WO2019244527A1 - Method for producing nickel sulfate compound - Google Patents

Method for producing nickel sulfate compound Download PDF

Info

Publication number
WO2019244527A1
WO2019244527A1 PCT/JP2019/019531 JP2019019531W WO2019244527A1 WO 2019244527 A1 WO2019244527 A1 WO 2019244527A1 JP 2019019531 W JP2019019531 W JP 2019019531W WO 2019244527 A1 WO2019244527 A1 WO 2019244527A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
nickel sulfate
sulfate compound
sulfuric acid
water
Prior art date
Application number
PCT/JP2019/019531
Other languages
French (fr)
Japanese (ja)
Inventor
賢三 左右田
耕二 小谷野
宣男 白鳥
Original Assignee
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018151471A external-priority patent/JP7042719B2/en
Application filed by 日揮グローバル株式会社 filed Critical 日揮グローバル株式会社
Priority to BR112020025731-1A priority Critical patent/BR112020025731A2/en
Priority to AU2019290870A priority patent/AU2019290870B2/en
Publication of WO2019244527A1 publication Critical patent/WO2019244527A1/en
Priority to PH12020551393A priority patent/PH12020551393A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing a nickel sulfate compound.
  • This application claims priority based on Japanese Patent Application No. 2018-118046 filed in Japan on June 21, 2018 and Japanese Patent Application No. 2018-151471 filed in Japan on August 10, 2018. And its content is incorporated herein.
  • nickel sulfate compounds have been used as raw materials for various nickel compounds or metallic nickel for applications such as electrolytic nickel plating, electroless nickel plating, and catalyst materials.
  • demand for secondary batteries using a nickel compound or metallic nickel as a positive electrode material is expected to be increased as a power source for transportation equipment such as electric vehicles and electronic equipment.
  • stable supply of a high-purity nickel sulfate compound is desired.
  • a method of obtaining a high-purity nickel compound includes a solvent extraction method.
  • a step of selectively extracting and removing other metal compounds or selectively extracting and extracting nickel compounds is performed.
  • a special agent is required, and the cost is high.
  • Patent Document 1 describes a method of obtaining water-soluble nickel sulfate by subjecting green nickel oxide powder having a specific gravity of more than 6.30 to heat treatment in sulfuric acid and then leaching with hot water. ing.
  • Patent Document 1 describes sulfuric acid solutions having a concentration of 30% to 60% (claims 1 to 5) and concentrated sulfuric acid having a concentration of 95% (claims 6 to 7) as the sulfuric acid used for the heat treatment. In the case of using concentrated sulfuric acid having a concentration of 95% in Patent Document 1 (Examples 7 to 9), a high temperature of 275 ° C. or more is required.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a nickel sulfate compound capable of producing a nickel sulfate compound at a higher conversion rate even under milder conditions than before.
  • a nickel-containing raw material is treated with concentrated sulfuric acid together with an attrition material to convert at least a part of the nickel-containing raw material into a nickel sulfate compound.
  • the nickel-containing raw material in the conversion step is at least one selected from the group consisting of nickel oxide, nickel hydroxide, nickel sulfide, nickel chloride, nickel metal, ferronickel, and nickel ore.
  • the method for producing a nickel sulfate compound according to the first aspect comprising:
  • a third aspect of the present invention is the nickel sulfate according to the first aspect, wherein in the conversion step, the nickel-containing raw material contains nickel sulfide, an oxidizing agent is added, and the oxidation-reduction potential is 300 mV or more. This is a method for producing a compound.
  • a fourth aspect of the present invention is any of the first to third aspects, wherein concentrated sulfuric acid contained in the liquid phase obtained in the solid-liquid separation step is reused in the conversion step. This is a method for producing a nickel sulfate compound.
  • the temperature of water added to the solid phase is 15 to 60 ° C. It is a manufacturing method.
  • impurities are separated by setting the pH of a solution obtained by dissolving the nickel sulfate compound in the water to 4 to 5 and separating the impurities.
  • the nickel sulfate compound according to any one of the first to sixth aspects further comprising a purification step of removing a cobalt compound contained in the solution obtained in the dissolution separation step. It is a manufacturing method.
  • An eighth aspect of the present invention is directed to any one of the first to seventh aspects, further comprising a crystallization step of adding an organic solvent to the solution obtained in the dissolution separation step to precipitate a nickel sulfate compound. This is a method for producing a nickel sulfate compound.
  • a ninth aspect of the present invention is characterized in that the organic solvent in the crystallization step is at least one selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol and acetone.
  • a tenth aspect of the present invention is the method for producing a nickel sulfate compound according to the eighth or ninth aspect, wherein the nickel sulfate compound obtained in the crystallization step is nickel sulfate hexahydrate. is there.
  • the nickel-containing raw material with concentrated sulfuric acid together with the attrition material, it is possible to generate a nickel sulfate compound with a higher conversion even under milder conditions than before.
  • a mixture containing the produced nickel sulfate compound and unreacted concentrated sulfuric acid is subjected to solid-liquid separation, the nickel sulfate compound can be easily separated as a solid phase, and the unreacted concentrated sulfuric acid can be easily separated as a liquid phase.
  • the treatment can be easily performed without bringing unreacted concentrated sulfuric acid into contact with water.
  • the second aspect it is possible to use a nickel-containing raw material that is relatively easy to procure, so that productivity can be improved.
  • the conversion reaction can be promoted by adding an oxidizing agent. Further, by setting the oxidation-reduction potential at the time of the conversion reaction to an oxidation region of 300 mV or more, preventing the precipitation of sulfur and the generation of hydrogen sulfide gas, and maintaining the conditions for generating ionic sulfur, for example, HSO 4 ⁇ ions, The conversion efficiency from nickel sulfide to nickel sulfate compound can be improved.
  • the unreacted concentrated sulfuric acid can be effectively used, and the cost required for the disposal of concentrated sulfuric acid can be reduced.
  • the nickel sulfate compound can be selectively extracted into the aqueous phase while suppressing dissolution of impurities such as iron salts.
  • the nickel sulfate compound can be selectively extracted into the aqueous phase while suppressing dissolution of impurities such as iron salts.
  • the seventh aspect it is possible to manufacture a higher-quality nickel sulfate compound by removing the cobalt compound which is likely to coexist with the nickel sulfate compound.
  • the impurities are removed by dissolving the nickel sulfate compound contained in the solid phase in water and then crystallization using an organic solvent. Since it is removed as a part remaining in the aqueous phase during the precipitation, a high-purity nickel sulfate compound can be produced more efficiently.
  • effective purification can be achieved by crystallization using an organic solvent that is easily miscible with water. Further, the organic solvent can be efficiently recovered from the liquid phase containing water and the organic solvent obtained by crystallization by distillation.
  • a nickel-containing raw material 10 is treated with concentrated sulfuric acid together with an abrasive to convert at least a part of the nickel-containing raw material 10 into a nickel sulfate compound.
  • Conversion step S1 solid-liquid separation step S2 for separating mixture 11 obtained in conversion step S1 into solid phase 21 and liquid phase 22, and water added to solid phase 21 obtained in solid-liquid separation step S2,
  • the solution 31 containing the nickel sulfate compound is obtained by the dissolution separation step S3.
  • the nickel-containing raw material is treated with concentrated sulfuric acid together with the abrasive.
  • the nickel-containing raw material may be a nickel compound or metallic nickel as long as it contains a nickel element.
  • the nickel compound include, but are not particularly limited to, nickel salts such as nickel oxide, nickel hydroxide, nickel sulfide, and nickel chloride.
  • the nickel compound may be a hydrate.
  • the metallic nickel may be a nickel alloy such as ferronickel. When metallic nickel (simple or alloy) is used as a nickel-containing raw material, a shot or the like obtained by dividing a molten metal into small pieces may be used. Nickel ore can also be used as a nickel-containing raw material. As the nickel ore, at least one kind of oxide ore, sulfide ore and the like can be mentioned. Nickel mat or the like containing nickel sulfide as a main component can also be used as a nickel-containing raw material.
  • the nickel-containing raw material is not limited to one type, and two or more types may be used.
  • the two or more nickel-containing raw materials may be supplied in a mixed state, or may be supplied separately.
  • the pulverizing means is not particularly limited, but one or more of a ball mill, a rod mill, a hammer mill, a fluid energy mill, a vibration mill and the like can be used.
  • the particle size after pulverization is not particularly limited, but is, for example, about 1 to 1000 ⁇ m, or about 10 to 100 ⁇ m.
  • Abrasion material may be any material having a function of abrading the particle surface of the nickel-containing raw material.
  • Stainless steel, ceramics, and the like having corrosion resistance to concentrated sulfuric acid are preferable, and ceramic balls are particularly preferable.
  • concentrated sulfuric acid is separated as a liquid phase, even a substance that is soluble in dilute sulfuric acid such as steel. Any substance that is hardly soluble in concentrated sulfuric acid can be used. Even if iron or the like is slightly dissolved by bringing steel or the like into contact with concentrated sulfuric acid, it can be separated and removed in a step described later.
  • the dissolution reaction is such that the sulfuric acid solution penetrates into the inside of the particles of the nickel-containing raw material, and nickel reacts with sulfuric acid to be dissolved.
  • the diffusion of the sulfuric acid solution on the particle surface determines the rate of the reaction.
  • insoluble crystals or the like are generated on the particle surface due to the relationship between the oxidation-reduction region and the pH region, there is a problem that nickel inside may not be dissolved because the particle surface is covered with the insoluble matter. For this reason, in order to improve the conversion rate to nickel sulfate, it was necessary to lengthen the residence time or increase the reaction temperature.
  • the nickel-containing raw material and the abrasive are collided by stirring or the like in a state where the nickel-containing raw material, the abrasive and the concentrated sulfuric acid are mixed.
  • the reaction between the nickel-containing raw material and the concentrated sulfuric acid becomes a mechanochemical reaction via the attrition material, insoluble matter is less likely to be deposited on the particle surface of the nickel-containing raw material, and sulfuric acid easily permeates into the inside of the particles. For this reason, the conversion rate to the nickel sulfate compound can be improved even under mild conditions.
  • the temperature of the mixture in the conversion step is, for example, 15 to 200 ° C., and good conversion progresses. As a mild reaction condition, 90 ° C. or less at which the sulfuric acid mist does not fly is preferable.
  • nickel and sulfuric acid react to obtain a nickel sulfate compound.
  • the conversion reaction is performed under heating conditions, the nickel-containing raw material, concentrated sulfuric acid, and the like may be heated before being supplied and mixed into the conversion reaction system.
  • the nickel sulfate compound formed in the conversion step may be in a state of nickel sulfate anhydrous, monohydrate, dihydrate, pentahydrate, hexahydrate, heptahydrate and the like.
  • the concentrated sulfuric acid include a liquid containing 90% or more sulfuric acid.
  • the concentration of concentrated sulfuric acid include 95%, 96%, 98%, and the like. At least a portion of the concentrated sulfuric acid used in the conversion step may be procured and used from other sources. As at least a part of the concentrated sulfuric acid used in the conversion step, the concentrated sulfuric acid recovered from the liquid phase in the solid-liquid separation step described below can be reused.
  • the mixing ratio of the nickel-containing raw material and the concentrated sulfuric acid is preferably selected within a range in which the viscosity of the slurry-like mixture is appropriate.
  • the ratio of the nickel-containing raw material is preferably 5 wt% to 50 wt%. 5 wt% to 15 wt% is more preferable in the range having the properties of Newtonian fluid.
  • the conversion reaction is performed by injecting oxygen (O 2 ) gas or adding an oxidizing agent such as hydrogen peroxide (H 2 O 2 ) or ozone (O 3 ). Is preferably promoted.
  • the nickel mat be pulverized to, for example, about 20 ⁇ m and then supplied to the conversion step.
  • the iron content in the nickel mat is preferably reduced in advance by a converter or the like.
  • the oxidation-reduction potential in the reaction system is preferably 300 mV or more so that elemental sulfur (S 0 ) does not precipitate and ionic HSO 4 ⁇ is generated. That is, by setting the oxidation-reduction potential in the reaction system to 300 mV or more, sulfur generated from nickel sulfide is used in an ion state.
  • a mixed gas containing oxygen for example, air
  • the conversion step of the present embodiment can be effectively performed at normal pressure, but may be performed under pressurized conditions to increase the solubility of oxygen gas in concentrated sulfuric acid.
  • the partial pressure of the oxygen gas may be about 0.02 MPa as in air, or may be a higher pressure, for example, 1.0 to 2.0 MPa.
  • the mixture obtained in the conversion step is separated into a solid phase and a liquid phase.
  • the method of solid-liquid separation is not particularly limited, and examples thereof include a filtration method, a centrifugal separation method, and a sedimentation separation method. Desirably, it is preferable to use a device that has a high performance of separating fine particles contained in the solid phase and has excellent corrosion resistance to sulfuric acid in a portion that can come into contact with concentrated sulfuric acid contained in the liquid phase.
  • a sulfuric acid-resistant material can be used as a filter medium or the like.
  • the method of filtration is not particularly limited, and examples thereof include gravity filtration, reduced pressure filtration, pressure filtration, centrifugal filtration, filtration with a filter aid, and press-filtration.
  • Unreacted concentrated sulfuric acid contained in the liquid phase obtained in the solid-liquid separation step can be reused as concentrated sulfuric acid added to the nickel-containing raw material in the conversion step. As a result, unreacted concentrated sulfuric acid can be used effectively, and the cost required for disposal of concentrated sulfuric acid can be reduced.
  • the metal compound is dissolved in the collected concentrated sulfuric acid, it is preferable to remove the metal compound from the concentrated sulfuric acid by treating with a purification device.
  • a small amount of concentrated sulfuric acid may remain in the solid phase obtained in the solid-liquid separation step in order to obtain a solution having a preferable pH range in the dissolution separation step described later.
  • the amount of the concentrated sulfuric acid may be reduced from the solid phase by performing air blowing or the like on the solid phase cake.
  • air blowing or the like When removing concentrated sulfuric acid from the solid phase, it is economical to use air as a fluid that does not react with sulfates and concentrated sulfuric acid in the solid phase, but other fluids or methods may be used.
  • the water added to the solid phase in the dissolution / separation step is preferably pure water treated so as not to contain impurities.
  • the water treatment method is not particularly limited, and includes one or more of filtration, membrane separation, ion exchange, distillation, disinfection, chemical treatment, adsorption and the like.
  • tap water obtained from a water source, industrial water, or the like may be used, or water obtained by treating waste water generated in a crystallization step or another process described later may be used. Two or more types of water may be used.
  • the components in the solid phase are dissolved in water to obtain a solution.
  • the pH of the resulting solution is made acidic in order to dissolve the nickel sulfate compound in the solid phase in water.
  • the pH of the solution is about 4 to 5, and the oxidation region is preferably measured by measuring the oxidation-reduction potential. 8 to 5.5.
  • the method of adjusting the pH of the solution is not limited to the adjustment of the residual amount of concentrated sulfuric acid in the solid-liquid separation step described above, but may be performed by adding an acid or an alkali.
  • the acid is not limited to concentrated sulfuric acid, but may be dilute sulfuric acid or the like.
  • the alkali a hydroxide of an alkaline earth metal (for example, calcium hydroxide) which can be easily removed from the aqueous phase by forming a precipitate in the presence of sulfate ions is preferable.
  • an oxidizing agent such as H 2 O 2 may be added as needed to maintain the solution in the oxidized region. When the oxidizing agent used in the conversion step can remain until the dissolution separation step, the residual amount of the oxidizing agent may be adjusted.
  • Examples of impurities that can coexist with the nickel sulfate compound include iron (Fe), cobalt (Co), and aluminum (Al).
  • iron sulfate, cobalt sulfate, and the like also dissolve when the nickel sulfate compound is dissolved in water. Further, by adjusting the pH of the solution obtained by dissolving the nickel sulfate compound in water to 4 to 5, it precipitates in water as an oxide such as FeOOH, Fe 2 O 3 , Fe 3 O 4, and the like. Removal of impurities becomes easy.
  • Nickel sulfate has a higher solubility in water as the temperature increases, but the temperature of the water is preferably about 15 to 60 ° C. in order to suppress the dissolution of impurities. In order to adjust the temperature of the water, the temperature of the water added to the nickel sulfate compound or the temperature around the container used for dissolving the nickel sulfate compound may be controlled.
  • the method for solid-liquid separation is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method.
  • the solid removed by the solid-liquid separation may include compounds such as arsenic (As), lead (Pb), and zinc (Zn) in addition to the above impurities. Solids containing these impurities can be recycled as valuables.
  • the temperature control method include adjustment of the temperature or amount of water added in the dissolution / separation step, heat exchange, heat release, cooling, and the like.
  • the temperature of the solution is preferably room temperature or higher, for example, 20 ° C. or higher.
  • the temperature of the solution obtained by the dissolution separation step is lower than the boiling point of the organic solvent used in the crystallization step, and lower than the azeotropic point of the mixture of the organic solvent and water. Is preferred.
  • the solution obtained by the dissolution / separation step contains a nickel sulfate compound as a main component
  • the solution can be transported and used as a solution of the nickel sulfate compound or as a solid of the nickel sulfate compound by drying or the like.
  • techniques such as solvent extraction, electrodialysis (Electrowinning), electrorefining (Electrorefining), ion exchange, and crystallization may be used. Can be used.
  • an extractant that can extract cobalt into a solvent preferentially or selectively over nickel. This allows the nickel sulfate compound to remain in the aqueous solution and allows efficient purification.
  • the extractant include organic compounds having a functional group capable of binding to a metal ion, such as a phosphinic acid group and a thiophosphinic acid group.
  • an organic solvent capable of separating the extractant from water may be used as a diluent.
  • the diluent is preferably an organic solvent that is hardly miscible with water.
  • FIG. 2 shows an embodiment having a crystallization step S4 in which an organic solvent is added to the solution 31 obtained in the dissolution separation step S3 to precipitate a nickel sulfate compound 41.
  • the conversion step S1, the solid-liquid separation step S2, and the dissolution separation step S3 are the same as described above, and thus redundant description will be omitted.
  • a nickel sulfate compound is precipitated by adding an organic solvent to the solution obtained in the dissolution separation step.
  • the container used for obtaining the solution in the dissolution / separation step can be subsequently used for the crystallization step.
  • the solution obtained in the dissolution / separation step may be transferred from the vessel used in the dissolution / separation step to the vessel used in the crystallization step.
  • the organic solvent used for crystallization is preferably an organic solvent miscible with water, and includes, for example, one or more selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol, and acetone. Two or more organic solvents may be used.
  • the concentration range in which the organic solvent is miscible with water it is preferable that the organic solvent be mixed at a concentration to which the organic solvent is added to such an extent that the nickel sulfate compound is precipitated.
  • the organic solvent can be mixed with water at an arbitrary ratio as long as the concentration allows precipitation of the nickel sulfate compound.
  • the organic solvent added in the crystallization step is not limited to an anhydrous organic solvent, and may be a water-containing organic solvent to such an extent that crystallization is not hindered.
  • the ratio of water to the organic solvent is not particularly limited, but may be set, for example, in the range of 1:20 to 20: 1, but is preferably about 1: 1, for example, 1: 2 to 2: 1.
  • the nickel sulfate compound precipitated in the crystallization step may be in a state of nickel sulfate hexahydrate or the like.
  • the precipitated nickel sulfate compound can be separated from the solution by solid-liquid separation.
  • the method for solid-liquid separation is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method.
  • the metal dissolved in the solution is preferably neutralized and removed from the solution by a method such as precipitation.
  • the purified solution is mainly composed of a mixture of water and an organic solvent, the water and the organic solvent can be separated by a method such as distillation.
  • the organic solvent 45 separated from the solution 42 after the crystallization step S4 by distillation 43 or the like is added to the solution 31 obtained in the dissolution separation step S3 in the crystallization step S4. It may be reused. Further, the water 44 separated from the solution 42 after the crystallization step S4 may be reused in the step of being added to the solid phase 21 obtained in the solid-liquid separation step S2 in the dissolution separation step S3.
  • a purification step may be performed if necessary.
  • the step of removing impurities such as metals may be performed not only before distillation but also after distillation. For example, when the amount of impurities is small, a step of removing impurities from the solution remaining after distilling the solution may be provided.
  • the following effects can be obtained. 1) Since a nickel sulfate compound having high added value can be produced from various nickel-containing raw materials, production is possible even near a demand area, and transportation costs can be reduced. 2) A high-purity nickel sulfate compound can be produced. 3) The operating cost can be reduced by reusing concentrated sulfuric acid. 4) The reaction rate can be promoted in the conversion step. Further, generation of hydrogen (H 2 ) gas can be reduced. 5) By reducing the residence time in the conversion step, productivity can be increased even if the apparatus is downsized. 6) By using concentrated sulfuric acid, a low-cost material can be applied. 7) Uses fewer drugs, making management easier.
  • the conversion step of the above embodiment can be applied to a step of treating a raw material containing a metal or a metal compound with concentrated sulfuric acid together with an abrasive to convert at least a part of the raw material to a metal sulfate compound.
  • the raw material in this case is not limited to the nickel mat, but may be a copper mat, a Ni / Cu mixed mat, or the like, and these mats may contain a platinum group metal (PGM).
  • PGM platinum group metal
  • Example 1-1 100 mL of concentrated sulfuric acid (reagent having a purity of 98% as H 2 SO 4 ) and 5 g of nickel oxide (reagent of green NiO) are put in a 300 mL glass container, and stirred with a stirrer coated with a fluororesin. Heated with an electric heater. When the temperature exceeded 100 ° C., steam and white smoke-like sulfuric acid mist were generated on the gas side. After heating to 120 ° C., the electric heater was turned off and stirring continued for 72 hours. While continuing to stir, the mixture in the glass vessel cooled down naturally. In the mixture, some very hard crystals different from the nickel oxide added were generated. As a result of X-ray analysis, it was found that NiSO 4 .H 2 O was generated.
  • Example 1-2 A 6 mm diameter ceramic ball crushing media was added to a glass container having a capacity of 300 mL to a height of about 15 mm.
  • a stirring blade made of fluororesin was inserted therein, and the inside of the glass container was heated with a water bath from the outside so that the temperature of the inside became 90 ° C.
  • the rotation speed of the stirring blade was 60 rpm.
  • 5 g of nickel oxide (green NiO reagent) powder and 100 mL of concentrated sulfuric acid (98% pure reagent as H 2 SO 4 ) were added to the glass container. After about 30 minutes, the temperature inside the glass container reached 90 ° C, and thereafter, the temperature was maintained at 90 ° C. In this state, stirring was continued for up to 6 hours.
  • Samples of the mixture containing the powder and concentrated sulfuric acid were taken from the inside of the glass container at the time when 3 hours and 6 hours had passed during the process.
  • the sample was collected in a centrifuge tube, and separated into a solid phase and a liquid phase by centrifugation.
  • the liquid phase had a nickel concentration of 1154 mg / L, but the solid phase had, as a result of X-ray analysis, 97.3% of the nickel oxide added to the glass container converted to nickel sulfate. From this result, it was confirmed that the conversion reaction to nickel sulfate can be directly performed with concentrated sulfuric acid while the nickel oxide is being worn away.
  • Nickel sulfate hexahydrate reagent (NiSO 4 ⁇ 6H 2 O blue) was 10g collected and placed in a glass container having a capacity of 300 mL.
  • a solution in which nickel sulfate hexahydrate was dissolved in an aqueous sulfuric acid solution was prepared by adding a mixed solution of 6.3 g of reagent sulfuric acid and 83.7 g of pure water to this. After dispensing 10 mL of this solution into each centrifuge tube, 15 mL of each organic solvent was added to each centrifuge tube.
  • organic solvents There are four types of organic solvents: isopropanol, acetone, tributyl phosphate (TBP), and toluene. Further, a test in which the centrifuge tube was rapidly cooled from the outside without adding an organic solvent to the solution was also performed. Table 1 shows the results.
  • Example 2-1 A raw material slurry composed of nickel matte (Ni: 78%, Fe: 1%, Co: 1%, S: 20%) and 95% sulfuric acid was added to a glass container having a capacity of 300 mL together with ceramic balls having a diameter of 6 mm. While stirring the raw material slurry and the ceramic balls in an oil bath, the bath was heated. The rotation speed of the stirring was 60 rpm. After reaching the predetermined temperature, a small amount of sample was taken from the slurry being stirred at predetermined time intervals. The liquid phase was removed from the sample slurry by centrifugation.
  • the solid phase was washed with water, and the amount of the nickel sulfate compound was determined as NiSO 4 .H 2 O by quantifying Ni ions contained in the washing water. Further, the ratio of S, Al, Ni, and Fe was quantified from the solid residue after washing by X-ray fluorescence elemental analysis (XRF) to determine the amount of nickel matte and the amount of aluminum oxide derived from ceramic balls. I asked.
  • XRF X-ray fluorescence elemental analysis
  • the total amount of Ni in the solid phase was determined from the amount of the nickel sulfate compound contained in the washing water and the amount of the nickel matte contained in the residue. From the ratio of this to the amount of the nickel sulfate compound contained in the washing water, the nickel sulfate compound The conversion rate was determined. Table 2 shows the results obtained when the predetermined temperature at which the conversion reaction was carried out was set at 90 ° C., 120 ° C., and 150 ° C., respectively.
  • Example 2-2 90 mL of an aqueous solution containing FeSO 4 at a concentration of 102 g / L and H 2 SO 4 at a concentration of 33 g / L was heated to 230 ° C. in an autoclave over 60 minutes, and oxygen gas having a partial pressure of 1.8 MPa was blown into the aqueous solution. It is. The pressure rose with the heat generation, and the pressure was confirmed when the temperature returned to equilibrium. Thus, while the amount of the oxygen gas blown was 63 mmol, the amount consumed for the oxidation of Fe (II) was 15 mmol, and the reduction amount of the oxygen gas in the gas phase calculated from the decrease in the partial pressure was 26 mmol.
  • Example 2-3 A prescribed amount of a commercially available nickel sulfate reagent (99% purity) powder is weighed, put into 100 g of pure water, stirred for 10 minutes after reaching the prescribed temperature, and sampled from the solution to obtain a solution of the dissolved nickel sulfate. The amount was quantitatively analyzed. As a result, the following results were obtained as the solubility of nickel sulfate (value with respect to a 100 g solution).
  • Example 2-1 the solid matter produced by performing the conversion step at 150 ° C. was subjected to solid-liquid separation using a pressure filter to obtain sludge having a temperature of 120 ° C.
  • sludge having a temperature of 120 ° C.
  • 50 g of this sludge was collected and 100 g of pure water at 15 ° C. was added so that the sludge concentration became 30 wt%, a solution having a temperature of 22 ° C. was obtained.
  • Fe ions in the solution obtained by continuing stirring for 30 minutes were analyzed, it was several tens ppm.
  • nickel sulfate had a value close to the saturation solubility at 22 ° C., that is, 28 g of nickel sulfate was dissolved in 100 g of the solution. From this result, it was found that nickel sulfate having high solubility has an effect of removing impurities by dissolving in cold water.
  • the present invention can be used for the production of various types of nickel compounds or high-purity nickel sulfate compounds useful as raw materials for metallic nickel used in electric parts such as secondary batteries, chemical products, and the like.
  • S1 conversion step
  • S2 solid-liquid separation step
  • S3 dissolution separation step
  • S4 crystallization step
  • 10 nickel-containing raw material
  • 11 mixture
  • 21 solid phase
  • 22 liquid phase
  • 31 solution
  • 32 ...
  • 41 nickel sulfate compound
  • 42 solution
  • 43 distillation
  • 44 water
  • 45 organic solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

This method for producing a nickel sulfate compound comprises: a conversion step (S1) for converting at least a part of a nickel-containing raw material (10) into a nickel sulfate compound by treating the nickel-containing raw material (10) with concentrated sulfuric acid in the presence of an abrasive material; a solid-liquid separation step (S2) for separating a mixture (11) obtained in the conversion step (S1) into a solid phase (21) and a liquid phase (22); and a dissolution separation step (S3) for adding water to the solid phase (21) obtained in the solid-liquid separation step (S2) and causing the nickel sulfate compound contained in the solid phase (21) to dissolve in water so as to separate impurities (32).

