WO2020165974A1 - Sulfation roasting method - Google Patents

Sulfation roasting method Download PDF

Info

Publication number
WO2020165974A1
WO2020165974A1 PCT/JP2019/005100 JP2019005100W WO2020165974A1 WO 2020165974 A1 WO2020165974 A1 WO 2020165974A1 JP 2019005100 W JP2019005100 W JP 2019005100W WO 2020165974 A1 WO2020165974 A1 WO 2020165974A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
roasting
nickel
burner
furnace
Prior art date
Application number
PCT/JP2019/005100
Other languages
French (fr)
Japanese (ja)
Inventor
賢三 左右田
Original Assignee
日揮グロ-バル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮グロ-バル株式会社 filed Critical 日揮グロ-バル株式会社
Priority to PCT/JP2019/005100 priority Critical patent/WO2020165974A1/en
Priority to AU2019429311A priority patent/AU2019429311A1/en
Priority to JP2020571966A priority patent/JPWO2020165974A1/en
Publication of WO2020165974A1 publication Critical patent/WO2020165974A1/en
Priority to PH12021550534A priority patent/PH12021550534A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates

Definitions

  • the present invention relates to a sulfated roasting method.
  • nickel sulfate compounds have been used as raw materials for various nickel compounds or metallic nickel for electrolytic nickel plating, electroless nickel plating, catalyst materials, etc.
  • demand for secondary batteries using a nickel compound or metallic nickel as a positive electrode material will increase as a power source for transportation equipment such as electric vehicles and electronic equipment.
  • stable supply of high-purity nickel sulfate compound is desired.
  • Impurities that may be contained in low-purity nickel compounds include other metal compounds such as iron, copper, cobalt, manganese, and magnesium.
  • a method for obtaining a high-purity nickel compound there are a method of dissolving metallic nickel whose nickel purity is increased by an electrolytic extraction method with a sulfuric acid solution, and a solvent extraction method. In the solvent extraction method, another metal compound is selectively extracted and removed, or a nickel compound is selectively extracted and taken out. In either case, a special agent was required to selectively extract a specific metal ion, resulting in high cost.
  • Patent Document 1 describes a method of obtaining water-soluble nickel sulfate by subjecting green nickel oxide powder having a specific gravity of more than 6.30 to heat treatment in sulfuric acid and then leaching with hot water. ing.
  • a sulfuric acid used for the heat treatment a sulfuric acid solution having a concentration of 30% to 60% (claims 1 to 5) and concentrated sulfuric acid having a concentration of 95% (claims 6 to 7) are mentioned.
  • concentrated sulfuric acid having a concentration of 95% is used in Patent Document 1 (Examples 7 to 9), a high temperature of 275° C. or higher is required.
  • An object of the present invention is to provide a sulfation roasting method capable of treating a raw material containing nickel and iron by a dry smelting method.
  • a first aspect of the present invention is to install a burner in a roasting furnace and supply sulfur to the burner for combustion in a step of performing sulfation roasting of a raw material containing nickel and iron in the roasting furnace.
  • the sulfurization and roasting method is characterized in that sulfur oxides are generated by.
  • a second aspect of the present invention is the sulfation roasting method of the first aspect, characterized in that the sulfur is supplied in liquid form to the burner by air pressure.
  • a third aspect of the present invention is characterized in that the concentration of sulfur oxide in the roasting furnace is measured, and the amount of sulfur or air supplied to the burner is controlled based on the measured value. It is the sulfated roasting method of the 1st or 2nd aspect.
  • a fourth aspect of the present invention is to measure the concentration of sulfur oxides in the exhaust gas discharged from the roasting furnace, and control the amount of sulfur or air supplied to the burner based on this measurement value. It is the sulfated roasting method of the first to third aspects characterized.
  • a fifth aspect of the present invention is characterized in that the raw material is a fluidized bed in the roasting furnace, and the burner is installed above a position where a roasted product is taken out from the roasting furnace. It is the sulfated roasting method of the fourth aspect.
  • the burner is installed along the wall surface of the roasting furnace, and sulfur is supplied in a direction along the inner wall surface of the roasting furnace and in a direction intersecting the vertical direction.
  • a seventh aspect of the present invention is the sulfated roasting method according to the fifth or sixth aspect, wherein the burner is installed below a position where the raw material is supplied to the roasting furnace.
  • the oxygen partial pressure and the sulfur dioxide partial pressure are controlled such that nickel sulfate is thermodynamically more stable than nickel oxide in the Ni—S—O system and is oxidized in the Fe—S—O system.
  • the sulfated roasting method according to any one of the first to seventh aspects is characterized in that the conditions are such that iron is thermodynamically more stable than iron sulfate.
  • the raw material containing nickel and iron is treated by the dry smelting method, it is not necessary to use liquid sulfuric acid and the treatment is easy. Furthermore, since sulfur is supplied to the burner and burned to generate sulfur oxides in the roasting furnace, it becomes easy to control the conditions of the sulfate roasting.
  • sulfur is supplied in liquid form to the burner by air pressure, sulfur can be easily transported and combustion control in the burner can be facilitated.
  • sulfur since sulfur is supplied to the burner in a liquid state, it is difficult for the supply portion to be abraded by the sulfur.
  • the third aspect it is possible to easily control the excess and deficiency of sulfur oxides in the roasting furnace.
  • the amount of sulfur required for roasting is supplied by controlling the concentration of sulfur oxides in the roasting furnace in consideration of the amount of sulfur oxides flowing out into the exhaust gas. Can be prevented from being excessively supplied.
  • the device when the raw material is a fluidized bed in the roasting furnace, the device becomes smaller than when using a stirring type roasting furnace, a rotary furnace type roasting furnace, or the like.
  • the burner when installing the burner above the position where the roasted product is taken out, the flow of the combustion gas from the fluidized bed and the burner is less likely to interfere with each other.
  • the combustion gas from the burner generates a swirling flow that flows along the inner wall surface of the roasting furnace with the substantially vertical direction as the central axis, and the floating layer formed above the fluidized bed.
  • the sulfur oxide contained in the combustion gas can be easily reacted with the raw material without obstructing the flow of the raw material in the above.
  • the sulfur oxides contained in the combustion gas from the burner easily come into contact with the raw material, so that the reaction can be promoted.
  • the nickel content of the raw material is converted to nickel sulfate and the conversion of iron content to iron sulfate is suppressed, the consumption of sulfur content by the iron content is suppressed and the production efficiency of nickel sulfate is increased. Can be improved.
  • FIG. 2 is a conceptual state diagram of Ni—S—O system and Fe—S—O system.
  • the roasting target is roasted in a roasting furnace to obtain a roasted product.
  • the object to be roasted include nickel-containing raw materials.
  • the roasted product contains a sulfate such as nickel sulfate.
  • the nickel-containing raw material may be a nickel compound or metallic nickel as long as it contains nickel element.
  • the nickel compound is not particularly limited, but examples thereof include nickel salts such as nickel oxide, nickel hydroxide, nickel sulfide, and nickel chloride.
  • the nickel compound may be a hydrate.
  • the metallic nickel may be a nickel alloy such as ferronickel. When metallic nickel (a simple substance or an alloy) is used as a nickel-containing raw material, shots obtained by slicing molten metal into small pieces may be used. Nickel ore can also be used as the nickel-containing raw material. Examples of the nickel ore include one or more of nickel oxide ore and nickel sulfide ore. A nickel matte containing nickel sulfide as a main component can also be used as the nickel-containing raw material.
  • nickel mat examples include a composition (weight ratio) in which Ni is 45 to 55%, Fe is about 20%, S is 20 to 25%, and Co is about 1% or less. Further, as the nickel matte whose nickel concentration is increased in the converter, for example, there is a composition (weight ratio) in which Ni is about 78%, Co is about 1%, Fe is about 1%, and S is about 20%. This nickel mat is in a state where Ni 3 S 2 and metallic nickel (Ni) are mixed due to the amount of sulfur content. Examples of ferronickel include a composition (weight ratio) in which Ni is 18 to 23%, Co is about 1%, and Fe is 76 to 81%.
  • the nickel oxide ores include laterite ores containing nickel such as limonite and saprolite.
  • the limonite may be a limonite having a low iron content or a limonite having a high iron content
  • the saprolite may have a high nickel content (for example, a Ni content of 1.8 wt% or more) or a low nickel content (for example, a low nickel content. (Less than 1.8 wt%) Saprolite may be used.
  • the nickel sulfide ore include iron sulfate nickel ore (Pentland ore), acicular nickel ore, chalcopyrite containing nickel, and pyrrhotite containing nickel.
  • the nickel-containing raw material in the roasting step preferably contains at least one selected from the group consisting of nickel sulfide ore, nickel oxide ore, nickel sulfide, nickel matte, nickel oxide, and ferronickel.
  • the nickel-containing raw material may not contain iron, but in many cases iron coexists with nickel.
  • the iron content is separated from the nickel sulfate compound in a later step, but from the viewpoint of energy consumption, the smaller the iron content in the raw material, the more desirable. Although it is possible to treat even if the iron content is higher than the nickel content, it is preferable that the iron content is lower than the nickel content.
  • the nickel-containing raw material is not limited to one type, and two or more types may be used.
  • nickel-containing raw materials When using two or more kinds of nickel-containing raw materials, these raw materials may be mixed and supplied separately.
  • a nickel-containing raw material containing no sulfur may be used, and/or a nickel-containing raw material containing a sulfur content as at least a part of the raw material, for example, nickel sulfide ore, nickel. Sulfide, nickel matte or the like may be used.
  • the particle size of the nickel-containing raw material Prior to the roasting process, it is preferable to reduce the particle size of the nickel-containing raw material by operations such as shredding, crushing and abrasion. Since the reaction starts from the surface of the nickel-containing raw material in the roasting step, the smaller the particle size of the nickel-containing raw material, the shorter the reaction time, which is preferable.
  • the crushing means is not particularly limited, but one or more kinds such as a ball mill, a rod mill, a hammer mill, a fluid energy mill and a vibration mill can be used.
  • the particle size after pulverization is not particularly limited. When a nickel-containing raw material such as limonite ore is available in the form of fine particles, it may be supplied to the roasting step as it is.
  • an oxidizing roasting step may be provided for the purpose of oxidizing iron, sulfur, etc. contained in the nickel-containing raw material.
  • O 2 gas or the like may be supplied as an oxidant.
  • the oxidation roasting step may be performed in the same roasting furnace as the sulfate roasting step, or an oxidation roasting furnace different from the sulfate roasting step may be provided.
  • the roasting product of the oxidation roasting furnace may be supplied as a raw material to the sulfation roasting furnace.
  • Examples of the roasting furnace for performing the sulfation roasting include a stirring roasting furnace, a rotary furnace roasting furnace, and a fluidized roasting furnace having a fluidized bed.
  • roasting of ores and the like conventionally, sulfated roasting using a stirring type roasting furnace or a rotary furnace type roasting furnace is performed after roughly crushing the mined ore.
  • the burden of pre-treating the object to be roasted is small and the rotation speed is slow, but the reaction speed is slow and the apparatus becomes large. Therefore, a fluidized roasting furnace of a type in which a to-be-roasted object is roasted while being floated with combustion air and flowing has become popular.
  • the device can be downsized.
  • FIG. 1 shows a schematic configuration of a system for performing the sulfation roasting method according to this embodiment.
  • the roasting furnace 10 is a fluidized roasting furnace is illustrated.
  • FIG. 1 is a simplified conceptual diagram, and does not necessarily show an optimum state or value with respect to relationships such as shape, position, size, angle, ratio, and the like.
  • a gas inlet 12 is provided below the furnace body 11 of the roasting furnace 10, and a gas outlet 13 is provided above the furnace body 11.
  • a gas dispersion plate 14 that crosses the furnace body 11 in the radial direction is provided.
  • a supply port 15 for the roasting target and a takeout port 16 for the roasted product are provided on the side of the furnace body 11.
  • the supply port 15 is provided above the outlet 16.
  • the roasting product gathers on the lower side (on the gas dispersion plate 14) of the roasting target and flows on the gas dispersion plate 14.
  • the layer P1 is formed. Then, the roasted products that have reached the outlet 16 are sequentially discharged. Therefore, by disposing the take-out port 16 below the supply port 15, the fluidized bed P1 does not hinder the supply of the roasting target and promotes the take-out of the roasted product.
  • the height of the supply port 15 and the take-out port 16 may be approximately the same as the height of the fluidized bed P1.
  • a floating layer P2 may be formed above the fluidized bed P1 in which fine particles such as an object to be roasted, components mixed therein, and roasted products are suspended.
  • the flowing gas flowing from the gas inlet 12 causes an ascending flow over the entire cross section of the furnace body 11 through the gas dispersion plate 14 having a large number of holes to float the object to be roasted.
  • sulfur source solid sulfur (elementary sulfur, S) that is solid at room temperature, sulfur oxides (SO 2, etc.), sulfuric acid (H 2 SO 4 ), sulfate, sulfide, Examples thereof include sulfide ores such as pyrite (FeS 2 ).
  • S sulfur oxides
  • SO 4 sulfuric acid
  • sulfate sulfurate
  • sulfide examples thereof include sulfide ores such as pyrite (FeS 2 ).
  • FeS 2 pyrite
  • reaction formula of Ni 3 S 2 (solid) in the raw material and the external sulfur content (S) and oxygen (O 2 ) is as follows.
  • the sulfur content of 1/3 mol is insufficient with respect to 1 mol of nickel.
  • 1 mol of sulfur is insufficient with respect to 1 mol of nickel. If the supply of sulfur is insufficient, there is a problem that the nickel content is discharged as a roasting product without being converted into nickel sulfate. As described above, when the sulfur content in the raw material is insufficient as the sulfur content necessary to obtain nickel sulfate (NiSO 4 ) as a roasting product, the sulfur content needs to be supplied to the sulfation roasting step. ..
  • the roasting furnace 10 and the auxiliary equipment must have durability against sulfuric acid corrosion.
  • a tantalum material is required as a material having both heat resistance and acid resistance, which is expensive.
  • the sulfur source is oxidized to an oxidation number of +VI like sulfuric acid or sulfate, in order to suppress the iron content from becoming iron sulfate, setting of reaction conditions in the sulfation roasting step as described later is performed. Is not easy.
  • the sulfur source other than the solid sulfur (S) a sulfur content contained in the nickel-containing raw material, or a solid sulfur source having a low oxidation number of the sulfur content such as sulfide or sulfide ore may be used together.
  • the temperature at which is decomposed into sulfur oxides is too high, it is not easy to set reaction conditions in the sulfation roasting step.
  • the sulfur content in the raw material is oxidized during the roasting to generate SO 2 gas, which may result in cracking of the particles. Particles during roasting are less likely to coagulate with each other when nickel sulfate is formed on the surface to form a coating layer, but when the particles break and the raw material is exposed, fragmented particles coagulate and coarse particles are formed. If formed, the reactivity may be reduced.
  • the sulfur source in addition to the sulfur content contained in the raw material, a sulfur source that is easily decomposed to the same level or higher than the raw material is preferable. Therefore, it is preferable that at least a part of the sulfur source is solid sulfur (S). Then, the solid sulfur (S) may be supplied to the roasting furnace 10 after being changed into powder, liquid, or gas. In this case, it is possible to generate a sulfur oxide gas such as SO 2 in the roasting furnace 10 in an oxygen enriched state. Since sulfur oxides are diffused in the furnace in a gas state, the solid sulfur (S), which is easily burned at high temperature, can be used as a sulfur source to shorten the time required to react with the raw materials. ..
  • Solid sulfur may be mixed with the object to be roasted, and the object to be roasted may be supplied to the roasting furnace 10 in the form of powder or slurry, but due to the difference in particle size between the two, nickel content and sulfur content may be different. There may be unevenness in the ratio. It is also possible to pelletize so that the ratio of nickel content and sulfur content is constant, but it is a huge man-hour to measure the nickel content and sulfur content before pelletizing and adjust the addition amount of sulfur. Requires. When the composition of the raw material is not always constant, real-time control is required to supply the sulfur content according to the nickel content.
  • the roasting furnace 10 of the present embodiment has the sulfur combustion burner 21 on the side portion of the furnace body 11.
  • the roasting furnace 10 may have a burner that burns an auxiliary fuel such as liquefied natural gas (LNG) as the auxiliary burner 17 other than the sulfur combustion burner 21.
  • LNG liquefied natural gas
  • the auxiliary fuel for example, hydrocarbons can be cited as a component whose components generated by combustion do not affect the sulfation roasting.
  • the present embodiment it is not necessary to use liquid sulfuric acid as the sulfur source, the acid resistance level of the equipment is lower than the sulfuric acid corrosion resistance, and the treatment is easy during operation.
  • the sulfur combustion burner 21 is preferably installed at a position where the roasted product is taken out from the roasting furnace 10, that is, above the outlet 16. This makes it difficult for the fluidized bed P1 and the flow of the combustion gas from the sulfur combustion burner 21 to interfere with each other. Furthermore, it is preferable to install the sulfur combustion burner 21 at a position where the raw material is supplied to the roasting furnace 10, that is, below the supply port 15. This makes it easier for the sulfur oxides contained in the combustion gas from the sulfur combustion burner 21 to come into contact with the raw material, so that the reaction can be promoted. Further, even when the particle surface of the raw material is metallic and aggregation between particles is likely to occur, the reaction on the particle surface is promoted, whereby the aggregation can be suppressed.
  • the sulfur combustion burner 21 is provided with the sulfur supply system 20.
  • the sulfur supply system 20 includes a sulfur melting tank 22 that melts solid sulfur into a liquid state, and a sulfur supply passage 26 that supplies liquid sulfur from the sulfur melting tank 22 to the sulfur combustion burner 21.
  • the sulfur supply system 20 includes a heater 23 for heating the sulfur melting tank 22.
  • Liquid sulfur can obtain fluidity even in a solution or dispersion of sulfur such as hydrocarbon, but it is preferably prepared by melting solid sulfur because it has a wide stable temperature range as a liquid. Since liquid sulfur is passed through the sulfur supply passage 26, it is preferable to maintain the temperature higher than the melting point of sulfur (about 115° C.) and lower than the boiling point of sulfur (about 444° C.).
  • the sulfur supply passage 26 preferably has a pump 24 for supplying liquid sulfur to the sulfur combustion burner 21. This facilitates the transportation of sulfur and facilitates the control of combustion in the sulfur combustion burner 21. Further, it is preferable that the sulfur supply passage 26 includes a valve 25 capable of adjusting the flow rate of the liquid sulfur stepwise or continuously. As a result, the flow rate of sulfur can be easily controlled, and the amount of sulfur oxide generated in the sulfur combustion burner 21 can be controlled with higher accuracy.
  • An auxiliary combustion gas supply passage 27 is connected to the sulfur combustion burner 21 in order to supply an auxiliary combustion gas containing oxygen for burning sulfur.
  • Air is generally used as the combustion supporting gas. It is preferable to remove dust from the air with a filter or the like. Furthermore, moisture may be removed to obtain dry air. It is also possible to add oxygen or nitrogen to the air to appropriately change the concentration of the oxygen gas (O 2 ).
  • the auxiliary combustion gas supply passage 27 preferably includes a valve 28 capable of adjusting the flow rate of the auxiliary combustion gas stepwise or continuously. This facilitates the control of the flow rate of the auxiliary combustion gas, and the amount of sulfur oxide generated in the sulfur combustion burner 21 can be controlled with higher accuracy.
  • the roasting furnace 10 in order to control the concentration of sulfur oxide in the roasting furnace 10 with higher accuracy, can be provided with a sulfur oxide concentration control system 30.
  • the densitometer 32 is installed in the furnace body 11 to measure the sulfur oxide concentration in the roasting furnace 10.
  • the controller 31 controls the amount of sulfur or air supplied to the sulfur combustion burner 21 based on the measured value of the sulfur oxide concentration in the roasting furnace 10 transmitted from the concentration meter 32 via the signal line 34. This makes it possible to easily control excess and deficiency of sulfur oxides in the roasting furnace 10.
  • the supply amount of sulfur or oxygen is increased, and when the measured value of the sulfur oxide concentration in the roasting furnace 10 is high, sulfur or Reduce the supply of oxygen.
  • Whether to change the supply amount of sulfur or the supply amount of oxygen may be determined differently depending on the situation.
  • the concentration meter 33 is installed at the gas outlet 13 for measuring the sulfur oxide concentration in the exhaust gas discharged from the roasting furnace 10.
  • the controller 31 controls the amount of sulfur or air supplied to the sulfur combustion burner 21 based on the measured value of the sulfur oxide concentration in the exhaust gas transmitted from the concentration meter 33 via the signal line 35.
  • the sulfur oxide concentration in the roasting furnace 10 can be controlled in consideration of the amount of sulfur oxide flowing out into the exhaust gas. For example, when the sulfur oxide concentration in the exhaust gas is high and it is determined that the sulfur oxide concentration in the roasting furnace 10 is excessive, the sulfur oxide concentration in the roasting furnace 10 may be controlled to decrease. ..
