JP2011105969A - Method for recovering silver from sulfide containing copper - Google Patents

Method for recovering silver from sulfide containing copper Download PDF

Info

Publication number
JP2011105969A
JP2011105969A JP2009259941A JP2009259941A JP2011105969A JP 2011105969 A JP2011105969 A JP 2011105969A JP 2009259941 A JP2009259941 A JP 2009259941A JP 2009259941 A JP2009259941 A JP 2009259941A JP 2011105969 A JP2011105969 A JP 2011105969A
Authority
JP
Japan
Prior art keywords
silver
copper
leaching
slurry
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009259941A
Other languages
Japanese (ja)
Inventor
Masatoshi Takano
雅俊 高野
Satoshi Asano
聡 浅野
Kenji Takeda
賢二 竹田
Noriyuki Nagase
範幸 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009259941A priority Critical patent/JP2011105969A/en
Publication of JP2011105969A publication Critical patent/JP2011105969A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily leaching a silver from a sulfide containing copper consisting essentially of chalcopyrite, at a low cost without needing a special consideration with respect to the safety environment. <P>SOLUTION: Slurry comprising sulfide containing copper and sulfuric acid containing iron by 30-50 g/L, copper by 10 g/L and preptiser by 0.2-1.0 g/L, is charged into a pressurizing vessel, and the slurry is heated to 120-180°C. Then, the copper and the silver are leached by adjusting an oxidation-reduction potential while adjusting the amount of oxygen and/or air supplied in the gaseous phase part so that the pressure of the gaseous phase part in this pressurizing vessel is made higher by 0.5-2.0 MPa than that in the balanced state, and the silver is precipitated as silver-iron alum, and the copper-leached residue containing this silver-iron alum, is treated with sodium thiosulfate solution and the silver is leached, and the silver in the leached finish solution is adsorbed in activated carbon. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、含銅硫化物からの銀の回収方法に関し、より詳細には、黄銅鉱を主体とする含銅硫化物から銀を回収するに際して、毒物であるシアン化ナトリウムを用いず、簡便、低コスト、安全環境面で特別な配慮を必要としない含銅硫化物からの銀の回収方法に関する。   The present invention relates to a method for recovering silver from a copper-containing sulfide, and more specifically, when recovering silver from a copper-containing sulfide mainly composed of chalcopyrite, without using sodium cyanide, which is a toxic substance, The present invention relates to a method for recovering silver from a copper-containing sulfide that does not require special consideration in terms of low cost and safe environment.

一般に、黄銅鉱(キャルコパイライト:CuFeS)、輝銅鉱(キャルコサイト:CuS)、斑銅鉱(ボーナイト:CuFeS)、そして銅藍(コベライト:CuS)などの硫化銅鉱物を含む銅鉱石は、通常、粉砕し、選鉱して銅精鉱とし、これ処理原料としている。この銅精鉱中には銀を始めとする貴金属が含まれており、銅と共に回収対象とされている。 Generally, chalcopyrite (Cal Kopai Light: CuFeS 2), chalcocite (Cal co Site: Cu 2 S), bornite (Bonaito: Cu 5 FeS 4), and covellite (Koberaito: CuS) a copper sulfide mineral, such as The copper ore containing is usually pulverized, and is processed into copper concentrate, which is used as a raw material for processing. This copper concentrate contains precious metals such as silver, and is the subject of recovery along with copper.

こうした銅精鉱から銀を回収するには、銅精鉱を熔錬炉に装入し、高温下で熔融して不純物元素をスラグとして分離してマットを得、得たマットを更に転炉で吹錬して粗銅を得、得られた粗銅をアノードとして用いて電解精製して銀を電解スライム中に濃縮し、これを分銀工程にて処理して回収するのが一般的である。
この乾式製錬法では、銅精鉱中に含まれるイオウは亜硫酸ガスとなるため、これを硫酸製造設備にて硫酸として回収しなければならないが、硫酸は液体であるため、保管する際には大きなタンク設備も必要となり、広い敷地が必要とされるという問題がある。さらに高温の熔体を取扱うため、環境や作業に関して高度な配慮が必要となる。そのため、こうした問題点を軽減できる湿式銅製錬法が検討されている。
In order to recover silver from such copper concentrate, the copper concentrate is charged into a smelting furnace, melted at a high temperature to separate impurity elements as slag to obtain a mat, and the obtained mat is further converted into a converter. It is common to obtain crude copper by blowing and electrolytically purify the obtained crude copper as an anode to concentrate silver in an electrolytic slime, which is processed and recovered in a silver separation step.
In this dry smelting process, sulfur contained in the copper concentrate becomes sulfurous acid gas, so this must be recovered as sulfuric acid at the sulfuric acid production facility, but since sulfuric acid is a liquid, Large tank facilities are also required, and there is a problem that a large site is required. In addition, since high-temperature melts are handled, advanced considerations are required regarding the environment and work. Therefore, a wet copper smelting method that can alleviate these problems has been studied.

湿式銅精錬法としては、浸出液として塩化物イオンを含むものを用いるものと、硫酸塩を含む硫酸水溶液と酸化剤とを用いて浸出するものとに大別されるが、共に浸出した液から溶媒抽出法により銅を抽出分離し、逆抽出して銅溶液を得、これを電解液として用いて銅を電解採取している。このため、乾式製錬法と異なり、精鉱中の硫黄を亜硫酸ガスとせず、また高温の熔体を取扱わないことから昨今、注目されている。   The wet copper refining methods are roughly classified into those using chloride ions as the leaching solution and those leaching using an aqueous sulfuric acid solution containing sulfate and an oxidizing agent. Copper is extracted and separated by an extraction method, back-extracted to obtain a copper solution, and this is used as an electrolytic solution for electrolytically collecting copper. For this reason, unlike dry smelting, sulfur in the concentrate is not used as sulfurous acid gas, and high temperature melt is not handled.

ここで、塩化物イオンを含む浸出液を用いる方法では、相対的にではあるが、高い浸出率が得られるという利点がある反面、塩素による装置腐食を防ぐため設備投資、設備保全に多額の費用がかかるという問題がある。また、この方法では、浸出された銀は塩化物錯イオンとして浸出液中に溶解するため、銀は浸出液の塩素濃度を調整して塩化銀として沈殿させて回収する。したがって、系内の水バランスを取ることが難しく、排水処理の負担を増加する。   Here, the method using a leaching solution containing chloride ions has an advantage that a relatively high leaching rate can be obtained, but on the other hand, in order to prevent equipment corrosion due to chlorine, a large cost is required for equipment investment and equipment maintenance. There is a problem that it takes. Further, in this method, since the leached silver is dissolved in the leachate as chloride complex ions, the silver is precipitated and collected as silver chloride by adjusting the chlorine concentration of the leachate. Therefore, it is difficult to balance the water in the system, increasing the burden of wastewater treatment.

これに対して、硫酸塩を含む硫酸水溶液と酸化剤とを用いる方法では、相対的に浸出率が低いという問題点はあるものの、設備投資、設備保全にかかる費用が安価であるという利点がある。また、銀は、浸出液中の鉄と結合して銀鉄明礬を形成し、沈殿し、銅浸出残渣に分配される。銅浸出残渣より銀を回収するには、銅浸出残渣を熔錬炉に装入し、前記したようにアノードスライム中に濃縮し、分銀工程で処理して回収するのが一般的である。しかし、この方法では銀を回収するために時間がかかり、仕掛かり金利が高くなる。また、工程が長くなるため、ロスが増え、実質回収率が低くなる等の課題がある。   On the other hand, the method using a sulfuric acid aqueous solution containing a sulfate and an oxidizing agent has the advantage that the leaching rate is relatively low, but the cost for capital investment and maintenance is low. . Also, silver combines with iron in the leachate to form silver iron alum, precipitates and is distributed to the copper leach residue. In order to recover silver from the copper leaching residue, the copper leaching residue is generally charged in a smelting furnace, concentrated in an anode slime as described above, and processed and recovered in a silver separation step. However, this method takes time to recover the silver and increases the in-process interest rate. Moreover, since a process becomes long, there exists a subject that a loss increases and a real recovery rate becomes low.