Description

硫酸ニッケル化合物の製造方法Method for producing nickel sulfate compound
 本発明は、硫酸ニッケル化合物の製造方法に関する。
 本願は、2018年6月21日に、日本に出願された特願2018-118046号、及び、2018年8月10日に、日本に出願された特願2018-151471号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a nickel sulfate compound.
This application claims priority based on Japanese Patent Application No. 2018-118046 filed in Japan on June 21, 2018 and Japanese Patent Application No. 2018-151471 filed in Japan on August 10, 2018. And its content is incorporated herein.
 従来、硫酸ニッケル化合物は、各種のニッケル化合物または金属ニッケルの原料として、電解ニッケルメッキ、無電解ニッケルメッキ、触媒材料等の用途に利用されている。近年、電気自動車等の輸送機器、電子機器等の電源として、ニッケル化合物または金属ニッケルを正極材料に用いた二次電池の需要拡大が見込まれる。高性能な二次電池を得るため、高純度の硫酸ニッケル化合物の安定供給が望まれている。 Conventionally, nickel sulfate compounds have been used as raw materials for various nickel compounds or metallic nickel for applications such as electrolytic nickel plating, electroless nickel plating, and catalyst materials. 2. Description of the Related Art In recent years, demand for secondary batteries using a nickel compound or metallic nickel as a positive electrode material is expected to be increased as a power source for transportation equipment such as electric vehicles and electronic equipment. In order to obtain a high-performance secondary battery, stable supply of a high-purity nickel sulfate compound is desired.
 低純度のニッケル化合物に含まれる可能性がある不純物としては、鉄、銅、コバルト、マンガン、マグネシウム等の、他の金属化合物が挙げられる。従来、高純度のニッケル化合物を得る方法として、溶媒抽出法が挙げられる。溶媒抽出法では、他の金属化合物を選択的に抽出して除去するか、ニッケル化合物を選択的に抽出して取り出す工程が実施される。いずれの場合も、特定の金属イオンを選択的に抽出するためには、特殊な薬剤が必要となり、高コストであった。 不純 物 Other metal compounds such as iron, copper, cobalt, manganese, and magnesium may be included as impurities that may be contained in the low-purity nickel compound. Conventionally, a method of obtaining a high-purity nickel compound includes a solvent extraction method. In the solvent extraction method, a step of selectively extracting and removing other metal compounds or selectively extracting and extracting nickel compounds is performed. In any case, in order to selectively extract a specific metal ion, a special agent is required, and the cost is high.
 硫酸ニッケルを製造する方法として、イオン交換法によりニッケル化合物の陰イオンを硫酸根に交換する方法や、硫酸溶液中でニッケル金属粉末を、水素ガスを発生させながら溶解する方法も知られている。また特許文献1には、比重が6.30を超える緑色の酸化ニッケル粉末を硫酸中で加熱処理した後、熱水で浸出(leach)することにより、水溶性の硫酸ニッケルを得る方法が記載されている。特許文献1では、加熱処理に用いる硫酸として、濃度30%~60%の硫酸溶液(クレーム1~5)、濃度95%の濃硫酸(クレーム6~7)が挙げられている。特許文献1で濃度95%の濃硫酸を用いる場合(実施例7~9)には、275℃以上の高温が必要とされている。 As a method for producing nickel sulfate, a method of exchanging anions of a nickel compound for a sulfate group by an ion exchange method and a method of dissolving nickel metal powder in a sulfuric acid solution while generating hydrogen gas are also known. Patent Document 1 describes a method of obtaining water-soluble nickel sulfate by subjecting green nickel oxide powder having a specific gravity of more than 6.30 to heat treatment in sulfuric acid and then leaching with hot water. ing. Patent Document 1 describes sulfuric acid solutions having a concentration of 30% to 60% (claims 1 to 5) and concentrated sulfuric acid having a concentration of 95% (claims 6 to 7) as the sulfuric acid used for the heat treatment. In the case of using concentrated sulfuric acid having a concentration of 95% in Patent Document 1 (Examples 7 to 9), a high temperature of 275 ° C. or more is required.
米国特許第3002814号明細書US Patent No. 30021814
 本発明は、上記事情に鑑みてなされたものであり、従来より温和な条件でも高い転換率で硫酸ニッケル化合物を製造することが可能な硫酸ニッケル化合物の製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a nickel sulfate compound capable of producing a nickel sulfate compound at a higher conversion rate even under milder conditions than before.
 本発明の第1の態様は、ニッケル含有原料を、磨滅材と共に濃硫酸で処理して、前記ニッケル含有原料の少なくとも一部を硫酸ニッケル化合物に転換する転換工程と、前記転換工程で得られた混合物を固相と液相とに分離する固液分離工程と、前記固液分離工程で得られた前記固相に水を加え、前記固相に含まれる硫酸ニッケル化合物を前記水に溶解させ不純物を分離する溶解分離工程と、を有することを特徴とする硫酸ニッケル化合物の製造方法である。 In a first aspect of the present invention, a nickel-containing raw material is treated with concentrated sulfuric acid together with an attrition material to convert at least a part of the nickel-containing raw material into a nickel sulfate compound. A solid-liquid separation step of separating the mixture into a solid phase and a liquid phase; adding water to the solid phase obtained in the solid-liquid separation step; dissolving the nickel sulfate compound contained in the solid phase in the water; And a dissolution / separation step of separating a nickel sulfate compound.
 本発明の第2の態様は、前記転換工程における前記ニッケル含有原料が、酸化ニッケル、水酸化ニッケル、硫化ニッケル、塩化ニッケル、金属ニッケル、フェロニッケル、ニッケル鉱石からなる群から選択される1種以上を含むことを特徴とする第1の態様の硫酸ニッケル化合物の製造方法である。 In a second aspect of the present invention, the nickel-containing raw material in the conversion step is at least one selected from the group consisting of nickel oxide, nickel hydroxide, nickel sulfide, nickel chloride, nickel metal, ferronickel, and nickel ore. The method for producing a nickel sulfate compound according to the first aspect, comprising:
 本発明の第3の態様は、前記転換工程において、前記ニッケル含有原料が硫化ニッケルを含み、酸化剤が添加され、酸化還元電位が300mV以上であることを特徴とする第1の態様の硫酸ニッケル化合物の製造方法である。 A third aspect of the present invention is the nickel sulfate according to the first aspect, wherein in the conversion step, the nickel-containing raw material contains nickel sulfide, an oxidizing agent is added, and the oxidation-reduction potential is 300 mV or more. This is a method for producing a compound.
 本発明の第4の態様は、前記固液分離工程で得られた前記液相に含まれる濃硫酸を、前記転換工程に再利用することを特徴とする第1~第3の態様のいずれかの硫酸ニッケル化合物の製造方法である。 A fourth aspect of the present invention is any of the first to third aspects, wherein concentrated sulfuric acid contained in the liquid phase obtained in the solid-liquid separation step is reused in the conversion step. This is a method for producing a nickel sulfate compound.
 本発明の第5の態様は、前記溶解分離工程において、前記固相に加える水の温度が15~60℃であることを特徴とする第1~第4の態様のいずれかの硫酸ニッケル化合物の製造方法である。 According to a fifth aspect of the present invention, in the dissolution separation step, the temperature of water added to the solid phase is 15 to 60 ° C. It is a manufacturing method.
 本発明の第6の態様は、前記溶解分離工程において、前記硫酸ニッケル化合物を前記水に溶解させた溶液のpHを4~5として不純物を分離することを特徴とする第1~第5の態様のいずれかの硫酸ニッケル化合物の製造方法である。 According to a sixth aspect of the present invention, in the dissolving and separating step, impurities are separated by setting the pH of a solution obtained by dissolving the nickel sulfate compound in the water to 4 to 5 and separating the impurities. The method for producing a nickel sulfate compound according to any one of the above.
 本発明の第7の態様は、前記溶解分離工程で得られた溶液に含まれるコバルト化合物を除去する精製工程を有することを特徴とする第1~第6の態様のいずれかの硫酸ニッケル化合物の製造方法である。 According to a seventh aspect of the present invention, there is provided the nickel sulfate compound according to any one of the first to sixth aspects, further comprising a purification step of removing a cobalt compound contained in the solution obtained in the dissolution separation step. It is a manufacturing method.
 本発明の第8の態様は、前記溶解分離工程で得られた溶液に有機溶媒を加えて硫酸ニッケル化合物を析出させる晶析工程を有することを特徴とする第1~第7の態様のいずれかの硫酸ニッケル化合物の製造方法である。 An eighth aspect of the present invention is directed to any one of the first to seventh aspects, further comprising a crystallization step of adding an organic solvent to the solution obtained in the dissolution separation step to precipitate a nickel sulfate compound. This is a method for producing a nickel sulfate compound.
 本発明の第9の態様は、前記晶析工程における前記有機溶媒が、メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、エチレングリコール、アセトンからなる群から選択される1種以上であることを特徴とする第8の態様の硫酸ニッケル化合物の製造方法である。 A ninth aspect of the present invention is characterized in that the organic solvent in the crystallization step is at least one selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol and acetone. The method for producing a nickel sulfate compound according to the eighth aspect described above.
 本発明の第10の態様は、前記晶析工程で得られる前記硫酸ニッケル化合物が、硫酸ニッケル6水和物であることを特徴とする第8又は第9の態様の硫酸ニッケル化合物の製造方法である。 A tenth aspect of the present invention is the method for producing a nickel sulfate compound according to the eighth or ninth aspect, wherein the nickel sulfate compound obtained in the crystallization step is nickel sulfate hexahydrate. is there.
 第1の態様によれば、ニッケル含有原料を、磨滅材と共に濃硫酸で処理することにより、従来より温和な条件でも高い転換率で硫酸ニッケル化合物を生成させることができる。また、生成した硫酸ニッケル化合物と未反応の濃硫酸とを含む混合物を固液分離する場合には、硫酸ニッケル化合物は固相、未反応の濃硫酸は液相として容易に分離することができるので、未反応の濃硫酸を水と接触させることなく、容易に処理が可能になる。 According to the first aspect, by treating the nickel-containing raw material with concentrated sulfuric acid together with the attrition material, it is possible to generate a nickel sulfate compound with a higher conversion even under milder conditions than before. When a mixture containing the produced nickel sulfate compound and unreacted concentrated sulfuric acid is subjected to solid-liquid separation, the nickel sulfate compound can be easily separated as a solid phase, and the unreacted concentrated sulfuric acid can be easily separated as a liquid phase. In addition, the treatment can be easily performed without bringing unreacted concentrated sulfuric acid into contact with water.
 第2の態様によれば、比較的調達が容易なニッケル含有原料を用いることができるので、生産性を向上させることができる。 According to the second aspect, it is possible to use a nickel-containing raw material that is relatively easy to procure, so that productivity can be improved.
 第3の態様によれば、ニッケルマット等の硫化ニッケルを含むニッケル含有原料を用いる場合に、酸化剤が添加されることにより、転換反応を促進させることができる。また、転換反応時の酸化還元電位を300mV以上の酸化域とし、硫黄の析出、硫化水素ガスの生成を防止してイオン状の硫黄、例えばHSO イオンが生成する条件を維持することで、硫化ニッケルから硫酸ニッケル化合物への転換効率を向上することができる。 According to the third aspect, when a nickel-containing raw material containing nickel sulfide such as a nickel mat is used, the conversion reaction can be promoted by adding an oxidizing agent. Further, by setting the oxidation-reduction potential at the time of the conversion reaction to an oxidation region of 300 mV or more, preventing the precipitation of sulfur and the generation of hydrogen sulfide gas, and maintaining the conditions for generating ionic sulfur, for example, HSO 4 ions, The conversion efficiency from nickel sulfide to nickel sulfate compound can be improved.
 第4の態様によれば、未反応の濃硫酸を有効に利用することができ、濃硫酸の廃棄処理に要するコストを低減することができる。 According to the fourth aspect, the unreacted concentrated sulfuric acid can be effectively used, and the cost required for the disposal of concentrated sulfuric acid can be reduced.
 第5の態様によれば、鉄塩などの不純物の溶解を抑制しつつ、硫酸ニッケル化合物を選択的に水相に抽出することができる。 According to the fifth aspect, the nickel sulfate compound can be selectively extracted into the aqueous phase while suppressing dissolution of impurities such as iron salts.
 第6の態様によれば、鉄塩などの不純物の溶解を抑制しつつ、硫酸ニッケル化合物を選択的に水相に抽出することができる。 According to the sixth aspect, the nickel sulfate compound can be selectively extracted into the aqueous phase while suppressing dissolution of impurities such as iron salts.
 第7の態様によれば、硫酸ニッケル化合物と共存しやすいコバルト化合物を除去して、より高品位の硫酸ニッケル化合物を製造することができる。 According to the seventh aspect, it is possible to manufacture a higher-quality nickel sulfate compound by removing the cobalt compound which is likely to coexist with the nickel sulfate compound.
 第8の態様によれば、固相に含まれる硫酸ニッケル化合物を水に溶解した後不純物を除去して、有機溶媒を用いて晶析することにより、不純物は、水に溶解しない成分、または晶析に際して水相に残る部分として除去されるので、高純度の硫酸ニッケル化合物をより効率的に製造することができる。 According to the eighth aspect, the impurities are removed by dissolving the nickel sulfate compound contained in the solid phase in water and then crystallization using an organic solvent. Since it is removed as a part remaining in the aqueous phase during the precipitation, a high-purity nickel sulfate compound can be produced more efficiently.