  • the controller 31 determines the opening degrees of the valves 25 and 28 based on the signals from the densitometers 32 and 33. Specifically, when controlling the supply amount of sulfur, the controller 31 opens and closes the valve 25 via the signal line 36. In addition, the controller 31 opens and closes the valve 28 via the signal line 37 when controlling the supply amount of the auxiliary combustion gas.
  • FIG. 2 is a cross-sectional view taken along a plane perpendicular to the centerline C extending in the vertical direction of the furnace body 11 shown in FIG. Note that FIG. 2 is a simplified conceptual diagram, and does not necessarily show an optimum state or value with respect to the relationship such as shape, position, size, angle, and ratio.
  • the sulfur combustion burner 21 is installed along the wall surface of the furnace body 11 of the roasting furnace 10, and intersects in the direction along the inner wall surface 10A of the roasting furnace 10 and in the vertical direction. It is preferable to supply sulfur in the direction in which it does.
  • the swirling flow F in which the combustion gas from the sulfur combustion burner 21 flows in the roasting furnace 10 along the inner wall surface 10A of the roasting furnace 10 (furnace body 11) with the substantially vertical direction as the central axis (Fig. (See also 1) the sulfur oxide contained in the combustion gas is easily diffused in the entire furnace body 11.
  • the sulfur oxide can be easily reacted with the raw material without impeding the flow of the raw material in the floating layer P2 formed above the fluidized bed P1.
  • the combustion gas from the sulfur combustion burner 21 may rise along with the upward flow of the flow gas and generate a spiral swirling flow F.
  • the swirling flow F may be diffused from the vicinity of the inner wall surface 10A to the vicinity of the center line C.
  • the furnace body 11 of this embodiment is formed in a cylindrical shape.
  • the wall thickness between the inner wall surface 10A and the outer wall surface 10B may be uniform or non-uniform.
  • the inner wall surface 10A and the outer wall surface 10B may be both surfaces of the same wall material, or may be inner surfaces and outer surfaces of different wall materials.
  • Each of the inner wall surface 10A and the outer wall surface 10B may be a flat cylindrical surface, or may have minute surface undulations or the like.
  • the wall structure may be a multi-layer structure in which the inner surface of the structural material is lined.
  • An acid resistant lining material or the like may be used as the inner wall material of the furnace body 11, but the lining material or the like may be omitted.
  • At least the tip of the sulfur combustion burner 21 may protrude from the inner wall surface 10A.
  • the sulfur combustion burner 21 itself may penetrate the outer wall surface 10B on the rear end side (the side connected to the sulfur supply passage 26) opposite to the tip end of the sulfur combustion burner 21, or the sulfur combustion burner 21 may be a wall surface.
  • the outer wall surface 10B may be passed through the sulfur supply passage 26 on the rear side thereof.
  • the direction of the sulfur combustion burner 21 with respect to the wall surface of the furnace body 11 is, for example, about 5 to 45° in angle R with respect to the tangent line of the wall surface in the horizontal section.
  • the sulfur combustion burner 21 includes a main body portion 21A connected to the sulfur supply passage 26, and a crater 21B for injecting combustion gas into the roasting furnace 10.
  • the crater 21B is provided at the tip of the main body 21A.
  • the sulfur combustion burner 21 is installed so that the body portion 21A has an angle R of 5 to 45° with respect to the tangent line T of the wall surface of the furnace body 11.
  • the tangent line T the tangent line of the inner wall surface 10A at the installation position of the main body portion 21A is shown in the cross section of FIG. 2, but the angle R may be an angle with the tangent line of the outer wall surface 10B.
  • the sulfur supply passage 26 is extended on the extension line of the main body portion 21A of the sulfur combustion burner 21, but the sulfur supply passage 26 is not particularly limited to this, and inside the wall surface of the furnace body 11 or on the outer wall surface 10B.
  • the sulfur supply passage 26 may be bent along or further outside. Depending on the length of the sulfur combustion burner 21, it may be possible to connect the sulfur supply passage 26 in the middle of the main body portion 21A, but in that case as well, the angle R is closer to the crater 21B than the connection portion with the sulfur supply passage 26. It is set between the tangent line T and the side. The angle R may be the angle between the tangent line T and the central axis line that is perpendicular to the surface of the crater 21B.
  • the main body portion 21A is installed so as to be about 5 to 30° with respect to the tangent line T of the wall surface of the furnace body 11. Is preferred.
  • the value of the angle R examples include 5°, 10°, 15°, 20°, 25°, 30°, or values in the vicinity or in the middle thereof.
  • the main body portion 21A of the sulfur combustion burner 21 with respect to the vertical direction may be a horizontal direction, or may be upward or downward from the horizontal direction, but when tilted from the horizontal direction, for example, within 5° or 10° upward or downward. It is preferably within.
  • a fluidized roasting furnace is used as the roasting oven 10 it may be adjusted according to the flow velocity of the fluidizing gas so as to resist the upward flow of the fluidizing gas.
  • the oxygen partial pressure and the sulfur dioxide partial pressure are such that nickel sulfate is more thermodynamically stable than nickel oxide in the Ni—S—O system and the Fe—S—O system is used.
  • the iron oxide is thermodynamically more stable than iron sulfate.
  • FIG. 3 is an example of a conceptual state diagram of the Ni—S—O system and the Fe—S—O system.
  • the boundary line of each phase in the Ni-S-O system is shown by a broken line (---), and the boundary line of each phase in the Fe-S-O system is shown by a one-dot chain line (-.-.-). ..
  • the chemical formulas attached to the arrows indicate thermodynamically stable phases on the side from each boundary toward the arrow.
  • the horizontal axis in the state diagram shown in FIG. 3 shows the logarithm of the partial pressure of O 2, the right side as the O 2 partial pressure is high, the left as O 2 partial pressure is low.
  • the vertical axis in the state diagram shown in FIG. 3 shows the logarithm of the SO 2 partial pressure, the upper as SO 2 partial pressure is high, the lower the lower SO 2 partial pressure.
  • Examples of nickel sulfate contained in the Ni—S—O system include NiSO 4 , and examples of nickel oxide include NiO.
  • a boundary line L Ni indicates a boundary line between a region where nickel sulfate is thermodynamically stable and a region where nickel oxide is thermodynamically stable.
  • nickel sulfate is a thermodynamically stable phase.
  • nickel oxide becomes a thermodynamically stable phase.
  • Examples of the iron sulfate contained in the Fe—S—O system include FeSO 4 and Fe 2 (SO 4 ) 3 , and examples of the iron oxide include Fe 2 O 3 .
  • a boundary line L Fe indicates a boundary line between a region where iron sulfate is thermodynamically stable and a region where iron oxide is thermodynamically stable.
  • iron sulfate is a thermodynamically stable phase.
  • iron oxide becomes a thermodynamically stable phase.
  • SO 2 partial pressure and the partial pressure of O 2 is lower than the boundary line L Fe, and, SO 2 partial pressure and the partial pressure of O 2 is in the higher region A than the boundary line L Ni, Ni
  • nickel sulfate is a thermodynamically stable phase
  • iron oxide is a thermodynamically stable phase. Therefore, under the conditions of the overlapping region A, by roasting a system containing nickel (Ni), oxygen (O), and sulfur (S), iron sulfate is produced even if iron is present in the system.
  • the nickel content can be converted to nickel sulfate while suppressing.
  • the roasting temperature (sulfate roasting temperature) in the sulfation roasting step of the present embodiment is preferably in the range of 400 to 750°C, more preferably in the range of 550 to 750°C.
  • Specific examples of the sulfation roasting temperature include 400° C., 450° C., 500° C., 550° C., 600° C., 650° C., 700° C., 750° C., or a temperature range before, after, or in the middle thereof.
  • the sulfation roasting temperature is preferably 600 to 700°C.
  • manganese manganese
  • the object to be roasted contains manganese (Mn) as an impurity derived from the nickel-containing raw material, manganese forms a spinel structure with iron to remove manganese as an insoluble material. Easier to do.
  • the common logarithm of the O 2 partial pressure in terms of atmospheric pressure (atm) log p(O 2 ) is preferably in the range of ⁇ 4 to ⁇ 6, and depending on the conditions etc., log p (O 2) is -4 to -5, or log p (O 2) is more preferably in the range of -5 to -6.
  • the SO 2 partial pressure tends to increase even in the overlapping region A of FIG. 3, so that the generation of nickel sulfate can be promoted while suppressing the generation of iron sulfate.
  • log p(O 2 ) may be selected from the range of ⁇ 8 to 0, for example.
  • the SO 2 partial pressure in the sulfation roasting step pressure (atm) preferably common logarithm log p (SO 2) range is -1 to + 1 SO 2 partial pressure in units, log p (SO 2) is - The range of 1 to 0 is more preferable. In the overlapping region A of FIG. 3, the SO 2 partial pressure can be made higher to promote the production of sulfate. Furthermore, by setting the SO 2 partial pressure to about normal pressure or less (the common logarithm of partial pressure is approximately 0 or less), the total pressure of the roasting atmosphere in the sulfation roasting step does not become excessive, The equipment can be easily handled.
  • the log p(SO 2 ) may be selected from the range of ⁇ 4 or more and +1 or less depending on the relationship with the log p(O 2 ) and the sulfation roasting temperature.
  • an inert gas such as nitrogen (N 2 ) or argon (Ar) may be supplied to the roasting furnace. These inert gases can also be used as a carrier when supplying volatile components such as gas and steam to the roasting furnace.
  • the SO 2 partial pressure can be adjusted by controlling the supply amount of the sulfur source as described above.
  • the preferable partial pressure range can be determined from the positions of the boundary line L Ni and the boundary line L Fe by examining the above-mentioned phase diagram according to the sulfation roasting temperature.
  • the preferable partial pressure range is as follows: log p(O 2 ) is about ⁇ 8 to ⁇ 4, log p(SO 2 ) is about ⁇ 2 to +2, log p(O 2 ) is about -3 to -2, log p(SO 2 ) is about -3 to +1 and log p(O 2 ) is about -1 to 0, log p(SO 2 ) is -4 to 0 is mentioned.
  • the roasting product containing nickel sulfate compound is obtained by the sulfation roasting process.
  • a solution containing a nickel sulfate compound is obtained by a water dissolving step of supplying water to the roasted product and dissolving the nickel sulfate compound in water.
  • the iron content contained in the roasted product of the sulfation roasting process is insoluble in water such as iron oxide and iron sulfide, so it is separated into a solid phase and a liquid phase by solid-liquid separation.
  • a nickel sulfate compound is obtained as a liquid phase, and impurities containing iron and the like are separated as a solid phase.
  • a nickel sulfate compound from which impurities such as cobalt have been removed can be obtained by performing a purification step in order to separate nickel sulfate from cobalt sulfate or the like.
  • the water added to the roasted product in the water dissolution step is preferably pure water that has been treated so as not to contain impurities.
  • the water treatment method is not particularly limited and may be one or more of filtration, membrane separation, ion exchange, distillation, disinfection, chemical treatment, adsorption and the like.
  • tap water obtained from a water source, industrial water, or the like may be used, or water obtained by treating wastewater generated in another process may be used. You may use 2 or more types of water. Not only pure water but also a sulfuric acid acidic solution having a pH of about 4 can be used for dissolution.
  • nickel sulfate compound is suppressed while suppressing dissolution of other impurities such as sulfates. Is preferred because it is advantageous to selectively extract the broth in the aqueous phase.
  • the solubility of nickel sulfate in water is highest at 150° C., 55 g of NiSO 4 dissolves in 100 g of solution, but 22 g of NiSO 4 dissolves in 100 g of solution even at 0° C. Therefore, it is desirable to carry out the dissolving operation at a temperature not higher than the boiling point of water. Further, the solution obtained in the water dissolution step preferably has a concentration at which NiSO 4 does not precipitate even at room temperature, and a solution having a higher concentration of NiSO 4 is preferably kept warm.
  • the solid-liquid separation method after the water dissolution step is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method. Desirably, it is preferable to use an apparatus having high separation performance for media and fine particles contained in the solid phase.
  • the filtration method is not particularly limited, and examples thereof include gravity filtration, reduced pressure filtration, pressure filtration, centrifugal filtration, filter aid addition type filtration, squeezing filtration and the like. Pressure filtration is preferable because the differential pressure can be easily adjusted and rapid separation is possible.
  • impurities that can coexist with the nickel sulfate compound include iron (Fe), cobalt (Co), and aluminum (Al).
  • iron (Fe) iron
  • Co cobalt
  • Al aluminum
  • iron sulfate, cobalt sulfate, etc. are also dissolved.
  • iron precipitates as oxides such as FeOOH, Fe 2 O 3 , Fe 3 O 4 and the like, which facilitates removal of impurities from the nickel sulfate compound.
  • the conditions in which the iron content is unlikely to become iron sulfate are set, and therefore, a nickel sulfate compound having a low iron content can be obtained through water dissolution and solid-liquid separation.
  • the residue containing iron oxide or the like after dissolving the nickel sulfate compound can be reused as the iron content of cement.
  • the iron-rich residue such as iron oxide can be used for producing pig iron or the like as an iron-making raw material using a smelting reduction furnace, an electric furnace, etc., or for pigments, ferrites, magnetic materials, sintered materials, etc. ..
  • the area producing nickel-containing raw materials is an industrial area or a remote place away from cities, it is advantageous from the viewpoint of transportation cost to commercialize iron as well as nickel. is there.
  • pig iron is produced using an electric furnace provided in the ferronickel smelting process and the volume of the pig iron is reduced, it can be easily carried out as iron ingot.
  • impurities for example, metals having a lower ionization tendency than hydrogen (H) such as copper (Cu), gold (Au), silver (Ag), and platinum group metal (PGM) remain as solids in the water dissolution step, and thus solid It can be removed by a liquid separation step.
  • the solids removed by the solid-liquid separation step may include compounds such as As, Pb, and Zn in addition to the above impurities.
  • the solid containing these impurities can also be recycled as a valuable resource.
  • the solution obtained through water dissolution and solid-liquid separation has a nickel sulfate compound as a main component, it can be transported and used as a solution of the nickel sulfate compound or as a solid of the nickel sulfate compound by drying or the like. ..
  • impurities such as cobalt sulfate in the solution
  • solvent extraction, electrolytic dialysis (Electrodialysis), electrowinning, electrolytic refining, ion exchange Techniques such as crystallization can be used.
  • an extractant that can preferentially or selectively extract cobalt over nickel over the solvent. This allows the nickel sulfate compound to remain in the aqueous solution for efficient purification.
  • the extractant include organic compounds having a functional group capable of binding to a metal ion, such as a phosphinic acid group and a thiophosphinic acid group.
  • an organic solvent capable of separating the extractant from water may be used as the diluent. Dissolving the extractant combined with a metal ion such as cobalt in the diluent facilitates separation from the aqueous solution containing the nickel sulfate compound without using a large amount of the extractant.
  • the diluent is preferably an organic solvent that is difficult to mix with water.
  • the target nickel sulfate compound may be crystallized from the solution by at least one factor such as temperature change, solvent reduction, addition of another substance, and the like.
  • purification can be performed by leaving at least a part of the impurities in the liquid phase.
  • Specific examples include an evaporation crystallization method and a poor solvent crystallization method.
  • the solution is concentrated by boiling or evaporation under reduced pressure to crystallize the nickel sulfate compound.
  • the poor solvent crystallization method is a crystallization method utilized in the production of pharmaceuticals, for example, a solution containing a nickel sulfate compound is added with an organic solvent to precipitate a nickel sulfate compound.
  • the organic solvent used for crystallization is preferably an organic solvent miscible with water, and examples thereof include one or more selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol, and acetone. Two or more kinds of organic solvents may be used. Regarding the concentration range in which the organic solvent is miscible with water, it is preferred that the organic solvent is miscible at a concentration at which the nickel sulfate compound is precipitated, and it is more preferred that the organic solvent is freely mixed at an arbitrary ratio.
  • the organic solvent added in the crystallization step is not limited to an anhydrous organic solvent, and may be a water-containing organic solvent as long as it does not hinder crystallization.
  • the ratio of water to the organic solvent is not particularly limited and may be set, for example, in the range of 1:20 to 20:1, but is preferably about 1:1 and is preferably 1:2 to 2:1.
  • the nickel sulfate compound deposited by crystallization can be separated from the solution by solid-liquid separation.
  • the solid-liquid separation method is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method.
  • the metal dissolved on the solution side is preferably removed from the solution by a method such as neutralization and precipitation.
  • the purified solution is mainly composed of a mixture of water and an organic solvent, the water and the organic solvent can be separated by a method such as distillation.
  • the SO 2 partial pressure can be immediately controlled according to the reaction state in the roasting furnace. In addition, since the SO 2 partial pressure can be controlled immediately, it is easy to control the reaction conditions when performing the sulfated roasting in the overlapping region A described above.
  • the conversion reaction from the nickel-containing raw material to nickel sulfate can be accelerated, and the reactivity is improved.
  • a high-purity nickel sulfate compound can be produced from a nickel-containing raw material by sulfation and roasting.
  • the object to be roasted is not limited to a nickel-containing raw material, and a raw material containing a metal other than nickel (Cu, Zn, Co, Fe, etc.) may be considered. It is also possible to apply roasting of the nickel-containing raw material according to the above-described embodiment to roasting for obtaining a compound of the metal from a raw material containing another metal.
  • An electric furnace manufactured by Takasago Industry (core tube: SUS316L, outer diameter 50 mm, length 400 mm, maximum temperature 1100°C) was installed so that the core tube was vertical, and a gas dispersion plate was installed under the core tube. And constituted a fluidized roasting furnace.
  • the material to be roasted as the raw material supplied into the fluidized roasting furnace is a nickel matte (composition: Ni 3 S 2 , average particle diameter: 0.3 mm, density: 3.5 g/cm 3 , Mohs hardness: 4 to 5). ) was 1000 g.
  • a gas absorption tube and a vacuum pump were installed above the fluidized-bed roasting furnace.
  • a sulfur source is not added and only the sulfur content contained in the nickel matte is used.
  • Sulfur content is mixed and supplied to the nickel mat as solid sulfur powder.
  • No. 3 Sulfur content is mixed as solid sulfur with nickel matte, and pelletized in advance and supplied.
  • No. 4 Sulfur content is sprayed as a sulfuric acid solution as a liquid from the upper part of the core tube.
  • No. 5 A sulfur combustion burner is inserted from the side of the core tube, the direction of the sulfur combustion burner is adjusted so that the combustion gas becomes a spiral flow, and sulfur is burned by the sulfur combustion burner.
  • the atmosphere of the sulfated roasting conditions was a roasting temperature of 700° C. and a log p(O 2 ) of ⁇ 2.
  • No. 2 and No. In 3 the amount of 1.2 times the theoretically required number of moles of the sulfur component with respect to the nickel component was used as a guide, and then the insufficient amount of solid sulfur was added in advance.
  • No. 4 and No. In 5 the addition amount of the sulfur source was controlled in real time so that log p(SO 2 ) was ⁇ 2.
  • the output of the electric furnace was adjusted according to the combustion energy to maintain the temperature of 700°C.
  • the time when the temperature in the roasting furnace reached 700° C. was set as the start time, and then the sulfated roasting was continued for up to 30 minutes, and the SO 2 partial pressure in the roasting furnace was measured.
  • Table 1 shows the common logarithm of the SO 2 partial pressure in terms of atmospheric pressure (atm) log p(SO 2 ) as the measurement results of the SO 2 concentration at the elapsed times of 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 30 minutes. Indicates the value of. No. 1, No. 2 and No. In No. 3, the SO 2 partial pressure was not constant while the roasting was continued at 700° C. for 30 minutes from the start of roasting. No. In No. 4, the core tube was corroded 30 minutes after the start of roasting, and roasting at 700° C. for 30 minutes could not be continued. No. In No. 5, log p(SO 2 ) could be kept constant at ⁇ 2.0 while the roasting was continued at 700° C.
  • the roasted product was dissolved in pure water, and the Ni recovery rate was measured as the rate at which the nickel content was recovered as NiSO 4 .
  • the Ni recovery rate is the ratio of the Ni content (the quantity corresponding to Ni in NiSO 4 ) dissolved in pure water, with the Ni content contained in the sample used for the sulfation roasting being 100 wt %.
  • the Ni recovery rate is No. 18% for No. 1, No. 1 65% in No. 2, No. 75% in No. 3, No. 3 80% in No. 4, No. 4 5 was 91%. No. corresponding to the embodiment of the present invention. In the case of 5, the Ni recovery rate was the highest.
  • the present invention can be used for producing high-purity nickel sulfate compounds useful as raw materials for various nickel compounds or metallic nickel used in electric parts such as secondary batteries and chemical products.
  • 10 Roasting furnace, 10A... Inner wall surface, 11... Furnace body, 12... Gas inlet, 13... Gas outlet, 14... Gas dispersion plate, 15... Supply port, 16... Outlet, 17... Auxiliary burner, 20... Sulfur Supply system, 21... Sulfur combustion burner, 21A... Main body part, 21B... Crater, 22... Sulfur melting tank, 23... Heater, 24... Pump, 25... Sulfur supply passage valve, 26... Sulfur supply passage, 27... Combustion gas Supply path, 28... Valve of auxiliary combustion gas supply path, 30... Control system, 31... Controller, 32, 33... Densitometer, 34, 35, 36, 37... Signal line.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

