッケル含有原料に不足する硫黄分、この硫黄分を酸化するための酸素等を含んでもよい。図1では簡略化のため、それぞれの原料11の供給経路を区別していない。原料11と共に、硫酸化焙焼の転換効率を向上する等の目的で、補助的な物質又は材料を硫酸化焙焼炉10に供給してもよい。 The sulfation roasting furnace 10 processes the raw material 11 containing the nickel-containing raw material by the sulfation roasting to convert the nickel content contained in the nickel-containing raw material into nickel sulfate. The raw material 11 supplied to the sulfation roasting furnace 10 may include a sulfur content lacking in the nickel-containing raw material, oxygen for oxidizing the sulfur content, and the like. In FIG. 1, for simplification, the supply paths of the respective raw materials 11 are not distinguished. An auxiliary substance or material may be supplied to the sulfate roasting furnace 10 together with the raw material 11 for the purpose of improving the conversion efficiency of the sulfate roasting.
 硫酸化焙焼工程により、硫酸ニッケル化合物を含む焙焼生成物12が得られる。この焙焼生成物12に溶解槽20で水21を供給し、硫酸ニッケル化合物を水に溶解させる水溶解工程により、硫酸ニッケル化合物を含む溶解物22が得られる。詳しくは後述するが、焙焼生成物12に水21を加える前に、焙焼生成物12を冷却部13で冷却することが好ましい。また、焙焼生成物12に水21を加える前に、焙焼生成物12を粉砕してもよい。焙焼生成物12に含まれる鉄分は、酸化鉄、硫化鉄等、水に難溶の状態となるので、溶解物22には固相が含まれる。そこで、固液分離槽30で溶解物22を固相と液相とに分離することにより、液相として硫酸ニッケル溶液31が得られ、固相として酸化鉄を含む残渣32が分離される。さらに必要に応じて、例えば硫酸ニッケルと硫酸コバルト等とを分離するため、硫酸ニッケル溶液31の精製工程を行うことにより、コバルト等の不純物が除去された硫酸ニッケル化合物を得ることができる。 A roasted product 12 containing a nickel sulfate compound is obtained by the sulfation roasting process. Water 21 is supplied to the roasted product 12 in the dissolution tank 20 to dissolve the nickel sulfate compound in water to obtain a melt 22 containing the nickel sulfate compound. Although details will be described later, it is preferable to cool the roasted product 12 by the cooling unit 13 before adding the water 21 to the roasted product 12. Further, the roasted product 12 may be crushed before adding the water 21 to the roasted product 12. The iron component contained in the roasted product 12 is insoluble in water, such as iron oxide and iron sulfide, so that the melt 22 contains a solid phase. Therefore, by separating the melt 22 into a solid phase and a liquid phase in the solid-liquid separation tank 30, a nickel sulfate solution 31 is obtained as a liquid phase, and a residue 32 containing iron oxide as a solid phase is separated. Further, if necessary, for example, to separate nickel sulfate from cobalt sulfate or the like, a nickel sulfate compound in which impurities such as cobalt are removed can be obtained by performing a purification step of the nickel sulfate solution 31.
 残渣32は、ニッケル分及び酸化鉄を含む。残渣32に遠心力を作用させることにより、ニッケル分と酸化鉄とを分離することができる。酸化鉄の比重がニッケル分の比重より大きいことから、ニッケル分と酸化鉄とを効率的に分離することができる。残渣32に含まれるニッケル分の平均粒子径と酸化鉄の平均粒子径とが異なってもよい。上述した硫酸化焙焼においては、酸化鉄が微細になりやすい。このため、ニッケル分の平均粒子径が酸化鉄の平均粒子径よりも大きくてもよい。残渣32の平均粒子径としては、例えば50μm~150μmの範囲内が挙げられる。ニッケル分は、硫酸ニッケルに転換されなかったニッケル含有原料の成分であり、例えばニッケルの硫化物、酸化物等である。酸化鉄としては、例えばFe、FeO、Feが挙げられる。 The residue 32 contains nickel and iron oxide. By applying a centrifugal force to the residue 32, the nickel component and the iron oxide can be separated. Since the specific gravity of iron oxide is larger than the specific gravity of nickel component, the nickel component and iron oxide can be efficiently separated. The average particle size of the nickel component contained in the residue 32 may be different from the average particle size of the iron oxide. In the above-mentioned sulfated roasting, iron oxide tends to become fine. Therefore, the average particle size of the nickel component may be larger than the average particle size of iron oxide. The average particle diameter of the residue 32 is, for example, in the range of 50 μm to 150 μm. The nickel component is a component of the nickel-containing raw material that has not been converted into nickel sulfate, and is, for example, nickel sulfide or oxide. Examples of iron oxide include Fe 2 O 3 , FeO, and Fe 3 O 4 .
 本実施形態においては、残渣32を分離するため、分離器40を有する。分離器40又はその分離方式としては、例えばサイクロン、遠心分離、遠心濾過が挙げられる。サイクロンとしては、流体として気体を用いる気体サイクロン、流体として液体を用いる液体サイクロン、流体として水を用いるハイドロサイクロンが挙げられる。残渣32との比重差が小さくコストも低いことから、流体として水を用いることが好ましい。残渣32に水を加えてポンプ33で圧送することにより、残渣32を水に分散させた残渣液34として分離器40に供給することが好ましい。残渣液34は、残渣32をスラリー状に含んでもよい。残渣液34に含まれる残渣の濃度を安定させるため、固液分離槽30とポンプ33との間にはループ状に循環する配管を設けて、残渣液34に含まれる残渣又は水の一部を固液分離槽30に戻してもよい。流体として気体を用いる場合は、固相の微粉状の残渣32を分離器40に直接供給してもよい。 In the present embodiment, a separator 40 is provided to separate the residue 32. Examples of the separator 40 or its separation method include cyclone, centrifugal separation, and centrifugal filtration. Examples of the cyclone include a gas cyclone that uses a gas as a fluid, a liquid cyclone that uses a liquid as a fluid, and a hydrocyclone that uses water as a fluid. It is preferable to use water as the fluid because the difference in specific gravity from the residue 32 is small and the cost is low. It is preferable that water is added to the residue 32 and pressure-fed by the pump 33 to supply the residue 32 to the separator 40 as a residue liquid 34 in which the residue 32 is dispersed in water. The residue liquid 34 may include the residue 32 in a slurry form. In order to stabilize the concentration of the residue contained in the residual liquid 34, a pipe that circulates in a loop is provided between the solid-liquid separation tank 30 and the pump 33 so that a part of the residue or water contained in the residual liquid 34 can be collected. It may be returned to the solid-liquid separation tank 30. When a gas is used as the fluid, the solid fine powder residue 32 may be directly supplied to the separator 40.
 分離器40では酸化鉄41とニッケル分42とが分離される。分離器40で酸化鉄41とニッケル分42とを分離する際に基準となる粒子径(分級点)としては、100~150μm程度が好ましい。粒子径が大きい粗粉と粒子径が小さい細粉との分級点(分離限界粒子径)としては、例えば、50%分離粒子径、平衡粒子径(粗粉と細粉とが同一質量になる粒子径)、粗粉中の最小粒子径、細粉中の最大粒子径等、特定の粒子径が用いられる。例えば100μmより大きい粒子をニッケル分42とし、100μmより小さい粒子を酸化鉄41としてもよい。分離器40の内面は、軟質ゴム等で耐摩耗性を向上させることが好ましい。 In the separator 40, the iron oxide 41 and the nickel component 42 are separated. The particle diameter (classification point) that serves as a reference when the iron oxide 41 and the nickel component 42 are separated by the separator 40 is preferably about 100 to 150 μm. Examples of the classification point (separation limit particle diameter) of the coarse powder having a large particle diameter and the fine powder having a small particle diameter include, for example, 50% separated particle diameter and equilibrium particle diameter (particles in which the coarse powder and the fine powder have the same mass). Diameter), the minimum particle size in the coarse powder, the maximum particle size in the fine powder, and the like. For example, particles larger than 100 μm may be nickel 42, and particles smaller than 100 μm may be iron oxide 41. The inner surface of the separator 40 is preferably made of soft rubber or the like to improve wear resistance.
 分離器40は、1段設けてもよいが、分級点の大きい分離器40の次に分級点の小さい分離器40を設ける等、直列に2段以上設けてもよい。分離器40の処理能力を向上させるため、複数の分離器40を並列に設けて、固液分離槽30又はポンプ33から供給される残渣液34の経路を複数の分離器40に向けて分岐させてもよい。 The separator 40 may be provided in one stage, or may be provided in two or more stages in series, such as a separator 40 having a large classification point and a separator 40 having a small classification point. In order to improve the processing capacity of the separator 40, a plurality of separators 40 are provided in parallel, and the path of the residual liquid 34 supplied from the solid-liquid separation tank 30 or the pump 33 is branched toward the plurality of separators 40. May be.
 酸化鉄41から分離した後のニッケル分42は、硫酸化焙焼炉10に供給して処理することができる。これにより、残渣32中のニッケル分を有効活用することができる。ニッケル分42を硫酸化焙焼炉10に戻す際、ニッケル分42が液体中に分散されている場合は、そのまま硫酸化焙焼炉10に戻してもよい。また、処理装置43で処理してからニッケル分44を硫酸化焙焼炉10に供給してもよい。処理装置43としては、分離後のニッケル分42が気体中に分散されている場合に、ニッケル分42を水に分散してスラリー状とする装置、又は、分離後のニッケル分42が水等の液体中に分散されている場合に、ニッケル分42を乾燥する乾燥装置が挙げられる。処理装置43がニッケル分42をスラリー状とする場合、硫酸化焙焼炉10に供給されるニッケル分44はスラリー状となる。処理装置43がニッケル分42を乾燥させる場合、硫酸化焙焼炉10に供給されるニッケル分44は乾燥状態となる。 The nickel content 42 separated from the iron oxide 41 can be supplied to the sulfation roasting furnace 10 for processing. Thereby, the nickel content in the residue 32 can be effectively utilized. When the nickel content 42 is returned to the sulfation roasting furnace 10, if the nickel content 42 is dispersed in the liquid, it may be returned to the sulfation roasting furnace 10 as it is. Alternatively, the nickel content 44 may be supplied to the sulfation roasting furnace 10 after being processed by the processing device 43. As the processing device 43, when the separated nickel component 42 is dispersed in the gas, a device that disperses the nickel component 42 in water to form a slurry, or the separated nickel component 42 is water or the like. A drying device for drying the nickel component 42 when it is dispersed in a liquid may be used. When the processing device 43 makes the nickel component 42 into a slurry form, the nickel component 44 supplied to the sulfation roasting furnace 10 becomes a slurry form. When the processing device 43 dries the nickel component 42, the nickel component 44 supplied to the sulfation roasting furnace 10 is in a dry state.