銀鉄明礬を含む銅浸出残渣より銀を回収する別の方法として、銅浸出残渣を水酸化カルシウム水溶液に入れ、沸騰近くまで加熱して残渣中に含まれる銀鉄明礬石を分解して銀を酸化銀とし、生成した酸化銀を、シアン化ナトリウムを含む溶液中で浸出して回収する方法(非特許文献1 参照)が知られている。
この方法では、添加した水酸化カルシウムは最終的にすべて硫酸カルシウムとせざるを得ず、発生澱物量が多くなる。さらに、多量の薬剤が必要となるなどコストを上昇させることになる。加えて、毒物であるシアン化ナトリウムを用いるため、安全と環境の両面から取り扱いや廃液の処理に特別な配慮を講ずる必要があるなど実操業への適用には多くの課題がある。
いずれにしろ、含銅硫化物より湿式製錬法で銀を分離回収するためには、まず、低コストで高い浸出率が得られる方法で含銅硫化物から銀を浸出することが重要となる。
As another method for recovering silver from copper leaching residue containing silver iron alum, put the copper leaching residue in calcium hydroxide aqueous solution and heat it to near boiling to decompose silver iron alumite in the residue to remove silver. A method is known in which silver oxide is produced and the produced silver oxide is leached and recovered in a solution containing sodium cyanide (see Non-Patent Document 1).
In this method, all of the added calcium hydroxide must eventually be calcium sulfate, and the amount of generated starch increases. In addition, the cost increases due to the need for a large amount of medicine. In addition, since sodium cyanide, which is a toxic substance, is used, there are many problems in application to actual operation, such as special considerations for handling and treatment of waste liquid from both safety and environmental aspects.
In any case, in order to separate and recover silver from a copper-containing sulfide by a hydrometallurgical method, it is first important to leach silver from the copper-containing sulfide by a method that provides a high leaching rate at a low cost. .

こうした状況下、含銅硫化物より高浸出率で銅を浸出する方法として、硫酸溶液中で硫酸第1鉄と硫酸第2鉄との酸化還元反応を利用して含銅硫化物より銅を浸出する方法が提案されている。
例えば、150μm以下に粉砕した含銅硫化物を原料とし、オートクレーブ内で、鉄イオン濃度を10〜40g/Lとし、硫酸濃度を10〜60g/Lとし、かつ3価の鉄イオンと2価の鉄イオンの割合が、[Fe3+/Fe2+]の濃度比で2以上となる浸出始液を用いて、酸素分圧を0.2〜0.7MPaとし、温度を50〜105℃として原料中の銅を浸出する方法が提案されている(特許文献1 参照)。
しかしながら、この方法は、浸出温度が低いために浸出速度が遅く、特に、浸出温度が80℃未満になると、浸出液中の鉄濃度が充分にあっても浸出速度が極端に低下し、高い浸出率を得ようとすると、長時間を要するという課題がある。
Under these circumstances, as a method of leaching copper at a higher leaching rate than copper-containing sulfides, copper was leached from copper-containing sulfides using the oxidation-reduction reaction between ferrous sulfate and ferric sulfate in a sulfuric acid solution. A method has been proposed.
For example, a copper-containing sulfide pulverized to 150 μm or less is used as a raw material, and in an autoclave, the iron ion concentration is set to 10 to 40 g / L, the sulfuric acid concentration is set to 10 to 60 g / L, and trivalent iron ions and divalent iron ions are added. In the raw material, the oxygen partial pressure is set to 0.2 to 0.7 MPa and the temperature is set to 50 to 105 ° C. by using a leaching start solution in which the ratio of iron ions is 2 or more in the concentration ratio of [Fe 3+ / Fe 2+ ]. A method of leaching copper is proposed (see Patent Document 1).
However, this method has a low leaching temperature, so the leaching rate is slow. In particular, when the leaching temperature is less than 80 ° C., the leaching rate is extremely reduced even if the iron concentration in the leachate is sufficient, and a high leaching rate is obtained. However, there is a problem that it takes a long time.

また、例えば、加圧容器内において、銅鉱石を原料とし、これと鉄イオンを含有する水溶液又は鉄イオンを含有する硫酸溶液とを混合してスラリーとし、220〜275℃、好ましくは235℃以上の温度を維持しつつ、酸素及び/又は空気中で銅鉱石から銅を浸出する方法が提案されている(特許文献2 参照)。
この方法に従えば、高い温度で銅鉱石全体を強力に酸化させるため、早い浸出速度と、高い浸出率とが得られる。
しかしながら、この方法では、200℃を超える高温高圧下での浸出となるので、用いる加圧容器及びポンプなどの設備には圧力、温度、さらには腐食に耐えうる材質の使用や構造が必要となり、多額の設備投資、多額の補修費用、及び多くの手間を要しコストが増加するという課題がある。
また、この温度領域では、銅鉱石に含有されるイオウはほとんどすべて酸化されて硫酸イオンとなり浸出液に分配するため、浸出液中の過剰の硫酸イオン分を石膏等にして系外に分離除去することが必要となるという問題がある。
Further, for example, in a pressurized container, copper ore is used as a raw material, and this is mixed with an aqueous solution containing iron ions or a sulfuric acid solution containing iron ions to form a slurry, which is 220 to 275 ° C., preferably 235 ° C. or higher. A method has been proposed in which copper is leached from copper ore in oxygen and / or air while maintaining the temperature (see Patent Document 2).
According to this method, the entire copper ore is strongly oxidized at a high temperature, so that a high leaching rate and a high leaching rate can be obtained.
However, in this method, since leaching is performed under a high temperature and high pressure exceeding 200 ° C., the equipment such as a pressure vessel and a pump to be used requires the use and structure of a material that can withstand pressure, temperature, and corrosion. There is a problem that a large amount of capital investment, a large amount of repair costs, and a lot of time and effort are required.
Also, in this temperature range, almost all sulfur contained in copper ore is oxidized to sulfate ions and distributed to the leachate. Therefore, excess sulfate ions in the leachate can be separated and removed from the system using gypsum and the like. There is a problem that it is necessary.

また、別の方法として、圧力容器中において、銅精鉱と触媒として銅精鉱1t当たり3〜50kgの特定組成の石炭を共存させつつ、圧力容器内の温度を90〜220℃、好ましくは120〜180℃、より好ましくは135〜175℃の範囲に維持しながら、容器内の気相部分の圧力を0.1〜3MPa相当に維持するように酸素ガスを送入して浸出する方法が提案されている(特許文献3 参照)。
この方法は、上記した特許文献1記載の方法と特許文献2記載の浸出方法との中間となる温度領域で銅を浸出するものであり、特許文献1記載の方法よりも早く、効率よく銅が浸出できると共に特許文献2記載の方法よりも設備投資、補修費用、及び手間が低減できるというメリットがある。
As another method, the temperature in the pressure vessel is set to 90 to 220 ° C., preferably 120 while coexisting 3 to 50 kg of coal with a specific composition per 1 ton of copper concentrate as a catalyst in the pressure vessel. A method is proposed in which oxygen gas is fed and leached so as to maintain the pressure of the gas phase portion in the container at a value corresponding to 0.1 to 3 MPa while maintaining in the range of ~ 180 ° C, more preferably in the range of 135 to 175 ° C. (See Patent Document 3).
In this method, copper is leached in a temperature range that is intermediate between the method described in Patent Document 1 and the leaching method described in Patent Document 2, and copper is produced more efficiently and efficiently than the method described in Patent Document 1. There are merits that it can be leached and the capital investment, repair cost and labor can be reduced as compared with the method described in Patent Document 2.

しかしながら、上述の特許文献3記載の方法では、対象となる含銅硫化物中の硫化銅鉱物が斑銅鉱、輝銅鉱、あるいは銅藍等の二次硫化鉱物である場合には、これら鉱物と硫酸及び酸素とが良好に反応し、銅を高効率で浸出できるものの、対象が最も一般的で、存在割合の大きい黄銅鉱になると、反応効率が低くなり、低い銅の浸出効率しか得られず、したがって含銅硫化物中の銀も十分銀鉄明礬に転換されないという課題がある。
以上説明したことから分かるように、一般的で、かつ存在割合の大きい黄銅鉱を主体とする含銅硫化物から銀を回収するに際して、毒物であるシアン化ナトリウムを用いず、簡便、低コスト、安全環境面で特別な配慮を必要としない含銅硫化物からの銀の回収方法については、未だ提案されてない。
However, in the method described in Patent Document 3, when the copper sulfide mineral in the target copper-containing sulfide is a secondary sulfide mineral such as chalcopyrite, chalcocite, or copper indigo, these minerals and sulfuric acid are used. And oxygen reacts well, and copper can be leached with high efficiency, but the target is the most common, and when the abundance of chalcopyrite becomes high, the reaction efficiency becomes low, and only low copper leaching efficiency can be obtained, Therefore, there is a problem that the silver in the copper-containing sulfide is not sufficiently converted to silver iron alum.
As can be seen from the above description, when recovering silver from a copper-containing sulfide mainly composed of chalcopyrite, which is a large and existing ratio, without using sodium cyanide, which is a toxic substance, simple, low cost, A method for recovering silver from copper-containing sulfides that does not require special consideration in terms of the safety environment has not yet been proposed.