In a process in which feedstock including nickel and iron is sulfation roasted, a burner is arranged in a roasting furnace, sulfur is supplied to the burner and combusted, and a sulfur oxide is generated inside the roasting furnace.

Description

硫酸化焙焼方法Sulfation roasting method
 本発明は、硫酸化焙焼方法に関する。 The present invention relates to a sulfated roasting method.
 従来、硫酸ニッケル化合物は、各種のニッケル化合物又は金属ニッケルの原料として、電解ニッケルメッキ、無電解ニッケルメッキ、触媒材料等の用途に利用されている。近年、電気自動車等の輸送機器、電子機器等の電源として、ニッケル化合物又は金属ニッケルを正極材料に用いた二次電池の需要拡大が見込まれる。高性能な二次電池を得るため、高純度の硫酸ニッケル化合物の安定供給が望まれている。 Conventionally, nickel sulfate compounds have been used as raw materials for various nickel compounds or metallic nickel for electrolytic nickel plating, electroless nickel plating, catalyst materials, etc. In recent years, it is expected that demand for secondary batteries using a nickel compound or metallic nickel as a positive electrode material will increase as a power source for transportation equipment such as electric vehicles and electronic equipment. In order to obtain a high-performance secondary battery, stable supply of high-purity nickel sulfate compound is desired.
 低純度のニッケル化合物に含まれる可能性がある不純物としては、鉄、銅、コバルト、マンガン、マグネシウム等の、他の金属化合物が挙げられる。従来、高純度のニッケル化合物を得る方法として、電解採取法でニッケル純度を高めた金属ニッケルを硫酸溶液で溶解する方法と、溶媒抽出法が挙げられる。溶媒抽出法では、他の金属化合物を選択的に抽出して除去するか、ニッケル化合物を選択的に抽出して取り出す工程が実施される。いずれの場合も、特定の金属イオンを選択的に抽出するためには、特殊な薬剤が必要となり、高コストであった。 Impurities that may be contained in low-purity nickel compounds include other metal compounds such as iron, copper, cobalt, manganese, and magnesium. Conventionally, as a method for obtaining a high-purity nickel compound, there are a method of dissolving metallic nickel whose nickel purity is increased by an electrolytic extraction method with a sulfuric acid solution, and a solvent extraction method. In the solvent extraction method, another metal compound is selectively extracted and removed, or a nickel compound is selectively extracted and taken out. In either case, a special agent was required to selectively extract a specific metal ion, resulting in high cost.
 硫酸ニッケルを製造する方法として、イオン交換法によりニッケル化合物の陰イオンを硫酸根に交換する方法や、硫酸溶液中でニッケル金属粉末を、水素ガスを発生させながら溶解する方法も知られている。また特許文献1には、比重が6.30を超える緑色の酸化ニッケル粉末を硫酸中で加熱処理した後、熱水で浸出(leach)することにより、水溶性の硫酸ニッケルを得る方法が記載されている。特許文献1では、加熱処理に用いる硫酸として、濃度30%~60%の硫酸溶液(クレーム1~5)、濃度95%の濃硫酸(クレーム6~7)が挙げられている。特許文献1で濃度95%の濃硫酸を用いる場合(実施例7~9)には、275℃以上の高温が必要とされている。 As a method for producing nickel sulfate, a method of exchanging the anion of a nickel compound with a sulfate group by an ion exchange method and a method of dissolving nickel metal powder in a sulfuric acid solution while generating hydrogen gas are also known. Further, Patent Document 1 describes a method of obtaining water-soluble nickel sulfate by subjecting green nickel oxide powder having a specific gravity of more than 6.30 to heat treatment in sulfuric acid and then leaching with hot water. ing. In Patent Document 1, as a sulfuric acid used for the heat treatment, a sulfuric acid solution having a concentration of 30% to 60% (claims 1 to 5) and concentrated sulfuric acid having a concentration of 95% (claims 6 to 7) are mentioned. When concentrated sulfuric acid having a concentration of 95% is used in Patent Document 1 (Examples 7 to 9), a high temperature of 275° C. or higher is required.
米国特許第3002814号明細書U.S. Pat. No. 3,002,814
 本発明の課題は、ニッケル及び鉄を含有する原料を、乾式製錬法により処理することが可能な硫酸化焙焼方法を提供することである。 An object of the present invention is to provide a sulfation roasting method capable of treating a raw material containing nickel and iron by a dry smelting method.
 本発明の第1の態様は、ニッケル及び鉄を含む原料の硫酸化焙焼を行う工程において、焙焼炉にバーナを設置し、前記バーナに硫黄を供給して燃焼させ、前記焙焼炉内で硫黄酸化物を発生させることを特徴とする硫酸化焙焼方法である。 A first aspect of the present invention is to install a burner in a roasting furnace and supply sulfur to the burner for combustion in a step of performing sulfation roasting of a raw material containing nickel and iron in the roasting furnace. The sulfurization and roasting method is characterized in that sulfur oxides are generated by.
 本発明の第2の態様は、前記硫黄を液状で空圧により前記バーナに供給することを特徴とする第1の態様の硫酸化焙焼方法である。 A second aspect of the present invention is the sulfation roasting method of the first aspect, characterized in that the sulfur is supplied in liquid form to the burner by air pressure.
 本発明の第3の態様は、前記焙焼炉内における硫黄酸化物の濃度を測定し、この測定値に基づき、前記バーナに供給される硫黄又は空気の量を制御することを特徴とする第1又は第2の態様の硫酸化焙焼方法である。 A third aspect of the present invention is characterized in that the concentration of sulfur oxide in the roasting furnace is measured, and the amount of sulfur or air supplied to the burner is controlled based on the measured value. It is the sulfated roasting method of the 1st or 2nd aspect.
 本発明の第4の態様は、前記焙焼炉から排出される排ガスにおける硫黄酸化物の濃度を測定し、この測定値に基づき、前記バーナに供給される硫黄又は空気の量を制御することを特徴とする第1~第3の態様の硫酸化焙焼方法である。 A fourth aspect of the present invention is to measure the concentration of sulfur oxides in the exhaust gas discharged from the roasting furnace, and control the amount of sulfur or air supplied to the burner based on this measurement value. It is the sulfated roasting method of the first to third aspects characterized.
 本発明の第5の態様は、前記焙焼炉内で前記原料を流動層とし、前記焙焼炉から焙焼生成物を取り出す位置より上方に前記バーナを設置することを特徴とする第1~第4の態様の硫酸化焙焼方法である。 A fifth aspect of the present invention is characterized in that the raw material is a fluidized bed in the roasting furnace, and the burner is installed above a position where a roasted product is taken out from the roasting furnace. It is the sulfated roasting method of the fourth aspect.
 本発明の第6の態様は、前記焙焼炉の壁面に沿って前記バーナを設置し、前記焙焼炉の内壁面に沿う方向で、且つ鉛直方向に交差する方向に向けて硫黄を供給することを特徴とする第5の態様の硫酸化焙焼方法。 In a sixth aspect of the present invention, the burner is installed along the wall surface of the roasting furnace, and sulfur is supplied in a direction along the inner wall surface of the roasting furnace and in a direction intersecting the vertical direction. A sulfated roasting method according to a fifth aspect, characterized in that
 本発明の第7の態様は、前記焙焼炉に前記原料を供給する位置より下方に前記バーナを設置することを特徴とする第5又は第6の態様の硫酸化焙焼方法である。 A seventh aspect of the present invention is the sulfated roasting method according to the fifth or sixth aspect, wherein the burner is installed below a position where the raw material is supplied to the roasting furnace.
 本発明の第8の態様は、酸素分圧及び二酸化硫黄分圧を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる条件下とすることを特徴とする第1~第7の態様の硫酸化焙焼方法である。 According to an eighth aspect of the present invention, the oxygen partial pressure and the sulfur dioxide partial pressure are controlled such that nickel sulfate is thermodynamically more stable than nickel oxide in the Ni—S—O system and is oxidized in the Fe—S—O system. The sulfated roasting method according to any one of the first to seventh aspects is characterized in that the conditions are such that iron is thermodynamically more stable than iron sulfate.
 第1の態様によれば、ニッケル及び鉄を含む原料を、乾式製錬法により処理するので、液状の硫酸を使用する必要がなく、処理が容易になる。さらに、バーナに硫黄を供給して燃焼させ、焙焼炉内で硫黄酸化物を発生させるので、硫酸化焙焼の条件制御が容易になる。 According to the first aspect, since the raw material containing nickel and iron is treated by the dry smelting method, it is not necessary to use liquid sulfuric acid and the treatment is easy. Furthermore, since sulfur is supplied to the burner and burned to generate sulfur oxides in the roasting furnace, it becomes easy to control the conditions of the sulfate roasting.
 第2の態様によれば、硫黄を液状で空圧によりバーナに供給するので、硫黄の輸送が容易であり、バーナにおける燃焼の制御が容易になる。また、硫黄を液状でバーナに供給するので、供給部分が硫黄により摩滅され難い。 According to the second aspect, since sulfur is supplied in liquid form to the burner by air pressure, sulfur can be easily transported and combustion control in the burner can be facilitated. In addition, since sulfur is supplied to the burner in a liquid state, it is difficult for the supply portion to be abraded by the sulfur.
 第3の態様によれば、焙焼炉内における硫黄酸化物の過剰及び不足を容易に制御することができる。 According to the third aspect, it is possible to easily control the excess and deficiency of sulfur oxides in the roasting furnace.
 第4の態様によれば、排ガスに流出する硫黄酸化物の量を考慮して焙焼炉内の硫黄酸化物の濃度を制御することで、焙焼に必要な量の硫黄を供給し、硫黄が過剰に供給されるのを防止することができる。 According to the fourth aspect, the amount of sulfur required for roasting is supplied by controlling the concentration of sulfur oxides in the roasting furnace in consideration of the amount of sulfur oxides flowing out into the exhaust gas. Can be prevented from being excessively supplied.
 第5の態様によれば、焙焼炉内で原料を流動層とする場合、撹拌型焙焼炉、回転炉型焙焼炉等を用いる場合に比べて、装置が小型になる。また、焙焼生成物を取り出す位置より上方にバーナを設置することにより、流動層及びバーナからの燃焼ガスの流れが相互に干渉しにくくなる。 According to the fifth aspect, when the raw material is a fluidized bed in the roasting furnace, the device becomes smaller than when using a stirring type roasting furnace, a rotary furnace type roasting furnace, or the like. In addition, by installing the burner above the position where the roasted product is taken out, the flow of the combustion gas from the fluidized bed and the burner is less likely to interfere with each other.
 第6の態様によれば、バーナからの燃焼ガスが、略鉛直方向を中心軸として焙焼炉の内壁面に沿うように流動する旋回流を発生させ、流動層の上方に形成される浮遊層における原料の流動を阻害することなく、燃焼ガスに含まれる硫黄酸化物を原料と反応させやすくなる。 According to the sixth aspect, the combustion gas from the burner generates a swirling flow that flows along the inner wall surface of the roasting furnace with the substantially vertical direction as the central axis, and the floating layer formed above the fluidized bed. The sulfur oxide contained in the combustion gas can be easily reacted with the raw material without obstructing the flow of the raw material in the above.
 第7の態様によれば、バーナからの燃焼ガスに含まれる硫黄酸化物が原料と接触しやすくなるので、反応を促進することができる。 According to the seventh aspect, the sulfur oxides contained in the combustion gas from the burner easily come into contact with the raw material, so that the reaction can be promoted.
 第8の態様によれば、原料のニッケル分が硫酸ニッケルに転換されると共に、鉄分から硫酸鉄への変換が抑制されるので、鉄分による硫黄分の消費を抑制して、硫酸ニッケルの生成効率を向上することができる。 According to the eighth aspect, since the nickel content of the raw material is converted to nickel sulfate and the conversion of iron content to iron sulfate is suppressed, the consumption of sulfur content by the iron content is suppressed and the production efficiency of nickel sulfate is increased. Can be improved.
実施形態による硫酸化焙焼方法の概略を示すシステム構成図である。It is a system block diagram which shows the outline of the sulfation roasting method by embodiment. 実施形態における焙焼炉の横断面図である。It is a cross-sectional view of the roasting furnace in the embodiment. Ni-S-O系及びFe-S-O系の概念的な状態図である。FIG. 2 is a conceptual state diagram of Ni—S—O system and Fe—S—O system.
 本実施形態の硫酸化焙焼方法において、焙焼対象物は、焙焼炉内で焙焼され、焙焼生成物が得られる。焙焼対象物としては、ニッケル含有原料が挙げられる。焙焼生成物は、硫酸ニッケル等の硫酸塩を含む。 In the sulfation roasting method of the present embodiment, the roasting target is roasted in a roasting furnace to obtain a roasted product. Examples of the object to be roasted include nickel-containing raw materials. The roasted product contains a sulfate such as nickel sulfate.
 ニッケル含有原料としては、ニッケル元素を含有するのであれば、ニッケル化合物でも、金属ニッケルでもよい。ニッケル化合物としては、特に限定されないが、酸化ニッケル、水酸化ニッケル、硫化ニッケル、塩化ニッケル等のニッケル塩類が挙げられる。ニッケル化合物は、水和物でもよい。金属ニッケルは、フェロニッケル等のニッケル合金でもよい。金属状のニッケル(単体又は合金)をニッケル含有原料として用いるときは、溶融金属を小片化したショット等としてもよい。ニッケル含有原料として、ニッケル鉱石を使用することもできる。ニッケル鉱石としては、ニッケル酸化鉱、ニッケル硫化鉱等の1種以上が挙げられる。硫化ニッケルを主成分とするニッケルマット等をニッケル含有原料として用いることもできる。 The nickel-containing raw material may be a nickel compound or metallic nickel as long as it contains nickel element. The nickel compound is not particularly limited, but examples thereof include nickel salts such as nickel oxide, nickel hydroxide, nickel sulfide, and nickel chloride. The nickel compound may be a hydrate. The metallic nickel may be a nickel alloy such as ferronickel. When metallic nickel (a simple substance or an alloy) is used as a nickel-containing raw material, shots obtained by slicing molten metal into small pieces may be used. Nickel ore can also be used as the nickel-containing raw material. Examples of the nickel ore include one or more of nickel oxide ore and nickel sulfide ore. A nickel matte containing nickel sulfide as a main component can also be used as the nickel-containing raw material.
 ニッケルマットとしては、例えばNiが45~55%、Feが約20%、Sが20~25%、Coが約1%以下の組成(重量比)が挙げられる。さらに、転炉でニッケル濃度を上昇させたニッケルマットとして、例えばNiが約78%、Coが約1%、Feが約1%、Sが約20%の組成(重量比)が挙げられる。このニッケルマットは、硫黄分の量から、Niと金属ニッケル(Ni)が混合している状態である。フェロニッケルとしては、例えばNiが18~23%、Coが約1%、Feが76~81%の組成(重量比)が挙げられる。 Examples of the nickel mat include a composition (weight ratio) in which Ni is 45 to 55%, Fe is about 20%, S is 20 to 25%, and Co is about 1% or less. Further, as the nickel matte whose nickel concentration is increased in the converter, for example, there is a composition (weight ratio) in which Ni is about 78%, Co is about 1%, Fe is about 1%, and S is about 20%. This nickel mat is in a state where Ni 3 S 2 and metallic nickel (Ni) are mixed due to the amount of sulfur content. Examples of ferronickel include a composition (weight ratio) in which Ni is 18 to 23%, Co is about 1%, and Fe is 76 to 81%.
 ニッケル酸化鉱としては、リモナイト、サプロライト等のニッケル分を含むラテライト鉱石が挙げられる。リモナイトは、鉄分が少ないリモナイトでも、鉄分が多いリモナイトでもよく、サプロライトは、ニッケル含有量が高い(例えばNi含有量が1.8wt%以上)サプロライトでも、ニッケル含有量が低い(例えばNi含有量が1.8wt%未満)サプロライトでもよい。ニッケル硫化鉱としては、硫鉄ニッケル鉱(ペントランド鉱)、針ニッケル鉱、ニッケル分を含む黄銅鉱、ニッケル分を含む磁硫鉄鉱等が挙げられる。 The nickel oxide ores include laterite ores containing nickel such as limonite and saprolite. The limonite may be a limonite having a low iron content or a limonite having a high iron content, and the saprolite may have a high nickel content (for example, a Ni content of 1.8 wt% or more) or a low nickel content (for example, a low nickel content. (Less than 1.8 wt%) Saprolite may be used. Examples of the nickel sulfide ore include iron sulfate nickel ore (Pentland ore), acicular nickel ore, chalcopyrite containing nickel, and pyrrhotite containing nickel.
 焙焼工程におけるニッケル含有原料は、ニッケル硫化鉱、ニッケル酸化鉱、ニッケル硫化物、ニッケルマット、酸化ニッケル、フェロニッケルからなる群から選択される1種以上を含むことが好ましい。ニッケル含有原料は、鉄分を含まなくてもよいが、多くの場合、ニッケル分に鉄分が共存する。鉄分は後工程で硫酸ニッケル化合物から分離されるが、エネルギー消費の観点から、原料中の鉄分が少ないほど望ましい。ニッケル分より鉄分が多くても処理は可能だが、ニッケル分より鉄分が少ないことが好ましい。ニッケル含有原料は、1種に限らず、2種以上を用いてもよい。2種以上のニッケル含有原料を用いる場合は、これらの原料を混合した状態で供給されてもよく、別々に供給されてもよい。ニッケル含有原料の硫酸化焙焼に際して、硫黄分を含有しないニッケル含有原料を用いてもよく、及び/又は、原料の少なくとも一部として、硫黄分を含有するニッケル含有原料、例えばニッケル硫化鉱、ニッケル硫化物、ニッケルマット等を用いてもよい。 The nickel-containing raw material in the roasting step preferably contains at least one selected from the group consisting of nickel sulfide ore, nickel oxide ore, nickel sulfide, nickel matte, nickel oxide, and ferronickel. The nickel-containing raw material may not contain iron, but in many cases iron coexists with nickel. The iron content is separated from the nickel sulfate compound in a later step, but from the viewpoint of energy consumption, the smaller the iron content in the raw material, the more desirable. Although it is possible to treat even if the iron content is higher than the nickel content, it is preferable that the iron content is lower than the nickel content. The nickel-containing raw material is not limited to one type, and two or more types may be used. When using two or more kinds of nickel-containing raw materials, these raw materials may be mixed and supplied separately. When sulfating and roasting a nickel-containing raw material, a nickel-containing raw material containing no sulfur may be used, and/or a nickel-containing raw material containing a sulfur content as at least a part of the raw material, for example, nickel sulfide ore, nickel. Sulfide, nickel matte or the like may be used.
 焙焼工程に先立って、細断、粉砕、磨滅などの操作でニッケル含有原料の粒子径を小さくすることが好ましい。焙焼工程において反応はニッケル含有原料の表面から開始するので、ニッケル含有原料の粒子径が小さいほど反応時間が短くなり、好ましい。粉砕手段としては、特に限定されないが、ボールミル、ロッドミル、ハンマーミル、流体エネルギーミル、振動ミル等の1種又は2種以上を用いることができる。粉砕後の粒子径は、特に限定されない。リモナイト鉱石のように、ニッケル含有原料を微粒子の状態で入手できる場合は、そのまま焙焼工程に供給してもよい。 Prior to the roasting process, it is preferable to reduce the particle size of the nickel-containing raw material by operations such as shredding, crushing and abrasion. Since the reaction starts from the surface of the nickel-containing raw material in the roasting step, the smaller the particle size of the nickel-containing raw material, the shorter the reaction time, which is preferable. The crushing means is not particularly limited, but one or more kinds such as a ball mill, a rod mill, a hammer mill, a fluid energy mill and a vibration mill can be used. The particle size after pulverization is not particularly limited. When a nickel-containing raw material such as limonite ore is available in the form of fine particles, it may be supplied to the roasting step as it is.
 本実施形態の硫酸化焙焼工程を行う前に、ニッケル含有原料に含まれる鉄分、硫黄分等を酸化させる等の目的で、酸化焙焼工程を設けてもよい。この酸化焙焼工程においては、酸化剤としてOガス等を供給してもよい。酸化焙焼工程は、硫酸化焙焼工程と同じ焙焼炉で実施してもよく、硫酸化焙焼とは別の酸化焙焼炉を設けてもよい。別の酸化焙焼炉を設けた場合、酸化焙焼炉の焙焼生成物を原料として硫酸化焙焼炉に供給してもよい。 Before performing the sulfation roasting step of the present embodiment, an oxidizing roasting step may be provided for the purpose of oxidizing iron, sulfur, etc. contained in the nickel-containing raw material. In this oxidation roasting process, O 2 gas or the like may be supplied as an oxidant. The oxidation roasting step may be performed in the same roasting furnace as the sulfate roasting step, or an oxidation roasting furnace different from the sulfate roasting step may be provided. When another oxidation roasting furnace is provided, the roasting product of the oxidation roasting furnace may be supplied as a raw material to the sulfation roasting furnace.
 硫酸化焙焼を行う焙焼炉としては、例えば、撹拌型焙焼炉、回転炉型焙焼炉、流動層を有する流動焙焼炉等が挙げられる。鉱石等の焙焼については、従来、採鉱した鉱石を粗粉砕した後に撹拌型焙焼炉、回転炉型焙焼炉を使用した硫酸化焙焼が行われている。この場合、焙焼対象物を前処理する負担が少なく、回転数も遅いが、反応速度が遅く、装置が大型化する。このため、焙焼対象物を燃焼空気で浮遊状態として流動させながら焙焼する方式の流動焙焼炉が普及した。流動焙焼炉を採用することで、装置を小型化することができる。 Examples of the roasting furnace for performing the sulfation roasting include a stirring roasting furnace, a rotary furnace roasting furnace, and a fluidized roasting furnace having a fluidized bed. Regarding roasting of ores and the like, conventionally, sulfated roasting using a stirring type roasting furnace or a rotary furnace type roasting furnace is performed after roughly crushing the mined ore. In this case, the burden of pre-treating the object to be roasted is small and the rotation speed is slow, but the reaction speed is slow and the apparatus becomes large. Therefore, a fluidized roasting furnace of a type in which a to-be-roasted object is roasted while being floated with combustion air and flowing has become popular. By adopting a fluidized roasting furnace, the device can be downsized.
 図1に、本実施形態による硫酸化焙焼方法を行うシステムの概略構成を示す。本実施形態では、焙焼炉10が流動焙焼炉である場合を例示する。なお、図1は簡略的な概念図であって、形状、位置、寸法、角度、比率等の関係について、必ずしも最適な状態又は値を示すものではない。焙焼炉10の炉体11の下部にはガス入口12が設けられ、炉体11の上部にはガス出口13が設けられている。ガス入口12の上方には、炉体11を径方向に横断したガス分散板14が設けられている。炉体11の側部には、焙焼対象物の供給口15及び焙焼生成物の取出口16が設けられている。本実施形態の場合、供給口15は、取出口16よりも上に設けられている。焙焼生成物が焙焼対象物より密度が高い(比重が大きい)場合、焙焼生成物は焙焼対象物よりも下方側(ガス分散板14上)に集まり、ガス分散板14上で流動層P1を形成する。そして、取出口16に到達した焙焼生成物から順次排出される。そのため、取出口16を供給口15よりも下に配置することにより、流動層P1により焙焼対象物の供給が阻害されず、且つ焙焼生成物の取り出しを促進することができる。 FIG. 1 shows a schematic configuration of a system for performing the sulfation roasting method according to this embodiment. In this embodiment, the case where the roasting furnace 10 is a fluidized roasting furnace is illustrated. It should be noted that FIG. 1 is a simplified conceptual diagram, and does not necessarily show an optimum state or value with respect to relationships such as shape, position, size, angle, ratio, and the like. A gas inlet 12 is provided below the furnace body 11 of the roasting furnace 10, and a gas outlet 13 is provided above the furnace body 11. Above the gas inlet 12, a gas dispersion plate 14 that crosses the furnace body 11 in the radial direction is provided. A supply port 15 for the roasting target and a takeout port 16 for the roasted product are provided on the side of the furnace body 11. In the case of this embodiment, the supply port 15 is provided above the outlet 16. When the roasted product has a higher density (specific gravity) than the roasting target, the roasting product gathers on the lower side (on the gas dispersion plate 14) of the roasting target and flows on the gas dispersion plate 14. The layer P1 is formed. Then, the roasted products that have reached the outlet 16 are sequentially discharged. Therefore, by disposing the take-out port 16 below the supply port 15, the fluidized bed P1 does not hinder the supply of the roasting target and promotes the take-out of the roasted product.