 硫酸化焙焼炉10では、液状の硫酸を使用した湿式製錬法により処理する必要がなく、乾式製錬法により焙焼生成物12として硫酸ニッケル(NiSO)を得ることができる。SOは、原料11中の硫黄分又は外部から供給した硫黄分の燃焼によりガスとして発生し、原料11中のニッケル分と接触して、硫酸ニッケルが生成する。例えばNi及びNiを含むニッケルマットを硫酸化焙焼する場合、外部の硫黄分(S)及び酸素(O)との反応式は、次のようになる。 In the sulfation roasting furnace 10, nickel sulfate (NiSO 4 ) can be obtained as the roasted product 12 by the dry smelting method without the need for treatment by a hydrometallurgical method using liquid sulfuric acid. SO 2 is generated as a gas by burning the sulfur content in the raw material 11 or the sulfur content supplied from the outside, and is brought into contact with the nickel content in the raw material 11 to produce nickel sulfate. For example, when a nickel matte containing Ni 3 S 2 and Ni is sulphated and roasted, the reaction formula with the external sulfur content (S) and oxygen (O 2 ) is as follows.
S(固体)+O(気体)→SO(気体)
Ni(固体)+5O(気体)+SO(気体)→3NiSO(固体)
Ni(固体)+SO(気体)+O(気体)→NiSO(固体)
S (solid) + O 2 (gas) → SO 2 (gas)
Ni 3 S 2 (solid)+5O 2 (gas)+SO 2 (gas)→3NiSO 4 (solid)
Ni (solid)+SO 2 (gas)+O 2 (gas)→NiSO 4 (solid)
 粒子の表面に、SOガスが接触することで、NiSOの塩が、粒子表面に析出して反応が進むと考えられる。この時に析出するNiSOはNiよりも体積が大きくなる。さらに、NiSOの析出により生じた空隙を通じてSOガスが拡散することで内部のNiの硫酸化焙焼が進行する。NiからNiSOへの転換によりニッケル分が体積膨張を起こす結果、粒子が割れて粒子径がより小さい残渣が残る。原料11の粒子径が微粉であるほど、NiSOに転換する速度は速いが、ニッケルマットは硬いため、微粉砕に要するエネルギーは大きくなる。粉砕操作には時間とエネルギーの問題があり粒子径の小さいニッケルマット原料を調製するには制約又は限界がある。また、上述したとおり原料粒子の表面にNiSO被膜が生成した後は、SOガスの拡散が律速となり、転換反応の効率が低下する。このため、一回の硫酸化焙焼工程でNiSOの転換率を100%とするには、焙焼炉内の滞留時間を延ばしても容易でなく、生産性も低下する。このため、経済性の観点から転換率はある程度の範囲にとどめ、焙焼生成物12から溶解しやすい硫酸ニッケルを溶解槽20で溶解した後、残渣32を再度、硫酸化焙焼に供した方が効率はよい。しかし、原料11に含まれていた鉄分が酸化して生成する酸化鉄は、残渣32に混入される。このため、残渣32から酸化鉄41を分離したニッケル分42,44を硫酸化焙焼炉10に供給することが望ましい。 It is considered that when SO 2 gas comes into contact with the surface of the particles, a salt of NiSO 4 is deposited on the surface of the particles and the reaction proceeds. The volume of NiSO 4 deposited at this time is larger than that of Ni 3 S 2 . Furthermore, the SO 2 gas diffuses through the voids generated by the precipitation of NiSO 4 , so that the internal Ni 3 S 2 is sulphated and roasted. The conversion of Ni 3 S 2 to NiSO 4 causes volume expansion of the nickel component, and as a result, the particles are broken and a residue having a smaller particle size remains. The finer the particle size of the raw material 11, the faster the rate of conversion to NiSO 4 , but the harder the nickel matte, the greater the energy required for fine pulverization. The crushing operation has problems of time and energy, and there are restrictions or limitations in preparing a nickel mat raw material having a small particle size. Further, as described above, after the NiSO 4 coating film is formed on the surface of the raw material particles, the diffusion of SO 2 gas becomes rate-determining and the efficiency of the conversion reaction decreases. For this reason, it is not easy to increase the residence time in the roasting furnace to increase the NiSO 4 conversion rate to 100% in one sulfation roasting step, and the productivity is also reduced. Therefore, from the viewpoint of economic efficiency, the conversion rate should be kept within a certain range, and nickel sulfate which is easily dissolved from the roasted product 12 should be dissolved in the dissolution tank 20 and then the residue 32 should be subjected to sulfation roasting again. Is efficient. However, iron oxide produced by the oxidation of iron contained in the raw material 11 is mixed in the residue 32. Therefore, it is desirable to supply the nickel components 42 and 44 obtained by separating the iron oxide 41 from the residue 32 to the sulfation roasting furnace 10.
 残渣32に含まれる酸化鉄は、上述の事情では原料11の微粒子が割れて生じるため、非常に粒子径が小さい超微粒子となっていて、一般的には濾過が困難である。濾過の方法は各種あるが、例えば加圧濾過、減圧濾過等を採用するには、濾過助剤を利用しないとニッケル分との分離が困難である。そこで、分離器40において残渣32に遠心力を作用させて、ニッケル分と酸化鉄とを分離することで、酸化鉄41とニッケル分42との分離が容易になる。 The iron oxide contained in the residue 32 is generated as the fine particles of the raw material 11 are cracked under the above-mentioned circumstances, and therefore, they are ultrafine particles having a very small particle size, and generally, filtration is difficult. Although there are various filtration methods, for example, when pressure filtration, vacuum filtration, or the like is adopted, it is difficult to separate the nickel component unless a filter aid is used. Therefore, in the separator 40, a centrifugal force is applied to the residue 32 to separate the nickel component and the iron oxide, so that the iron oxide 41 and the nickel component 42 can be easily separated.
 ニッケル分42,44を硫酸化焙焼炉10に供給する際に、ニッケル分42,44がスラリー状である場合、ニッケル分42,44の輸送が容易であると共に、硫酸化焙焼炉10内で水蒸気を発生させることができる。このため、硫酸化焙焼に必要な硫黄酸化物を硫黄源から酸化して発生させる効率が向上する。ニッケル分42,44を硫酸化焙焼炉10に供給する際に、ニッケル分42,44が乾燥状態である場合、輸送に際してニッケル分42,44の重量が少なくて済み、ロスを減少させることができる。 When the nickel components 42, 44 are in a slurry state when the nickel components 42, 44 are supplied to the sulfation roasting furnace 10, the nickel components 42, 44 can be easily transported and the inside of the sulfation roasting furnace 10 can be easily transported. Water vapor can be generated with. Therefore, the efficiency of generating the sulfur oxides required for the sulfation roasting by oxidizing them from the sulfur source is improved. When supplying the nickel components 42, 44 to the sulfation roasting furnace 10, if the nickel components 42, 44 are in a dry state, the weight of the nickel components 42, 44 can be reduced during transportation, and the loss can be reduced. it can.
 ニッケル分42,44を乾燥させる場合、硫酸化焙焼炉10の排熱により乾燥させることも可能である。これにより、エネルギー回収率を向上することができる。硫酸化焙焼炉10の排熱をニッケル分42の乾燥のため処理装置43に輸送する方法としては、温水、水蒸気等の熱媒体の輸送管又はヒートパイプ等の熱輸送路(図示せず)を硫酸化焙焼炉10と接続してもよい。または、硫酸化焙焼炉10の排熱を相変化等の潜熱として蓄熱材に蓄積し、蓄熱した蓄熱材を処理装置43に輸送して乾燥に利用することもできる。 When the nickel components 42 and 44 are dried, it is also possible to dry them by exhaust heat of the sulfation roasting furnace 10. Thereby, the energy recovery rate can be improved. As a method of transporting the exhaust heat of the sulfation roasting furnace 10 to the processing device 43 for drying the nickel content 42, a transport pipe for a heat medium such as hot water or steam or a heat transport path such as a heat pipe (not shown) May be connected to the sulfation roasting furnace 10. Alternatively, the waste heat of the sulfation roasting furnace 10 may be accumulated in the heat storage material as latent heat such as a phase change, and the stored heat storage material may be transported to the processing device 43 and used for drying.
 硫酸化焙焼工程及び水溶解工程を経て、硫酸ニッケル溶液31に含まれるニッケル分と残渣32に含まれるニッケル分との割合は特に限定されないが、残渣32に含まれるニッケル分が数%から数十%となったとしても、残渣32に含まれるニッケル分を、鉄分と分離してから硫酸化焙焼炉10に戻して処理を続けることにより、原料11のニッケル分から硫酸ニッケル溶液31を得る収率を向上させることができる。 The ratio of the nickel component contained in the nickel sulfate solution 31 and the nickel component contained in the residue 32 is not particularly limited after passing through the sulfation roasting step and the water dissolution step, but the nickel content contained in the residue 32 is from several% to several percent. Even if it becomes 10%, the nickel content contained in the residue 32 is separated from the iron content and then returned to the sulfation roasting furnace 10 to continue the treatment, thereby obtaining the nickel sulfate solution 31 from the nickel content of the raw material 11. The rate can be improved.
 残渣32の排出元である硫酸化焙焼炉10と、残渣32から分離されたニッケル分42,44の供給先となる硫酸化焙焼炉10とは、同一の硫酸化焙焼炉10でもよく、異なる硫酸化焙焼炉10でもよい。いずれの硫酸化焙焼炉10についても、鉄分を含むニッケル含有原料から所定の条件において硫酸ニッケルを得る硫酸化焙焼方法を実施することが好ましい。次に、硫酸化焙焼方法の好ましい条件について、より詳しく説明する。なお、この硫酸化焙焼工程におけるニッケル分は、原料11のうちニッケル含有原料に含まれるニッケル分と、残渣32から分離されたニッケル分42,44とを包含する。 The sulfuric acid roasting furnace 10 from which the residue 32 is discharged and the sulfuric acid roasting furnace 10 from which the nickel components 42 and 44 separated from the residue 32 are supplied may be the same sulfuric acid roasting furnace 10. However, different sulfation roasting furnaces 10 may be used. It is preferable to carry out the sulfation roasting method for obtaining nickel sulfate from a nickel-containing raw material containing iron under a predetermined condition in any of the sulfation roasting furnaces 10. Next, preferable conditions of the sulfation roasting method will be described in more detail. In addition, the nickel component in the sulfation roasting step includes the nickel component contained in the nickel-containing raw material of the raw material 11 and the nickel components 42 and 44 separated from the residue 32.