米国特許第6537440号公報US Pat. No. 6,537,440 米国特許第6497745号公報US Pat. No. 6,497,745 米国特許第5730776号公報US Pat. No. 5,730,776

D.Dreisinger, P.Taggart, R.Banner, D.Copeland, D.Jennings,“The Hydrometallurgical Treatment of Farallon Resources’ Campo Morado Bulk Zn−Pb−Cu−Ag−Au Sulfide Concentrate”, Zinc and Lead 2005 Kyoto.D. Dreisinger, P.M. Taggart, R.A. Banner, D.C. Copeland, D.C. Jennings, “The Hydromagnetic Treatment of Farallon Resources' Campo Morado Bulk Zn—Pb—Cu—Ag—Au Sulfur Concentrate”, Zinc and Lead 2005.

本発明の目的は、上記従来技術の問題点に鑑み、黄銅鉱を主体とする含銅硫化物から銀を回収するに際して、毒物であるシアン化ナトリウムを用いず、簡便、低コスト、安全環境面で特別な配慮を必要としない含銅硫化物からの銀の回収方法を提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to recover silver from copper-containing sulfides mainly composed of chalcopyrite, without using sodium cyanide, which is a toxic substance, in a simple, low-cost, safe environment. The object of the present invention is to provide a method for recovering silver from copper-containing sulfides that does not require special consideration.

本発明者らは、上記課題を解決すべく種々検討した結果、特定の条件の下に含銅硫化物を加圧浸出すれば、低コストで銀が銀鉄明礬として濃縮された銅浸出残渣を効率よく得ることができること、また特定の化合物を含む水溶液を用いると該銀鉄明礬より銀を容易に浸出分離し、回収できることを見出して本発明を完成するに至った。
即ち、本発明の第1の発明によれば、黄銅鉱を主成分とする含銅硫化物から銀を回収する方法において、下記(1)〜(5)の処理を順次行うことを特徴とする含銅硫化物からの銀の回収方法が提供される。
(1)鉄を30〜50g/L、リグニンスルホン酸及び/またはその塩からなる解膠剤を0.2〜1.0g/Lの割合で含む硫酸溶液と、前記含銅硫化物とを混合し、スラリーを得る
(2)前記スラリーを加圧容器内に装入した後、スラリーの温度を120〜180℃に維持しながら、加圧容器内の気相部の圧力が平衡状態よりも0.5〜2.0MPaだけ高くなるのに十分な量の酸素及び/又は空気を気相部に供給して、スラリーの酸化還元電位を調整する
(3)固液分離して銅を含む浸出液と、銅浸出残渣とに得る
(4)前記銅浸出残渣と、チオ硫酸ナトリウムを無水物換算で5〜20g/Lの割合で含むチオ硫酸ナトリウム溶液(銀浸出液)とを混合して、銅浸出残渣スラリーを得た後、固液分離して銀浸出終液と、銀浸出残渣とを得る
(5)銀浸出液と活性炭とを接触させて銀を活性炭に吸着させ、回収する
As a result of various studies to solve the above-mentioned problems, the inventors of the present invention have developed a copper leaching residue in which silver is concentrated as silver iron alum at low cost if the copper-containing sulfide is pressure-leached under specific conditions. The present invention was completed by finding that it can be efficiently obtained, and that when an aqueous solution containing a specific compound is used, silver can be easily leached and separated from the silver iron alum and recovered.
That is, according to the first invention of the present invention, in the method for recovering silver from a copper-containing sulfide containing chalcopyrite as a main component, the following treatments (1) to (5) are sequentially performed. A method for recovering silver from copper-containing sulfides is provided.
(1) Mixing a sulfuric acid solution containing 30 to 50 g / L of iron, a peptizer composed of lignin sulfonic acid and / or a salt thereof at a rate of 0.2 to 1.0 g / L, and the copper-containing sulfide. (2) After the slurry is charged into the pressurized container, the pressure of the gas phase in the pressurized container is less than the equilibrium state while maintaining the temperature of the slurry at 120 to 180 ° C. A sufficient amount of oxygen and / or air to increase by 5 to 2.0 MPa is supplied to the gas phase part to adjust the oxidation-reduction potential of the slurry. (3) A leaching solution containing copper by solid-liquid separation (4) The copper leaching residue is mixed with a sodium thiosulfate solution (silver leaching solution) containing sodium thiosulfate at a rate of 5 to 20 g / L in terms of anhydride. After obtaining the slurry, solid-liquid separation is performed to obtain a silver leaching final solution and a silver leaching residue. (5) contacting the silver leachate and charcoal silver is adsorbed on the activated carbon, and recovering

また、本発明の第2の発明によれば、第1の発明において、前記(1)における前記スラリーは、150〜300g/Lのスラリー濃度を有することを特徴とする含銅硫化物からの銀の回収方法が提供される。   According to the second invention of the present invention, in the first invention, the slurry in (1) has a slurry concentration of 150 to 300 g / L. A recovery method is provided.

また、本発明の第3の発明によれば、第1の発明において、前記(1)における前記硫酸溶液は、10g/L以下の銅を含むことを特徴とする含銅硫化物からの銀の回収方法が提供される。   According to a third invention of the present invention, in the first invention, the sulfuric acid solution in the above (1) contains 10 g / L or less of copper. A collection method is provided.

また、本発明の第4の発明によれば、第1の発明において、前記(1)における前記硫酸溶液は、15〜45g/Lの遊離硫酸を含むことを特徴とする含銅硫化物からの銀の回収方法が提供される。   According to a fourth invention of the present invention, from the copper-containing sulfide according to the first invention, the sulfuric acid solution in (1) contains 15 to 45 g / L of free sulfuric acid. A method for silver recovery is provided.

また、本発明の第5の発明によれば、第1の発明において、前記(2)における前記酸化還元電位は、銀/塩化銀電極基準で、530〜620mVであること特徴とする含銅硫化物からの銀の回収方法が提供される。   According to a fifth aspect of the present invention, in the first aspect, the oxidation-reduction potential in (2) is 530 to 620 mV on the basis of a silver / silver chloride electrode. A method for recovering silver from a product is provided.

また、本発明の第6の発明によれば、第1の発明において、前記(4)における前記銅浸出残渣スラリーは、50〜100g/Lのスラリー濃度であることを特徴とする含銅硫化物からの銀の回収方法が提供される。   According to a sixth invention of the present invention, in the first invention, the copper leaching residue slurry in the above (4) has a slurry concentration of 50 to 100 g / L. A method for recovering silver from is provided.

また、本発明の第7の発明によれば、第1の発明において、前記(4)における前記チオ硫酸ナトリウム溶液は、活性炭を5〜20g/Lの割合で添加されたチオ硫酸ナトリウム溶液であることを特徴とする含銅硫化物からの銀の浸出方法が提供される。   According to a seventh aspect of the present invention, in the first aspect, the sodium thiosulfate solution in (4) is a sodium thiosulfate solution to which activated carbon is added at a rate of 5 to 20 g / L. A method for leaching silver from a copper-containing sulfide is provided.

本発明では、上記の構成を取ることにより、銅と共に浸出された鉄の過剰分を、銀鉄明礬を含む鉄明礬(以下、銀鉄明礬と鉄明礬とを合わせて単に「含銀鉄明礬」と示すこともある。)として沈殿させるが、この際、浸出に伴って生成し、解膠剤により液滴状となったイオウ粒子表面に含銀鉄明礬を付着・堆積させ、イオウ粒子表面を該含銀鉄明礬にて覆う。これによりイオウ粒子が未反応や反応途中の含銅硫化物粒子の表面を覆うことを防止でき、含銅硫化物より銀を高浸出率で浸出できる。また、イオウ粒子表面を含銀鉄明礬が覆うことによりイオウの酸化が防止でき、系内の硫酸バランスも容易に制御できる。   In the present invention, by taking the above-described configuration, the excess of iron leached together with copper is simply combined with a silver iron agate containing silver iron alum (hereinafter referred to as a silver-containing iron agate). In this case, silver-containing iron alum adheres and deposits on the surface of the sulfur particles that are formed during leaching and become droplets by the deflocculant. Cover with silver-containing iron alum. As a result, it is possible to prevent sulfur particles from unreacting or covering the surface of the copper-containing sulfide particles during the reaction, and silver can be leached at a higher leaching rate than the copper-containing sulfide. Further, by covering the surface of the sulfur particles with silver-containing iron alum, sulfur oxidation can be prevented and the sulfuric acid balance in the system can be easily controlled.