 供給口15及び取出口16の高さは、流動層P1の高さと同程度でもよい。流動層P1の上方には、焙焼対象物、これに混在する成分、焙焼生成物等の微粒子が浮遊する浮遊層P2が形成されてもよい。ガス入口12から流入した流動用ガスは、多数の穴を有するガス分散板14を通じて炉体11の横断面全体に上昇流を起こし、焙焼対象物を浮動させる。 The height of the supply port 15 and the take-out port 16 may be approximately the same as the height of the fluidized bed P1. A floating layer P2 may be formed above the fluidized bed P1 in which fine particles such as an object to be roasted, components mixed therein, and roasted products are suspended. The flowing gas flowing from the gas inlet 12 causes an ascending flow over the entire cross section of the furnace body 11 through the gas dispersion plate 14 having a large number of holes to float the object to be roasted.
 硫黄分の供給源(硫黄源)としては、常温で固体状である固体硫黄(elementary sulfur, S)、硫黄酸化物(SO等)、硫酸(HSO)、硫酸塩、硫化物、黄鉄鉱(FeS)等の硫化鉱石などが挙げられる。例えば原料中のNi(固体)と、外部の硫黄分(S)及び酸素(O)との反応式は、次のようになる。 As a sulfur source (sulfur source), solid sulfur (elementary sulfur, S) that is solid at room temperature, sulfur oxides (SO 2, etc.), sulfuric acid (H 2 SO 4 ), sulfate, sulfide, Examples thereof include sulfide ores such as pyrite (FeS 2 ). For example, the reaction formula of Ni 3 S 2 (solid) in the raw material and the external sulfur content (S) and oxygen (O 2 ) is as follows.
S(固体)+O(気体)→SO(気体)
Ni(固体)+5O(気体)+SO(気体)→3NiSO(固体)
Ni(固体)+SO(気体)+O(気体)→NiSO(固体)
S (solid) + O 2 (gas) → SO 2 (gas)
Ni 3 S 2 (solid)+5O 2 (gas)+SO 2 (gas)→3NiSO 4 (solid)
Ni (solid)+SO 2 (gas)+O 2 (gas)→NiSO 4 (solid)
 例えばNiのニッケル分を硫酸ニッケルに変換するには、ニッケル1モルに対して1/3モルの硫黄分が不足する。また、金属Niを硫酸ニッケルに変換するには、ニッケル1モルに対して1モルの硫黄分が不足する。硫黄の供給が不足するとニッケル分が硫酸ニッケルに変換されないまま焙焼生成物として排出される問題がある。このように、原料中の硫黄分だけでは焙焼生成物として硫酸ニッケル(NiSO)を得るのに必要な硫黄分として不足する場合は、硫黄分を硫酸化焙焼工程に供給する必要がある。 For example, in order to convert the nickel content of Ni 3 S 2 into nickel sulfate, the sulfur content of 1/3 mol is insufficient with respect to 1 mol of nickel. Further, in order to convert metallic Ni into nickel sulfate, 1 mol of sulfur is insufficient with respect to 1 mol of nickel. If the supply of sulfur is insufficient, there is a problem that the nickel content is discharged as a roasting product without being converted into nickel sulfate. As described above, when the sulfur content in the raw material is insufficient as the sulfur content necessary to obtain nickel sulfate (NiSO 4 ) as a roasting product, the sulfur content needs to be supplied to the sulfation roasting step. ..
 硫黄源として硫酸を用いる場合、焙焼炉10及び付属設備には、硫酸腐食に対する耐久性が必要となる。一般的には耐熱性と耐酸性を兼ね備える材質としてタンタル材が必要となり、高価である。また、硫黄源が硫酸又は硫酸塩のように酸化数が+VIまで酸化されている場合、鉄分が硫酸鉄となることを抑制するには、後述するように硫酸化焙焼工程における反応条件の設定が容易でない。
 固体硫黄(S)以外の硫黄源として、ニッケル含有原料に含まれる硫黄分、又は硫化物、硫化鉱石等、硫黄分の酸化数が低い固体状の硫黄源を併用してもよいが、硫黄分が硫黄酸化物に分解する温度が高すぎると、硫酸化焙焼工程における反応条件の設定が容易でない。
 また、原料がNi等、硫黄分を含む場合には、焙焼中に原料中の硫黄分が酸化してSOガスが発生する結果、粒子が割れる場合がある。焙焼中の粒子は、表面に硫酸ニッケルが生成して被覆層を形成すると相互の凝集が起きにくいが、粒子が割れて原料が露出されると粒子の破断片が凝集して、粗大粒子が形成され、反応性が低下する場合がある。このため、原料と反応して硫酸ニッケルを生成するまでの時間を短くすることができる硫黄源を採用することが好ましい。
 そこで、硫黄源としては、原料に含まれる硫黄分のほかには、原料と同等又はそれ以上に分解しやすい硫黄源が好ましい。このため、硫黄源の少なくとも一部を固体硫黄(S)とすることが好ましい。そして、固体硫黄(S)を粉体状、液体状、又は気体状に変化させて焙焼炉10に供給してもよい。この場合は、酸素富化の状態として、焙焼炉10内でSO等の硫黄酸化物のガスを生成させることができる。硫黄酸化物はガス状態で炉内に拡散されるため、高温で容易に燃焼する固体硫黄(S)を硫黄源とすることにより、原料に接触して反応するまでの時間を短くすることができる。
When sulfuric acid is used as the sulfur source, the roasting furnace 10 and the auxiliary equipment must have durability against sulfuric acid corrosion. Generally, a tantalum material is required as a material having both heat resistance and acid resistance, which is expensive. Further, when the sulfur source is oxidized to an oxidation number of +VI like sulfuric acid or sulfate, in order to suppress the iron content from becoming iron sulfate, setting of reaction conditions in the sulfation roasting step as described later is performed. Is not easy.
As the sulfur source other than the solid sulfur (S), a sulfur content contained in the nickel-containing raw material, or a solid sulfur source having a low oxidation number of the sulfur content such as sulfide or sulfide ore may be used together. If the temperature at which is decomposed into sulfur oxides is too high, it is not easy to set reaction conditions in the sulfation roasting step.
In addition, when the raw material contains a sulfur content such as Ni 3 S 2 , the sulfur content in the raw material is oxidized during the roasting to generate SO 2 gas, which may result in cracking of the particles. Particles during roasting are less likely to coagulate with each other when nickel sulfate is formed on the surface to form a coating layer, but when the particles break and the raw material is exposed, fragmented particles coagulate and coarse particles are formed. If formed, the reactivity may be reduced. Therefore, it is preferable to employ a sulfur source that can shorten the time until it reacts with the raw material to produce nickel sulfate.
Therefore, as the sulfur source, in addition to the sulfur content contained in the raw material, a sulfur source that is easily decomposed to the same level or higher than the raw material is preferable. Therefore, it is preferable that at least a part of the sulfur source is solid sulfur (S). Then, the solid sulfur (S) may be supplied to the roasting furnace 10 after being changed into powder, liquid, or gas. In this case, it is possible to generate a sulfur oxide gas such as SO 2 in the roasting furnace 10 in an oxygen enriched state. Since sulfur oxides are diffused in the furnace in a gas state, the solid sulfur (S), which is easily burned at high temperature, can be used as a sulfur source to shorten the time required to react with the raw materials. ..
 焙焼対象物に固体硫黄を混合して、焙焼対象物を粉体又はスラリーの状態として焙焼炉10に供給してもよいが、両者の粒子径の違いからニッケル分と硫黄分との比率にむらが生じる場合がある。ニッケル分と硫黄分との比率が一定になるようにペレット化することも可能であるが、ペレット化する前にニッケル分と硫黄分を測定して硫黄の添加量を調整するのは多大な工数を要する。原料の組成が必ずしも一定でない場合は、ニッケル分に応じた硫黄分を供給するにはリアルタイムの制御が必要となる。 Solid sulfur may be mixed with the object to be roasted, and the object to be roasted may be supplied to the roasting furnace 10 in the form of powder or slurry, but due to the difference in particle size between the two, nickel content and sulfur content may be different. There may be unevenness in the ratio. It is also possible to pelletize so that the ratio of nickel content and sulfur content is constant, but it is a huge man-hour to measure the nickel content and sulfur content before pelletizing and adjust the addition amount of sulfur. Requires. When the composition of the raw material is not always constant, real-time control is required to supply the sulfur content according to the nickel content.
 このため、硫黄の供給量を制御可能にすることが好ましい。そこで、本実施形態の焙焼炉10は、炉体11の側部に、硫黄燃焼バーナ21を有する。焙焼炉10に硫黄燃焼バーナ21を設置することにより、硫黄燃焼バーナ21に硫黄を供給して燃焼させ、焙焼炉10内で硫黄酸化物を発生させることができる。これにより、硫酸化焙焼の条件制御が容易になる。焙焼炉10は、硫黄燃焼バーナ21以外の補助バーナ17として、液化天然ガス(LNG)等の補助燃料を燃焼させるバーナを有してもよい。補助燃料としては、燃焼により発生する成分が硫酸化焙焼に影響しない成分として、例えば炭化水素が挙げられる。本実施形態によれば、硫黄源として液状の硫酸を使用する必要がなく、設備の耐酸性の水準が耐硫酸腐食性より低くて済み、さらに稼働時にも処理が容易になる。 Therefore, it is preferable to be able to control the amount of sulfur supply. Therefore, the roasting furnace 10 of the present embodiment has the sulfur combustion burner 21 on the side portion of the furnace body 11. By installing the sulfur combustion burner 21 in the roasting furnace 10, it is possible to supply sulfur to the sulfur combustion burner 21 and burn it, thereby generating sulfur oxides in the roasting furnace 10. This facilitates control of the conditions for sulfation roasting. The roasting furnace 10 may have a burner that burns an auxiliary fuel such as liquefied natural gas (LNG) as the auxiliary burner 17 other than the sulfur combustion burner 21. As the auxiliary fuel, for example, hydrocarbons can be cited as a component whose components generated by combustion do not affect the sulfation roasting. According to the present embodiment, it is not necessary to use liquid sulfuric acid as the sulfur source, the acid resistance level of the equipment is lower than the sulfuric acid corrosion resistance, and the treatment is easy during operation.
 焙焼炉10内で原料を流動層P1とする場合、硫黄燃焼バーナ21は、焙焼炉10から焙焼生成物を取り出す位置、すなわち取出口16より上方に設置することが好ましい。これにより、流動層P1と、硫黄燃焼バーナ21からの燃焼ガスの流れが相互に干渉しにくくなる。さらに、焙焼炉10に原料を供給する位置、すなわち供給口15より下方に硫黄燃焼バーナ21を設置することが好ましい。これにより、硫黄燃焼バーナ21からの燃焼ガスに含まれる硫黄酸化物が原料と接触しやすくなるので、反応を促進することができる。また、原料の粒子表面が金属質で粒子間の凝集が起こりやすい場合でも、粒子表面の反応が促進することにより、凝集を抑制することができる。 When the raw material is the fluidized bed P1 in the roasting furnace 10, the sulfur combustion burner 21 is preferably installed at a position where the roasted product is taken out from the roasting furnace 10, that is, above the outlet 16. This makes it difficult for the fluidized bed P1 and the flow of the combustion gas from the sulfur combustion burner 21 to interfere with each other. Furthermore, it is preferable to install the sulfur combustion burner 21 at a position where the raw material is supplied to the roasting furnace 10, that is, below the supply port 15. This makes it easier for the sulfur oxides contained in the combustion gas from the sulfur combustion burner 21 to come into contact with the raw material, so that the reaction can be promoted. Further, even when the particle surface of the raw material is metallic and aggregation between particles is likely to occur, the reaction on the particle surface is promoted, whereby the aggregation can be suppressed.
 本実施形態においては、硫黄燃焼バーナ21に硫黄供給系20が付設されている。硫黄供給系20は、固体硫黄を液状に溶融する硫黄溶融槽22と、液状の硫黄を硫黄溶融槽22から硫黄燃焼バーナ21に供給する硫黄供給路26とを含む。硫黄供給系20は、硫黄溶融槽22を加熱するためのヒータ23を備える。液状硫黄は、例えば炭化水素等による硫黄の溶液又は分散液でも流動性は得られるが、液体として安定な温度範囲が広いことから、固体硫黄を溶融させて調製することが好ましい。硫黄供給路26に液体硫黄を流通させるため、硫黄の融点(約115℃)より高く、硫黄の沸点(約444℃)より低い温度に保持することが好ましい。 In this embodiment, the sulfur combustion burner 21 is provided with the sulfur supply system 20. The sulfur supply system 20 includes a sulfur melting tank 22 that melts solid sulfur into a liquid state, and a sulfur supply passage 26 that supplies liquid sulfur from the sulfur melting tank 22 to the sulfur combustion burner 21. The sulfur supply system 20 includes a heater 23 for heating the sulfur melting tank 22. Liquid sulfur can obtain fluidity even in a solution or dispersion of sulfur such as hydrocarbon, but it is preferably prepared by melting solid sulfur because it has a wide stable temperature range as a liquid. Since liquid sulfur is passed through the sulfur supply passage 26, it is preferable to maintain the temperature higher than the melting point of sulfur (about 115° C.) and lower than the boiling point of sulfur (about 444° C.).
 硫黄供給路26は、液状硫黄を硫黄燃焼バーナ21に供給するためのポンプ24を有することが好ましい。これにより、硫黄の輸送が容易であり、硫黄燃焼バーナ21における燃焼の制御が容易になる。また、硫黄供給路26は、液状硫黄の流量を段階的又は連続的に調整することが可能なバルブ25を備えることが好ましい。これにより、硫黄の流量の制御が容易となり、硫黄燃焼バーナ21における硫黄酸化物の発生量をより高精度に制御することができる。 The sulfur supply passage 26 preferably has a pump 24 for supplying liquid sulfur to the sulfur combustion burner 21. This facilitates the transportation of sulfur and facilitates the control of combustion in the sulfur combustion burner 21. Further, it is preferable that the sulfur supply passage 26 includes a valve 25 capable of adjusting the flow rate of the liquid sulfur stepwise or continuously. As a result, the flow rate of sulfur can be easily controlled, and the amount of sulfur oxide generated in the sulfur combustion burner 21 can be controlled with higher accuracy.
 硫黄燃焼バーナ21には、硫黄を燃焼させるための酸素を含む助燃ガスを供給するため、助燃ガス供給路27が接続されている。助燃ガスとしては、一般には空気が用いられる。空気はフィルタ等で塵埃を除去することが好ましい。さらには水分を除去して乾燥空気としてもよい。空気に酸素又は窒素を添加して、酸素ガス(O)の濃度を適宜変更することもできる。助燃ガス供給路27は、助燃ガスの流量を段階的又は連続的に調整することが可能なバルブ28を備えることが好ましい。これにより、助燃ガスの流量の制御が容易となり、硫黄燃焼バーナ21における硫黄酸化物の発生量をより高精度に制御することができる。 An auxiliary combustion gas supply passage 27 is connected to the sulfur combustion burner 21 in order to supply an auxiliary combustion gas containing oxygen for burning sulfur. Air is generally used as the combustion supporting gas. It is preferable to remove dust from the air with a filter or the like. Furthermore, moisture may be removed to obtain dry air. It is also possible to add oxygen or nitrogen to the air to appropriately change the concentration of the oxygen gas (O 2 ). The auxiliary combustion gas supply passage 27 preferably includes a valve 28 capable of adjusting the flow rate of the auxiliary combustion gas stepwise or continuously. This facilitates the control of the flow rate of the auxiliary combustion gas, and the amount of sulfur oxide generated in the sulfur combustion burner 21 can be controlled with higher accuracy.
 本実施形態の場合、焙焼炉10内における硫黄酸化物の濃度をより高精度に制御するため、焙焼炉10に硫黄酸化物濃度の制御系30を付設させることができる。例えば、濃度計32は、焙焼炉10内における硫黄酸化物濃度を測定するために炉体11に設置されている。コントローラ31は、信号線34を介して濃度計32から送信された焙焼炉10内における硫黄酸化物濃度の測定値に基づき、硫黄燃焼バーナ21に供給される硫黄又は空気の量を制御する。これにより、焙焼炉10内における硫黄酸化物の過剰及び不足を容易に制御することができる。例えば、焙焼炉10内における硫黄酸化物濃度の測定値が低い場合は、硫黄又は酸素の供給量を増加させ、焙焼炉10内における硫黄酸化物濃度の測定値が高い場合は、硫黄又は酸素の供給量を減少させる。硫黄の供給量と酸素の供給量とのいずれを変更するかは、状況に応じて異なる判断をしてもよい。 In the case of the present embodiment, in order to control the concentration of sulfur oxide in the roasting furnace 10 with higher accuracy, the roasting furnace 10 can be provided with a sulfur oxide concentration control system 30. For example, the densitometer 32 is installed in the furnace body 11 to measure the sulfur oxide concentration in the roasting furnace 10. The controller 31 controls the amount of sulfur or air supplied to the sulfur combustion burner 21 based on the measured value of the sulfur oxide concentration in the roasting furnace 10 transmitted from the concentration meter 32 via the signal line 34. This makes it possible to easily control excess and deficiency of sulfur oxides in the roasting furnace 10. For example, when the measured value of the sulfur oxide concentration in the roasting furnace 10 is low, the supply amount of sulfur or oxygen is increased, and when the measured value of the sulfur oxide concentration in the roasting furnace 10 is high, sulfur or Reduce the supply of oxygen. Whether to change the supply amount of sulfur or the supply amount of oxygen may be determined differently depending on the situation.
 また、濃度計33は、焙焼炉10から排出される排ガスにおける硫黄酸化物濃度を測定するためにガス出口13に設置されている。コントローラ31は、信号線35を介して濃度計33から送信された排ガスにおける硫黄酸化物濃度の測定値に基づき、硫黄燃焼バーナ21に供給される硫黄又は空気の量を制御する。これにより、排ガスに流出する硫黄酸化物の量を考慮して焙焼炉10内の硫黄酸化物濃度を制御することができる。例えば、排ガスにおける硫黄酸化物濃度が高く、焙焼炉10内における硫黄酸化物濃度が過剰と判断される場合は、焙焼炉10内の硫黄酸化物濃度を低くする方向に制御してもよい。 Further, the concentration meter 33 is installed at the gas outlet 13 for measuring the sulfur oxide concentration in the exhaust gas discharged from the roasting furnace 10. The controller 31 controls the amount of sulfur or air supplied to the sulfur combustion burner 21 based on the measured value of the sulfur oxide concentration in the exhaust gas transmitted from the concentration meter 33 via the signal line 35. As a result, the sulfur oxide concentration in the roasting furnace 10 can be controlled in consideration of the amount of sulfur oxide flowing out into the exhaust gas. For example, when the sulfur oxide concentration in the exhaust gas is high and it is determined that the sulfur oxide concentration in the roasting furnace 10 is excessive, the sulfur oxide concentration in the roasting furnace 10 may be controlled to decrease. ..
 本実施形態の場合、コントローラ31は、濃度計32、33からの信号に基づいて、バルブ25及びバルブ28の開度を決定する。具体的には、コントローラ31は、硫黄の供給量を制御する場合には、信号線36を介してバルブ25を開閉させる。また、コントローラ31は、助燃ガスの供給量を制御する場合には、信号線37を介してバルブ28を開閉させる。 In the case of the present embodiment, the controller 31 determines the opening degrees of the valves 25 and 28 based on the signals from the densitometers 32 and 33. Specifically, when controlling the supply amount of sulfur, the controller 31 opens and closes the valve 25 via the signal line 36. In addition, the controller 31 opens and closes the valve 28 via the signal line 37 when controlling the supply amount of the auxiliary combustion gas.
 図2は、図1に示す炉体11の鉛直方向に延びる中心線Cに垂直な面に沿う横断面である。なお、図2は簡略的な概念図であって、形状、位置、寸法、角度、比率等の関係について、必ずしも最適な状態又は値を示すものではない。図2の横断面図に示すように、焙焼炉10の炉体11の壁面に沿って硫黄燃焼バーナ21を設置し、焙焼炉10の内壁面10Aに沿う方向で、且つ鉛直方向に交差する方向に向けて硫黄を供給することが好ましい。これにより、焙焼炉10内で硫黄燃焼バーナ21からの燃焼ガスが、略鉛直方向を中心軸として焙焼炉10(炉体11)の内壁面10Aに沿うように流動する旋回流F(図1も参照)を発生させ、燃焼ガスに含まれる硫黄酸化物が炉体11全体に拡散されやすくなる。その結果、流動層P1の上方に形成される浮遊層P2における原料の流動を阻害することなく、硫黄酸化物を原料と反応させやすくなる。この場合、硫黄燃焼バーナ21からの燃焼ガスは、流動用ガスの上昇流に伴って上昇し、螺旋状の旋回流Fを発生させてもよい。旋回流Fは、内壁面10Aの近傍から中心線Cの近傍まで拡散してもよい。 2 is a cross-sectional view taken along a plane perpendicular to the centerline C extending in the vertical direction of the furnace body 11 shown in FIG. Note that FIG. 2 is a simplified conceptual diagram, and does not necessarily show an optimum state or value with respect to the relationship such as shape, position, size, angle, and ratio. As shown in the cross-sectional view of FIG. 2, the sulfur combustion burner 21 is installed along the wall surface of the furnace body 11 of the roasting furnace 10, and intersects in the direction along the inner wall surface 10A of the roasting furnace 10 and in the vertical direction. It is preferable to supply sulfur in the direction in which it does. As a result, the swirling flow F in which the combustion gas from the sulfur combustion burner 21 flows in the roasting furnace 10 along the inner wall surface 10A of the roasting furnace 10 (furnace body 11) with the substantially vertical direction as the central axis (Fig. (See also 1), the sulfur oxide contained in the combustion gas is easily diffused in the entire furnace body 11. As a result, the sulfur oxide can be easily reacted with the raw material without impeding the flow of the raw material in the floating layer P2 formed above the fluidized bed P1. In this case, the combustion gas from the sulfur combustion burner 21 may rise along with the upward flow of the flow gas and generate a spiral swirling flow F. The swirling flow F may be diffused from the vicinity of the inner wall surface 10A to the vicinity of the center line C.