 ニッケル含有原料の硫酸化焙焼においては、酸素分圧及び二酸化硫黄分圧を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる条件下とすることが好ましい。これにより、ニッケル含有原料が鉄分を含む場合であっても、ニッケル分が硫酸ニッケルに変換されると共に、鉄分から硫酸鉄への変換が抑制されるので、鉄分による硫黄分の消費を抑制して、硫酸ニッケルの生成効率を向上することができる。 In the sulfation roasting of a nickel-containing raw material, the oxygen partial pressure and the sulfur dioxide partial pressure are such that nickel sulfate is more thermodynamically stable than nickel oxide in the Ni—S—O system and the Fe—S—O system is used. In the above, it is preferable that the iron oxide is thermodynamically more stable than iron sulfate. As a result, even when the nickel-containing raw material contains iron, the nickel is converted to nickel sulfate and the conversion of iron to iron sulfate is suppressed, so that the consumption of sulfur by iron is suppressed. The production efficiency of nickel sulfate can be improved.
 図2は、Ni-S-O系及びFe-S-O系の概念的な状態図の一例である。Ni-S-O系における各相の境界線は破線(‐‐‐‐‐)で表示し、Fe-S-O系における各相の境界線は一点鎖線(―・―・―)で表示した。矢印に添えた化学式は、それぞれの境界線から矢印に向かう側で熱力学的に安定な相を示す。図2に示す状態図の横軸はO分圧の対数を示し、右側ほどO分圧が高く、左側ほどO分圧が低い。図2に示す状態図の縦軸はSO分圧の対数を示し、上側ほどSO分圧が高く、下側ほどSO分圧が低い。分圧の単位は、例えば気圧(atm=101325Pa)である。 FIG. 2 is an example of a conceptual state diagram of Ni—S—O system and Fe—S—O system. The boundary line of each phase in the Ni-S-O system is shown by a broken line (---), and the boundary line of each phase in the Fe-S-O system is shown by a one-dot chain line (-.-.-). .. The chemical formulas attached to the arrows indicate thermodynamically stable phases on the side from each boundary toward the arrow. The horizontal axis in the state diagram shown in FIG. 2 shows the logarithm of the partial pressure of O 2, the right side as the O 2 partial pressure is high, the left as O 2 partial pressure is low. The vertical axis in the state diagram shown in FIG. 2 shows the logarithm of the SO 2 partial pressure, the upper as SO 2 partial pressure is high, the lower the lower SO 2 partial pressure. The unit of partial pressure is, for example, atmospheric pressure (atm=101325 Pa).
 Ni-S-O系に含まれる硫酸ニッケルとしては例えばNiSOが挙げられ、酸化ニッケルとしては例えばNiOが挙げられる。図2に示す状態図において、境界線LNiは、硫酸ニッケルが熱力学的に安定な領域と酸化ニッケルが熱力学的に安定な領域との境界線を示す。境界線LNiよりSO分圧及びO分圧が高い領域では、硫酸ニッケルが熱力学的に安定な相となる。また、境界線LNiよりSO分圧及びO分圧が低い領域では、酸化ニッケルが熱力学的に安定な相となる。 Examples of nickel sulfate contained in the Ni—S—O system include NiSO 4 , and examples of nickel oxide include NiO. In the state diagram shown in FIG. 2, a boundary line L Ni indicates a boundary line between a region where nickel sulfate is thermodynamically stable and a region where nickel oxide is thermodynamically stable. In the region where the SO 2 partial pressure and the O 2 partial pressure are higher than the boundary line L Ni , nickel sulfate is a thermodynamically stable phase. Further, in the region where the SO 2 partial pressure and the O 2 partial pressure are lower than the boundary line L Ni , nickel oxide becomes a thermodynamically stable phase.
 Fe-S-O系に含まれる硫酸鉄としては例えばFeSO及びFe(SOが挙げられ、酸化鉄としては例えばFeが挙げられる。図2に示す状態図において、境界線LFeは、硫酸鉄が熱力学的に安定な領域と酸化鉄が熱力学的に安定な領域との境界線を示す。境界線LFeよりSO分圧及びO分圧が高い領域では、硫酸鉄が熱力学的に安定な相となる。また、境界線LFeよりSO分圧及びO分圧が低い領域では、酸化鉄が熱力学的に安定な相となる。 Examples of the iron sulfate contained in the Fe—S—O system include FeSO 4 and Fe 2 (SO 4 ) 3 , and examples of the iron oxide include Fe 2 O 3 . In the state diagram shown in FIG. 2, a boundary line L Fe indicates a boundary line between a region where iron sulfate is thermodynamically stable and a region where iron oxide is thermodynamically stable. In the region where the SO 2 partial pressure and the O 2 partial pressure are higher than the boundary line L Fe , iron sulfate is a thermodynamically stable phase. Further, in a region where the SO 2 partial pressure and the O 2 partial pressure are lower than the boundary line L Fe , iron oxide becomes a thermodynamically stable phase.
 図2に示す状態図によれば、境界線LFeよりSO分圧及びO分圧が低く、かつ、境界線LNiよりSO分圧及びO分圧が高い領域Aにおいて、Ni-S-O系では硫酸ニッケルが、Fe-S-O系では酸化鉄が、熱力学的に安定な相となる。そこで、この重なり領域Aの条件下で、ニッケル(Ni)、酸素(O)、硫黄(S)を含む系を焙焼することにより、系中に鉄分が共存していても硫酸鉄の生成を抑制しつつ、ニッケル分を硫酸ニッケルに変換することができる。 According to the state diagram shown in FIG. 2, SO 2 partial pressure and the partial pressure of O 2 is lower than the boundary line L Fe, and, SO 2 partial pressure and the partial pressure of O 2 is in the higher region A than the boundary line L Ni, Ni Nickel sulfate is a thermodynamically stable phase in the —SO system and iron oxide is a Fe—S—O system. Therefore, under the conditions of the overlapping region A, by roasting a system containing nickel (Ni), oxygen (O), and sulfur (S), iron sulfate is produced even if iron is present in the system. The nickel content can be converted to nickel sulfate while suppressing.
 本実施形態の硫酸化焙焼工程における焙焼温度(硫酸化焙焼温度)は、400~750℃の範囲が好ましく、550~750℃の範囲がより好ましい。硫酸化焙焼温度の具体例としては、400℃、450℃、500℃、550℃、600℃、650℃、700℃、750℃、あるいはこれらの前後又は中間の温度範囲が挙げられる。このような焙焼温度であれば、鉄分の還元が抑制されて、鉄分が酸化鉄、硫化鉄等の状態で硫酸ニッケル化合物と共存し得るので、焙焼生成物において粒子の凝結を抑制し、後工程の処理を容易にすることができる。また、これらの温度であれば、炭酸塩が分解するので、炭酸塩が混入している場合であっても、炭酸塩が水に溶解して不純物として残るのを防止することができ、後工程の処理を容易にすることができる。
 さらに硫酸化焙焼温度は、600~700℃であることが好ましい。この温度であれば、焙焼対象物がニッケル含有原料に由来する不純物としてマンガン(Mn)を含む場合であっても、マンガンが鉄とのスピネル構造を形成することにより、マンガンを不溶物として除去しやすくなる。
The roasting temperature (sulfate roasting temperature) in the sulfation roasting step of the present embodiment is preferably in the range of 400 to 750°C, more preferably in the range of 550 to 750°C. Specific examples of the sulfation roasting temperature include 400° C., 450° C., 500° C., 550° C., 600° C., 650° C., 700° C., 750° C., or a temperature range before, after, or in the middle thereof. With such a roasting temperature, reduction of iron content is suppressed, and iron content can coexist with a nickel sulfate compound in a state of iron oxide, iron sulfide, etc., thus suppressing aggregation of particles in a roasted product, It is possible to facilitate the processing in the subsequent steps. Further, at these temperatures, the carbonate decomposes, so even if the carbonate is mixed, it is possible to prevent the carbonate from being dissolved in water and remaining as an impurity. Can be easily processed.
Further, the sulfation roasting temperature is preferably 600 to 700°C. At this temperature, even if the object to be roasted contains manganese (Mn) as an impurity derived from the nickel-containing raw material, manganese forms a spinel structure with iron to remove manganese as an insoluble material. Easier to do.
 硫酸化焙焼工程におけるO分圧としては、気圧(atm)単位によるO分圧の常用対数log p(O)が-4~-6の範囲が好ましく、条件等に応じて、log p(O)が-4~-5、又はlog p(O)が-5~-6の範囲がより好ましい。O分圧を低くすることにより、図2の重なり領域AにおいてもSO分圧が高くなる傾向となるので、硫酸鉄の生成を抑制しつつ、硫酸ニッケルの生成を促進することができる。この最適領域は、硫酸化焙焼温度によって若干ずれ、温度が高くなる程、重なり領域Aにおけるlog p(O)が大きくなる方(零(0)に近づく方)に移動する。log p(SO)及び硫酸化焙焼温度との関係に応じて、log p(O)を、例えば-8以上0以下の範囲から選択してもよい。 As the O 2 partial pressure in the sulfation roasting step, the common logarithm of the O 2 partial pressure in terms of atmospheric pressure (atm) log p(O 2 ) is preferably in the range of −4 to −6, and depending on the conditions etc., log p (O 2) is -4 to -5, or log p (O 2) is more preferably in the range of -5 to -6. By decreasing the O 2 partial pressure, the SO 2 partial pressure tends to increase even in the overlapping region A of FIG. 2, so that the generation of nickel sulfate can be promoted while suppressing the generation of iron sulfate. The optimum region is slightly shifted depending on the sulfation roasting temperature, and the higher the temperature, the more the log p(O 2 ) in the overlapping region A increases (the closer to zero (0)). Depending on the relationship between log p(SO 2 ) and the sulfation roasting temperature, log p(O 2 ) may be selected from the range of −8 to 0, for example.