また、本発明では、銀鉄明礬中の銀をチオ硫酸ナトリウム溶液で浸出するため、水酸化カルシウムのような強アルカリを含む溶液を沸騰近くまで加熱するという操作も不要であり、同操作により生成する酸化銀を溶解するために毒物であるシアン化ナトリウムを用いなくてもよい。その結果、排水処理での前記水酸化カルシウムによる発生澱物量はなく、シアン化ナトリウムを用いることによる安全環境面での特別な配慮も不要となる。
また、チオ硫酸ナトリウム溶液中の銀イオンを活性炭に吸着させ、得られた活性炭を燃焼することにより簡単、効率よく、且つ低コストで金属銀を得ることができる。
In addition, in the present invention, since silver in silver iron agate is leached with a sodium thiosulfate solution, an operation of heating a solution containing a strong alkali such as calcium hydroxide to near boiling is unnecessary, and is generated by the same operation. It is not necessary to use sodium cyanide, which is a poison, in order to dissolve silver oxide. As a result, there is no amount of generated starch due to the calcium hydroxide in waste water treatment, and no special consideration in terms of safety environment by using sodium cyanide is required.
Further, silver ions in a sodium thiosulfate solution are adsorbed on activated carbon, and the obtained activated carbon is burned, whereby metallic silver can be obtained simply, efficiently, and at low cost.

さらに、本発明では、含銅硫化物より銀を浸出し、銀鉄明礬として得る際、塩化物を含まない浸出液を用いて浸出し、かつ浸出時のスラリー温度を120〜180℃とするため、特別高価な材質で装置を構成する必要もなく、一般的な耐熱性、耐食性を有するSUS304、SUS316等のステンレスを用いることができるので、設備コストも低く抑えられる。
したがって、本発明の方法は、簡便で、低コストで、かつ安全環境面で特別な配慮を必要としない含銅硫化物からの銀の回収方法であり、その工業的価値は高い。
Furthermore, in the present invention, when leaching silver from a copper-containing sulfide and obtaining silver iron alum, leaching is performed using a leaching solution not containing chloride, and the slurry temperature during leaching is 120 to 180 ° C., There is no need to configure the apparatus with a special expensive material, and stainless steel such as SUS304 and SUS316 having general heat resistance and corrosion resistance can be used, so that the equipment cost can be kept low.
Therefore, the method of the present invention is a method for recovering silver from a copper-containing sulfide that is simple, low-cost, and does not require special consideration in terms of a safe environment, and has high industrial value.

以下、本発明について詳細に説明する。
本発明では、含銅硫化物と、鉄及び解膠剤、好ましくは更に銅を含む硫酸溶液とでスラリーを形成し、これを加圧容器内に供給し、スラリーの温度を120〜180℃とし、気相部の圧力がスラリー温度と平衡状態となる圧よりも0.5〜2.0MPaだけ高くなるように、気相部に酸素及び/又は空気を連続的に供給し、もってスラリーの酸化還元電位を、銀/塩化銀電極基準で、530〜620mVに調整し、含銅硫化物から銅と銀とを浸出し、銀を銀鉄明礬として沈殿させ、得られた銀鉄明礬を含む銅浸出残渣とチオ硫酸ナトリウム溶液とを混合攪拌して銀を浸出し、銀を活性炭に吸着させて回収する。
Hereinafter, the present invention will be described in detail.
In the present invention, a slurry is formed with a copper-containing sulfide and a sulfuric acid solution containing iron and a peptizer, preferably further copper, and this is supplied into a pressure vessel, and the temperature of the slurry is set to 120 to 180 ° C. In addition, oxygen and / or air is continuously supplied to the gas phase part so that the pressure in the gas phase part is higher by 0.5 to 2.0 MPa than the pressure at which the gas phase part is in equilibrium with the slurry temperature. The reduction potential is adjusted to 530 to 620 mV on the basis of a silver / silver chloride electrode, copper and silver are leached from a copper-containing sulfide, silver is precipitated as silver iron alum, and the obtained copper containing silver iron alum The leaching residue and sodium thiosulfate solution are mixed and stirred to leaching silver, and the silver is adsorbed on activated carbon and recovered.

本発明において特に重要な点は、含銅硫化物から銅と銀とを浸出する際に、(イ)浸出液として、鉄及び解膠剤、好ましくは更に銅を含む硫酸溶液を用いること、(ロ)浸出時のスラリーの酸化還元電位を前記範囲に調整すること、及び(ハ)含銀鉄明礬より銀を浸出する際に浸出液としてチオ硫酸ナトリウム溶液を用いることである。
(イ)に関しては、こうすることにより、浸出に伴って生成したイオウを解膠剤により液滴状粒子とするためである。
そして、(ロ)に関しては、浸出液中の鉄イオンを三価にし、浸出された銀と該三価の鉄イオンとを反応させて、銀を銀鉄明礬として沈殿させると共に、過剰となった鉄イオンを鉄明礬として沈殿させ、前記液滴状のイオウ粒子の表面に付着・堆積させてイオウ粒子表面を覆い、イオウ粒子が未反応あるいは反応途中の含銅硫化物の表面に付着し、含銅硫化物の表面を覆うことができなくなるようにするためである。これにより銅と銀との良好な浸出反応が確保され、高い浸出率が得られる。
また、(ハ)に関しては、こうすることにより、銀鉄明礬からの銀の浸出に、安価で、取り扱いの容易なチオ硫酸ナトリウムを用いるため、銀鉄明礬から酸化銀を得るために使用する水酸化カルシウムによる多量の硫酸カルシウムの発生や、酸化銀を溶解するための毒物であるシアン化ナトリウムの使用の必要がなくなる。
In the present invention, it is particularly important that when copper and silver are leached from a copper-containing sulfide, (a) a sulfuric acid solution containing iron and a peptizer, preferably further containing copper, is used as the leaching solution. (Ii) adjusting the oxidation-reduction potential of the slurry during leaching to the above range; and (iii) using a sodium thiosulfate solution as a leaching solution when leaching silver from silver-containing iron alum.
With regard to (A), this is because the sulfur produced as a result of leaching is made into droplet-like particles by the peptizer.
As for (b), the iron ions in the leachate are made trivalent, and the leached silver reacts with the trivalent iron ions to precipitate silver as silver iron alum and excess iron. Ions are precipitated as iron alum and deposited and deposited on the surface of the droplet-shaped sulfur particles to cover the surface of the sulfur particles, and the sulfur particles adhere to the surface of the unreacted or reacting copper-containing sulfide. This is to prevent the surface of the sulfide from being covered. This ensures a good leaching reaction between copper and silver, and a high leaching rate is obtained.
Regarding (c), by using sodium thiosulfate which is inexpensive and easy to handle for silver leaching from silver iron alum, water used to obtain silver oxide from silver iron alum The generation of a large amount of calcium sulfate by calcium oxide and the use of sodium cyanide, which is a poison for dissolving silver oxide, are eliminated.

以下、本発明の含銅硫化物からの銀の浸出方法について、含銅硫化物、硫酸溶液、酸素及び/又は空気、銅浸出液、銅浸出残渣、銀浸出液、銀浸出残渣、活性炭、及び浸出・回収方法等に項分けして詳細に説明する。   Hereinafter, regarding the method for leaching silver from the copper-containing sulfide of the present invention, copper-containing sulfide, sulfuric acid solution, oxygen and / or air, copper leaching solution, copper leaching residue, silver leaching solution, silver leaching residue, activated carbon, and leaching It will be explained in detail by dividing it into recovery methods.