 本実施形態の炉体11は、円筒状に形成されている。内壁面10Aと外壁面10Bとの間における壁面の厚さは、均一でもよく、不均一でもよい。内壁面10Aと外壁面10Bとは、同一の壁材の両面でもよく、別々の壁材の内面及び外面でもよい。内壁面10A又は外壁面10Bは、それぞれ平坦な円筒面でもよく、微小な表面起伏等を有してもよい。壁面構造は、構造材の内面にライニングを施した多層構造でもよい。炉体11の内壁材として、耐酸ライニング材等を用いてもよいが、ライニング材等を省略してもよい。硫黄燃焼バーナ21は、少なくとも先端が内壁面10Aから突出すればよい。硫黄燃焼バーナ21の先端とは反対側である後端側(硫黄供給路26との接続側)は、硫黄燃焼バーナ21自体が外壁面10Bを貫通してもよく、あるいは硫黄燃焼バーナ21を壁面に埋め込み、その後ろ側で硫黄供給路26に外壁面10Bを通過させてもよい。炉体11の壁面に対する硫黄燃焼バーナ21の向きは、例えば水平断面における壁面の接線に対する角度Rで5~45°程度が挙げられる。具体的には、硫黄燃焼バーナ21は、硫黄供給路26に接続された本体部21Aと、燃焼ガスを焙焼炉10内に噴射する火口21Bとを備える。火口21Bは本体部21Aの先端に設けられる。本実施形態では、本体部21Aが炉体11の壁面の接線Tに対して角度Rが5~45°となるように硫黄燃焼バーナ21を設置する。ここで接線Tの一例として、図2の断面では本体部21Aの設置位置における内壁面10Aの接線を示すが、角度Rを外壁面10Bの接線との角度としてもよい。図2では、硫黄燃焼バーナ21の本体部21Aの延長線上に硫黄供給路26を延ばしているが、特にこれに限定されるものではなく、炉体11の壁面の内部において、又は外壁面10Bに沿って、又は、更に外側で、硫黄供給路26を曲げてもよい。硫黄燃焼バーナ21の長さによっては、本体部21Aの途中に硫黄供給路26を接続することも考えられるが、その場合も、角度Rは硫黄供給路26との接続部よりも火口21Bに近い側において接線Tとの間に設定される。なお、角度Rは火口21Bの面に垂直な中心軸線と接線Tとの間の角度としてもよい。なお、旋回流Fを、より炉体11の内壁面10Aに近接させて発生させる場合、本体部21Aが炉体11の壁面の接線Tに対して5~30°程度となるように設置するのが好ましい。角度Rの値としては、例えば5°、10°、15°、20°、25°、30°、又はこれらの近傍又は中間の値が挙げられる。また、鉛直方向に対する硫黄燃焼バーナ21の本体部21Aの向きは、水平方向でもよく、水平より上向き又は下向きでもよいが、水平方向から傾斜させる場合は、例えば上向き又は下向きに5°以内又は10°以内が好ましい。焙焼炉10として流動焙焼炉を採用する場合は、流動用ガスの上向きの流れに抗するように、流動用ガスの流速に応じて調整してもよい。 The furnace body 11 of this embodiment is formed in a cylindrical shape. The wall thickness between the inner wall surface 10A and the outer wall surface 10B may be uniform or non-uniform. The inner wall surface 10A and the outer wall surface 10B may be both surfaces of the same wall material, or may be inner surfaces and outer surfaces of different wall materials. Each of the inner wall surface 10A and the outer wall surface 10B may be a flat cylindrical surface, or may have minute surface undulations or the like. The wall structure may be a multi-layer structure in which the inner surface of the structural material is lined. An acid resistant lining material or the like may be used as the inner wall material of the furnace body 11, but the lining material or the like may be omitted. At least the tip of the sulfur combustion burner 21 may protrude from the inner wall surface 10A. The sulfur combustion burner 21 itself may penetrate the outer wall surface 10B on the rear end side (the side connected to the sulfur supply passage 26) opposite to the tip end of the sulfur combustion burner 21, or the sulfur combustion burner 21 may be a wall surface. The outer wall surface 10B may be passed through the sulfur supply passage 26 on the rear side thereof. The direction of the sulfur combustion burner 21 with respect to the wall surface of the furnace body 11 is, for example, about 5 to 45° in angle R with respect to the tangent line of the wall surface in the horizontal section. Specifically, the sulfur combustion burner 21 includes a main body portion 21A connected to the sulfur supply passage 26, and a crater 21B for injecting combustion gas into the roasting furnace 10. The crater 21B is provided at the tip of the main body 21A. In the present embodiment, the sulfur combustion burner 21 is installed so that the body portion 21A has an angle R of 5 to 45° with respect to the tangent line T of the wall surface of the furnace body 11. Here, as an example of the tangent line T, the tangent line of the inner wall surface 10A at the installation position of the main body portion 21A is shown in the cross section of FIG. 2, but the angle R may be an angle with the tangent line of the outer wall surface 10B. In FIG. 2, the sulfur supply passage 26 is extended on the extension line of the main body portion 21A of the sulfur combustion burner 21, but the sulfur supply passage 26 is not particularly limited to this, and inside the wall surface of the furnace body 11 or on the outer wall surface 10B. The sulfur supply passage 26 may be bent along or further outside. Depending on the length of the sulfur combustion burner 21, it may be possible to connect the sulfur supply passage 26 in the middle of the main body portion 21A, but in that case as well, the angle R is closer to the crater 21B than the connection portion with the sulfur supply passage 26. It is set between the tangent line T and the side. The angle R may be the angle between the tangent line T and the central axis line that is perpendicular to the surface of the crater 21B. When the swirl flow F is generated closer to the inner wall surface 10A of the furnace body 11, the main body portion 21A is installed so as to be about 5 to 30° with respect to the tangent line T of the wall surface of the furnace body 11. Is preferred. Examples of the value of the angle R include 5°, 10°, 15°, 20°, 25°, 30°, or values in the vicinity or in the middle thereof. Further, the main body portion 21A of the sulfur combustion burner 21 with respect to the vertical direction may be a horizontal direction, or may be upward or downward from the horizontal direction, but when tilted from the horizontal direction, for example, within 5° or 10° upward or downward. It is preferably within. When a fluidized roasting furnace is used as the roasting oven 10, it may be adjusted according to the flow velocity of the fluidizing gas so as to resist the upward flow of the fluidizing gas.
 ニッケル含有原料の硫酸化焙焼においては、酸素分圧及び二酸化硫黄分圧を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる条件下とすることが好ましい。これにより、ニッケル含有原料が鉄分を含む場合であっても、ニッケル分が硫酸ニッケルに変換されると共に、鉄分から硫酸鉄への変換が抑制されるので、鉄分による硫黄分の消費を抑制して、硫酸ニッケルの生成効率を向上することができる。 In the sulfation roasting of a nickel-containing raw material, the oxygen partial pressure and the sulfur dioxide partial pressure are such that nickel sulfate is more thermodynamically stable than nickel oxide in the Ni—S—O system and the Fe—S—O system is used. In the above, it is preferable that the iron oxide is thermodynamically more stable than iron sulfate. As a result, even when the nickel-containing raw material contains iron, the nickel is converted to nickel sulfate and the conversion of iron to iron sulfate is suppressed, so that the consumption of sulfur by iron is suppressed. The production efficiency of nickel sulfate can be improved.
 図3は、Ni-S-O系及びFe-S-O系の概念的な状態図の一例である。Ni-S-O系における各相の境界線は破線(‐‐‐‐‐)で表示し、Fe-S-O系における各相の境界線は一点鎖線(―・―・―)で表示した。矢印に添えた化学式は、それぞれの境界線から矢印に向かう側で熱力学的に安定な相を示す。図3に示す状態図の横軸はO分圧の対数を示し、右側ほどO分圧が高く、左側ほどO分圧が低い。図3に示す状態図の縦軸はSO分圧の対数を示し、上側ほどSO分圧が高く、下側ほどSO分圧が低い。分圧の単位は、例えば気圧(atm=101325Pa)である。 FIG. 3 is an example of a conceptual state diagram of the Ni—S—O system and the Fe—S—O system. The boundary line of each phase in the Ni-S-O system is shown by a broken line (---), and the boundary line of each phase in the Fe-S-O system is shown by a one-dot chain line (-.-.-). .. The chemical formulas attached to the arrows indicate thermodynamically stable phases on the side from each boundary toward the arrow. The horizontal axis in the state diagram shown in FIG. 3 shows the logarithm of the partial pressure of O 2, the right side as the O 2 partial pressure is high, the left as O 2 partial pressure is low. The vertical axis in the state diagram shown in FIG. 3 shows the logarithm of the SO 2 partial pressure, the upper as SO 2 partial pressure is high, the lower the lower SO 2 partial pressure. The unit of partial pressure is, for example, atmospheric pressure (atm=101325 Pa).
 Ni-S-O系に含まれる硫酸ニッケルとしては例えばNiSOが挙げられ、酸化ニッケルとしては例えばNiOが挙げられる。図3に示す状態図において、境界線LNiは、硫酸ニッケルが熱力学的に安定な領域と酸化ニッケルが熱力学的に安定な領域との境界線を示す。境界線LNiよりSO分圧及びO分圧が高い領域では、硫酸ニッケルが熱力学的に安定な相となる。また、境界線LNiよりSO分圧及びO分圧が低い領域では、酸化ニッケルが熱力学的に安定な相となる。 Examples of nickel sulfate contained in the Ni—S—O system include NiSO 4 , and examples of nickel oxide include NiO. In the state diagram shown in FIG. 3, a boundary line L Ni indicates a boundary line between a region where nickel sulfate is thermodynamically stable and a region where nickel oxide is thermodynamically stable. In the region where the SO 2 partial pressure and the O 2 partial pressure are higher than the boundary line L Ni , nickel sulfate is a thermodynamically stable phase. Further, in the region where the SO 2 partial pressure and the O 2 partial pressure are lower than the boundary line L Ni , nickel oxide becomes a thermodynamically stable phase.
 Fe-S-O系に含まれる硫酸鉄としては例えばFeSO及びFe(SOが挙げられ、酸化鉄としては例えばFeが挙げられる。図3に示す状態図において、境界線LFeは、硫酸鉄が熱力学的に安定な領域と酸化鉄が熱力学的に安定な領域との境界線を示す。境界線LFeよりSO分圧及びO分圧が高い領域では、硫酸鉄が熱力学的に安定な相となる。また、境界線LFeよりSO分圧及びO分圧が低い領域では、酸化鉄が熱力学的に安定な相となる。 Examples of the iron sulfate contained in the Fe—S—O system include FeSO 4 and Fe 2 (SO 4 ) 3 , and examples of the iron oxide include Fe 2 O 3 . In the state diagram shown in FIG. 3, a boundary line L Fe indicates a boundary line between a region where iron sulfate is thermodynamically stable and a region where iron oxide is thermodynamically stable. In the region where the SO 2 partial pressure and the O 2 partial pressure are higher than the boundary line L Fe , iron sulfate is a thermodynamically stable phase. Further, in a region where the SO 2 partial pressure and the O 2 partial pressure are lower than the boundary line L Fe , iron oxide becomes a thermodynamically stable phase.
 図3に示す状態図によれば、境界線LFeよりSO分圧及びO分圧が低く、かつ、境界線LNiよりSO分圧及びO分圧が高い領域Aにおいて、Ni-S-O系では硫酸ニッケルが、Fe-S-O系では酸化鉄が、熱力学的に安定な相となる。そこで、この重なり領域Aの条件下で、ニッケル(Ni)、酸素(O)、硫黄(S)を含む系を焙焼することにより、系中に鉄分が共存していても硫酸鉄の生成を抑制しつつ、ニッケル分を硫酸ニッケルに変換することができる。 According to the state diagram shown in FIG. 3, SO 2 partial pressure and the partial pressure of O 2 is lower than the boundary line L Fe, and, SO 2 partial pressure and the partial pressure of O 2 is in the higher region A than the boundary line L Ni, Ni In the —SO system, nickel sulfate is a thermodynamically stable phase, and in the Fe—S—O system, iron oxide is a thermodynamically stable phase. Therefore, under the conditions of the overlapping region A, by roasting a system containing nickel (Ni), oxygen (O), and sulfur (S), iron sulfate is produced even if iron is present in the system. The nickel content can be converted to nickel sulfate while suppressing.
 本実施形態の硫酸化焙焼工程における焙焼温度(硫酸化焙焼温度)は、400~750℃の範囲が好ましく、550~750℃の範囲がより好ましい。硫酸化焙焼温度の具体例としては、400℃、450℃、500℃、550℃、600℃、650℃、700℃、750℃、あるいはこれらの前後又は中間の温度範囲が挙げられる。このような焙焼温度であれば、鉄分の還元が抑制されて、鉄分が酸化鉄、硫化鉄等の状態で硫酸ニッケル化合物と共存し得るので、焙焼生成物において粒子の凝結を抑制し、後工程の処理を容易にすることができる。また、これらの温度であれば、炭酸塩が分解するので、炭酸塩が混入している場合であっても、炭酸塩が水に溶解して不純物として残るのを防止することができ、後工程の処理を容易にすることができる。
 さらに硫酸化焙焼温度は、600~700℃であることが好ましい。この温度であれば、焙焼対象物がニッケル含有原料に由来する不純物としてマンガン(Mn)を含む場合であっても、マンガンが鉄とのスピネル構造を形成することにより、マンガンを不溶物として除去しやすくなる。
The roasting temperature (sulfate roasting temperature) in the sulfation roasting step of the present embodiment is preferably in the range of 400 to 750°C, more preferably in the range of 550 to 750°C. Specific examples of the sulfation roasting temperature include 400° C., 450° C., 500° C., 550° C., 600° C., 650° C., 700° C., 750° C., or a temperature range before, after, or in the middle thereof. With such a roasting temperature, reduction of iron content is suppressed, and iron content can coexist with a nickel sulfate compound in a state of iron oxide, iron sulfide, etc., thus suppressing aggregation of particles in a roasted product, It is possible to facilitate the processing in the subsequent steps. Further, at these temperatures, the carbonate decomposes, so even if the carbonate is mixed, it is possible to prevent the carbonate from being dissolved in water and remaining as an impurity. Can be easily processed.
Further, the sulfation roasting temperature is preferably 600 to 700°C. At this temperature, even if the object to be roasted contains manganese (Mn) as an impurity derived from the nickel-containing raw material, manganese forms a spinel structure with iron to remove manganese as an insoluble material. Easier to do.
 硫酸化焙焼工程におけるO分圧としては、気圧(atm)単位によるO分圧の常用対数log p(O)が-4~-6の範囲が好ましく、条件等に応じて、log p(O)が-4~-5、又はlog p(O)が-5~-6の範囲がより好ましい。O分圧を低くすることにより、図3の重なり領域AにおいてもSO分圧が高くなる傾向となるので、硫酸鉄の生成を抑制しつつ、硫酸ニッケルの生成を促進することができる。この最適領域は、硫酸化焙焼温度によって若干ずれ、温度が高くなる程、重なり領域Aにおけるlog p(O)が大きくなる方(零(0)に近づく方)に移動する。log p(SO)及び硫酸化焙焼温度との関係に応じて、log p(O)を、例えば-8以上0以下の範囲から選択してもよい。 As the O 2 partial pressure in the sulfation roasting step, the common logarithm of the O 2 partial pressure in terms of atmospheric pressure (atm) log p(O 2 ) is preferably in the range of −4 to −6, and depending on the conditions etc., log p (O 2) is -4 to -5, or log p (O 2) is more preferably in the range of -5 to -6. By decreasing the O 2 partial pressure, the SO 2 partial pressure tends to increase even in the overlapping region A of FIG. 3, so that the generation of nickel sulfate can be promoted while suppressing the generation of iron sulfate. The optimum region is slightly shifted depending on the sulfation roasting temperature, and the higher the temperature, the more the log p(O 2 ) in the overlapping region A increases (the closer to zero (0)). Depending on the relationship between log p(SO 2 ) and the sulfation roasting temperature, log p(O 2 ) may be selected from the range of −8 to 0, for example.
 硫酸化焙焼工程におけるSO分圧としては、気圧(atm)単位によるSO分圧の常用対数log p(SO)が-1~+1の範囲が好ましく、log p(SO)が-1~0の範囲がより好ましい。図3の重なり領域Aの中でも、SO分圧をより高くすることで、硫酸塩の生成を促進することができる。さらに、SO分圧を常圧程度、又はそれ以下の範囲(分圧の常用対数が略0以下)とすることで、硫酸化焙焼工程における焙焼雰囲気の全圧も過大にならず、設備の取り扱いを容易にすることができる。log p(O)との関係及び硫酸化焙焼温度に応じて、log p(SO)を、例えば-4以上+1以下の範囲から選択してもよい。 The SO 2 partial pressure in the sulfation roasting step, pressure (atm) preferably common logarithm log p (SO 2) range is -1 to + 1 SO 2 partial pressure in units, log p (SO 2) is - The range of 1 to 0 is more preferable. In the overlapping region A of FIG. 3, the SO 2 partial pressure can be made higher to promote the production of sulfate. Furthermore, by setting the SO 2 partial pressure to about normal pressure or less (the common logarithm of partial pressure is approximately 0 or less), the total pressure of the roasting atmosphere in the sulfation roasting step does not become excessive, The equipment can be easily handled. The log p(SO 2 ) may be selected from the range of −4 or more and +1 or less depending on the relationship with the log p(O 2 ) and the sulfation roasting temperature.
 焙焼炉内でO分圧が低い条件を維持するには、窒素(N)、アルゴン(Ar)等の不活性ガスを焙焼炉に供給してもよい。これらの不活性ガスは、気体や蒸気等の揮発性成分を焙焼炉に供給する際の担体として用いることもできる。SO分圧の調整は、上述したように硫黄源の供給量の制御により行うことができる。
 好ましい分圧の範囲は、硫酸化焙焼温度に応じて、上述した状態図を検討し、境界線LNi及び境界線LFeの位置から求めることができる。例えば硫酸化焙焼温度が650~750℃である場合、好ましい分圧の範囲としては、log p(O)が-8~-4程度でlog p(SO)が-2~+2程度、log p(O)が-3~-2程度でlog p(SO)が-3~+1程度、log p(O)が-1~0程度でlog p(SO)が-4~0程度が挙げられる。
In order to maintain the condition of low O 2 partial pressure in the roasting furnace, an inert gas such as nitrogen (N 2 ) or argon (Ar) may be supplied to the roasting furnace. These inert gases can also be used as a carrier when supplying volatile components such as gas and steam to the roasting furnace. The SO 2 partial pressure can be adjusted by controlling the supply amount of the sulfur source as described above.
The preferable partial pressure range can be determined from the positions of the boundary line L Ni and the boundary line L Fe by examining the above-mentioned phase diagram according to the sulfation roasting temperature. For example, when the sulfation roasting temperature is 650 to 750° C., the preferable partial pressure range is as follows: log p(O 2 ) is about −8 to −4, log p(SO 2 ) is about −2 to +2, log p(O 2 ) is about -3 to -2, log p(SO 2 ) is about -3 to +1 and log p(O 2 ) is about -1 to 0, log p(SO 2 ) is -4 to 0 is mentioned.
 硫酸化焙焼工程により、硫酸ニッケル化合物を含む焙焼生成物が得られる。この焙焼生成物に水を供給し、硫酸ニッケル化合物を水に溶解させる水溶解工程により、硫酸ニッケル化合物を含む溶液が得られる。上述したように、硫酸化焙焼工程の焙焼生成物に含まれる鉄分は、酸化鉄、硫化鉄等、水に難溶の状態となるので、固液分離で固相と液相とに分離することにより、液相として硫酸ニッケル化合物が得られ、固相として鉄分等を含む不純物が分離される。さらに必要に応じて、例えば硫酸ニッケルと硫酸コバルト等とを分離するため、精製工程を行うことにより、コバルト等の不純物が除去された硫酸ニッケル化合物を得ることができる。 The roasting product containing nickel sulfate compound is obtained by the sulfation roasting process. A solution containing a nickel sulfate compound is obtained by a water dissolving step of supplying water to the roasted product and dissolving the nickel sulfate compound in water. As described above, the iron content contained in the roasted product of the sulfation roasting process is insoluble in water such as iron oxide and iron sulfide, so it is separated into a solid phase and a liquid phase by solid-liquid separation. By doing so, a nickel sulfate compound is obtained as a liquid phase, and impurities containing iron and the like are separated as a solid phase. Further, if necessary, a nickel sulfate compound from which impurities such as cobalt have been removed can be obtained by performing a purification step in order to separate nickel sulfate from cobalt sulfate or the like.
 水溶解工程で焙焼生成物に添加される水は、不純物を含まないように処理された純水が好ましい。水処理方法としては、特に限定されないが、濾過、膜分離、イオン交換、蒸留、消毒、薬剤処理、吸着などの1種以上が挙げられる。溶解用の水として、水源から得られる上水、工業用水等を用いてもよく、他のプロセスで生じた排水を処理した水を用いてもよい。2種類以上の水を用いてもよい。純水に限らずpH=4程度の硫酸酸性溶液で溶解することも可能である。例えば、溶液のpHが4~5程度、例えば3.8~5.5で、酸化還元電位測定で酸化域となる領域では、他の硫酸塩等の不純物の溶解を抑制しつつ、硫酸ニッケル化合物を選択的に水相に抽出するのに有利であるため、好ましい。 The water added to the roasted product in the water dissolution step is preferably pure water that has been treated so as not to contain impurities. The water treatment method is not particularly limited and may be one or more of filtration, membrane separation, ion exchange, distillation, disinfection, chemical treatment, adsorption and the like. As the water for dissolution, tap water obtained from a water source, industrial water, or the like may be used, or water obtained by treating wastewater generated in another process may be used. You may use 2 or more types of water. Not only pure water but also a sulfuric acid acidic solution having a pH of about 4 can be used for dissolution. For example, in a region where the pH of the solution is about 4 to 5, for example, 3.8 to 5.5, which is an oxidation region in the redox potential measurement, nickel sulfate compound is suppressed while suppressing dissolution of other impurities such as sulfates. Is preferred because it is advantageous to selectively extract the broth in the aqueous phase.
 硫酸ニッケルの水への溶解度は、150℃において最も高く、100gの溶液に55gのNiSOが溶解するが、0℃でも100gの溶液に22gのNiSOが溶解する。このため、溶解操作は水の沸点以下で実施することが望ましい。また、水溶解工程で得られる溶液は、NiSOが常温でも析出しない濃度とすることが好ましく、それよりNiSOが高濃度の溶液では加温状態を維持することが好ましい。 The solubility of nickel sulfate in water is highest at 150° C., 55 g of NiSO 4 dissolves in 100 g of solution, but 22 g of NiSO 4 dissolves in 100 g of solution even at 0° C. Therefore, it is desirable to carry out the dissolving operation at a temperature not higher than the boiling point of water. Further, the solution obtained in the water dissolution step preferably has a concentration at which NiSO 4 does not precipitate even at room temperature, and a solution having a higher concentration of NiSO 4 is preferably kept warm.
 水溶解工程の後、固液分離の方法は、特に限定されず、濾過法、遠心分離法、沈降分離法などが挙げられる。望ましくは、固相に含まれるメディア及び微粒子の分離性能が高い装置とすることが好ましい。例えば、濾過法において、濾過の方式は特に限定されず、重力濾過、減圧濾過、加圧濾過、遠心濾過、濾過助剤添加型濾過、圧搾絞り濾過等が挙げられる。差圧の調整が容易で、迅速な分離が可能となる加圧濾過が好ましい。 The solid-liquid separation method after the water dissolution step is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method. Desirably, it is preferable to use an apparatus having high separation performance for media and fine particles contained in the solid phase. For example, in the filtration method, the filtration method is not particularly limited, and examples thereof include gravity filtration, reduced pressure filtration, pressure filtration, centrifugal filtration, filter aid addition type filtration, squeezing filtration and the like. Pressure filtration is preferable because the differential pressure can be easily adjusted and rapid separation is possible.