 硫酸化焙焼工程におけるSO分圧としては、気圧(atm)単位によるSO分圧の常用対数log p(SO)が-1~+1の範囲が好ましく、log p(SO)が-1~0の範囲がより好ましい。図2の重なり領域Aの中でも、SO分圧をより高くすることで、硫酸塩の生成を促進することができる。さらに、SO分圧を常圧程度、又はそれ以下の範囲(分圧の常用対数が略0以下)とすることで、硫酸化焙焼工程における焙焼雰囲気の全圧も過大にならず、設備の取り扱いを容易にすることができる。log p(O)との関係及び硫酸化焙焼温度に応じて、log p(SO)を、例えば-4以上+1以下の範囲から選択してもよい。 As the SO 2 partial pressure in the sulfation roasting step, the common logarithm of the SO 2 partial pressure in atmospheric pressure (atm) log p(SO 2 ) is preferably in the range of −1 to +1 and log p(SO 2 ) is − The range of 1 to 0 is more preferable. In the overlapping region A in FIG. 2, the SO 2 partial pressure can be made higher to promote the production of sulfate. Furthermore, by setting the SO 2 partial pressure to about normal pressure or less (the common logarithm of partial pressure is approximately 0 or less), the total pressure of the roasting atmosphere in the sulfation roasting step does not become excessive, The equipment can be easily handled. The log p(SO 2 ) may be selected from the range of −4 or more and +1 or less depending on the relationship with the log p(O 2 ) and the sulfation roasting temperature.
 焙焼炉内でO分圧が低い条件を維持するには、窒素(N)、アルゴン(Ar)等の不活性ガスを焙焼炉に供給してもよい。これらの不活性ガスは、気体や蒸気等の揮発性成分を焙焼炉に供給する際の担体として用いることもできる。SO分圧の調整は、例えば、硫黄源の供給量の制御により行うことができる。ニッケル含有原料に硫黄分が少ない場合は、硫黄分を硫酸化焙焼工程に供給してもよい。硫黄分の供給源(硫黄源)としては、常温で固体状である固体硫黄(elementary sulfur, S)、硫黄酸化物(SO等)、硫酸(HSO)、硫酸塩、硫化物、黄鉄鉱(FeS)等の硫化鉱石などが挙げられる。硫黄源が硫黄(S)である場合は、酸素富化の状態でSOガスを生成させることが好ましい。酸素を含む雰囲気中で硫黄を燃焼させて硫黄酸化物を生成させてもよい。 In order to maintain the condition of low O 2 partial pressure in the roasting furnace, an inert gas such as nitrogen (N 2 ) or argon (Ar) may be supplied to the roasting furnace. These inert gases can also be used as a carrier when supplying volatile components such as gas and steam to the roasting furnace. The SO 2 partial pressure can be adjusted, for example, by controlling the supply amount of the sulfur source. When the nickel-containing raw material has a low sulfur content, the sulfur content may be supplied to the sulfation roasting step. As a sulfur source (sulfur source), solid sulfur (elementary sulfur, S) that is solid at room temperature, sulfur oxides (SO 2, etc.), sulfuric acid (H 2 SO 4 ), sulfate, sulfide, Examples thereof include sulfide ores such as pyrite (FeS 2 ). When the sulfur source is sulfur (S), it is preferable to generate SO 2 gas in an oxygen-enriched state. Sulfur oxides may be generated by burning sulfur in an atmosphere containing oxygen.
 好ましい分圧の範囲は、硫酸化焙焼温度に応じて、上述した状態図を検討し、境界線LNi及び境界線LFeの位置から求めることができる。例えば硫酸化焙焼温度が650~750℃である場合、好ましい分圧の範囲としては、log p(O)が-8~-4程度でlog p(SO)が-2~+2程度、log p(O)が-3~-2程度でlog p(SO)が-3~+1程度、log p(O)が-1~0程度でlog p(SO)が-4~0程度が挙げられる。 The preferable partial pressure range can be determined from the positions of the boundary line L Ni and the boundary line L Fe by examining the above-mentioned phase diagram according to the sulfation roasting temperature. For example, when the sulfation roasting temperature is 650 to 750° C., the preferable partial pressure range is as follows: log p(O 2 ) is about −8 to −4, log p(SO 2 ) is about −2 to +2, log p(O 2 ) is about -3 to -2, log p(SO 2 ) is about -3 to +1, log p(O 2 ) is about -1 to 0, log p(SO 2 ) is -4 to 0 is mentioned.
 次に、硫酸化焙焼により得られた硫酸ニッケルの精製等について、より詳しく説明する。水溶解工程として溶解槽20で焙焼生成物12に添加される水21は、不純物を含まないように処理された純水が好ましい。水処理方法としては、特に限定されないが、濾過、膜分離、イオン交換、蒸留、消毒、薬剤処理、吸着などの1種以上が挙げられる。溶解用の水として、水源から得られる上水、工業用水等を用いてもよく、他のプロセスで生じた排水を処理した水を用いてもよい。2種類以上の水を用いてもよい。純水に限らずpH=4程度の硫酸酸性溶液で溶解することも可能である。例えば、溶液のpHが4~5程度、例えば3.8~5.5で、酸化還元電位測定で酸化域となる領域では、他の硫酸塩等の不純物の溶解を抑制しつつ、硫酸ニッケル化合物を選択的に水相に抽出するのに有利であるため、好ましい。 Next, the purification of nickel sulfate obtained by sulfation roasting and the like will be described in more detail. The water 21 added to the roasted product 12 in the dissolving tank 20 in the water dissolving step is preferably pure water treated so as not to contain impurities. The water treatment method is not particularly limited and may be one or more of filtration, membrane separation, ion exchange, distillation, disinfection, chemical treatment, adsorption and the like. As the water for dissolution, tap water obtained from a water source, industrial water, or the like may be used, or water obtained by treating wastewater generated in another process may be used. You may use 2 or more types of water. Not only pure water but also a sulfuric acid acidic solution having a pH of about 4 can be used for dissolution. For example, in a region where the pH of the solution is about 4 to 5, for example, 3.8 to 5.5, which is an oxidation region in the redox potential measurement, nickel sulfate compound is suppressed while suppressing dissolution of other impurities such as sulfates. Is preferred because it is advantageous to selectively extract the broth in the aqueous phase.
 硫酸ニッケルの水への溶解度は、150℃において最も高く、100gの溶液に55gのNiSOが溶解するが、0℃でも100gの溶液に22gのNiSOが溶解する。このため、溶解操作は水の沸点以下で実施することが望ましい。また、水溶解工程で得られる溶解物22は、NiSOが常温でも析出しない濃度とすることが好ましく、それよりNiSOが高濃度では溶解物22の加温状態を維持することが好ましい。溶解物22の温度を調整するには、溶解操作を行う前に、焙焼生成物12の温度又は水21の温度を調整することが好ましい。溶解物22の加温状態を維持する熱源の少なくとも一部として、焙焼生成物12の余熱を利用してもよい。このため、水21に溶解する前の焙焼生成物12の温度は、適切な温度に設定することが好ましい。 The solubility of nickel sulfate in water is highest at 150° C., 55 g of NiSO 4 dissolves in 100 g of solution, but 22 g of NiSO 4 dissolves in 100 g of solution even at 0° C. Therefore, it is desirable to carry out the dissolving operation at a temperature not higher than the boiling point of water. Further, it is preferable that the melt 22 obtained in the water dissolving step has a concentration at which NiSO 4 does not precipitate even at room temperature, and it is preferable to maintain the heated state of the melt 22 when the concentration of NiSO 4 is higher than that. In order to adjust the temperature of the melt 22, it is preferable to adjust the temperature of the roasted product 12 or the temperature of the water 21 before performing the melting operation. The residual heat of the roasted product 12 may be used as at least a part of the heat source that maintains the heated state of the melt 22. Therefore, the temperature of the roasted product 12 before being dissolved in the water 21 is preferably set to an appropriate temperature.
 上述したように、図1に示すシステムでは、硫酸化焙焼炉10と溶解槽20との間に冷却部13が設けられている。冷却部13は、バッチ式でも連続式でもよい。バッチ式の場合、水分を加えずに焙焼生成物12が所望の温度に低下するまで放置する構成でもよい。連続式の場合、例えば硫酸化焙焼炉10と溶解槽20との間を接続する配管に冷却部13を設けてもよい。冷却部13では、例えば熱交換器を設けて過剰な余熱を焙焼生成物12から回収し、回収した余熱を各種の熱源として利用してもよい。 As described above, in the system shown in FIG. 1, the cooling unit 13 is provided between the sulfation roasting furnace 10 and the melting tank 20. The cooling unit 13 may be a batch type or a continuous type. In the case of the batch method, the roasted product 12 may be allowed to stand without being added with water until the temperature thereof decreases to a desired temperature. In the case of the continuous type, for example, the cooling unit 13 may be provided in the pipe connecting between the sulfation roasting furnace 10 and the dissolution tank 20. In the cooling unit 13, for example, a heat exchanger may be provided to recover excess residual heat from the roasted product 12, and the recovered residual heat may be used as various heat sources.
 硫酸化焙焼炉10から得られた焙焼生成物12の状態、又は冷却部13で冷却している間の状態変化等により、焙焼生成物12の粒子が固結したり、又は、粒子の表面に水に難溶性の被膜を生じたりする場合がある。このため、焙焼生成物12に水21を加える前に、焙焼生成物12を粉砕する工程を加えてもよい。焙焼生成物12の粉砕手段としては、特に限定されないが、ボールミル、ロッドミル、ハンマーミル、流体エネルギーミル、振動ミル等の1種又は2種以上を用いることができる。焙焼生成物12の粉砕は、焙焼生成物12の冷却前に開始してもよく、又は焙焼生成物12の冷却後に開始してもよい。 Depending on the state of the roasted product 12 obtained from the sulfation roasting furnace 10 or the state change during cooling in the cooling unit 13, the particles of the roasted product 12 are solidified, or the particles are A water-insoluble film may be formed on the surface of the. Therefore, a step of crushing the roasted product 12 may be added before adding the water 21 to the roasted product 12. The crushing means for the roasted product 12 is not particularly limited, but one or more of a ball mill, a rod mill, a hammer mill, a fluid energy mill, a vibration mill and the like can be used. Grinding of the roasted product 12 may be started before cooling the roasted product 12 or may be started after cooling the roasted product 12.
 水溶解工程の後、固液分離の方法は、特に限定されず、濾過法、遠心分離法、沈降分離法などが挙げられる。固液分離槽30は、望ましくは、残渣32となる固相の微粒子の分離性能が高い装置とすることが好ましく、例えば濾過槽、遠心分離槽、沈降槽、沈殿槽等の1種又は2種以上が挙げられる。例えば、濾過法において、濾過の方式は特に限定されず、重力濾過、減圧濾過、加圧濾過、遠心濾過、濾過助剤添加型濾過、圧搾絞り濾過等が挙げられる。差圧の調整が容易で、迅速な分離が可能となる加圧濾過が好ましい。 The solid-liquid separation method after the water dissolution step is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method. Desirably, the solid-liquid separation tank 30 is a device having a high performance of separating solid-phase fine particles to be the residue 32. For example, one or two kinds such as a filtration tank, a centrifugal separation tank, a sedimentation tank, and a precipitation tank. The above is mentioned. For example, in the filtration method, the filtration method is not particularly limited, and examples thereof include gravity filtration, reduced pressure filtration, pressure filtration, centrifugal filtration, filter aid addition type filtration, squeezing filtration and the like. Pressure filtration is preferable because the differential pressure can be easily adjusted and rapid separation is possible.