 第9の態様によれば、水と混和しやすい有機溶媒を用いた晶析で効果的な精製が可能となる。また、晶析により得られた水および有機溶媒を含む液相から、蒸留により有機溶媒を効率的に回収することができる。 According to the ninth aspect, effective purification can be achieved by crystallization using an organic solvent that is easily miscible with water. Further, the organic solvent can be efficiently recovered from the liquid phase containing water and the organic solvent obtained by crystallization by distillation.
 第10の態様によれば、溶液から硫酸ニッケル6水和物として析出させることにより、晶析する際に高純度品が得やすく、工業製品としても有用性が高い。 According to the tenth aspect, by precipitating nickel sulfate hexahydrate from the solution, a high-purity product is easily obtained at the time of crystallization, and its usefulness as an industrial product is high.
第1実施形態の硫酸ニッケル化合物の製造方法の概略を示す流れ図である。It is a flow chart which shows the outline of the manufacturing method of the nickel sulfate compound of a 1st embodiment. 第2実施形態の硫酸ニッケル化合物の製造方法の概略を示す流れ図である。It is a flowchart which shows the outline of the manufacturing method of the nickel sulfate compound of 2nd Embodiment.
 以下、好適な実施形態に基づいて、本発明を説明する。 Hereinafter, the present invention will be described based on preferred embodiments.
 本実施形態の硫酸ニッケル化合物の製造方法は、図1に示すように、ニッケル含有原料10を、磨滅材と共に濃硫酸で処理して、ニッケル含有原料10の少なくとも一部を硫酸ニッケル化合物に転換する転換工程S1と、転換工程S1で得られた混合物11を固相21と液相22とに分離する固液分離工程S2と、固液分離工程S2で得られた固相21に水を加え、固相21に含まれる硫酸ニッケル化合物を水に溶解させ不純物32を分離する溶解分離工程S3と、を有する。溶解分離工程S3により、硫酸ニッケル化合物を含む溶液31が得られる。 In the method for producing a nickel sulfate compound according to the present embodiment, as shown in FIG. 1, a nickel-containing raw material 10 is treated with concentrated sulfuric acid together with an abrasive to convert at least a part of the nickel-containing raw material 10 into a nickel sulfate compound. Conversion step S1, solid-liquid separation step S2 for separating mixture 11 obtained in conversion step S1 into solid phase 21 and liquid phase 22, and water added to solid phase 21 obtained in solid-liquid separation step S2, A dissolution separation step S3 of dissolving the nickel sulfate compound contained in the solid phase 21 in water to separate the impurities 32. The solution 31 containing the nickel sulfate compound is obtained by the dissolution separation step S3.
 本実施形態の転換工程では、ニッケル含有原料を、磨滅材と共に濃硫酸で処理する。 転 換 In the conversion step of this embodiment, the nickel-containing raw material is treated with concentrated sulfuric acid together with the abrasive.
 ニッケル含有原料としては、ニッケル元素を含有するのであれば、ニッケル化合物でも、金属ニッケルでもよい。ニッケル化合物としては、特に限定されないが、酸化ニッケル、水酸化ニッケル、硫化ニッケル、塩化ニッケル等のニッケル塩類が挙げられる。ニッケル化合物は、水和物でもよい。金属ニッケルは、フェロニッケル等のニッケル合金でもよい。金属状のニッケル(単体または合金)をニッケル含有原料として用いるときは、溶融金属を小片化したショット等としてもよい。ニッケル含有原料として、ニッケル鉱石を使用することもできる。ニッケル鉱石としては、酸化鉱石、硫化鉱石などの1種以上が挙げられる。硫化ニッケルを主成分とするニッケルマット等をニッケル含有原料として用いることもできる。 The nickel-containing raw material may be a nickel compound or metallic nickel as long as it contains a nickel element. Examples of the nickel compound include, but are not particularly limited to, nickel salts such as nickel oxide, nickel hydroxide, nickel sulfide, and nickel chloride. The nickel compound may be a hydrate. The metallic nickel may be a nickel alloy such as ferronickel. When metallic nickel (simple or alloy) is used as a nickel-containing raw material, a shot or the like obtained by dividing a molten metal into small pieces may be used. Nickel ore can also be used as a nickel-containing raw material. As the nickel ore, at least one kind of oxide ore, sulfide ore and the like can be mentioned. Nickel mat or the like containing nickel sulfide as a main component can also be used as a nickel-containing raw material.
 転換工程において、ニッケル含有原料は、1種に限らず、2種以上を用いてもよい。2種以上のニッケル含有原料は、混合した状態で供給されてもよく、別々に供給されてもよい。ニッケル含有原料を転換工程に供給する前に、細断、粉砕、磨滅などの操作で粒子径を小さくすることが好ましい。粉砕手段としては、特に限定されないが、ボールミル、ロッドミル、ハンマーミル、流体エネルギーミル、振動ミル等の1種または2種以上を用いることができる。粉砕後の粒子径は、特に限定されないが、例えば1~1000μm程度、あるいは10~100μm程度が挙げられる。 に お い て In the conversion step, the nickel-containing raw material is not limited to one type, and two or more types may be used. The two or more nickel-containing raw materials may be supplied in a mixed state, or may be supplied separately. Before supplying the nickel-containing raw material to the conversion step, it is preferable to reduce the particle diameter by operations such as shredding, pulverization, and attrition. The pulverizing means is not particularly limited, but one or more of a ball mill, a rod mill, a hammer mill, a fluid energy mill, a vibration mill and the like can be used. The particle size after pulverization is not particularly limited, but is, for example, about 1 to 1000 μm, or about 10 to 100 μm.
 磨滅材としては、ニッケル含有原料の粒子表面を磨滅する機能を有する材料であればよい。濃硫酸に耐蝕性があるステンレス、セラミックス等が好ましく、特に、セラミックボールが好ましい。本実施形態の場合、詳しくは後述するように、転換工程の後の固液分離工程において、濃硫酸を液相として分離することから、鋼鉄のように希硫酸には溶解する物質であっても、濃硫酸には溶解しにくい物質であれば、使用可能である。鋼鉄等を濃硫酸に接触させて鉄分が若干溶解しても、後述する工程で分離除去が可能である。 Abrasion material may be any material having a function of abrading the particle surface of the nickel-containing raw material. Stainless steel, ceramics, and the like having corrosion resistance to concentrated sulfuric acid are preferable, and ceramic balls are particularly preferable. In the case of the present embodiment, as described later in detail, in the solid-liquid separation step after the conversion step, since concentrated sulfuric acid is separated as a liquid phase, even a substance that is soluble in dilute sulfuric acid such as steel. Any substance that is hardly soluble in concentrated sulfuric acid can be used. Even if iron or the like is slightly dissolved by bringing steel or the like into contact with concentrated sulfuric acid, it can be separated and removed in a step described later.
 従来、ニッケル含有原料を硫酸溶液に溶解させる場合には、硫酸溶液がニッケル含有原料の粒子内部まで浸透し、ニッケルが硫酸と反応して溶け出すという溶解反応であった。この場合、粒子表面での硫酸溶液の拡散が反応の律速となる。例えば酸化還元域とpH域との関係で、粒子表面に不溶性の結晶等が生成すると、粒子表面が不溶物で被覆されることにより、内部のニッケルが溶解しないという問題が考えられる。このため、硫酸ニッケルへの転換率を向上するには、滞留時間を長くする、あるいは反応温度を高くする等の必要があった。 Conventionally, when a nickel-containing raw material is dissolved in a sulfuric acid solution, the dissolution reaction is such that the sulfuric acid solution penetrates into the inside of the particles of the nickel-containing raw material, and nickel reacts with sulfuric acid to be dissolved. In this case, the diffusion of the sulfuric acid solution on the particle surface determines the rate of the reaction. For example, if insoluble crystals or the like are generated on the particle surface due to the relationship between the oxidation-reduction region and the pH region, there is a problem that nickel inside may not be dissolved because the particle surface is covered with the insoluble matter. For this reason, in order to improve the conversion rate to nickel sulfate, it was necessary to lengthen the residence time or increase the reaction temperature.
 転換工程では、ニッケル含有原料と磨滅材と濃硫酸を混合した状態で、撹拌などによりニッケル含有原料と磨滅材とを衝突させることが好ましい。これにより、ニッケル含有原料と濃硫酸との反応は、磨滅材を介したメカノケミカル反応となり、ニッケル含有原料の粒子表面に不溶物が堆積しにくく、粒子内部まで硫酸が浸透しやすくなる。このため、温和な条件でも硫酸ニッケル化合物への転換率を向上することができる。 In the conversion step, it is preferable that the nickel-containing raw material and the abrasive are collided by stirring or the like in a state where the nickel-containing raw material, the abrasive and the concentrated sulfuric acid are mixed. As a result, the reaction between the nickel-containing raw material and the concentrated sulfuric acid becomes a mechanochemical reaction via the attrition material, insoluble matter is less likely to be deposited on the particle surface of the nickel-containing raw material, and sulfuric acid easily permeates into the inside of the particles. For this reason, the conversion rate to the nickel sulfate compound can be improved even under mild conditions.
 転換工程における混合物の温度は、例えば15~200℃で良好な転換が進み、20℃、90℃、120℃、150℃と温度が高くなるほど転換に要する時間は短くなる。温和な反応条件としては、硫酸ミストが飛ばない90℃以下が好ましい。この転換工程でニッケルと硫酸とが反応して硫酸ニッケル化合物が得られる。加熱条件下で転換反応を行う場合、ニッケル含有原料、濃硫酸等は、転換反応の系中に供給、混合される前から加熱しておいてもよい。 良好 The temperature of the mixture in the conversion step is, for example, 15 to 200 ° C., and good conversion progresses. As a mild reaction condition, 90 ° C. or less at which the sulfuric acid mist does not fly is preferable. In this conversion step, nickel and sulfuric acid react to obtain a nickel sulfate compound. When the conversion reaction is performed under heating conditions, the nickel-containing raw material, concentrated sulfuric acid, and the like may be heated before being supplied and mixed into the conversion reaction system.
 転換工程で生成する硫酸ニッケル化合物は、硫酸ニッケルの無水塩、または1水和物、2水和物、5水和物、6水和物、7水和物等の状態となっていてもよい。濃硫酸としては、例えば90%以上の硫酸を含む液体が挙げられる。濃硫酸の濃度の例としては、95%、96%、98%等が挙げられる。転換工程に用いる濃硫酸の少なくとも一部は、他の供給源から調達して使用してもよい。転換工程に用いる濃硫酸の少なくとも一部として、後述する固液分離工程で液相から回収される濃硫酸を再利用することもできる。 The nickel sulfate compound formed in the conversion step may be in a state of nickel sulfate anhydrous, monohydrate, dihydrate, pentahydrate, hexahydrate, heptahydrate and the like. . Examples of the concentrated sulfuric acid include a liquid containing 90% or more sulfuric acid. Examples of the concentration of concentrated sulfuric acid include 95%, 96%, 98%, and the like. At least a portion of the concentrated sulfuric acid used in the conversion step may be procured and used from other sources. As at least a part of the concentrated sulfuric acid used in the conversion step, the concentrated sulfuric acid recovered from the liquid phase in the solid-liquid separation step described below can be reused.
 ニッケル含有原料と濃硫酸との混合比は、スラリー状となった混合物の粘性が適正となる範囲内で選択することが好ましい。例えば、ニッケル含有原料と濃硫酸との合計を100wt%としたときに、ニッケル含有原料の割合が5wt%~50wt%であることが好ましい。ニュートン流体の特性を有する範囲で、5wt%~15wt%がより好ましい。 混合 The mixing ratio of the nickel-containing raw material and the concentrated sulfuric acid is preferably selected within a range in which the viscosity of the slurry-like mixture is appropriate. For example, when the total of the nickel-containing raw material and the concentrated sulfuric acid is 100 wt%, the ratio of the nickel-containing raw material is preferably 5 wt% to 50 wt%. 5 wt% to 15 wt% is more preferable in the range having the properties of Newtonian fluid.
 ニッケル含有原料が硫化ニッケルを含む場合は、酸素(O)ガスを注入する、あるいは過酸化水素(H)、オゾン(O)等の酸化剤を添加する等して、転換反応を促進させることが好ましい。これにより、ニッケルマット等の硫化ニッケルを含むニッケル含有原料を用いる場合に、硫化ニッケルから硫酸ニッケル化合物への転換効率を向上させることができる。通常、ニッケル含有原料から硫酸ニッケル化合物への転換には濃硫酸中のHSO が利用されるが、ニッケル含有原料として硫化ニッケルを含む場合には、硫化ニッケル中の硫黄がイオン状態で存在し、且つ硫黄ガスとして逃げることが無く、硫黄分が減少し難い。そのため、濃硫酸中のHSO 量が所定量で維持され、濃硫酸を追加する必要が無いかまたは追加量を低減することができる。また、酸素等の酸化剤との反応を促進するため、例えば95~200℃程度、あるいは100~150℃程度等に濃硫酸を加熱することが好ましい。濃硫酸として、熱濃硫酸を用いてもよい。 When the nickel-containing raw material contains nickel sulfide, the conversion reaction is performed by injecting oxygen (O 2 ) gas or adding an oxidizing agent such as hydrogen peroxide (H 2 O 2 ) or ozone (O 3 ). Is preferably promoted. Thereby, when using a nickel-containing raw material containing nickel sulfide such as nickel matte, the conversion efficiency of nickel sulfide to a nickel sulfate compound can be improved. Normally, the conversion of the nickel-containing material into nickel sulfate compound HSO 4 in concentrated sulfuric acid - but is used, if it contains nickel sulfide as nickel-containing raw material, sulfur sulfide in the nickel is present in the ionic state And it does not escape as sulfur gas, so that the sulfur content is hardly reduced. Therefore, the amount of HSO 4 in the concentrated sulfuric acid is maintained at a predetermined amount, and it is not necessary to add concentrated sulfuric acid or the amount of addition can be reduced. Further, in order to promote a reaction with an oxidizing agent such as oxygen, it is preferable to heat concentrated sulfuric acid to, for example, about 95 to 200 ° C., or about 100 to 150 ° C. Hot concentrated sulfuric acid may be used as the concentrated sulfuric acid.