 硫酸ニッケル化合物と共存し得る不純物としては、鉄(Fe)、コバルト(Co)、アルミニウム(Al)等が挙げられる。これらの金属塩が焙焼工程において硫酸塩となっている場合、硫酸ニッケル化合物を水に溶解させたときに、硫酸鉄、硫酸コバルト等も溶解する。さらに、水中では例えば鉄がFeOOH、Fe、Fe等の酸化物等として沈殿し、硫酸ニッケル化合物から不純物の除去が容易になる。本実施形態の硫酸化焙焼工程は、鉄分が硫酸鉄となりにくい条件を設定しているため、水溶解及び固液分離を経ることで、鉄分の少ない硫酸ニッケル化合物が得られる。硫酸ニッケル化合物を溶解した後の酸化鉄等を含む残渣は、セメントの鉄分として再利用することもできる。また、酸化鉄等の鉄分が多い残渣は、溶融還元炉、電気炉等を用いた製鉄原料として銑鉄等の生産に、あるいは、顔料、フェライト、磁性材料、焼結材等に利用することもできる。特に、ニッケル含有原料を産出する地域が工業地域、都市等から離れた遠隔地である場合等には、ニッケル分と同様に、鉄分も現地で製品化することが輸送費等の観点から有利である。例えば、フェロニッケルの製錬工程に設けた電気炉を利用して銑鉄を生産し、減容すれば鉄地金として搬出することも容易になる。 Examples of impurities that can coexist with the nickel sulfate compound include iron (Fe), cobalt (Co), and aluminum (Al). When these metal salts are sulfates in the roasting step, when the nickel sulfate compound is dissolved in water, iron sulfate, cobalt sulfate, etc. are also dissolved. Further, in water, for example, iron precipitates as oxides such as FeOOH, Fe 2 O 3 , Fe 3 O 4 and the like, which facilitates removal of impurities from the nickel sulfate compound. In the sulfated roasting step of the present embodiment, the conditions in which the iron content is unlikely to become iron sulfate are set, and therefore, a nickel sulfate compound having a low iron content can be obtained through water dissolution and solid-liquid separation. The residue containing iron oxide or the like after dissolving the nickel sulfate compound can be reused as the iron content of cement. Further, the iron-rich residue such as iron oxide can be used for producing pig iron or the like as an iron-making raw material using a smelting reduction furnace, an electric furnace, etc., or for pigments, ferrites, magnetic materials, sintered materials, etc. .. Especially when the area producing nickel-containing raw materials is an industrial area or a remote place away from cities, it is advantageous from the viewpoint of transportation cost to commercialize iron as well as nickel. is there. For example, if pig iron is produced using an electric furnace provided in the ferronickel smelting process and the volume of the pig iron is reduced, it can be easily carried out as iron ingot.
 不純物のうち、例えば銅(Cu)、金(Au)、銀(Ag)、白金族金属(PGM)等、水素(H)よりイオン化傾向が低い金属は、水溶解工程で固体として残るため、固液分離工程により除去することができる。固液分離工程により除去される固体には、上記の不純物のほか、As,Pb,Zn等の化合物が含まれ得る。これらの不純物が含まれる固体は、有価物としてリサイクル処理することもできる。 Among impurities, for example, metals having a lower ionization tendency than hydrogen (H) such as copper (Cu), gold (Au), silver (Ag), and platinum group metal (PGM) remain as solids in the water dissolution step, and thus solid It can be removed by a liquid separation step. The solids removed by the solid-liquid separation step may include compounds such as As, Pb, and Zn in addition to the above impurities. The solid containing these impurities can also be recycled as a valuable resource.
 水溶解及び固液分離を経て得られる溶液は、硫酸ニッケル化合物を主成分とするため、硫酸ニッケル化合物の溶液のまま、あるいは乾燥等により硫酸ニッケル化合物の固体として、輸送し、利用することができる。用途によっては、溶液中の不純物として、例えば硫酸コバルト等を低減することが望まれる場合には、溶媒抽出、電解透析(Electrodialysis)、電解採取(Electrowinning)、電解精製(Electro refining)、イオン交換、晶析等の技術を利用することができる。 Since the solution obtained through water dissolution and solid-liquid separation has a nickel sulfate compound as a main component, it can be transported and used as a solution of the nickel sulfate compound or as a solid of the nickel sulfate compound by drying or the like. .. Depending on the application, if it is desired to reduce impurities such as cobalt sulfate in the solution, solvent extraction, electrolytic dialysis (Electrodialysis), electrowinning, electrolytic refining, ion exchange, Techniques such as crystallization can be used.
 溶媒抽出の場合は、ニッケルよりもコバルトを優先的又は選択的に溶媒中に抽出できる抽出剤を用いることが好ましい。これにより、硫酸ニッケル化合物を水系の溶液中に残して、効率的な精製が可能になる。抽出剤としては、ホスフィン酸基、チオホスフィン酸基等の、金属イオンと結合し得る官能基を有する有機化合物が挙げられる。溶媒抽出においては、希釈剤として、抽出剤を水から分離させることが可能な有機溶媒を用いてもよい。コバルト等の金属イオンと結合した抽出剤を希釈剤に溶解させることにより、抽出剤を大量に使用しなくても、硫酸ニッケル化合物を含有する水溶液からの分離が容易になる。希釈剤は、水と混和しにくい有機溶媒が好ましい。 In the case of solvent extraction, it is preferable to use an extractant that can preferentially or selectively extract cobalt over nickel over the solvent. This allows the nickel sulfate compound to remain in the aqueous solution for efficient purification. Examples of the extractant include organic compounds having a functional group capable of binding to a metal ion, such as a phosphinic acid group and a thiophosphinic acid group. In the solvent extraction, an organic solvent capable of separating the extractant from water may be used as the diluent. Dissolving the extractant combined with a metal ion such as cobalt in the diluent facilitates separation from the aqueous solution containing the nickel sulfate compound without using a large amount of the extractant. The diluent is preferably an organic solvent that is difficult to mix with water.
 晶析の場合は、温度の変化、溶媒の減少、他の物質の添加等の少なくとも1つの因子により、目的物である硫酸ニッケル化合物を溶液中から結晶化させればよい。この際、不純物の少なくとも一部を液相に残留させることにより、精製が可能になる。具体例としては、蒸発晶析法と貧溶媒晶析法がある。蒸発晶析法は、減圧下で沸騰又は蒸発により溶液を濃縮させ、硫酸ニッケル化合物を晶析させる。貧溶媒晶析法は、医薬品製造などで利用されている晶析方法で、例えば硫酸ニッケル化合物を含む溶液に有機溶媒を加えて硫酸ニッケル化合物を析出させる。晶析に用いられる有機溶媒としては、水と混和する有機溶媒が好ましく、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、エチレングリコール、アセトンからなる群から選択される1種以上が挙げられる。2種類以上の有機溶媒が用いられてもよい。有機溶媒が水と混和する濃度範囲については、硫酸ニッケル化合物が析出する程度に有機溶媒が添加された濃度で混和することが好ましく、任意の割合で自由に混和することがより好ましい。晶析工程で加える有機溶媒は、無水の有機溶媒に限らず、晶析に支障のない程度で含水の有機溶媒であってもよい。水と有機溶媒との比率は、特に限定されないが、例えば1:20~20:1の範囲で設定してもよいが、1:1程度、例えば1:2~2:1が好ましい。 In the case of crystallization, the target nickel sulfate compound may be crystallized from the solution by at least one factor such as temperature change, solvent reduction, addition of another substance, and the like. At this time, purification can be performed by leaving at least a part of the impurities in the liquid phase. Specific examples include an evaporation crystallization method and a poor solvent crystallization method. In the evaporative crystallization method, the solution is concentrated by boiling or evaporation under reduced pressure to crystallize the nickel sulfate compound. The poor solvent crystallization method is a crystallization method utilized in the production of pharmaceuticals, for example, a solution containing a nickel sulfate compound is added with an organic solvent to precipitate a nickel sulfate compound. The organic solvent used for crystallization is preferably an organic solvent miscible with water, and examples thereof include one or more selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol, and acetone. Two or more kinds of organic solvents may be used. Regarding the concentration range in which the organic solvent is miscible with water, it is preferred that the organic solvent is miscible at a concentration at which the nickel sulfate compound is precipitated, and it is more preferred that the organic solvent is freely mixed at an arbitrary ratio. The organic solvent added in the crystallization step is not limited to an anhydrous organic solvent, and may be a water-containing organic solvent as long as it does not hinder crystallization. The ratio of water to the organic solvent is not particularly limited and may be set, for example, in the range of 1:20 to 20:1, but is preferably about 1:1 and is preferably 1:2 to 2:1.
 晶析等を経て固体の硫酸ニッケル化合物を得る場合、硫酸ニッケルの無水物、1水和物、2水和物、5水和物、6水和物、7水和物等の状態となっていてもよい。晶析により析出した硫酸ニッケル化合物は、固液分離により溶液から分離することができる。固液分離の方法は、特に限定されないが、濾過法、遠心分離法、沈降分離法などが挙げられる。溶液側に溶解した金属は、中和して沈殿等の方法により溶液から取り除くことが好ましい。浄化された溶液が、水と有機溶媒との混合物が主体とする場合、蒸留等の方法で水と有機溶媒とを分離することができる。 When a solid nickel sulfate compound is obtained through crystallization, etc., it is in the state of anhydrous nickel sulfate, monohydrate, dihydrate, pentahydrate, hexahydrate, heptahydrate, etc. May be. The nickel sulfate compound deposited by crystallization can be separated from the solution by solid-liquid separation. The solid-liquid separation method is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method. The metal dissolved on the solution side is preferably removed from the solution by a method such as neutralization and precipitation. When the purified solution is mainly composed of a mixture of water and an organic solvent, the water and the organic solvent can be separated by a method such as distillation.
 本実施形態の硫酸化焙焼によれば、次の効果が得られる。
(1)組成が一定ではない原料を焙焼する場合であっても、焙焼炉内の反応状態に応じて即時にSO分圧を制御することができる。また、即時にSO分圧を制御することができるので、上述の重なり領域A内で硫酸化焙焼を行う際に、反応条件の制御が容易である。
(2)ニッケル含有原料から硫酸ニッケルへの転換反応を早めることができ、反応性が向上する。
(3)硫酸化焙焼により、ニッケル含有原料から高純度の硫酸ニッケル化合物を生産することができる。
(4)硫酸化焙焼工程において硫酸鉄の生成を抑制することができる。また、水素(H)ガスの発生も抑制することができる。
(5)焙焼生成物は、鉄分が水に溶解しにくい化学種になり、ニッケル分が硫酸ニッケル化合物として水に溶解しやすくなるので、鉄分の除去が容易になる。
(6)従来法に比べて設備コストを低減することができる。
(7)ニッケル含有原料の転換反応を促進することができるため、例えば、鉄が酸化鉄の状態で供給される場合に、酸化鉄が硫酸鉄を形成する機会及び鉄-ニッケルのフェライト合金を形成する機会を与えず転換反応が進む。そのため、高純度の硫酸ニッケルを含有する焙焼生成物を得ることができる。
According to the sulfated roasting of this embodiment, the following effects can be obtained.
(1) Even when a raw material having a non-uniform composition is roasted, the SO 2 partial pressure can be immediately controlled according to the reaction state in the roasting furnace. In addition, since the SO 2 partial pressure can be controlled immediately, it is easy to control the reaction conditions when performing the sulfated roasting in the overlapping region A described above.
(2) The conversion reaction from the nickel-containing raw material to nickel sulfate can be accelerated, and the reactivity is improved.
(3) A high-purity nickel sulfate compound can be produced from a nickel-containing raw material by sulfation and roasting.
(4) Generation of iron sulfate can be suppressed in the sulfation roasting process. Further, generation of hydrogen (H 2 ) gas can also be suppressed.
(5) In the roasted product, the iron content becomes a chemical species that is difficult to dissolve in water, and the nickel content easily dissolves in water as a nickel sulfate compound, so that the iron content is easily removed.
(6) The equipment cost can be reduced as compared with the conventional method.
(7) Since the conversion reaction of the nickel-containing raw material can be promoted, for example, when iron is supplied in the state of iron oxide, iron oxide forms an opportunity to form iron sulfate and forms an iron-nickel ferrite alloy. The conversion reaction proceeds without giving the opportunity to do so. Therefore, a roasting product containing high-purity nickel sulfate can be obtained.
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。 The present invention has been described above based on the preferred embodiments, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
 焙焼対象物は、ニッケル含有原料に限らず、ニッケル以外の他の金属(Cu,Zn,Co,Fe等)を含有する原料も考えられる。他の金属を含有する原料からその金属の化合物を得るための焙焼に、上述の実施形態によるニッケル含有原料の焙焼を応用することも可能である。 The object to be roasted is not limited to a nickel-containing raw material, and a raw material containing a metal other than nickel (Cu, Zn, Co, Fe, etc.) may be considered. It is also possible to apply roasting of the nickel-containing raw material according to the above-described embodiment to roasting for obtaining a compound of the metal from a raw material containing another metal.
 高砂工業製の電気炉(炉心管:SUS316L、外径50mm、長さ400mm、最高温度1100℃)を、炉心管が縦型になるように設置し、炉心管の下部にガス分散板を設置して、流動焙焼炉を構成した。流動焙焼炉内に供給される原料の焙焼対象物は、ニッケルマット(組成:Ni、平均粒子径:0.3mm、密度:3.5g/cm、モース硬度:4~5)を1000gとした。流動焙焼炉の上部には、ガス吸収管とバキュームポンプを設置した。 An electric furnace manufactured by Takasago Industry (core tube: SUS316L, outer diameter 50 mm, length 400 mm, maximum temperature 1100°C) was installed so that the core tube was vertical, and a gas dispersion plate was installed under the core tube. And constituted a fluidized roasting furnace. The material to be roasted as the raw material supplied into the fluidized roasting furnace is a nickel matte (composition: Ni 3 S 2 , average particle diameter: 0.3 mm, density: 3.5 g/cm 3 , Mohs hardness: 4 to 5). ) Was 1000 g. A gas absorption tube and a vacuum pump were installed above the fluidized-bed roasting furnace.
 硫黄源の供給方法については、次の5とおりとした。
(No.1)硫黄源を添加せず、ニッケルマットに含まれている硫黄分のみを利用する。
(No.2)硫黄分を固体硫黄の粉体としてニッケルマットに混合して供給する。
(No.3)硫黄分を固体硫黄としてニッケルマットと混合し、あらかじめペレット状にして供給する。
(No.4)硫黄分を硫酸溶液として炉心管の上部から液体で噴霧する。
(No.5)炉心管の側面から硫黄燃焼バーナを挿入し、燃焼ガスがらせん流となるように硫黄燃焼バーナの向きを調整し、硫黄燃焼バーナで硫黄を燃焼させる。
Regarding the method of supplying the sulfur source, the following five methods were used.
(No. 1) A sulfur source is not added and only the sulfur content contained in the nickel matte is used.
(No. 2) Sulfur content is mixed and supplied to the nickel mat as solid sulfur powder.
(No. 3) Sulfur content is mixed as solid sulfur with nickel matte, and pelletized in advance and supplied.
(No. 4) Sulfur content is sprayed as a sulfuric acid solution as a liquid from the upper part of the core tube.
(No. 5) A sulfur combustion burner is inserted from the side of the core tube, the direction of the sulfur combustion burner is adjusted so that the combustion gas becomes a spiral flow, and sulfur is burned by the sulfur combustion burner.
 No.1、No.2、No.4、No.5においては、ニッケルマットを流動焙焼炉の炉心管内に供給した後、流動用空気を流動焙焼炉の下部から供給し、ニッケルマットの流動層を維持した。No.3においては、条件をなるべく揃えるため、流動用空気を流動焙焼炉の下部から供給したが、ニッケルマットもペレット状であるため、流動層が形成されなかった。 No. 1, No. 2, No. 4, No. In No. 5, after the nickel matte was supplied into the core tube of the fluidized roasting furnace, the air for fluidization was supplied from the lower part of the fluidized roasting furnace to maintain the fluidized bed of the nickel matte. No. In No. 3, in order to make the conditions as uniform as possible, the air for fluidization was supplied from the lower part of the fluidized roasting furnace, but since the nickel mat was also in pellet form, the fluidized bed was not formed.
 硫酸化焙焼条件の雰囲気は、焙焼温度を700℃とし、log p(O)を-2とした。No.2及びNo.3においては、ニッケル分に対して理論上必要となる硫黄分のモル数に1.2倍した量を目安とし、それから不足する量の固体硫黄を事前に添加した。No.4及びNo.5においては、log p(SO)が-2となるように、硫黄源の添加量をリアルタイムで制御した。焙焼炉内で硫黄分が燃焼する場合は、燃焼エネルギーに応じて電気炉の出力を調整し、700℃の温度を維持した。焙焼炉内の温度が700℃に達した時を開始時間とし、それから硫酸化焙焼を最長で30分間継続し、焙焼炉内のSO分圧を測定した。 The atmosphere of the sulfated roasting conditions was a roasting temperature of 700° C. and a log p(O 2 ) of −2. No. 2 and No. In 3, the amount of 1.2 times the theoretically required number of moles of the sulfur component with respect to the nickel component was used as a guide, and then the insufficient amount of solid sulfur was added in advance. No. 4 and No. In 5, the addition amount of the sulfur source was controlled in real time so that log p(SO 2 ) was −2. When the sulfur content burned in the roasting furnace, the output of the electric furnace was adjusted according to the combustion energy to maintain the temperature of 700°C. The time when the temperature in the roasting furnace reached 700° C. was set as the start time, and then the sulfated roasting was continued for up to 30 minutes, and the SO 2 partial pressure in the roasting furnace was measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に、経過時間5分、10分、15分、20分、30分のそれぞれにおけるSO濃度の測定結果として、気圧(atm)単位によるSO分圧の常用対数log p(SO)の値を示す。No.1、No.2及びNo.3では、焙焼開始から700℃で30分間の焙焼を継続する間、SO分圧が一定しなかった。No.4では、焙焼開始から30分経過する前に炉心管が腐食し、700℃で30分間の焙焼を継続することができなかった。No.5では、焙焼開始から700℃で30分間の焙焼を継続する間、log p(SO)を-2.0の一定に維持することができた。なお、Ni-S-O系及びFe-S-O系の状態図の事前検討から、焙焼温度700℃で、log p(O)を-2.0、log p(SO)を-2.0とする条件は、NiSOへの転換に適していると考えられる。 Table 1 shows the common logarithm of the SO 2 partial pressure in terms of atmospheric pressure (atm) log p(SO 2 ) as the measurement results of the SO 2 concentration at the elapsed times of 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 30 minutes. Indicates the value of. No. 1, No. 2 and No. In No. 3, the SO 2 partial pressure was not constant while the roasting was continued at 700° C. for 30 minutes from the start of roasting. No. In No. 4, the core tube was corroded 30 minutes after the start of roasting, and roasting at 700° C. for 30 minutes could not be continued. No. In No. 5, log p(SO 2 ) could be kept constant at −2.0 while the roasting was continued at 700° C. for 30 minutes from the start of roasting. From the preliminary examination of the phase diagrams of Ni—S—O system and Fe—S—O system, log p(O 2 ) is −2.0 and log p(SO 2 ) is −2.0 at the roasting temperature of 700° C. The condition of 2.0 is considered suitable for conversion to NiSO 4 .
 さらに焙焼生成物を純水に溶解し、ニッケル分がNiSOとして回収された割合としてNi回収率を測定した。Ni回収率は、硫酸化焙焼に用いたサンプル中に含まれるNi分の量を100wt%として、純水に溶解したNi分(NiSOのうちNiに相当する量)の割合である。
 Ni回収率は、No.1で18%、No.2で65%、No.3で75%、No.4で80%、No.5で91%であった。本発明の実施例にあたるNo.5の場合に、Ni回収率が最も高くなった。
Further, the roasted product was dissolved in pure water, and the Ni recovery rate was measured as the rate at which the nickel content was recovered as NiSO 4 . The Ni recovery rate is the ratio of the Ni content (the quantity corresponding to Ni in NiSO 4 ) dissolved in pure water, with the Ni content contained in the sample used for the sulfation roasting being 100 wt %.
The Ni recovery rate is No. 18% for No. 1, No. 1 65% in No. 2, No. 75% in No. 3, No. 3 80% in No. 4, No. 4 5 was 91%. No. corresponding to the embodiment of the present invention. In the case of 5, the Ni recovery rate was the highest.
 この結果から、外部から硫黄源を添加しないNo.1において、焙焼を継続する間SO分圧が上昇するのは、ニッケルマット中の硫黄分がニッケル分と十分に反応することなく、雰囲気中に拡散したためと考えられる。硫黄分が過剰となるように事前に硫黄を添加したNo.2及びNo.3では、初期のSO分圧が低く、焙焼を継続する間に硫黄の酸化が進行してSO分圧が徐々に上昇するが、Ni回収率はさほど高くならなかった。これは、初期にO分圧が高い割にSO分圧が低い状況が、NiSOへの転換に悪影響を及ぼしたと考えられる。硫酸溶液を用いてSO分圧を制御したNo.4では、NiSOへの転換に適したSO分圧を維持していても、途中で焙焼を中止する状況となったため、Ni回収率はさほど高くならなかったと考えられる。硫黄をバーナで燃焼させてSO分圧を制御したNo.5では、NiSOへの転換に適したSO分圧を維持し続けることができたため、Ni回収率が高くなったと考えられる。 From this result, it can be seen that the No. In No. 1, it is considered that the SO 2 partial pressure rises while the roasting is continued because the sulfur content in the nickel matte did not sufficiently react with the nickel content and diffused into the atmosphere. No. 1 in which sulfur was added in advance so that the sulfur content became excessive. 2 and No. In Example 3, the initial SO 2 partial pressure was low, and while the roasting was continued, the oxidation of sulfur proceeded to gradually increase the SO 2 partial pressure, but the Ni recovery rate was not so high. This is considered to be because the situation where the SO 2 partial pressure is low in spite of the high O 2 partial pressure in the initial stage had an adverse effect on the conversion to NiSO 4 . No. 2 whose SO 2 partial pressure was controlled using a sulfuric acid solution. In No. 4 , although the partial pressure of SO 2 suitable for conversion to NiSO 4 was maintained, the situation was such that the roasting was stopped midway, so it is considered that the Ni recovery rate did not become so high. No. 1 in which SO 2 partial pressure was controlled by burning sulfur with a burner. In No. 5, it was considered that the Ni recovery rate was high because the SO 2 partial pressure suitable for conversion to NiSO 4 could be maintained.
 本発明は、二次電池等の電気部品、化学製品などに利用される各種のニッケル化合物又は金属ニッケルの原料として有用な高純度の硫酸ニッケル化合物の製造に利用することができる。 The present invention can be used for producing high-purity nickel sulfate compounds useful as raw materials for various nickel compounds or metallic nickel used in electric parts such as secondary batteries and chemical products.
10…焙焼炉、10A…内壁面、11…炉体、12…ガス入口、13…ガス出口、14…ガス分散板、15…供給口、16…取出口、17…補助バーナ、20…硫黄供給系、21…硫黄燃焼バーナ、21A…本体部、21B…火口、22…硫黄溶融槽、23…ヒータ、24…ポンプ、25…硫黄供給路のバルブ、26…硫黄供給路、27…助燃ガス供給路、28…助燃ガス供給路のバルブ、30…制御系、31…コントローラ、32,33…濃度計、34,35,36,37…信号線。 10... Roasting furnace, 10A... Inner wall surface, 11... Furnace body, 12... Gas inlet, 13... Gas outlet, 14... Gas dispersion plate, 15... Supply port, 16... Outlet, 17... Auxiliary burner, 20... Sulfur Supply system, 21... Sulfur combustion burner, 21A... Main body part, 21B... Crater, 22... Sulfur melting tank, 23... Heater, 24... Pump, 25... Sulfur supply passage valve, 26... Sulfur supply passage, 27... Combustion gas Supply path, 28... Valve of auxiliary combustion gas supply path, 30... Control system, 31... Controller, 32, 33... Densitometer, 34, 35, 36, 37... Signal line.