1)含銅硫化物
前記したように、一般に、硫化銅鉱石などの含銅硫化物には様々な成分が同時に含まれている。例えば、銅鉱石では黄銅鉱、輝銅鉱、斑銅鉱、そして銅藍などの硫化銅鉱物と共に黄鉄鉱やその他の脈石成分が共存している。これらの内で黄銅鉱は、一次硫化鉱物であり、銅と鉄、イオウからなり、CuFeS2で表される。微量の金、銀、錫、亜鉛などを含む。また、少量のニッケルやセレンを含むものもある。硫化銅鉱物中で最も重要で、最も一般的なものであり、酸に対する耐浸出性がある。そして、輝銅鉱、斑銅鉱、銅藍などは一次硫化鉱物である黄銅鉱が自然酸化することにより生じた二次硫化鉱物であり、黄銅鉱と比較してイオウ品位が低く、酸に対する溶解性は良好である。
なお、銀を初めとする貴金属はこれらの銅鉱物や、例えば硅石等の脈石成分に存在している。
工業的には、これらの鉱物をそれぞれ単独で採掘することは困難であり、通常、黄銅鉱を主成分とし、他の鉱物が混ざった状態で採掘された銅鉱石を磨鉱し、選鉱して銅精鉱を得、これを銅や銀の回収に供している。なお、銅鉱石中の黄銅鉱の比率は銅鉱石が採掘される鉱山によってそれぞれ異なる。
本発明の含銅硫化物は黄銅鉱を主体とするものであり、その形状としては、スラリー化できる程度に粉砕されておれば良く、銅精鉱程度に細かくなっていることが好ましい。
1) Copper-containing sulfides As described above, generally, various components are simultaneously contained in copper-containing sulfides such as copper sulfide ores. For example, in copper ores, pyrite and other gangue components coexist with copper sulfide minerals such as chalcopyrite, chalcocite, chalcopyrite, and copper indigo. Of these, chalcopyrite is a primary sulfide mineral, which consists of copper, iron, and sulfur, and is represented by CuFeS2. Contains trace amounts of gold, silver, tin, zinc, etc. Some contain a small amount of nickel or selenium. It is the most important and most common of copper sulfide minerals and is leaching resistant to acids. And chalcopyrite, porphyry and copper indigo are secondary sulfide minerals produced by the natural oxidation of chalcopyrite, which is a primary sulfide mineral. The sulfur grade is lower than that of chalcopyrite, and the solubility in acids is low. It is good.
Note that noble metals such as silver are present in these copper minerals and gangue components such as meteorites.
Industrially, it is difficult to mine each of these minerals individually, and usually, copper ore mined with chalcopyrite as the main component and mixed with other minerals is scoured and beneficiated. Copper concentrate is obtained and used for the recovery of copper and silver. The ratio of chalcopyrite in the copper ore varies depending on the mine where the copper ore is mined.
The copper-containing sulfide of the present invention is mainly composed of chalcopyrite, and the shape thereof may be pulverized to such an extent that it can be slurried, and is preferably as fine as copper concentrate.

2)硫酸溶液
本発明で含銅硫化物から銅と銀とを浸出し、かつ銀を銀鉄明礬に転換するために用いる硫酸溶液は、鉄、銅及びリグニンスルホン酸及び/またはその塩からなる解膠剤をそれぞれ30〜50g/L、10g/L以下、0.2〜1.0g/Lの割合で含み、遊離硫酸を15〜45g/Lの割合で含ものとすることが好ましい。以下、鉄濃度、解膠剤濃度、及び遊離硫酸濃度に項分けして硫酸溶液について説明する。
2) Sulfuric acid solution In the present invention, the sulfuric acid solution used for leaching copper and silver from a copper-containing sulfide and converting silver into silver iron alum comprises iron, copper and lignin sulfonic acid and / or a salt thereof. It is preferable to contain peptizers at a rate of 30 to 50 g / L, 10 g / L or less, and 0.2 to 1.0 g / L, respectively, and free sulfuric acid at a rate of 15 to 45 g / L. Hereinafter, the sulfuric acid solution will be described in terms of iron concentration, peptizer concentration, and free sulfuric acid concentration.

2)−1 鉄濃度
硫酸溶液中の鉄濃度を30〜50g/Lとするのは、30g/Lを下回ると、浸出に関与する鉄量が不足し、かつ含銀鉄明礬として析出する鉄量が十分でなく、浸出に伴って生成するイオウによる浸出阻害を十分防止できなくなる虞があるからである。一方、50g/Lを上回る場合、浸出液中の銅の溶解度が低下し浸出液中に銅が溶けなくなる。さらに、後述する浸出液から銅を抽出分離する工程で鉄の分離性が悪くなり好ましくない。また、高生産効率、低コスト化のために、後述する浸出液から銅を抽出分離して得た抽出残液を硫酸溶液として繰り返し用いることが好ましいが、こうした場合、硫酸溶液中の銅は概ね10g/L以下となる。なお、10g/Lを上回ると銅の回収効率が低下するので好ましくない。
2) -1 Iron concentration The iron concentration in the sulfuric acid solution is set to 30 to 50 g / L. When the iron concentration falls below 30 g / L, the amount of iron involved in leaching is insufficient, and the amount of iron precipitated as silver-containing iron alum. This is because there is a possibility that the inhibition of leaching due to sulfur generated during leaching cannot be sufficiently prevented. On the other hand, when it exceeds 50 g / L, the solubility of copper in the leachate is lowered and copper cannot be dissolved in the leachate. Furthermore, in the process of extracting and separating copper from the leachate described later, iron separability is deteriorated, which is not preferable. In order to achieve high production efficiency and low cost, it is preferable to repeatedly use an extraction residue obtained by extracting and separating copper from a leachate described later as a sulfuric acid solution. In such a case, about 10 g of copper in the sulfuric acid solution is used. / L or less. Note that if it exceeds 10 g / L, the copper recovery efficiency decreases, which is not preferable.

2)−2 解膠剤濃度
また、解膠剤としてリグニンスルホン酸又はその塩を用いるが、こうした界面活性剤はスラリー内の含銅硫化物粒子や生成したイオウの凝集を防止し、分散性を向上させる他、これらが存在することにより生成したイオウが球状化現象を起こすからである。球状化したイオウの表面に含銀鉄明礬が沈積・堆積してイオウ粒子表面を覆うことにより、イオウによる浸出阻害をより良く防止できる。
解膠剤の添加量を0.2〜1.0g/Lとするのは、この範囲を下回ると上記効果が十分得られず、この範囲を超えても更なる効果の向上は得られないからである。
2) -2 Peptide concentration Also, lignin sulfonic acid or its salt is used as a peptizer, but these surfactants prevent aggregation of copper-containing sulfide particles and generated sulfur in the slurry, and dispersibility. This is because, in addition to the improvement, sulfur produced due to the presence of these causes a spheroidization phenomenon. By covering and covering the surface of the sulfur particles by depositing and depositing silver-containing iron alum on the surface of the spheroidized sulfur, it is possible to better prevent leaching inhibition by sulfur.
The reason why the amount of the peptizer is 0.2 to 1.0 g / L is that if the amount is below this range, the above effect cannot be sufficiently obtained, and if the amount exceeds this range, further improvement in the effect cannot be obtained. It is.

2)−3 遊離硫酸濃度
また、遊離硫酸を15〜45g/Lとするのは、15g/Lを下回ると、浸出初期に消費される遊離硫酸が不足し浸出不良になり好ましくない。一方、45g/Lを上回ると、鉄明礬が溶解しやすく、イオウの被覆効果がなくなり浸出不良となるので好ましくない。また、前記抽出残液を硫酸溶液として浸出に繰り返し用いた場合、通常、遊離硫酸濃度はこうした範囲となるが、もし、硫酸濃度が不足している場合には硫酸を添加し、硫酸が過剰になっている場合には、消石灰、生石灰、そして炭酸カルシウム等を加えて硫酸を石膏として固定し、系外に払い出して硫酸濃度を調整すればよい。
2) -3 Free Sulfuric Acid Concentration Further, the free sulfuric acid is set to 15 to 45 g / L. If it is less than 15 g / L, the free sulfuric acid consumed at the initial stage of leaching is insufficient, and leaching failure is unfavorable. On the other hand, if it exceeds 45 g / L, iron alum is easy to dissolve, and the covering effect of sulfur is lost, resulting in poor leaching. In addition, when the extraction residue is repeatedly used for leaching as a sulfuric acid solution, the concentration of free sulfuric acid usually falls within this range. However, if the sulfuric acid concentration is insufficient, sulfuric acid is added and the sulfuric acid is excessive. In such a case, slaked lime, quick lime, calcium carbonate, and the like are added to fix sulfuric acid as gypsum, and the sulfuric acid concentration is adjusted by discharging it out of the system.