 ニッケルマットをニッケル含有原料として用いる場合は、例えば20μm程度に粉砕してから転換工程に供給することが好ましい。ニッケルマットに含まれる鉄分は、あらかじめ転炉等により低減されることが好ましい。例えば、Feが1wt%以下のニッケルマットが挙げられる。元素状態の硫黄(S)が析出せず、イオン状態のHSO が生成するように、反応系中の酸化還元電位が300mV以上であることが好ましい。即ち、反応系中の酸化還元電位を300mV以上とすることで、硫化ニッケルから発生した硫黄がイオン状態で利用されるため、例えばエレメンタリーサルファー(S)が硫化ニッケルの表面で析出して、硫化ニッケルから硫酸ニッケル化合物への転換が阻害されることなく転換効率を向上させることができる。また、反応系中の酸化還元電位を300mV以上とすることで、硫化水素(HS)の発生が抑制される。 When a nickel mat is used as a nickel-containing raw material, it is preferable that the nickel mat be pulverized to, for example, about 20 μm and then supplied to the conversion step. The iron content in the nickel mat is preferably reduced in advance by a converter or the like. For example, there is a nickel mat having Fe of 1 wt% or less. The oxidation-reduction potential in the reaction system is preferably 300 mV or more so that elemental sulfur (S 0 ) does not precipitate and ionic HSO 4 is generated. That is, by setting the oxidation-reduction potential in the reaction system to 300 mV or more, sulfur generated from nickel sulfide is used in an ion state. For example, elementary sulfur (S) precipitates on the surface of nickel sulfide, and Conversion efficiency can be improved without hindering conversion of nickel to a nickel sulfate compound. Further, by setting the oxidation-reduction potential in the reaction system to 300 mV or more, generation of hydrogen sulfide (H 2 S) is suppressed.
 酸素ガスを注入する場合には、酸素を含む混合ガス、例えば空気を用いてもよい。本実施形態の転換工程は常圧でも効果的に実施することができるが、濃硫酸に対する酸素ガスの溶解度を高めるため、加圧条件で実施してもよい。酸素ガスの分圧は、空気中と同じく約0.02MPa程度でもよく、それ以上に高い圧力、例えば、1.0~2.0MPaでもよい。 When oxygen gas is injected, a mixed gas containing oxygen, for example, air may be used. The conversion step of the present embodiment can be effectively performed at normal pressure, but may be performed under pressurized conditions to increase the solubility of oxygen gas in concentrated sulfuric acid. The partial pressure of the oxygen gas may be about 0.02 MPa as in air, or may be a higher pressure, for example, 1.0 to 2.0 MPa.
 本実施形態の固液分離工程では、転換工程で得られた混合物を固相と液相とに分離する。 で は In the solid-liquid separation step of the present embodiment, the mixture obtained in the conversion step is separated into a solid phase and a liquid phase.
 固液分離の方法は、特に限定されず、濾過法、遠心分離法、沈降分離法などが挙げられる。望ましくは、固相に含まれる微粒子の分離性能が高く、液相に含まれる濃硫酸と接触し得る部分の硫酸に対する耐食性に優れる装置を用いることが好ましい。例えば、濾過法において、ろ材等に耐硫酸性の材料を用いることができる。濾過の方式は特に限定されず、重力濾過、減圧濾過、加圧濾過、遠心濾過、濾過助剤添加型濾過、圧搾絞り濾過等が挙げられる。 The method of solid-liquid separation is not particularly limited, and examples thereof include a filtration method, a centrifugal separation method, and a sedimentation separation method. Desirably, it is preferable to use a device that has a high performance of separating fine particles contained in the solid phase and has excellent corrosion resistance to sulfuric acid in a portion that can come into contact with concentrated sulfuric acid contained in the liquid phase. For example, in a filtration method, a sulfuric acid-resistant material can be used as a filter medium or the like. The method of filtration is not particularly limited, and examples thereof include gravity filtration, reduced pressure filtration, pressure filtration, centrifugal filtration, filtration with a filter aid, and press-filtration.
 固液分離工程で得られた液相に含まれる未反応の濃硫酸は、転換工程においてニッケル含有原料に添加される濃硫酸として再利用することができる。これにより、未反応の濃硫酸を有効に利用することができ、濃硫酸の廃棄処理に要するコストを低減することができる。回収した濃硫酸に金属化合物が溶解している場合は、浄化装置で処理して濃硫酸から金属化合物を除去することが好ましい。 未 Unreacted concentrated sulfuric acid contained in the liquid phase obtained in the solid-liquid separation step can be reused as concentrated sulfuric acid added to the nickel-containing raw material in the conversion step. As a result, unreacted concentrated sulfuric acid can be used effectively, and the cost required for disposal of concentrated sulfuric acid can be reduced. When the metal compound is dissolved in the collected concentrated sulfuric acid, it is preferable to remove the metal compound from the concentrated sulfuric acid by treating with a purification device.
 固液分離工程で得られた固相には、後述する溶解分離工程において好ましいpH範囲の溶液を得るため、微量の濃硫酸が残留するようにしてもよい。残留する濃硫酸が過剰となっている場合には、固相のケーキに対してエアブロー等を行い、濃硫酸の量を固相から減少させてもよい。固相から濃硫酸を除去する場合、固相中の硫酸塩及び濃硫酸と反応しない流体としてエアを用いることが経済的であるが、他の流体又は方法を用いてもよい。 微量 A small amount of concentrated sulfuric acid may remain in the solid phase obtained in the solid-liquid separation step in order to obtain a solution having a preferable pH range in the dissolution separation step described later. When the residual concentrated sulfuric acid is excessive, the amount of the concentrated sulfuric acid may be reduced from the solid phase by performing air blowing or the like on the solid phase cake. When removing concentrated sulfuric acid from the solid phase, it is economical to use air as a fluid that does not react with sulfates and concentrated sulfuric acid in the solid phase, but other fluids or methods may be used.
 本実施形態の溶解分離工程では、固液分離工程で得られた固相に水を加え、固相に含まれる硫酸ニッケル化合物を水に溶解させ、不純物を分離させる。 溶解 In the dissolution separation step of the present embodiment, water is added to the solid phase obtained in the solid-liquid separation step, and the nickel sulfate compound contained in the solid phase is dissolved in water to separate impurities.
 溶解分離工程で固相に添加される水は、不純物を含まないように処理された純水が好ましい。水処理方法としては、特に限定されないが、濾過、膜分離、イオン交換、蒸留、消毒、薬剤処理、吸着などの1種以上が挙げられる。溶解用の水として、水源から得られる上水、工業用水等を用いてもよく、後述する晶析工程または他のプロセスで生じた排水を処理した水を用いてもよい。2種類以上の水を用いてもよい。 水 The water added to the solid phase in the dissolution / separation step is preferably pure water treated so as not to contain impurities. The water treatment method is not particularly limited, and includes one or more of filtration, membrane separation, ion exchange, distillation, disinfection, chemical treatment, adsorption and the like. As the water for dissolution, tap water obtained from a water source, industrial water, or the like may be used, or water obtained by treating waste water generated in a crystallization step or another process described later may be used. Two or more types of water may be used.
 固相を水で浸出させることにより、固相中の成分が水に溶解して溶液が得られる。固相中の硫酸ニッケル化合物を水に溶解させるため、得られる溶液のpHを酸性とする。硫酸鉄等の不純物の溶解を抑制しつつ、硫酸ニッケル化合物を選択的に水相に抽出するには、溶液のpHが4~5程度で、酸化還元電位測定で酸化域が好ましく、例えば3.8~5.5が挙げられる。 成分 By leaching the solid phase with water, the components in the solid phase are dissolved in water to obtain a solution. The pH of the resulting solution is made acidic in order to dissolve the nickel sulfate compound in the solid phase in water. In order to selectively extract the nickel sulfate compound into the aqueous phase while suppressing the dissolution of impurities such as iron sulfate, the pH of the solution is about 4 to 5, and the oxidation region is preferably measured by measuring the oxidation-reduction potential. 8 to 5.5.
 溶液のpHを調整する方法は、上述した固液分離工程における濃硫酸の残留量の調整に限られず、酸又はアルカリの添加によって行うこともできる。酸は、濃硫酸に限らず、希硫酸等であってもよい。アルカリとしては、硫酸イオンの共存下で沈殿を生成することにより、水相からの除去が容易なアルカリ土類金属の水酸化物(例えば水酸化カルシウム)が好ましい。また、溶液を酸化域に維持するため、必要に応じて、H等の酸化剤を加えてもよい。また、転換工程で用いた酸化剤が溶解分離工程まで残留し得る場合は、酸化剤の残留量を調整してもよい。 The method of adjusting the pH of the solution is not limited to the adjustment of the residual amount of concentrated sulfuric acid in the solid-liquid separation step described above, but may be performed by adding an acid or an alkali. The acid is not limited to concentrated sulfuric acid, but may be dilute sulfuric acid or the like. As the alkali, a hydroxide of an alkaline earth metal (for example, calcium hydroxide) which can be easily removed from the aqueous phase by forming a precipitate in the presence of sulfate ions is preferable. Further, an oxidizing agent such as H 2 O 2 may be added as needed to maintain the solution in the oxidized region. When the oxidizing agent used in the conversion step can remain until the dissolution separation step, the residual amount of the oxidizing agent may be adjusted.
 硫酸ニッケル化合物と共存し得る不純物としては、鉄(Fe)、コバルト(Co)、アルミニウム(Al)等が挙げられる。これらの金属塩が転換工程において硫酸塩となっている場合、硫酸ニッケル化合物を水に溶解させたときに、硫酸鉄、硫酸コバルト等も溶解する。さらに、硫酸ニッケル化合物を水に溶解させた溶液のpHを4~5とすることで、水中では例えばFeOOH、Fe、Fe等の酸化物等として沈殿し、硫酸ニッケル化合物から不純物の除去が容易になる。硫酸ニッケルは高温ほど水に対する溶解度が大きいが、不純物の溶解を抑制するため、水の温度は15~60℃程度が好ましい。水の温度を調整するため、硫酸ニッケル化合物に加える水の温度または硫酸ニッケル化合物の溶解に用いる容器の周囲の温度を制御してもよい。 Examples of impurities that can coexist with the nickel sulfate compound include iron (Fe), cobalt (Co), and aluminum (Al). When these metal salts are converted into sulfates in the conversion step, iron sulfate, cobalt sulfate, and the like also dissolve when the nickel sulfate compound is dissolved in water. Further, by adjusting the pH of the solution obtained by dissolving the nickel sulfate compound in water to 4 to 5, it precipitates in water as an oxide such as FeOOH, Fe 2 O 3 , Fe 3 O 4, and the like. Removal of impurities becomes easy. Nickel sulfate has a higher solubility in water as the temperature increases, but the temperature of the water is preferably about 15 to 60 ° C. in order to suppress the dissolution of impurities. In order to adjust the temperature of the water, the temperature of the water added to the nickel sulfate compound or the temperature around the container used for dissolving the nickel sulfate compound may be controlled.
 不純物のうち、例えば銅(Cu)、金(Au)、銀(Ag)、白金族金属(PGM)等、水素(H)よりイオン化傾向が低い金属は、固体として残るため、濾過等の固液分離により除去することができる。固液分離の方法は、特に限定されないが、濾過法、遠心分離法、沈降分離法などが挙げられる。固液分離により除去される固体には、上記の不純物のほか、ヒ素(As)、鉛(Pb)、亜鉛(Zn)等の化合物が含まれ得る。これらの不純物が含まれる固体は、有価物としてリサイクル処理することもできる。 Among the impurities, metals having a lower ionization tendency than hydrogen (H), such as copper (Cu), gold (Au), silver (Ag), and platinum group metals (PGM), remain as solids, and are thus solid-liquid such as by filtration. It can be removed by separation. The method for solid-liquid separation is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method. The solid removed by the solid-liquid separation may include compounds such as arsenic (As), lead (Pb), and zinc (Zn) in addition to the above impurities. Solids containing these impurities can be recycled as valuables.
 固相に濃硫酸が含まれている場合、硫酸と水との溶解発熱で温度が上昇するが、後述する晶析工程等の精製工程における使用に適した温度範囲に調節することが好ましい。温度調節手法として、例えば、溶解分離工程で添加する水の温度または量の調整、熱交換、放熱、冷却などが挙げられる。硫酸ニッケル化合物の溶解性等の観点から、溶液の温度は常温以上、例えば、20℃以上が好ましい。また、晶析工程を行う場合には、溶解分離工程により得られる溶液の温度が、晶析工程で使用する有機溶媒の沸点より低く、また、有機溶媒と水との混合物の共沸点より低いことが好ましい。 (4) When concentrated sulfuric acid is contained in the solid phase, the temperature rises due to the heat generated by the dissolution of sulfuric acid and water. Examples of the temperature control method include adjustment of the temperature or amount of water added in the dissolution / separation step, heat exchange, heat release, cooling, and the like. From the viewpoint of the solubility of the nickel sulfate compound, the temperature of the solution is preferably room temperature or higher, for example, 20 ° C. or higher. When performing the crystallization step, the temperature of the solution obtained by the dissolution separation step is lower than the boiling point of the organic solvent used in the crystallization step, and lower than the azeotropic point of the mixture of the organic solvent and water. Is preferred.