 硫酸ニッケル化合物と共存し得る不純物としては、鉄(Fe)、コバルト(Co)、アルミニウム(Al)等が挙げられる。これらの金属塩が焙焼工程において硫酸塩となっている場合、硫酸ニッケル化合物を水に溶解させたときに、硫酸鉄、硫酸コバルト等も溶解する。さらに、水中では例えば鉄がFeOOH、Fe、Fe等の酸化物等として沈殿し、硫酸ニッケル化合物から不純物の除去が容易になる。本実施形態の硫酸化焙焼工程は、鉄分が硫酸鉄となりにくい条件を設定しているため、水溶解及び固液分離を経ることで、鉄分の少ない硫酸ニッケル溶液31が得られる。硫酸ニッケル溶液31を分離した後の酸化鉄等を含む残渣32は、セメントの鉄分として再利用することもできる。また、残渣32から分離した酸化鉄41は、溶融還元炉、電気炉等を用いた製鉄原料として銑鉄等の生産に、あるいは、顔料、フェライト、磁性材料、焼結材等に利用することもできる。特に、ニッケル含有原料を産出する地域が工業地域、都市等から離れた遠隔地である場合等には、ニッケル分と同様に、鉄分も現地で製品化することが輸送費等の観点から有利である。例えば、フェロニッケルの製錬工程に設けた電気炉を利用して銑鉄を生産し、減容すれば鉄地金として搬出することも容易になる。 Examples of impurities that can coexist with the nickel sulfate compound include iron (Fe), cobalt (Co), and aluminum (Al). When these metal salts are sulfates in the roasting step, when the nickel sulfate compound is dissolved in water, iron sulfate, cobalt sulfate, etc. are also dissolved. Further, in water, for example, iron precipitates as oxides such as FeOOH, Fe 2 O 3 , Fe 3 O 4 and the like, which facilitates removal of impurities from the nickel sulfate compound. In the sulfated roasting step of the present embodiment, the condition in which the iron content is less likely to be iron sulfate is set, and therefore, the nickel sulfate solution 31 having a low iron content can be obtained through the water dissolution and the solid-liquid separation. The residue 32 containing iron oxide or the like after separating the nickel sulfate solution 31 can be reused as the iron content of cement. Further, the iron oxide 41 separated from the residue 32 can be used for producing pig iron or the like as an iron-making raw material using a smelting reduction furnace, an electric furnace or the like, or for pigments, ferrites, magnetic materials, sintered materials and the like. .. Especially when the area producing nickel-containing raw materials is an industrial area or a remote place away from cities, it is advantageous from the viewpoint of transportation cost to commercialize iron as well as nickel. is there. For example, if pig iron is produced using an electric furnace provided in the ferronickel smelting process and the volume of the pig iron is reduced, it can be easily carried out as iron ingot.
 不純物のうち、例えば銅(Cu)、金(Au)、銀(Ag)、白金族金属(PGM)等、水素(H)よりイオン化傾向が低い金属は、水溶解工程で固体として残るため、固液分離工程により除去することができる。固液分離工程により除去される固体には、上記の不純物のほか、As,Pb,Zn等の化合物が含まれ得る。これらの不純物が含まれる固体は、有価物としてリサイクル処理することもできる。 Among impurities, for example, metals having a lower ionization tendency than hydrogen (H) such as copper (Cu), gold (Au), silver (Ag), and platinum group metal (PGM) remain as solids in the water dissolution step, and thus solid It can be removed by a liquid separation step. The solids removed by the solid-liquid separation step may include compounds such as As, Pb, and Zn in addition to the above impurities. The solid containing these impurities can also be recycled as a valuable resource.
 水溶解及び固液分離を経て得られる硫酸ニッケル溶液31は、硫酸ニッケル化合物を主成分とするため、硫酸ニッケル化合物の溶液のまま、あるいは乾燥等により硫酸ニッケル化合物の固体として、輸送し、利用することができる。用途によっては、硫酸ニッケル溶液31中の不純物として、例えば硫酸コバルト等を低減することが望まれる場合には、溶媒抽出、電解透析(Electrodialysis)、電解採取(Electrowinning)、電解精製(Electro refining)、イオン交換、晶析等の技術を利用することができる。 Since the nickel sulfate solution 31 obtained through water dissolution and solid-liquid separation has a nickel sulfate compound as a main component, it is transported and used as a solution of the nickel sulfate compound or as a solid of the nickel sulfate compound by drying or the like. be able to. Depending on the application, if it is desired to reduce, for example, cobalt sulfate, etc. as impurities in the nickel sulfate solution 31, solvent extraction, electrodialysis, electrowinning, electrorefining, electrorefining, Technologies such as ion exchange and crystallization can be used.
 溶媒抽出の場合は、ニッケルよりもコバルトを優先的又は選択的に溶媒中に抽出できる抽出剤を用いることが好ましい。これにより、硫酸ニッケル化合物を水系の溶液中に残して、効率的な精製が可能になる。抽出剤としては、ホスフィン酸基、チオホスフィン酸基等の、金属イオンと結合し得る官能基を有する有機化合物が挙げられる。溶媒抽出においては、希釈剤として、抽出剤を水から分離させることが可能な有機溶媒を用いてもよい。コバルト等の金属イオンと結合した抽出剤を希釈剤に溶解させることにより、抽出剤を大量に使用しなくても、硫酸ニッケル化合物を含有する水溶液からの分離が容易になる。希釈剤は、水と混和しにくい有機溶媒が好ましい。 In the case of solvent extraction, it is preferable to use an extractant that can preferentially or selectively extract cobalt over nickel over the solvent. This allows the nickel sulfate compound to remain in the aqueous solution for efficient purification. Examples of the extractant include organic compounds having a functional group capable of binding to a metal ion, such as a phosphinic acid group and a thiophosphinic acid group. In the solvent extraction, an organic solvent capable of separating the extractant from water may be used as the diluent. Dissolving the extractant combined with a metal ion such as cobalt in the diluent facilitates separation from the aqueous solution containing the nickel sulfate compound without using a large amount of the extractant. The diluent is preferably an organic solvent that is difficult to mix with water.
 晶析の場合は、温度の変化、溶媒の減少、他の物質の添加等の少なくとも1つの因子により、目的物である硫酸ニッケル化合物を溶液中から結晶化させればよい。この際、不純物の少なくとも一部を液相に残留させることにより、精製が可能になる。具体例としては、蒸発晶析法と貧溶媒晶析法がある。蒸発晶析法は、減圧下で沸騰又は蒸発により溶液を濃縮させ、硫酸ニッケル化合物を晶析させる。貧溶媒晶析法は、医薬品製造などで利用されている晶析方法で、例えば硫酸ニッケル化合物を含む溶液に有機溶媒を加えて硫酸ニッケル化合物を析出させる。晶析に用いられる有機溶媒としては、水と混和する有機溶媒が好ましく、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、エチレングリコール、アセトンからなる群から選択される1種以上が挙げられる。2種類以上の有機溶媒が用いられてもよい。有機溶媒が水と混和する濃度範囲については、硫酸ニッケル化合物が析出する程度に有機溶媒が添加された濃度で混和することが好ましく、任意の割合で自由に混和することがより好ましい。晶析工程で加える有機溶媒は、無水の有機溶媒に限らず、晶析に支障のない程度で含水の有機溶媒であってもよい。水と有機溶媒との比率は、特に限定されないが、例えば1:20~20:1の範囲で設定してもよいが、1:1程度、例えば1:2~2:1が好ましい。 In the case of crystallization, the target nickel sulfate compound may be crystallized from the solution by at least one factor such as temperature change, solvent reduction, addition of another substance, and the like. At this time, purification can be performed by leaving at least a part of the impurities in the liquid phase. Specific examples include an evaporation crystallization method and a poor solvent crystallization method. In the evaporative crystallization method, the solution is concentrated by boiling or evaporation under reduced pressure to crystallize the nickel sulfate compound. The poor solvent crystallization method is a crystallization method utilized in the production of pharmaceuticals, for example, a solution containing a nickel sulfate compound is added with an organic solvent to precipitate a nickel sulfate compound. The organic solvent used for crystallization is preferably an organic solvent miscible with water, and examples thereof include one or more selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol, and acetone. Two or more kinds of organic solvents may be used. Regarding the concentration range in which the organic solvent is miscible with water, it is preferred that the organic solvent is miscible at a concentration at which the nickel sulfate compound is precipitated, and it is more preferred that the organic solvent is freely mixed at an arbitrary ratio. The organic solvent added in the crystallization step is not limited to an anhydrous organic solvent, and may be a water-containing organic solvent as long as it does not hinder crystallization. The ratio of water to the organic solvent is not particularly limited and may be set, for example, in the range of 1:20 to 20:1, but is preferably about 1:1 and is preferably 1:2 to 2:1.
 晶析等を経て固体の硫酸ニッケル化合物を得る場合、硫酸ニッケルの無水物、1水和物、2水和物、5水和物、6水和物、7水和物等の状態となっていてもよい。晶析により析出した硫酸ニッケル化合物は、固液分離により溶液から分離することができる。固液分離の方法は、特に限定されないが、濾過法、遠心分離法、沈降分離法などが挙げられる。溶液側に溶解した金属は、中和して沈殿等の方法により溶液から取り除くことが好ましい。浄化された溶液が、水と有機溶媒との混合物が主体とする場合、蒸留等の方法で水と有機溶媒とを分離することができる。 When a solid nickel sulfate compound is obtained through crystallization or the like, it is in the state of anhydrous nickel sulfate, monohydrate, dihydrate, pentahydrate, hexahydrate, heptahydrate, etc. May be. The nickel sulfate compound deposited by crystallization can be separated from the solution by solid-liquid separation. The solid-liquid separation method is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method. The metal dissolved on the solution side is preferably removed from the solution by a method such as neutralization and precipitation. When the purified solution is mainly composed of a mixture of water and an organic solvent, the water and the organic solvent can be separated by a method such as distillation.