3)酸素及び/又は空気
本発明において、酸素源として用いうるものは、酸素及び/又は空気である。但し、空気を用いた場合には、排気される空気の持ち去り熱が大きくなり、反応温度を維持するために加える熱量が多くなる虞があるので、酸素、例えばボンベ入りの工業用酸素や酸素プラントで製造される酸素を用いることが好ましい。
本発明において、酸素は浸出されたFe2+をFe3+とすることにより、一つは銅と銀との浸出反応に寄与させ、一つは過剰のFe3+を含銀鉄明礬として沈殿させる役割を持つ。また、直接含銅硫化物を酸化して銅や鉄を浸出するとも考えられる。
なお、加圧容器の気相部への酸素供給は連続的に供給することが好ましい。酸素流速が低い場合や間欠的に酸素を供給した場合は、浸出液中の鉄明礬の生成が進まず、イオウによる浸出阻害が生じやすくなる。
また、加圧容器への酸素の供給は、スラリー中に吹き込むのではなく、加圧容器の気相部におこなうことが肝要である。これは、スラリー中に酸素を吹き込んだ場合、スラリー中に形成した気泡が黄銅鉱を液面付近に運んでしまう現象が発生し、均一に分散しなくなり浸出率の低下を招くからである。
3) Oxygen and / or air In the present invention, oxygen and / or air can be used as an oxygen source. However, when air is used, the heat to be taken away from the exhausted air increases, and the amount of heat applied to maintain the reaction temperature may increase, so oxygen, for example, industrial oxygen in a cylinder or oxygen It is preferable to use oxygen produced in the plant.
In the present invention, oxygen contributes to the leaching reaction between copper and silver by changing the leached Fe 2+ to Fe 3+, and one serves to precipitate excess Fe 3+ as silver-containing iron alum. Have. It is also considered that copper and iron are leached by directly oxidizing copper-containing sulfides.
In addition, it is preferable to supply oxygen continuously to the gas phase part of the pressurized container. When the oxygen flow rate is low or when oxygen is supplied intermittently, the production of iron alum in the leachate does not proceed, and leaching inhibition due to sulfur tends to occur.
In addition, it is important that the supply of oxygen to the pressurized container is performed not in the slurry but in the gas phase part of the pressurized container. This is because, when oxygen is blown into the slurry, bubbles formed in the slurry carry chalcopyrite to the vicinity of the liquid surface, and are not uniformly dispersed, resulting in a decrease in the leaching rate.

4) 銅浸出液
本発明の方法で得られた銅浸出液は、一般に酸性抽出剤が用いられる溶媒抽出工程において銅が抽出分離されて微量の銅と鉄と硫酸とを主成分とする抽出残液が得られ、抽出された銅は逆抽出されて銅が濃縮された逆抽出液として回収される。そして、逆抽出液は、電解液として不溶性電極を使用した銅電解工程に供給され、銅は電気銅として回収される。なお、前記抽出残液は組成調整された後、前記浸出用の硫酸溶液として繰り返し使用される。
4) Copper leaching solution The copper leaching solution obtained by the method of the present invention is an extraction residue mainly containing a small amount of copper, iron and sulfuric acid as a result of extraction and separation of copper in a solvent extraction process in which an acidic extractant is used. The obtained and extracted copper is back-extracted and recovered as a back extract liquid in which copper is concentrated. The back extract is then supplied to a copper electrolysis process using an insoluble electrode as the electrolyte, and the copper is recovered as electrolytic copper. The extraction residual liquid is repeatedly used as the leaching sulfuric acid solution after the composition is adjusted.

5) 銅浸出残渣
得られる銅浸出残渣中には、脈石成分、未反応の黄銅鉱、イオウ、及び含銀鉄明礬とが存在する。銀は、前記したように、含銀鉄明礬は無論、未反応の黄銅鉱と脈石成分とにも含まれている。本発明の回収対象は含銀鉄明礬である。
なお、イオウに関しては、以下の銀の浸出に先立ち蒸留分離してもよいが、その際には、残渣を粉砕して銀の浸出を行うことが好ましい。
5) Copper leaching residue The obtained copper leaching residue contains gangue components, unreacted chalcopyrite, sulfur, and silver-containing iron alum. As described above, silver is also contained in unreacted chalcopyrite and gangue components, as a matter of course. The collection target of the present invention is silver-containing iron alum.
Sulfur may be distilled and separated prior to the following silver leaching, but in that case, it is preferable to pulverize the residue to perform silver leaching.

6) 銀浸出残渣
銀鉄明礬から銀を浸出た後の銀浸出残渣には硫黄、未溶解の含銅硫化物、及び脈石成分が存在し、これらに含まれる貴金属も存在する。したがって、通常、銀浸出残渣中の硫黄を、例えば、揮発分離した後、従来の熔錬炉に供し、貴金属を回収する。なお、含まれるイオウの量により分銀工程に供することも可能である。
6) Silver leaching residue The silver leaching residue after leaching silver from silver iron alum contains sulfur, undissolved copper-containing sulfide, and gangue components, and precious metals contained in these also exist. Therefore, usually, sulfur in the silver leaching residue is separated by volatilization, for example, and then subjected to a conventional smelting furnace to recover the noble metal. In addition, it is also possible to use for a silver separation process with the quantity of the sulfur contained.

7) 銀出液(チオ硫酸ナトリウム溶液)
本発明で銀を浸出するために用いる銀浸出液としては、チオ硫酸ナトリウム溶液を用いるが、含銀鉄明礬を十分溶解するためである。
また、チオ硫酸ナトリウム濃度は、5〜20g/Lとする。この範囲を下回ると溶解した銀を浸出液中に[Ag(S3−の形態で確実に保持できないからである。
本発明において、チオ硫酸ナトリウム溶液で浸出できる理由について、本発明者らは、銅浸出残渣中に含まれる銀鉄明礬はAg(Fe)(SO(OH)の分子式で示されるが、これが硫酸により溶解され、銀が溶解度の低い硫酸銀(溶解度 0.85g/水100g)として飽和になる前に、チオ硫酸ナトリウムと反応して溶解度の高い[Ag(S3−を形成し、浸出液中に錯イオンとして銀浸出液中に確保されることにより浸出が進行するものと推定している。
7) Silver effluent (sodium thiosulfate solution)
As a silver leaching solution used for leaching silver in the present invention, a sodium thiosulfate solution is used, which is for sufficiently dissolving silver-containing iron alum.
The sodium thiosulfate concentration is 5 to 20 g / L. This is because when the amount falls below this range, the dissolved silver cannot be reliably held in the form of [Ag (S 2 O 3 ) 2 ] 3− in the leachate.
In the present invention, the reason why the present invention can be leached with a sodium thiosulfate solution is that the present inventors show that silver iron alum contained in a copper leaching residue is expressed by a molecular formula of Ag (Fe) 3 (SO 4 ) 2 (OH) 6. However, it is dissolved in sulfuric acid and reacted with sodium thiosulfate before the silver becomes saturated as low-solubility silver sulfate (solubility 0.85 g / water 100 g) [Ag (S 2 O 3 ) 2 It is presumed that leaching proceeds by forming 3- and being secured in the silver leachate as complex ions in the leachate.

8) 活性炭
本発明に用いる活性炭は、特に限定されるものでもなく、一般的なものでよい。形状も、粉状、塊状、棒状等、各種の形態があるが、採用する回収方法に合わせて選択すればよい。例えば、銀の浸出と活性炭への吸着を同時に行うのであれば、粉状の活性炭の所定量を浸出槽に供給すればよい。また、カラム方式で活性炭に吸着させて回収するならば、粒状の活性炭を用いることが好ましい。
また、銀を吸着した活性炭より銀を回収するには、該活性炭を電気炉や管状炉で燃焼させればよい。あるいは、電解採取された電気銀を鋳込む際の溶解工程に補助燃料として供してもよい。
8) Activated carbon The activated carbon used for this invention is not specifically limited, A general thing may be used. There are various shapes such as powder, lump, and rod, but the shape may be selected according to the collection method to be employed. For example, if silver leaching and adsorption onto activated carbon are performed simultaneously, a predetermined amount of powdered activated carbon may be supplied to the leaching tank. Moreover, if it is made to adsorb | suck to activated carbon and collect | recover by a column system, it is preferable to use granular activated carbon.
Further, in order to recover silver from activated carbon that has adsorbed silver, the activated carbon may be burned in an electric furnace or a tubular furnace. Alternatively, it may be used as an auxiliary fuel for the dissolution process when casting electrosilver collected by electrolysis.