 溶解分離工程により得られる溶液は、硫酸ニッケル化合物を主成分とするため、硫酸ニッケル化合物の溶液のまま、あるいは乾燥等により硫酸ニッケル化合物の固体として、輸送し、利用することができる。用途によっては、溶液中の不純物として、例えば硫酸コバルト等を低減することが望まれる場合には、溶媒抽出、電解透析(Electrowinning)、電解精製(Electro refining)、イオン交換、晶析等の技術を利用することができる。 (4) Since the solution obtained by the dissolution / separation step contains a nickel sulfate compound as a main component, the solution can be transported and used as a solution of the nickel sulfate compound or as a solid of the nickel sulfate compound by drying or the like. Depending on the application, if it is desired to reduce, for example, cobalt sulfate, as an impurity in the solution, techniques such as solvent extraction, electrodialysis (Electrowinning), electrorefining (Electrorefining), ion exchange, and crystallization may be used. Can be used.
 溶媒抽出の場合は、ニッケルよりもコバルトを優先的又は選択的に溶媒中に抽出できる抽出剤を用いることが好ましい。これにより、硫酸ニッケル化合物を水系の溶液中に残して、効率的な精製が可能になる。抽出剤としては、ホスフィン酸基、チオホスフィン酸基等の、金属イオンと結合し得る官能基を有する有機化合物が挙げられる。溶媒抽出においては、希釈剤として、抽出剤を水から分離させることが可能な有機溶媒を用いてもよい。コバルト等の金属イオンと結合した抽出剤を希釈剤に溶解させることにより、抽出剤を大量に使用しなくても、硫酸ニッケル化合物を含有する水溶液からの分離が容易になる。希釈剤は、水と混和しにくい有機溶媒が好ましい。 (4) In the case of solvent extraction, it is preferable to use an extractant that can extract cobalt into a solvent preferentially or selectively over nickel. This allows the nickel sulfate compound to remain in the aqueous solution and allows efficient purification. Examples of the extractant include organic compounds having a functional group capable of binding to a metal ion, such as a phosphinic acid group and a thiophosphinic acid group. In the solvent extraction, an organic solvent capable of separating the extractant from water may be used as a diluent. By dissolving the extractant combined with metal ions such as cobalt in the diluent, separation from the aqueous solution containing the nickel sulfate compound becomes easy without using a large amount of the extractant. The diluent is preferably an organic solvent that is hardly miscible with water.
 図2に、溶解分離工程S3で得られた溶液31に有機溶媒を加えて硫酸ニッケル化合物41を析出させる晶析工程S4を有する実施形態を示す。転換工程S1、固液分離工程S2、溶解分離工程S3については、上述のとおりであるから、重複する説明は省略する。 FIG. 2 shows an embodiment having a crystallization step S4 in which an organic solvent is added to the solution 31 obtained in the dissolution separation step S3 to precipitate a nickel sulfate compound 41. The conversion step S1, the solid-liquid separation step S2, and the dissolution separation step S3 are the same as described above, and thus redundant description will be omitted.
 本実施形態の晶析工程では、溶解分離工程で得られた溶液に有機溶媒を加えて硫酸ニッケル化合物を析出させる。溶解分離工程および晶析工程を回分法(バッチ法)で実施する場合は、溶解分離工程で溶液を得るために用いた容器を、引き続き晶析工程に使用することができる。連続法の場合などでは、溶解分離工程で用いる容器から晶析工程で用いる容器に向けて、溶解分離工程で得られた溶液を移送してもよい。 In the crystallization step of the present embodiment, a nickel sulfate compound is precipitated by adding an organic solvent to the solution obtained in the dissolution separation step. In the case where the dissolution / separation step and the crystallization step are performed by a batch method (batch method), the container used for obtaining the solution in the dissolution / separation step can be subsequently used for the crystallization step. In the case of a continuous method or the like, the solution obtained in the dissolution / separation step may be transferred from the vessel used in the dissolution / separation step to the vessel used in the crystallization step.
 晶析に用いられる有機溶媒としては、水と混和する有機溶媒が好ましく、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、エチレングリコール、アセトンからなる群から選択される1種以上が挙げられる。2種類以上の有機溶媒が用いられてもよい。有機溶媒が水と混和する濃度範囲については、硫酸ニッケル化合物が析出する程度に有機溶媒が添加された濃度で混和することが好ましい。硫酸ニッケル化合物が析出する濃度であれば、任意の割合で有機溶媒を水に混和することができる。晶析工程で加える有機溶媒は、無水の有機溶媒に限らず、晶析に支障のない程度で含水の有機溶媒であってもよい。水と有機溶媒との比率は、特に限定されないが、例えば1:20~20:1の範囲で設定してもよいが、1:1程度、例えば1:2~2:1が好ましい。 有機 The organic solvent used for crystallization is preferably an organic solvent miscible with water, and includes, for example, one or more selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol, and acetone. Two or more organic solvents may be used. As for the concentration range in which the organic solvent is miscible with water, it is preferable that the organic solvent be mixed at a concentration to which the organic solvent is added to such an extent that the nickel sulfate compound is precipitated. The organic solvent can be mixed with water at an arbitrary ratio as long as the concentration allows precipitation of the nickel sulfate compound. The organic solvent added in the crystallization step is not limited to an anhydrous organic solvent, and may be a water-containing organic solvent to such an extent that crystallization is not hindered. The ratio of water to the organic solvent is not particularly limited, but may be set, for example, in the range of 1:20 to 20: 1, but is preferably about 1: 1, for example, 1: 2 to 2: 1.
 晶析工程で析出する硫酸ニッケル化合物は、硫酸ニッケル6水和物等の状態となっていてもよい。析出した硫酸ニッケル化合物は、固液分離により溶液から分離することができる。固液分離の方法は、特に限定されないが、濾過法、遠心分離法、沈降分離法などが挙げられる。溶液側に溶解した金属は、中和して沈殿等の方法により溶液から取り除くことが好ましい。浄化された溶液が、水と有機溶媒との混合物が主体とする場合、蒸留等の方法で水と有機溶媒とを分離することができる。 ニ ッ ケ ル The nickel sulfate compound precipitated in the crystallization step may be in a state of nickel sulfate hexahydrate or the like. The precipitated nickel sulfate compound can be separated from the solution by solid-liquid separation. The method for solid-liquid separation is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method. The metal dissolved in the solution is preferably neutralized and removed from the solution by a method such as precipitation. When the purified solution is mainly composed of a mixture of water and an organic solvent, the water and the organic solvent can be separated by a method such as distillation.
 図2に示すように、晶析工程S4後の溶液42から蒸留43等により分離された有機溶媒45は、晶析工程S4において、溶解分離工程S3で得られた溶液31に添加される段階に再利用してもよい。また、晶析工程S4後の溶液42から分離された水44は、溶解分離工程S3において、固液分離工程S2で得られた固相21に添加される段階に再利用してもよい。 As shown in FIG. 2, the organic solvent 45 separated from the solution 42 after the crystallization step S4 by distillation 43 or the like is added to the solution 31 obtained in the dissolution separation step S3 in the crystallization step S4. It may be reused. Further, the water 44 separated from the solution 42 after the crystallization step S4 may be reused in the step of being added to the solid phase 21 obtained in the solid-liquid separation step S2 in the dissolution separation step S3.
 水または有機溶媒を再利用する場合、必要に応じて精製工程を経てもよい。金属等の不純物を除去する工程は、蒸留前に限らず、蒸留後に実施してもよい。例えば、不純物が少ない場合は、溶液を蒸留した後に残る溶液から不純物を除去する工程を設けてもよい。 When water or an organic solvent is reused, a purification step may be performed if necessary. The step of removing impurities such as metals may be performed not only before distillation but also after distillation. For example, when the amount of impurities is small, a step of removing impurities from the solution remaining after distilling the solution may be provided.
 本実施形態の硫酸ニッケル化合物の製造方法によれば、次の効果が得られる。
1)種々のニッケル含有原料から、付加価値の高い硫酸ニッケル化合物を製造することができるので、需要地の近くでも生産が可能となり、輸送費を削減することができる。
2)高純度の硫酸ニッケル化合物を生成することができる。
3)濃硫酸の再利用等により、運転コストを低減することができる。
4)転換工程において反応速度を促進することができる。また、水素(H)ガスの発生を低減することもできる。
5)転換工程において滞留時間を低減することにより、装置を小型化しても生産性を高めることができる。
6)濃硫酸を利用することで、低コストの材料を適用することができる。
7)利用する薬剤が少なく、管理が容易になる。
8)晶析工程において硫酸ニッケル化合物に有機溶媒を利用するため、従来の蒸発晶析より蒸発エネルギーの利用が少ない。また析出に要する時間が短くなり、設備を小型化することができる。
9)従来法に比べて設備コストを低減することができる。
10)転換工程において硫化ニッケルを酸化しながら反応させる場合には、硫化物から硫酸根が生成するため、常圧下でも短時間で高収率を得ることができる。
According to the method for producing a nickel sulfate compound of the present embodiment, the following effects can be obtained.
1) Since a nickel sulfate compound having high added value can be produced from various nickel-containing raw materials, production is possible even near a demand area, and transportation costs can be reduced.
2) A high-purity nickel sulfate compound can be produced.
3) The operating cost can be reduced by reusing concentrated sulfuric acid.
4) The reaction rate can be promoted in the conversion step. Further, generation of hydrogen (H 2 ) gas can be reduced.
5) By reducing the residence time in the conversion step, productivity can be increased even if the apparatus is downsized.
6) By using concentrated sulfuric acid, a low-cost material can be applied.
7) Uses fewer drugs, making management easier.
8) Since an organic solvent is used for the nickel sulfate compound in the crystallization step, the use of evaporation energy is smaller than in conventional evaporation crystallization. Further, the time required for the precipitation is shortened, and the equipment can be downsized.
9) Equipment cost can be reduced as compared with the conventional method.
10) When nickel sulfide is reacted while being oxidized in the conversion step, a sulfate group is generated from the sulfide, so that a high yield can be obtained in a short time even under normal pressure.
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。 Although the present invention has been described based on the preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
 上記実施形態の転換工程は、金属又は金属化合物を含有する原料を、磨滅材と共に濃硫酸で処理して、原料の少なくとも一部を金属硫酸塩化合物に転換する工程に応用することができる。この場合の原料としては、ニッケルマットに限らず、銅マット、Ni/Cu混合マット等でもよく、これらのマットは、白金族金属(PGM)を含有してもよい。マットからの転換では、ニッケルマットと同様に、酸素などの酸化剤を用いることが好ましい。転換工程の後、固液分離工程及び溶解分離工程を経ることにより、硫酸ニッケル化合物に限らず、硫酸銅化合物等の水溶性の金属硫酸塩を効率的に得ることができる。 転 換 The conversion step of the above embodiment can be applied to a step of treating a raw material containing a metal or a metal compound with concentrated sulfuric acid together with an abrasive to convert at least a part of the raw material to a metal sulfate compound. The raw material in this case is not limited to the nickel mat, but may be a copper mat, a Ni / Cu mixed mat, or the like, and these mats may contain a platinum group metal (PGM). In the conversion from the mat, it is preferable to use an oxidizing agent such as oxygen as in the case of the nickel mat. After the conversion step, by passing through the solid-liquid separation step and the dissolution separation step, not only the nickel sulfate compound but also a water-soluble metal sulfate such as a copper sulfate compound can be efficiently obtained.
 以下、実施例をもって本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.
<実施例1-1>
 100mLの濃硫酸(HSOとして98%純度の試薬)と5gの酸化ニッケル(緑色NiOの試薬)粉末を、容量300mLのガラス容器に入れ、フッ素樹脂で被覆されたスターラにて撹拌しながら電気ヒータで加熱した。温度が100℃を超えた時点で、水蒸気と白煙状の硫酸ミストがガス側に発生した。120℃まで加熱した後、電気ヒータは止め、撹拌は72時間継続した。撹拌を継続するうちに、ガラス容器中の混合物は自然に冷却された。混合物には、添加した酸化ニッケルとは異なった非常に硬い結晶が一部発生していた。X線解析の結果、NiSO・HOが生成していることが判明した。
<Example 1-1>
100 mL of concentrated sulfuric acid (reagent having a purity of 98% as H 2 SO 4 ) and 5 g of nickel oxide (reagent of green NiO) are put in a 300 mL glass container, and stirred with a stirrer coated with a fluororesin. Heated with an electric heater. When the temperature exceeded 100 ° C., steam and white smoke-like sulfuric acid mist were generated on the gas side. After heating to 120 ° C., the electric heater was turned off and stirring continued for 72 hours. While continuing to stir, the mixture in the glass vessel cooled down naturally. In the mixture, some very hard crystals different from the nickel oxide added were generated. As a result of X-ray analysis, it was found that NiSO 4 .H 2 O was generated.
<実施例1-2>
 容量300mLのガラス容器に6mm径のセラミックボール粉砕メディアを約15mmの高さまで加えた。そこにフッ素樹脂製の撹拌翼を差し込んで、ガラス容器内部の温度が90℃になるように外部からウォータバスにて加温した。撹拌翼の回転数は60rpmとした。さらにガラス容器には、5gの酸化ニッケル(緑色NiOの試薬)粉末と、100mLの濃硫酸(HSOとして98%純度の試薬)を加えた。約30分後にガラス容器内部の温度が90℃に到達し、その後は温度を90℃に維持した。この状態で撹拌を6時間まで継続した。その途中の3時間経過した時点と、6時間経過した時点で、粉末および濃硫酸を含む混合物のサンプルをガラス容器内部から採取した。サンプルは遠心管に回収して、遠心分離により固相と液相とに分離した。液相側は1154mg/Lのニッケル濃度となったが、固相側はX線分析の結果、ガラス容器に加えた酸化ニッケルの97.3%が硫酸ニッケルに変換していた。この結果から、酸化ニッケルを磨滅しながら濃硫酸で直接硫酸ニッケルへの転換反応を行うことができることを確認できた。
<Example 1-2>