 本実施形態の硫酸化焙焼方法によれば、次の効果が得られる。
(1)残渣に含まれるニッケル分を有効に利用して、硫酸ニッケル化合物の収率を向上することができる。
(2)ニッケル含有原料から硫酸ニッケルへの転換反応を早めることができ、反応性が向上する。
(3)硫酸化焙焼により、ニッケル含有原料から高純度の硫酸ニッケル化合物を生産することができる。
(4)硫酸化焙焼工程において硫酸鉄の生成を抑制することができる。また、水素(H)ガスの発生も抑制することができる。
(5)焙焼生成物は、鉄分が水に溶解しにくい化学種になり、ニッケル分が硫酸ニッケル化合物として水に溶解しやすくなるので、鉄分の除去が容易になる。
(6)従来法に比べて設備コストを低減することができる。
(7)ニッケル含有原料の転換反応を促進することができるため、例えば、鉄が酸化鉄の状態で供給される場合に、酸化鉄が硫酸鉄を形成する機会及び鉄-ニッケルのフェライト合金を形成する機会を与えず転換反応が進む。そのため、高純度の硫酸ニッケルを含有する焙焼生成物を得ることができる。
According to the sulfation roasting method of the present embodiment, the following effects can be obtained.
(1) The nickel content contained in the residue can be effectively used to improve the yield of the nickel sulfate compound.
(2) The conversion reaction from the nickel-containing raw material to nickel sulfate can be accelerated, and the reactivity is improved.
(3) A high-purity nickel sulfate compound can be produced from a nickel-containing raw material by sulfation and roasting.
(4) Generation of iron sulfate can be suppressed in the sulfation roasting process. Further, generation of hydrogen (H 2 ) gas can also be suppressed.
(5) In the roasted product, the iron content becomes a chemical species that is difficult to dissolve in water, and the nickel content easily dissolves in water as a nickel sulfate compound, so that the iron content is easily removed.
(6) The equipment cost can be reduced as compared with the conventional method.
(7) Since it is possible to accelerate the conversion reaction of the nickel-containing raw material, for example, when iron is supplied in the state of iron oxide, iron oxide forms an opportunity to form iron sulfate and forms an iron-nickel ferrite alloy. The conversion reaction proceeds without giving the opportunity to do so. Therefore, a roasting product containing high-purity nickel sulfate can be obtained.
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。 The present invention has been described above based on the preferred embodiments, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
 焙焼対象物は、ニッケル含有原料に限らず、ニッケル以外の他の金属(Cu,Zn,Co,Fe等)を含有する原料も考えられる。他の金属を含有する原料からその金属の化合物を得るための焙焼に、上述の実施形態によるニッケル含有原料の焙焼を応用することも可能である。 The object to be roasted is not limited to a nickel-containing raw material, and a raw material containing a metal other than nickel (Cu, Zn, Co, Fe, etc.) may be considered. It is also possible to apply roasting of the nickel-containing raw material according to the above-described embodiment to roasting for obtaining a compound of the metal from a raw material containing another metal.
 上述の残渣処理方法は、硫酸化焙焼とは異なる工程から排出される残渣の処理にも利用することができる。 The above residue treatment method can also be used to treat residues discharged from a process different from the sulfate roasting.
<実験例>
 鉄を含むニッケルマット(Ni)を硫酸化焙焼試験装置で焙焼した。焙焼条件は、焙焼温度を650℃、log p(O)を-2.0、log p(SO)を-2.0とした。得られた焙焼生成物を、温度80℃の純水に溶解した。得られた溶解物を1時間放置し、上澄み液の硫酸ニッケル溶液と酸化鉄を含む残渣を、MILLIPORE(登録商標)を用いた濾過装置で分離した。この濾過膜上に残った残渣を110℃の恒温槽で2時間乾燥させ、株式会社ニレコのルーゼックス(登録商標)画像解析型粒子径分布測定器で平均粒子径を測定した。その結果、平均粒子径(p50)が100~150μmであった。また、この乾燥物を電子線マイクロアナライザ(EPMA)で分析した結果、粒子径が大きい側の画分がニッケル分で、粒子径が小さい側の画分が酸化鉄であった。
<Experimental example>
A nickel matte containing iron (Ni 3 S 2 ) was roasted with a sulfation roasting tester. The roasting conditions were a roasting temperature of 650° C., a log p(O 2 ) of −2.0, and a log p(SO 2 ) of −2.0. The roasted product obtained was dissolved in pure water at a temperature of 80°C. The obtained dissolved material was allowed to stand for 1 hour, and the residue containing the nickel sulfate solution and iron oxide in the supernatant was separated by a filtration device using MILLIPORE (registered trademark). The residue remaining on the filtration membrane was dried in a thermostat bath at 110° C. for 2 hours, and the average particle size was measured with a Luzex (registered trademark) image analysis type particle size distribution analyzer manufactured by Nireco Corporation. As a result, the average particle size (p50) was 100 to 150 μm. In addition, as a result of analyzing the dried product with an electron beam microanalyzer (EPMA), the fraction having a larger particle size was nickel and the fraction having a smaller particle size was iron oxide.
 なお、Ni-S-O系及びFe-S-O系の状態図の事前検討から、焙焼温度650℃で、log p(O)を-2.0、log p(SO)を-2.0とする条件は、NiSOへの転換に適していると考えられる。 From the preliminary study of the phase diagrams of Ni—S—O system and Fe—S—O system, log p(O 2 ) was -2.0 and log p(SO 2 ) was -2.0 at roasting temperature of 650°C. The condition of 2.0 is considered suitable for conversion to NiSO 4 .
<実施例1>
 上記の実験例と同条件でニッケルマットを硫酸化焙焼し、得られた焙焼生成物を、温度80℃の純水に溶解した。得られた溶解物を1時間放置し、上澄み液の硫酸ニッケル溶液と酸化鉄を含む残渣を、MILLIPORE(登録商標)を用いた濾過装置で分離した。この濾過膜に残った残渣を純水に分散させて残渣の分散液を得た。ポンプ圧力(吐出圧)を1.0kgf/cmとし、38.0L/minの流速で、残渣の分散液をサイクロン(ラサ工業株式会社製のハイドロサイクロン:Super-150-Cycloneを単体で使用)に供したときの処理量は、2.2m/hであった。ポンプ圧力を変更してサイクロンに供給する残渣の分散液の量を変更し、処理量を表1のように変更した。なお、1kgf/cmは9.80665N/cmすなわち98066.5Paである。
<Example 1>
The nickel matte was sulphated and roasted under the same conditions as in the above experimental example, and the obtained roasted product was dissolved in pure water at a temperature of 80°C. The obtained dissolved material was allowed to stand for 1 hour, and the residue containing the nickel sulfate solution and iron oxide in the supernatant was separated by a filtration device using MILLIPORE (registered trademark). The residue remaining on this filtration membrane was dispersed in pure water to obtain a dispersion liquid of the residue. The pump pressure (discharge pressure) was set to 1.0 kgf/cm 2 and the flow rate of 38.0 L/min was used to cyclone the dispersion liquid of the residue (a hydrocyclone made by Lhasa Kogyo Co., Ltd.: Super-150-Cyclone alone). The amount of treatment at the time of being used was 2.2 m 3 /h. The pump pressure was changed to change the amount of the dispersion liquid of the residue supplied to the cyclone, and the treatment amount was changed as shown in Table 1. Note that 1 kgf/cm 2 is 9.80665 N/cm 2, that is, 98066.5 Pa.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例2>
 実施例1と同様にして残渣の分散液を得た。ポンプ圧力(吐出圧)を1.0kgf/cmとし、228L/minの流速で、残渣の分散液をサイクロン(ラサ工業株式会社製のハイドロサイクロン:Super-150-Cycloneを並列に6セット使用)に供したときの処理量は、13.6m/hであった。ポンプ圧力を変更してサイクロンに供給する残渣の分散液の量を変更し、処理量を表2のように変更した。
<Example 2>
A dispersion liquid of the residue was obtained in the same manner as in Example 1. The pump pressure (discharge pressure) was set to 1.0 kgf/cm 2, and the dispersion liquid of the residue was cyclone at a flow rate of 228 L/min (6 sets of hydrocyclone manufactured by Lhasa Kogyo Co., Ltd.: Super-150-Cyclone in parallel). The amount of treatment when it was subjected to 13.6 m 3 /h. The pump pressure was changed to change the amount of the dispersion liquid of the residue supplied to the cyclone, and the treatment amount was changed as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2において、分離効率(%)は、サイクロンから回収できたニッケル分と酸化鉄との合計を100%としたニッケル分の重量比である。粒子径の小さい酸化鉄はサイクロンの中心部から上方に、粒子径の大きいニッケル分はサイクロンの周壁部から下方に分離された。サイクロンの処理量が多いと分離効率の振れ幅が少し大きくなった。 In Tables 1 and 2, the separation efficiency (%) is the weight ratio of the nickel content with the total of the nickel content recovered from the cyclone and the iron oxide as 100%. Iron oxide with a small particle size was separated upward from the center of the cyclone, and nickel with a large particle size was separated downward from the peripheral wall of the cyclone. When the amount of cyclone treated was large, the fluctuation range of the separation efficiency was slightly increased.
 本発明は、二次電池等の電気部品、化学製品などに利用される各種のニッケル化合物又は金属ニッケルの原料として有用な高純度の硫酸ニッケル化合物の製造に利用することができる。 The present invention can be used for producing high-purity nickel sulfate compounds useful as raw materials for various nickel compounds or metallic nickel used in electric parts such as secondary batteries and chemical products.
10…硫酸化焙焼炉、11…原料、12…焙焼生成物、13…冷却部、20…溶解槽、21…水、22…溶解物、30…固液分離槽、31…硫酸ニッケル溶液、32…残渣、33…ポンプ、34…残渣液、40…分離器、41…酸化鉄、42,44…ニッケル分、43…処理装置。 10... Sulfating roasting furnace, 11... Raw material, 12... Roasting product, 13... Cooling part, 20... Melting tank, 21... Water, 22... Melted material, 30... Solid-liquid separation tank, 31... Nickel sulfate solution , 32... Residue, 33... Pump, 34... Residual liquid, 40... Separator, 41... Iron oxide, 42, 44... Nickel content, 43... Treatment device.