9)浸出・回収方法
本発明では、前記含銅硫化物と前記硫酸水溶液からなるスラリーを形成し、これを加圧容器内に装入し、該加圧容器内の温度を120〜180℃の値に維持しながら、該加圧容器内の気相部の圧力がその温度での平衡気相圧よりも0.5〜2MPa高い圧力になるように、該容器内の気相部に酸素を供給し、もってスラリーの酸化還元電位を530mV以上620mV以下、望ましくは550mV以上620mV以下に保持して含銅硫化物から銅と銀とを浸出する。そして、含銀鉄明礬を含む銅浸出残渣と銅浸出液とを得る。銅浸出液は、上記したように処理されるが、含銀鉄明礬を含む銅浸出残渣は、後述するようにチオ硫酸ナトリウム溶液で処理して、銀を浸出し、活性炭に吸着させて回収する。
以下、銅の浸出条件と銀の浸出・回収条件等について項分けして説明する。
9) Leaching / recovering method In the present invention, a slurry comprising the copper-containing sulfide and the sulfuric acid aqueous solution is formed, charged in a pressure vessel, and the temperature in the pressure vessel is 120 to 180 ° C. While maintaining the value, oxygen is added to the gas phase portion in the container so that the pressure in the gas phase portion in the pressurized vessel is 0.5 to 2 MPa higher than the equilibrium gas phase pressure at that temperature. Then, the oxidation-reduction potential of the slurry is maintained at 530 mV to 620 mV, preferably 550 mV to 620 mV, and copper and silver are leached from the copper-containing sulfide. Then, a copper leaching residue containing a silver-containing iron alum and a copper leaching solution are obtained. The copper leaching solution is treated as described above, but the copper leaching residue containing silver-containing iron alum is treated with a sodium thiosulfate solution as will be described later, leaching silver, adsorbed on activated carbon, and recovered.
Hereinafter, the copper leaching conditions and the silver leaching / recovery conditions will be described separately.

9)−1 銅の浸出条件
銅の浸出条件をスラリー濃度、温度、酸素及び/又は空気の供給方法、及び酸化還元電位に項分けして説明する。
9) -1 Copper Leaching Conditions Copper leaching conditions will be described in terms of slurry concentration, temperature, oxygen and / or air supply method, and oxidation-reduction potential.

9)−1−1 スラリー濃度
前記したように、本発明では、含銅硫化物と前記2)に記載した硫酸溶液とを混合してスラリーを形成し、これを加圧容器内に供給し、含銅硫化物より銅を浸出する。この際、スラリー濃度が低いと生産効率が低くなり、一方、高すぎると、反応に必要とされる時間が長くなりすぎて生産効率の低下を招く。そのため、本発明では、スラリー濃度は150〜300g/Lとすることが好ましい。
9) -1-1 Slurry concentration As described above, in the present invention, a copper-containing sulfide and the sulfuric acid solution described in 2) above are mixed to form a slurry, which is supplied into a pressurized container, Leach copper from copper-containing sulfides. At this time, if the slurry concentration is low, the production efficiency is low. On the other hand, if the slurry concentration is too high, the time required for the reaction becomes too long and the production efficiency is lowered. Therefore, in the present invention, the slurry concentration is preferably 150 to 300 g / L.

9)−1−2 温度
本発明では、浸出時のスラリー温度を120〜180℃とする。こうするのは、主として十分な浸出速度を得ると同時に、浸出に伴って生成するイオウが酸化されて硫酸となるのを防止するためである。120℃未満では十分な浸出速度が得られず、所定の浸出率を得るために長時間かかり生産性に劣る。一方、180℃を超えると、浸出反応により生成するイオウの多くが酸化され、硫酸となり、前記抽出残液を繰り返し使用する際の硫酸バランスが取りづらくなる。
9) -1-2 temperature In this invention, the slurry temperature at the time of leaching shall be 120-180 degreeC. This is mainly for obtaining a sufficient leaching rate and at the same time preventing the sulfur produced by the leaching from being oxidized to sulfuric acid. If it is less than 120 ° C., a sufficient leaching rate cannot be obtained, and it takes a long time to obtain a predetermined leaching rate, resulting in poor productivity. On the other hand, when the temperature exceeds 180 ° C., most of the sulfur produced by the leaching reaction is oxidized to become sulfuric acid, which makes it difficult to balance the sulfuric acid when the extraction residue is repeatedly used.

ところで、イオウの融点は107〜113℃程度であることから、前記浸出時のスラリー温度で生成する単体イオウは溶融状態であり、未反応、あるいは反応中の含銅硫化物粒子表面に付着し、そのまま放置すれば含銅硫化物粒子表面全面がイオウで覆われ、浸出反応が阻害される。従来、この温度領域での黄銅鉱の浸出効率が低い理由は、浸出反応に伴い生成するイオウ量が他の銅鉱物の場合よりも多く、生成したイオウが早期に未反応、あるいは反応中の含銅硫化物粒子表面を覆い浸出反応を阻害するためと思われる。
本発明では、リグニンスルホン酸等の表面活性剤を解膠剤として用いることによりこの温度範囲で生成するイオウを球状の液滴状態とし、浸出されて過剰となったFe3+から生成した含銀鉄明礬をこの液滴状態のイオウ表面に沈積・堆積させてイオウが未反応、あるいは反応途中の含銅硫化物粒子表面に付着し、覆うのを効果的に防止する。
By the way, since the melting point of sulfur is about 107 to 113 ° C., the single sulfur produced at the slurry temperature at the time of leaching is in a molten state and adheres to the surface of the copper-containing sulfide particles that are unreacted or reacting, If left as it is, the entire surface of the copper-containing sulfide particles is covered with sulfur, and the leaching reaction is inhibited. Conventionally, the reason for the low leaching efficiency of chalcopyrite in this temperature range is that the amount of sulfur produced in the leaching reaction is larger than in the case of other copper minerals, and the produced sulfur is unreacted early or contained during the reaction. It seems to cover the surface of copper sulfide particles and inhibit the leaching reaction.
In the present invention, by using a surface active agent such as lignin sulfonic acid as a peptizer, sulfur produced in this temperature range is made into a spherical droplet state, and silver-containing iron produced from Fe 3+ which has been leached and becomes excessive Alum is deposited and deposited on the sulfur surface in the form of droplets to effectively prevent sulfur from adhering to and covering the surface of the unreacted or reactive copper-containing sulfide particles.

9)−1−3 酸素及び/又は空気の供給方法
本発明では、酸化剤として酸素を用いるが、加圧容器内のスラリー中に酸素を直接吹き込むことはしない。これは、スラリー中に酸素を吹き込んだ場合、スラリー中に形成した気泡が上昇とともに黄銅鉱を液面付近に運ぶ現象が発生し、分散不均一による浸出率の低下を招くからである。したがって、加圧容器内の気相部に酸素を供給する。具体的には、加圧容器内のスラリーを120〜180℃に維持しながら、加圧容器内の気相圧を、その温度での平衡気相圧に0.5〜2MPaを上乗せした圧力となるように酸素及び/又は空気の供給量を調整する。
加圧容器内の気相部に供給された酸素は、スラリー中に溶解して酸化剤として働き、含銅硫化物中の銅、銀、及び鉄等を浸出し、あるいは浸出されたFe2+をFe3+とし、Fe3+を銅の浸出反応に寄与させ、また過剰のFe3+を含銀鉄明礬として沈殿させる。なお、反応により消費された酸素は加圧容器内の気相圧を一定とすることにより気相からスラリー内に補充される。
本発明において、加圧容器内の気相部への上乗せ圧力分が0.5MPa未満となると、スラリーの酸化還元電位が530mVより低下し、浸出速度が極端に低下するので好ましくない。一方、2MPaを越えて圧を上乗せすると、酸化還元電位が620mVを超え、銅の浸出速度の更なる向上は得られずにイオウの酸化が増加する。また、供給する酸素及び/又は空気の量が多くなり、排気の持ち去り熱量が増加して加圧容器内の温度を所定の範囲内に安定制御しづらくなるという問題も発生してくる。
9) -1-3 Supply Method of Oxygen and / or Air In the present invention, oxygen is used as the oxidizing agent, but oxygen is not directly blown into the slurry in the pressurized container. This is because, when oxygen is blown into the slurry, bubbles formed in the slurry rise and a phenomenon of carrying chalcopyrite to the vicinity of the liquid surface occurs, resulting in a decrease in the leaching rate due to uneven dispersion. Therefore, oxygen is supplied to the gas phase part in the pressurized container. Specifically, while maintaining the slurry in the pressurized container at 120 to 180 ° C., the gas phase pressure in the pressurized container is set to a pressure obtained by adding 0.5 to 2 MPa to the equilibrium gas phase pressure at that temperature. The supply amount of oxygen and / or air is adjusted so that
Oxygen supplied to the gas phase part in the pressurized container dissolves in the slurry and acts as an oxidizing agent, leaching copper, silver, iron, etc. in the copper-containing sulfide, or leaching Fe 2+ . and Fe 3+, the Fe 3+ was contributing to the leaching reactions of the copper and to precipitate the excess of Fe 3+ as silver-containing iron alum. The oxygen consumed by the reaction is replenished from the gas phase into the slurry by keeping the gas phase pressure in the pressurized container constant.
In the present invention, when the pressure applied to the gas phase part in the pressurized container is less than 0.5 MPa, the oxidation-reduction potential of the slurry is lowered from 530 mV, and the leaching rate is extremely lowered. On the other hand, when the pressure is increased beyond 2 MPa, the oxidation-reduction potential exceeds 620 mV, and the oxidation of sulfur increases without further improvement of the copper leaching rate. In addition, the amount of oxygen and / or air to be supplied increases, and the amount of heat taken away from the exhaust gas increases, making it difficult to stably control the temperature in the pressurized container within a predetermined range.