A 6 mm diameter ceramic ball crushing media was added to a glass container having a capacity of 300 mL to a height of about 15 mm. A stirring blade made of fluororesin was inserted therein, and the inside of the glass container was heated with a water bath from the outside so that the temperature of the inside became 90 ° C. The rotation speed of the stirring blade was 60 rpm. Further, 5 g of nickel oxide (green NiO reagent) powder and 100 mL of concentrated sulfuric acid (98% pure reagent as H 2 SO 4 ) were added to the glass container. After about 30 minutes, the temperature inside the glass container reached 90 ° C, and thereafter, the temperature was maintained at 90 ° C. In this state, stirring was continued for up to 6 hours. Samples of the mixture containing the powder and concentrated sulfuric acid were taken from the inside of the glass container at the time when 3 hours and 6 hours had passed during the process. The sample was collected in a centrifuge tube, and separated into a solid phase and a liquid phase by centrifugation. The liquid phase had a nickel concentration of 1154 mg / L, but the solid phase had, as a result of X-ray analysis, 97.3% of the nickel oxide added to the glass container converted to nickel sulfate. From this result, it was confirmed that the conversion reaction to nickel sulfate can be directly performed with concentrated sulfuric acid while the nickel oxide is being worn away.
<実施例1-3>
 試薬の硫酸ニッケル6水和物(青色のNiSO・6HO)を10g採取し、容量300mLのガラス容器に入れた。これに試薬硫酸6.3gと純水83.7gとの混合液を加えることにより、硫酸ニッケル6水和物を硫酸水溶液に溶解させた溶液を調製した。この溶液を各10mLずつ遠心管に分注した後、各遠心管に各15mLの有機溶媒を加えた。有機溶媒はイソプロパノール、アセトン、リン酸トリブチル(TBP)、トルエンの4種類である。さらに溶液に有機溶媒を加えることなく、遠心管を外部から急冷した場合の試験を併せて行った。結果を表1に示す。
<Example 1-3>
Nickel sulfate hexahydrate reagent (NiSO 4 · 6H 2 O blue) was 10g collected and placed in a glass container having a capacity of 300 mL. A solution in which nickel sulfate hexahydrate was dissolved in an aqueous sulfuric acid solution was prepared by adding a mixed solution of 6.3 g of reagent sulfuric acid and 83.7 g of pure water to this. After dispensing 10 mL of this solution into each centrifuge tube, 15 mL of each organic solvent was added to each centrifuge tube. There are four types of organic solvents: isopropanol, acetone, tributyl phosphate (TBP), and toluene. Further, a test in which the centrifuge tube was rapidly cooled from the outside without adding an organic solvent to the solution was also performed. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この結果、水と混和性を有するイソプロパノールまたはアセトンを溶液に加えた場合は、有機溶媒の添加と同時に瞬時に硫酸ニッケル水和物の結晶が生成した。イソプロパノールを加えた場合は全体的にシャーベット状の結晶が得られ、アセトンを加えた場合は針状の微細結晶が得られた。このため、水と混和性を有するメタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、エチレングリコール、アセトン等が晶析に適用できることが判明した。 As a result, when isopropanol or acetone miscible with water was added to the solution, crystals of nickel sulfate hydrate were instantaneously formed at the same time as the addition of the organic solvent. When isopropanol was added, sherbet-like crystals were obtained as a whole, and when acetone was added, needle-like fine crystals were obtained. Therefore, it was found that water, miscible with methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol, acetone and the like can be applied to crystallization.
 また、イソプロパノールを加えた場合は、瞬時にほぼ全量の溶解ニッケル塩が水和物として析出した。このことから、有機溶媒を加える晶析方法によれば、連続蒸発晶析のように、水溶液を飽和溶解度を超えて濃縮する方法と比べ、蒸発エネルギーが不要で、かつ回分操作(バッチ操作)で結晶化、固液分離が可能になった。 Also, when isopropanol was added, almost all of the dissolved nickel salt was instantaneously precipitated as a hydrate. For this reason, the crystallization method in which an organic solvent is added requires no evaporation energy and requires a batch operation (batch operation) as compared with a method in which an aqueous solution is concentrated beyond its saturation solubility as in continuous evaporation crystallization. Crystallization and solid-liquid separation became possible.
<実施例2-1>
 容量300mLのガラス容器に、ニッケルマット(Ni:78%、Fe:1%、Co:1%、S:20%)と95%硫酸とからなる原料スラリーを、6mm径のセラミックボールとともに加えた。原料スラリー及びセラミックボールをオイルバス中で撹拌しながら、バスを昇温した。撹拌の回転数は60rpmとした。所定の温度に到達した後、所定の時間ごとに撹拌中のスラリーから少量のサンプルを採取した。サンプルのスラリーは、遠心分離により液相を除去した。固相を水洗して、洗浄水に含まれるNiイオンを定量することで、硫酸ニッケル化合物の量をNiSO・HOとして求めた。また、水洗後の固相の残渣から、蛍光X線元素分析法(XRF)により、S,Al,Ni、Feの比を定量し、ニッケルマットの量と、セラミックボールに由来する酸化アルミニウムの量を求めた。
<Example 2-1>
A raw material slurry composed of nickel matte (Ni: 78%, Fe: 1%, Co: 1%, S: 20%) and 95% sulfuric acid was added to a glass container having a capacity of 300 mL together with ceramic balls having a diameter of 6 mm. While stirring the raw material slurry and the ceramic balls in an oil bath, the bath was heated. The rotation speed of the stirring was 60 rpm. After reaching the predetermined temperature, a small amount of sample was taken from the slurry being stirred at predetermined time intervals. The liquid phase was removed from the sample slurry by centrifugation. The solid phase was washed with water, and the amount of the nickel sulfate compound was determined as NiSO 4 .H 2 O by quantifying Ni ions contained in the washing water. Further, the ratio of S, Al, Ni, and Fe was quantified from the solid residue after washing by X-ray fluorescence elemental analysis (XRF) to determine the amount of nickel matte and the amount of aluminum oxide derived from ceramic balls. I asked.
 洗浄水に含まれる硫酸ニッケル化合物及び残渣に含まれるニッケルマットの量から固相中のNiの総量を求め、これと洗浄水に含まれる硫酸ニッケル化合物との量の比から、硫酸ニッケル化合物への転換率を求めた。転換反応を行う所定の温度を90℃、120℃、150℃の3通りとして各々実施した結果を表2に示す。 The total amount of Ni in the solid phase was determined from the amount of the nickel sulfate compound contained in the washing water and the amount of the nickel matte contained in the residue. From the ratio of this to the amount of the nickel sulfate compound contained in the washing water, the nickel sulfate compound The conversion rate was determined. Table 2 shows the results obtained when the predetermined temperature at which the conversion reaction was carried out was set at 90 ° C., 120 ° C., and 150 ° C., respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この結果、温度が高いほど効率が向上し、硫酸ニッケル化合物への転換率が高いことが示された。時間の経過に従ってサンプル中のAlの量が増加したことから、セラミックボールが磨滅してスラリー中に混入することが判明した。さらに表2の結果から、アレニウスプロットにより速度kを求めたところ、次の実験式が得られた。 As a result, it was shown that the higher the temperature, the higher the efficiency and the higher the conversion to nickel sulfate compounds. Since the amount of Al in the sample increased with the passage of time, it was found that the ceramic balls were worn and mixed into the slurry. Further, from the results in Table 2, when the velocity k was determined by Arrhenius plot, the following empirical formula was obtained.
y=-6232.727x+11.693、R2=0.998
ここで、x=1/T(k)、y=ln kとする。
y = −6322.727x + 11.693, R2 = 0.998
Here, it is assumed that x = 1 / T (k) and y = ln k.
 このアレニウスプロットから、180℃及び200℃における転換率を算出した。すると、180℃では15分で91%、200℃では15分で98%の転換率となった。 転 換 From this Arrhenius plot, conversion rates at 180 ° C and 200 ° C were calculated. At 180 ° C., the conversion rate was 91% in 15 minutes, and at 200 ° C., 98% in 15 minutes.
<実施例2-2>
 FeSOを102g/L、HSOを33g/Lの濃度で含有する水溶液90mLをオートクレーブで60分かけて230℃まで昇温した後、水溶液中に分圧1.8MPaの酸素ガスを吹き込んだ。発熱とともに圧力上昇が起こり、温度が平衡に戻った時点で圧力を確認した。これにより、吹き込んだ酸素ガスの量が63mmolであるのに対して、Fe(II)の酸化に消費される量が15mmol、分圧低下から換算される気相中の酸素ガスの減少量は26mmolで、高温の硫酸水溶液中に酸素が溶解して反応することを確認した。温度を230℃に維持したまま、1回目の酸素ガスの吹き込みから更に60分経過した時点で2度目の吹き込みを行ったところ、1回目のようには圧力低下がみられなかったことから、酸化反応が1回目の吹き込みだけで完全に終了していることを確認した。
<Example 2-2>
90 mL of an aqueous solution containing FeSO 4 at a concentration of 102 g / L and H 2 SO 4 at a concentration of 33 g / L was heated to 230 ° C. in an autoclave over 60 minutes, and oxygen gas having a partial pressure of 1.8 MPa was blown into the aqueous solution. It is. The pressure rose with the heat generation, and the pressure was confirmed when the temperature returned to equilibrium. Thus, while the amount of the oxygen gas blown was 63 mmol, the amount consumed for the oxidation of Fe (II) was 15 mmol, and the reduction amount of the oxygen gas in the gas phase calculated from the decrease in the partial pressure was 26 mmol. It was confirmed that oxygen dissolved in the high-temperature sulfuric acid aqueous solution and reacted. While maintaining the temperature at 230 ° C., a second injection was performed at a point 60 minutes after the first oxygen gas injection, and no pressure drop was observed as in the first injection. It was confirmed that the reaction was completely completed only by the first blowing.
 この試験から、硫酸酸性下の水溶液に酸素を溶解させて酸化反応を行うことができることを確認した。ここでは参考として、希硫酸中でFeSOを酸化する例を挙げたが、上記の実施例2-1のように濃硫酸中でNiSを酸化する反応において、酸素を加圧下で供給することも、同様に可能と考えられる。 From this test, it was confirmed that the oxidation reaction can be performed by dissolving oxygen in an aqueous solution under sulfuric acid. Here, for reference, an example in which FeSO 4 is oxidized in dilute sulfuric acid has been described. However, in the reaction of oxidizing NiS in concentrated sulfuric acid as in Example 2-1 above, oxygen may be supplied under pressure. , As well as possible.
<実施例2-3>
 市販の硫酸ニッケル試薬(99%純度)の粉末を規定量計量し、100gの純水中に投入し規定の温度になってから10分撹拌を続け、溶液からサンプリングして、溶解した硫酸ニッケルの量を定量分析した。この結果、硫酸ニッケルの溶解度(100g溶液に対する値)として次の通りの結果が得られた。
<Example 2-3>
A prescribed amount of a commercially available nickel sulfate reagent (99% purity) powder is weighed, put into 100 g of pure water, stirred for 10 minutes after reaching the prescribed temperature, and sampled from the solution to obtain a solution of the dissolved nickel sulfate. The amount was quantitatively analyzed. As a result, the following results were obtained as the solubility of nickel sulfate (value with respect to a 100 g solution).
0℃:22g、15℃:26.5g、35℃:32g、50℃:35g、60℃:37g 0 ° C .: 22 g, 15 ° C .: 26.5 g, 35 ° C .: 32 g, 50 ° C .: 35 g, 60 ° C .: 37 g
 また、実施例2-1と同様にして、150℃で転換工程を実施して生成した固形分を、加圧濾過器にて固液分離して、温度が120℃のスラッジを得た。このスラッジを50g採取して、スラッジ濃度が30wt%になるように15℃の純水を100g加えると、温度が22℃の溶液が得られた。撹拌を30分継続して得られた溶液中のFeイオンを分析すると、数10ppmであった。一方、硫酸ニッケルは、22℃の飽和溶解度に近い値、すなわち28gの硫酸ニッケルが100gの溶液に溶解していた。この結果から、溶解性が高い硫酸ニッケルは、冷水にて水に溶解させることで不純物の除去効果があることが分かった。 {Circle around (2)} In the same manner as in Example 2-1, the solid matter produced by performing the conversion step at 150 ° C. was subjected to solid-liquid separation using a pressure filter to obtain sludge having a temperature of 120 ° C. When 50 g of this sludge was collected and 100 g of pure water at 15 ° C. was added so that the sludge concentration became 30 wt%, a solution having a temperature of 22 ° C. was obtained. When Fe ions in the solution obtained by continuing stirring for 30 minutes were analyzed, it was several tens ppm. On the other hand, nickel sulfate had a value close to the saturation solubility at 22 ° C., that is, 28 g of nickel sulfate was dissolved in 100 g of the solution. From this result, it was found that nickel sulfate having high solubility has an effect of removing impurities by dissolving in cold water.
 本発明は、二次電池等の電気部品、化学製品などに利用される各種のニッケル化合物または金属ニッケルの原料として有用な高純度の硫酸ニッケル化合物の製造に利用することができる。 The present invention can be used for the production of various types of nickel compounds or high-purity nickel sulfate compounds useful as raw materials for metallic nickel used in electric parts such as secondary batteries, chemical products, and the like.
S1…転換工程、S2…固液分離工程、S3…溶解分離工程、S4…晶析工程、10…ニッケル含有原料、11…混合物、21…固相、22…液相、31…溶液、32…不純物、41…硫酸ニッケル化合物、42…溶液、43…蒸留、44…水、45…有機溶媒。 S1: conversion step, S2: solid-liquid separation step, S3: dissolution separation step, S4: crystallization step, 10: nickel-containing raw material, 11: mixture, 21: solid phase, 22: liquid phase, 31: solution, 32 ... Impurities, 41: nickel sulfate compound, 42: solution, 43: distillation, 44: water, 45: organic solvent.