Claims (8)

  1.  ニッケル及び鉄を含む原料の硫酸化焙焼を行う工程において、焙焼炉にバーナを設置し、前記バーナに硫黄を供給して燃焼させ、前記焙焼炉内で硫黄酸化物を発生させることを特徴とする硫酸化焙焼方法。 In the step of performing sulfation roasting of a raw material containing nickel and iron, a burner is installed in a roasting furnace, sulfur is supplied to the burner and burned, and a sulfur oxide is generated in the roasting furnace. Characterized sulfate roasting method.
  2.  前記硫黄を液状で空圧により前記バーナに供給することを特徴とする請求項1に記載の硫酸化焙焼方法。 The sulfurization and roasting method according to claim 1, wherein the sulfur is supplied in liquid form to the burner by air pressure.
  3.  前記焙焼炉内における硫黄酸化物の濃度を測定し、この測定値に基づき、前記バーナに供給される硫黄又は空気の量を制御することを特徴とする請求項1又は2に記載の硫酸化焙焼方法。 The sulfation according to claim 1 or 2, wherein the concentration of sulfur oxide in the roasting furnace is measured, and the amount of sulfur or air supplied to the burner is controlled based on the measured value. Roasting method.
  4.  前記焙焼炉から排出される排ガスにおける硫黄酸化物の濃度を測定し、この測定値に基づき、前記バーナに供給される硫黄又は空気の量を制御することを特徴とする請求項1~3のいずれか1項に記載の硫酸化焙焼方法。 The concentration of sulfur oxide in the exhaust gas discharged from the roasting furnace is measured, and the amount of sulfur or air supplied to the burner is controlled based on the measured value. The sulfated roasting method according to any one of items.
  5.  前記焙焼炉内で前記原料を流動層とし、前記焙焼炉から焙焼生成物を取り出す位置より上方に前記バーナを設置することを特徴とする請求項1~4のいずれか1項に記載の硫酸化焙焼方法。 5. The burner is installed in the roasting furnace as a fluidized bed, and the burner is installed above a position where a roasted product is taken out from the roasting furnace. Sulfate roasting method.
  6.  前記焙焼炉の壁面に沿って前記バーナを設置し、前記焙焼炉の内壁面に沿う方向で、且つ鉛直方向に交差する方向に向けて硫黄を供給することを特徴とする請求項5に記載の硫酸化焙焼方法。 The burner is installed along the wall surface of the roasting furnace, and sulfur is supplied in a direction along the inner wall surface of the roasting furnace and in a direction intersecting the vertical direction. The sulfated roasting method described.
  7.  前記焙焼炉に前記原料を供給する位置より下方に前記バーナを設置することを特徴とする請求項5又は6に記載の硫酸化焙焼方法。 The sulfation roasting method according to claim 5 or 6, wherein the burner is installed below a position where the raw material is supplied to the roasting furnace.
  8.  酸素分圧及び二酸化硫黄分圧を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる条件下とすることを特徴とする請求項1~7のいずれか1項に記載の硫酸化焙焼方法。 Regarding oxygen partial pressure and sulfur dioxide partial pressure, nickel sulfate is thermodynamically more stable than nickel oxide in the Ni—S—O system, and iron oxide is more thermodynamic than that in the Fe—S—O system than iron sulfate. 8. The sulfated roasting method according to any one of claims 1 to 7, wherein the conditions are such that it becomes stable.
PCT/JP2019/005100 2019-02-13 2019-02-13 Sulfation roasting method WO2020165974A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/005100 WO2020165974A1 (en) 2019-02-13 2019-02-13 Sulfation roasting method
AU2019429311A AU2019429311A1 (en) 2019-02-13 2019-02-13 Sulfation roasting method
JP2020571966A JPWO2020165974A1 (en) 2019-02-13 2019-02-13 Sulfation roasting method
PH12021550534A PH12021550534A1 (en) 2019-02-13 2021-03-10 Sulfation roasting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005100 WO2020165974A1 (en) 2019-02-13 2019-02-13 Sulfation roasting method