Claims (11)

  1.  ニッケル分及び酸化鉄を含む残渣に遠心力を作用させて、ニッケル分と酸化鉄とを分離することを特徴とする残渣処理方法。 A method for treating a residue, characterized in that the residue containing nickel and iron oxide is subjected to centrifugal force to separate the nickel and iron oxide.
  2.  ニッケル分の平均粒子径と酸化鉄の平均粒子径とが異なることを特徴とする請求項1に記載の残渣処理方法。 The residue treatment method according to claim 1, wherein the average particle size of nickel and the average particle size of iron oxide are different.
  3.  ニッケル分の平均粒子径が酸化鉄の平均粒子径よりも大きいことを特徴とする請求項1又は2に記載の残渣処理方法。 The residue treatment method according to claim 1 or 2, wherein the average particle size of the nickel component is larger than the average particle size of the iron oxide.
  4.  前記残渣の平均粒子径が50μm~150μmの範囲内であることを特徴とする請求項1~3のいずれか1項に記載の残渣処理方法。 The residue treatment method according to any one of claims 1 to 3, wherein the average particle size of the residue is within a range of 50 µm to 150 µm.
  5.  前記残渣が、酸素分圧及び二酸化硫黄分圧を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる条件下とした硫酸化焙焼から得られた残渣であることを特徴とする請求項1~4のいずれか1項に記載の残渣処理方法。 The residue shows that the oxygen partial pressure and the sulfur dioxide partial pressure are such that nickel sulfate is thermodynamically more stable than nickel oxide in the Ni—S—O system, and iron oxide is more than iron sulfate in the Fe—S—O system. The residue treatment method according to any one of claims 1 to 4, wherein the residue is obtained by sulfation roasting under a thermodynamically stable condition.
  6.  前記残渣から酸化鉄を分離したニッケル分を硫酸化焙焼炉で処理することを特徴とする請求項1~5のいずれか1項に記載の残渣処理方法。 6. The residue treatment method according to any one of claims 1 to 5, wherein the nickel component obtained by separating iron oxide from the residue is treated in a sulfation roasting furnace.
  7.  前記残渣から酸化鉄を分離したニッケル分をスラリー状態で前記硫酸化焙焼炉に供給することを特徴とする請求項6に記載の残渣処理方法。 The residue treatment method according to claim 6, wherein a nickel component obtained by separating iron oxide from the residue is supplied to the sulfation roasting furnace in a slurry state.
  8.  前記残渣から酸化鉄を分離したニッケル分を乾燥させて前記硫酸化焙焼炉に供給することを特徴とする請求項6に記載の残渣処理方法。 The residue treatment method according to claim 6, wherein the nickel component obtained by separating iron oxide from the residue is dried and supplied to the sulfation roasting furnace.
  9.  前記残渣から酸化鉄を分離したニッケル分を、前記硫酸化焙焼炉の排熱により乾燥させることを特徴とする請求項8に記載の残渣処理方法。 9. The residue treatment method according to claim 8, wherein the nickel component obtained by separating iron oxide from the residue is dried by exhaust heat of the sulfation roasting furnace.
  10.  前記硫酸化焙焼炉において、酸素分圧及び二酸化硫黄分圧を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる条件下とすることを特徴とする請求項6~9のいずれか1項に記載の残渣処理方法。 In the sulfate roasting furnace, the oxygen partial pressure and the sulfur dioxide partial pressure are such that nickel sulfate is more thermodynamically stable than nickel oxide in the Ni—S—O system, and iron oxide is in the Fe—S—O system. 10. The residue treatment method according to any one of claims 6 to 9, wherein the condition is that thermodynamically more stable than iron sulfate.
  11.  鉄分を含むニッケル含有原料を硫酸化焙焼炉で処理する焙焼工程と、
     前記焙焼工程で得られた焙焼生成物から、硫酸ニッケル化合物を抽出する抽出工程と、
     前記抽出工程で前記硫酸ニッケル化合物を抽出した後に得られる残渣を、請求項1~10のいずれか1項に記載の残渣処理方法により処理して、ニッケル分と酸化鉄とを分離する残渣処理工程と、
     前記残渣処理工程で得られた前記ニッケル分を、前記焙焼工程に用いる硫酸化焙焼炉に供給する再利用工程と、
    を有することを特徴とする硫酸化焙焼方法。
    A roasting step of treating a nickel-containing raw material containing iron in a sulfation roasting furnace,
    An extraction step of extracting a nickel sulfate compound from the roasted product obtained in the roasting step,
    A residue treatment step of treating a residue obtained after extracting the nickel sulfate compound in the extraction step with the residue treatment method according to any one of claims 1 to 10 to separate a nickel component and an iron oxide. When,
    A recycling step of supplying the nickel component obtained in the residue treatment step to a sulfation roasting furnace used in the roasting step,
    A method for sulphating and roasting, comprising:
PCT/JP2019/007272 2019-02-26 2019-02-26 Residue processing method and sulfatizing roasting method WO2020174573A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/007272 WO2020174573A1 (en) 2019-02-26 2019-02-26 Residue processing method and sulfatizing roasting method
JP2021501425A JPWO2020174573A1 (en) 2019-02-26 2019-02-26 Residue treatment method and sulfated roasting method
AU2019431265A AU2019431265A1 (en) 2019-02-26 2019-02-26 Residue processing method and sulfatizing roasting method
PH12021550518A PH12021550518A1 (en) 2019-02-26 2021-03-10 Residue processing method and sulfatizing roasting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/007272 WO2020174573A1 (en) 2019-02-26 2019-02-26 Residue processing method and sulfatizing roasting method