Claims (10)

  1.  ニッケル含有原料を、磨滅材と共に濃硫酸で処理して、前記ニッケル含有原料の少なくとも一部を硫酸ニッケル化合物に転換する転換工程と、
     前記転換工程で得られた混合物を固相と液相とに分離する固液分離工程と、
     前記固液分離工程で得られた前記固相に水を加え、前記固相に含まれる硫酸ニッケル化合物を前記水に溶解させ不純物を分離する溶解分離工程と、を有することを特徴とする硫酸ニッケル化合物の製造方法。
    A conversion step of treating the nickel-containing raw material with concentrated sulfuric acid together with the abrasive and converting at least a part of the nickel-containing raw material to a nickel sulfate compound;
    A solid-liquid separation step of separating the mixture obtained in the conversion step into a solid phase and a liquid phase,
    Adding water to the solid phase obtained in the solid-liquid separation step, dissolving a nickel sulfate compound contained in the solid phase in the water to separate impurities, and a dissolution separation step, wherein nickel sulfate is provided. A method for producing a compound.
  2.  前記転換工程における前記ニッケル含有原料が、酸化ニッケル、水酸化ニッケル、硫化ニッケル、塩化ニッケル、金属ニッケル、フェロニッケル、ニッケル鉱石からなる群から選択される1種以上を含むことを特徴とする請求項1に記載の硫酸ニッケル化合物の製造方法。 The said nickel-containing raw material in the said conversion process contains at least 1 sort (s) selected from the group consisting of nickel oxide, nickel hydroxide, nickel sulfide, nickel chloride, metallic nickel, ferronickel, and nickel ore. 2. The method for producing a nickel sulfate compound according to 1.
  3.  前記転換工程において、前記ニッケル含有原料が硫化ニッケルを含み、酸化剤が添加され、酸化還元電位が300mV以上であることを特徴とする請求項1に記載の硫酸ニッケル化合物の製造方法。 The method according to claim 1, wherein in the conversion step, the nickel-containing raw material contains nickel sulfide, an oxidizing agent is added, and the oxidation-reduction potential is 300 mV or more.
  4.  前記固液分離工程で得られた前記液相に含まれる濃硫酸を、前記転換工程に再利用することを特徴とする請求項1~3のいずれか1項に記載の硫酸ニッケル化合物の製造方法。 The method for producing a nickel sulfate compound according to any one of claims 1 to 3, wherein concentrated sulfuric acid contained in the liquid phase obtained in the solid-liquid separation step is reused in the conversion step. .
  5.  前記溶解分離工程において、前記固相に加える水の温度が15~60℃であることを特徴とする請求項1~4のいずれか1項に記載の硫酸ニッケル化合物の製造方法。 (5) The method for producing a nickel sulfate compound according to any one of (1) to (4), wherein the temperature of the water added to the solid phase is 15 to 60 ° C. in the dissolution separation step.
  6.  前記溶解分離工程において、前記硫酸ニッケル化合物を前記水に溶解させた溶液のpHを4~5として不純物を分離することを特徴とする請求項1~5のいずれか1項に記載の硫酸ニッケル化合物の製造方法。 The nickel sulfate compound according to any one of claims 1 to 5, wherein in the dissolving and separating step, impurities are separated by setting a pH of a solution in which the nickel sulfate compound is dissolved in the water to 4 to 5. Manufacturing method.
  7.  前記溶解分離工程で得られた溶液に含まれるコバルト化合物を除去する精製工程を有することを特徴とする請求項1~6のいずれか1項に記載の硫酸ニッケル化合物の製造方法。 The method for producing a nickel sulfate compound according to any one of claims 1 to 6, further comprising a purification step of removing a cobalt compound contained in the solution obtained in the dissolution separation step.
  8.  前記溶解分離工程で得られた溶液に有機溶媒を加えて硫酸ニッケル化合物を析出させる晶析工程を有することを特徴とする請求項1~7のいずれか1項に記載の硫酸ニッケル化合物の製造方法。 The method for producing a nickel sulfate compound according to any one of claims 1 to 7, further comprising a crystallization step of adding an organic solvent to the solution obtained in the dissolution separation step to precipitate a nickel sulfate compound. .
  9.  前記晶析工程における前記有機溶媒が、メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、エチレングリコール、アセトンからなる群から選択される1種以上であることを特徴とする請求項8に記載の硫酸ニッケル化合物の製造方法。 The nickel sulfate according to claim 8, wherein the organic solvent in the crystallization step is at least one selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol, and acetone. A method for producing a compound.
  10.  前記晶析工程で得られる前記硫酸ニッケル化合物が、硫酸ニッケル6水和物であることを特徴とする請求項8又は9に記載の硫酸ニッケル化合物の製造方法。 (10) The method for producing a nickel sulfate compound according to (8) or (9), wherein the nickel sulfate compound obtained in the crystallization step is nickel sulfate hexahydrate.
PCT/JP2019/019531 2018-06-21 2019-05-16 Method for producing nickel sulfate compound WO2019244527A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112020025731-1A BR112020025731A2 (en) 2018-06-21 2019-05-16 METHOD OF MANUFACTURING NICKEL SULFATE COMPOUND
AU2019290870A AU2019290870B2 (en) 2018-06-21 2019-05-16 Nickel sulfate compound manufacturing method
PH12020551393A PH12020551393A1 (en) 2018-06-21 2020-08-25 Nickel Sulfate Compound Manufacturing Method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018118046 2018-06-21
JP2018-118046 2018-06-21
JP2018151471A JP7042719B2 (en) 2018-06-21 2018-08-10 Method for manufacturing nickel sulfate compound
JP2018-151471 2018-08-10