Publications (1)

Publication Number Publication Date
WO2020165974A1 true WO2020165974A1 (en) 2020-08-20

Family

ID=72044460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005100 WO2020165974A1 (en) 2019-02-13 2019-02-13 Sulfation roasting method

Country Status (4)

Country Link
JP (1) JPWO2020165974A1 (en)
AU (1) AU2019429311A1 (en)
PH (1) PH12021550534A1 (en)
WO (1) WO2020165974A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212837A (en) * 2021-12-31 2022-03-22 江西睿达新能源科技有限公司 Method for recovering and treating lithium-nickel-containing crystallization mother liquor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501791A (en) * 2001-08-29 2005-01-20 リグビィ、ウィリアム、ジェイ. Method for producing potassium sulfate fertilizer and other metal sulfates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501791A (en) * 2001-08-29 2005-01-20 リグビィ、ウィリアム、ジェイ. Method for producing potassium sulfate fertilizer and other metal sulfates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212837A (en) * 2021-12-31 2022-03-22 江西睿达新能源科技有限公司 Method for recovering and treating lithium-nickel-containing crystallization mother liquor

Also Published As

Publication number Publication date
PH12021550534A1 (en) 2022-02-21
AU2019429311A1 (en) 2021-04-08
JPWO2020165974A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP6135609B2 (en) How to blow gas into the autoclave
AU2009238168B2 (en) Process for production of nickel and cobalt using metal hydroxide, metal oxide and/or metal carbonate
US8557019B2 (en) Process for production of nickel and cobalt using metal hydroxide, metal oxide and/or metal carbonate
JP2022542362A (en) How Lithium is Recovered from Waste Lithium Ion Batteries
JP2022541321A (en) Method for recovering lithium and other metals from waste lithium-ion batteries
AU2011341872B2 (en) Method for enrichment-recovering ferronickel from raw material containing nickel, method for recovering nickel from enriched ferronickel, and method for recycling solution containing iron produced from same
JP6539922B1 (en) Method for producing nickel sulfate compound
WO2009097689A1 (en) Process for manufacturing prefluxed metal oxide from metal hydroxide and metal carbonate precursors
WO2020165974A1 (en) Sulfation roasting method
CN103205772B (en) Method for producing electrolytic manganese dioxide
WO2019244527A1 (en) Method for producing nickel sulfate compound
JP2016180129A (en) Method for producing cobalt powder
JP6222141B2 (en) Method for producing nickel sulfide, method for hydrometallizing nickel oxide ore
JP2004292901A (en) Leaching method for zinc concentrate
CN105198008B (en) The method and system of carbonyl nickel powder is prepared using lateritic nickel ore
WO2020174573A1 (en) Residue processing method and sulfatizing roasting method
JPS6260831A (en) Base metals and collection of base metal valuables from iron-containing sulfide
WO2020157898A1 (en) Method for treating nickel-containing raw material
JP7191215B2 (en) Method for treating nickel-containing raw materials
WO2020075288A1 (en) Method and device for processing nickel oxide ore
Biley et al. Development of the iron-focused laterite (ARFe) process
CA2557849C (en) Selective reduction of cupriferous calcine
JP2006001817A (en) Reduction dissolving method for mixed hydroxide comprising nickel and cobalt
US678210A (en) Process of treating complex ores.
JP2021167461A (en) Method for smelting oxide ore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571966

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019429311

Country of ref document: AU

Date of ref document: 20190213

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914998

Country of ref document: EP

Kind code of ref document: A1