Publications (1)

Publication Number Publication Date
WO2020174573A1 true WO2020174573A1 (en) 2020-09-03

Family

ID=72239241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007272 WO2020174573A1 (en) 2019-02-26 2019-02-26 Residue processing method and sulfatizing roasting method

Country Status (4)

Country Link
JP (1) JPWO2020174573A1 (en)
AU (1) AU2019431265A1 (en)
PH (1) PH12021550518A1 (en)
WO (1) WO2020174573A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182100A (en) * 2021-12-14 2022-03-15 广西银亿高新技术研发有限公司 Method for efficiently separating nickel and iron from nickel-iron alloy
CN115159594A (en) * 2022-08-01 2022-10-11 中伟新材料股份有限公司 Method for preparing metal sulfate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS408253B1 (en) * 1961-01-20 1965-04-27
JPS55134140A (en) * 1979-04-03 1980-10-18 Nishida Tekko Kk Collecting method for nickel from low grade nickel ore
JPH04318124A (en) * 1991-04-17 1992-11-09 Sumitomo Metal Ind Ltd Method for reusing ferrous scrap
JPH06128663A (en) * 1992-10-16 1994-05-10 Nisshin Steel Co Ltd Treatment of granierite ore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS408253B1 (en) * 1961-01-20 1965-04-27
JPS55134140A (en) * 1979-04-03 1980-10-18 Nishida Tekko Kk Collecting method for nickel from low grade nickel ore
JPH04318124A (en) * 1991-04-17 1992-11-09 Sumitomo Metal Ind Ltd Method for reusing ferrous scrap
JPH06128663A (en) * 1992-10-16 1994-05-10 Nisshin Steel Co Ltd Treatment of granierite ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182100A (en) * 2021-12-14 2022-03-15 广西银亿高新技术研发有限公司 Method for efficiently separating nickel and iron from nickel-iron alloy
CN115159594A (en) * 2022-08-01 2022-10-11 中伟新材料股份有限公司 Method for preparing metal sulfate
CN115159594B (en) * 2022-08-01 2024-05-14 中伟新材料股份有限公司 Method for preparing metal sulfate

Also Published As

Publication number Publication date
JPWO2020174573A1 (en) 2021-12-23
PH12021550518A1 (en) 2022-02-28
AU2019431265A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP5706457B2 (en) Method for separating and recovering metal from mixed metal solution
AU2020257554B2 (en) Process for the preparation of precursor compounds for lithium battery cathodes
EP3688834A1 (en) Lithium-ion batteries recycling process
JP6375258B2 (en) Method for removing metal from mixed metal aqueous solution
JP2010255118A (en) Process for multiple stage direct electrowinning of copper
JP6539922B1 (en) Method for producing nickel sulfate compound
EP3276014B1 (en) Cobalt powder production method
WO2020174573A1 (en) Residue processing method and sulfatizing roasting method
WO2019244527A1 (en) Method for producing nickel sulfate compound
WO2019138316A1 (en) Process for the recovery of copper and cobalt from a material sample
JP2020001996A (en) Method for producing nickel sulfate compound
WO2020157898A1 (en) Method for treating nickel-containing raw material
WO2020075288A1 (en) Method and device for processing nickel oxide ore
JP7191215B2 (en) Method for treating nickel-containing raw materials
WO2020165974A1 (en) Sulfation roasting method
EA043847B1 (en) METHOD FOR OBTAINING STARTING COMPOUNDS FOR LITHIUM BATTERY CATHODES
JP2020147812A (en) Processing method of copper iron cobalt alloy
EA043878B1 (en) METHOD FOR RECOVERING METALS FROM LI-CONTAINING START MATERIAL
US20050193863A1 (en) Selective reduction of cupriferous calcine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501425

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019431265

Country of ref document: AU

Date of ref document: 20190226

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917501

Country of ref document: EP

Kind code of ref document: A1