Publications (1)

Publication Number Publication Date
WO2019244527A1 true WO2019244527A1 (en) 2019-12-26

Family

ID=68983637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019531 WO2019244527A1 (en) 2018-06-21 2019-05-16 Method for producing nickel sulfate compound

Country Status (1)

Country Link
WO (1) WO2019244527A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184927A (en) * 2021-04-29 2021-07-30 金川集团镍盐有限公司 Method for producing nickel sulfate solution by using nickel powder
CN113816439A (en) * 2021-08-20 2021-12-21 广东邦普循环科技有限公司 Method and system for purifying nickel sulfate
CN115159594A (en) * 2022-08-01 2022-10-11 中伟新材料股份有限公司 Method for preparing metal sulfate
CN115925002A (en) * 2021-10-04 2023-04-07 泰星能源解决方案有限公司 Method for producing nickel sulfate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569338A (en) * 1979-06-29 1981-01-30 Outokumpu Oy Selective leaching of nickellcopper mat
JP2011104584A (en) * 2009-10-19 2011-06-02 Niigata Univ Treatment method for electroless nickel plating waste liquid
CN107935063A (en) * 2017-11-20 2018-04-20 中国科学院兰州化学物理研究所 Utilize the nickel oxide method that directly leaching prepares nickel salt under normal pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569338A (en) * 1979-06-29 1981-01-30 Outokumpu Oy Selective leaching of nickellcopper mat
JP2011104584A (en) * 2009-10-19 2011-06-02 Niigata Univ Treatment method for electroless nickel plating waste liquid
CN107935063A (en) * 2017-11-20 2018-04-20 中国科学院兰州化学物理研究所 Utilize the nickel oxide method that directly leaching prepares nickel salt under normal pressure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184927A (en) * 2021-04-29 2021-07-30 金川集团镍盐有限公司 Method for producing nickel sulfate solution by using nickel powder
CN113816439A (en) * 2021-08-20 2021-12-21 广东邦普循环科技有限公司 Method and system for purifying nickel sulfate
CN115925002A (en) * 2021-10-04 2023-04-07 泰星能源解决方案有限公司 Method for producing nickel sulfate
EP4166508A1 (en) * 2021-10-04 2023-04-19 Prime Planet Energy & Solutions, Inc. Method of producing nickel sulfate
CN115159594A (en) * 2022-08-01 2022-10-11 中伟新材料股份有限公司 Method for preparing metal sulfate
CN115159594B (en) * 2022-08-01 2024-05-14 中伟新材料股份有限公司 Method for preparing metal sulfate

Similar Documents

Publication Publication Date Title
WO2019244527A1 (en) Method for producing nickel sulfate compound
JP5904459B2 (en) Manufacturing method of high purity nickel sulfate
EP2174912B1 (en) Method of removing arsenic from smelting residues comprising copper-arsenic compounds
US8092765B2 (en) Method of processing non-ferrous smelting intermediates containing arsenic
JP4993501B2 (en) Process for recovering copper from copper-containing materials using pressure leaching, direct electrowinning and solvent / solution extraction
JP2007297717A (en) Method for recovering copper from sulfide ore material using high temperature pressure leaching, solvent extraction and electrowinning
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP6539922B1 (en) Method for producing nickel sulfate compound
JP2010255118A (en) Process for multiple stage direct electrowinning of copper
Lin et al. Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching
Sinha et al. Recovery of high value copper and zinc oxide powder from waste brass pickle liquor by solvent extraction
JP7042719B2 (en) Method for manufacturing nickel sulfate compound
JP2011105969A (en) Method for recovering silver from sulfide containing copper
JP2016003360A (en) Production method of nickel sulfate solution
WO2020174573A1 (en) Residue processing method and sulfatizing roasting method
JP2018178201A (en) Method for separating copper or zinc from object for exudation treatment
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel
JPS5945742B2 (en) How to process metal-containing intermediate materials
WO2020157898A1 (en) Method for treating nickel-containing raw material
WO2020075288A1 (en) Method and device for processing nickel oxide ore
JP7191215B2 (en) Method for treating nickel-containing raw materials
JP4914976B2 (en) Method for removing thallium from zinc sulfate solution
AU2015234654A1 (en) Method for pre-treating gold ore
JP2020147812A (en) Processing method of copper iron cobalt alloy
WO2015147330A1 (en) Method for pre-treating gold ore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019290870

Country of ref document: AU

Date of ref document: 20190516

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020025731

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020025731

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201216

122 Ep: pct application non-entry in european phase

Ref document number: 19822336

Country of ref document: EP

Kind code of ref document: A1