本発明の条件下では、加圧容器内の気相部の上乗せ圧力分とスラリーの酸化還元電位に正の相関が見られる。本発明では、この正の相関を用いることによりスラリーの酸化還元電位を制御し、含銅硫化物の浸出反応と含銀鉄明礬の生成反応とを制御する。
なお、酸素及び/又は空気の供給は、一定流量でおこなうことが好ましい。供給量がばらつくと、送入量が過剰になった場合には、送入された酸素ガスが酸化に使われずに無駄に排気されるなどして酸素の利用効率やエネルギー効率が悪くなる。一方、送入量が不足すると、単位体積あたりに導入する酸素ガスの量が減りスラリーの酸化還元電位の上昇が図れなくなる。
本発明では、加圧容器内の気相部の上乗せ圧力分とスラリーの酸化還元電位との正の相関を用いるために、加圧容器内のスラリーの酸化還元電位を簡単、かつ連続的に制御できる。
Under the conditions of the present invention, there is a positive correlation between the added pressure of the gas phase portion in the pressurized container and the oxidation-reduction potential of the slurry. In the present invention, by using this positive correlation, the oxidation-reduction potential of the slurry is controlled, and the leaching reaction of the copper-containing sulfide and the formation reaction of silver-containing iron alum are controlled.
Note that the supply of oxygen and / or air is preferably performed at a constant flow rate. If the supply amount varies, if the supply amount becomes excessive, the oxygen utilization efficiency and energy efficiency are deteriorated, for example, the oxygen gas that has been supplied is exhausted without being used for oxidation. On the other hand, when the feeding amount is insufficient, the amount of oxygen gas introduced per unit volume is reduced, and the oxidation-reduction potential of the slurry cannot be increased.
In the present invention, since the positive correlation between the added pressure of the gas phase in the pressurized container and the oxidation-reduction potential of the slurry is used, the oxidation-reduction potential of the slurry in the pressurized container is controlled easily and continuously. it can.

9)−1−4 酸化還元電位
本発明では、含銅硫化物より銅、銀、及び鉄等を浸出する。そして、硫酸溶液中に浸出された銀と、鉄の過剰分を含銀鉄明礬として沈殿させ、前記液滴状態のイオウの表面に付着・堆積させる。これによりあたかもイオウの表面を含銀鉄明礬でコーティングしたような状態を生じさせてイオウが未反応、あるいは反応中の硫化銅粒子表面に付着し、覆うのを防止する。また、これによりイオウが酸化されるのを防止する。そのため、浸出反応を行う際に、加圧容器内のスラリーの酸化還元電位を530〜620mV、好ましくは550〜620mVに調整する。
酸化還元電位が530mV未満では、含銅硫化物から銅等を浸出する速度が著しく低下し、実用的な浸出速度が得られず、一方620mVを越えると浸出速度は速くなるものの、イオウが過剰に酸化され硫酸イオンとして浸出液に分配され、浸出液より銅を抽出分離した後の抽出残液を前記硫酸溶液として用いる場合に、系内の硫酸バランスが取り難くなる。
なお、系内の硫酸が過多になった場合には、前記したように、過多分の遊離硫酸分を消石灰、生石灰、そして炭酸カルシウム等により石膏として沈殿させて系外に払い出さなければならず、コスト上昇の要因となる。
9) -1-4 Redox potential In the present invention, copper, silver, iron and the like are leached from the copper-containing sulfide. Then, the silver leached in the sulfuric acid solution and the excess of iron are precipitated as silver-containing iron alum, and are deposited and deposited on the surface of the sulfur in the droplet state. This creates a state as if the surface of the sulfur was coated with silver-containing iron alum to prevent sulfur from being unreacted or adhering to the surface of the copper sulfide particles during the reaction and covering. This also prevents sulfur from being oxidized. Therefore, when performing the leaching reaction, the oxidation-reduction potential of the slurry in the pressurized container is adjusted to 530 to 620 mV, preferably 550 to 620 mV.
If the oxidation-reduction potential is less than 530 mV, the rate of leaching copper and the like from the copper-containing sulfide is remarkably reduced, and a practical leaching rate cannot be obtained. On the other hand, if it exceeds 620 mV, the leaching rate increases, but the sulfur is excessive. When the extraction residual liquid after being oxidized and distributed as sulfate ions to the leachate and extracting and separating copper from the leachate is used as the sulfuric acid solution, it is difficult to balance the sulfuric acid in the system.
In addition, when the sulfuric acid in the system becomes excessive, as described above, the excessive free sulfuric acid content must be settled as gypsum with slaked lime, quick lime, calcium carbonate, etc., and discharged out of the system, It becomes a factor of cost increase.

9)−2 銀の浸出・回収方法
本発明では、含銀鉄明礬を含む銅浸出残渣をチオ硫酸ナトリウム溶液で処理して銀を浸出し、銀を活性炭に吸着させて回収する。
以下、銀の浸出・回収方法を、スラリー濃度及び浸出時間と銀の回収方法とに項分けして説明する。
9) -2 Silver Leaching / Recovering Method In the present invention, a copper leaching residue containing silver-containing iron alum is treated with a sodium thiosulfate solution to leach silver, and the silver is adsorbed on activated carbon and recovered.
Hereinafter, the silver leaching / recovering method will be described in terms of slurry concentration and leaching time and silver recovery method.

9)−2−1 スラリー濃度及び浸出時間
銀の浸出時のスラリー濃度は、50〜100g/Lとすることが好ましい。この範囲より低いスラリー濃度とすると浸出効率が悪く、高いスラリー濃度とすると浸出が不十分となる虞があるからである。
また、浸出時の温度は特に限定されるものではなく、室温以上であれば十分浸出できる。また、浸出時間については、特に限定されないが、2〜3時間とすることが好ましい。これより短いと十分に浸出されず、これより長くても、更なる浸出率の増加は期待できないからである。
9) -2-1 Slurry concentration and leaching time The slurry concentration during leaching of silver is preferably 50 to 100 g / L. This is because if the slurry concentration is lower than this range, the leaching efficiency is poor, and if the slurry concentration is high, the leaching may be insufficient.
Moreover, the temperature at the time of leaching is not particularly limited, and the leaching can be sufficiently performed as long as it is at room temperature or higher. Moreover, about leaching time, although it does not specifically limit, It is preferable to set it as 2 to 3 hours. If the length is shorter than this, the leaching is not sufficiently performed, and if the length is longer than this, further increase in the leaching rate cannot be expected.

9)−2−2 銀の回収方法
銀浸出液より銀を回収する手段としては、活性炭に銀を吸着させる方法が最も簡便であり、安価である。というのは、銀を吸着した活性炭を電気炉や管状炉等で簡単に焙焼して銀を回収することができる。さらに、電着金を鋳込む際に使用する溶解炉に補助燃料として用いてもよい。こうすることにより銀の仕掛かり金利の圧縮が可能となる。
活性炭への銀の吸着は、活性炭と銀を浸出した銀浸出終液とを接触させても良く、銀の浸出時に、チオ硫酸ナトリウム溶液、活性炭、及び銅浸出残渣を浸出槽内に同時に添加して攪拌しても良い。攪拌を停止すると、活性炭は比重差により浸出槽の液面近傍に集まり、銀浸出残渣は浸出槽底部に沈むため、簡単に活性炭を分離回収することができる。
本発明で用いうる活性炭としては、前記したように、特に種類や形状は問わないが、粉状の方が浸出と吸着とを同時にできるため好ましい。用いる活性炭量としては、銀浸出液1L当たり、5〜20g/Lとする。
この範囲を下回ると、銀鉄明礬石と活性炭の接触が不十分となり、十分な浸出効果が得られず、一方、上回ると、活性炭の量が過剰になり、経済的に好ましくない。
9) -2-2 Silver recovery method As a means for recovering silver from the silver leachate, a method of adsorbing silver on activated carbon is the simplest and inexpensive. This is because the activated carbon that has adsorbed silver can be easily roasted in an electric furnace or a tubular furnace to recover silver. Furthermore, you may use as auxiliary fuel for the melting furnace used when casting electrodeposition gold | metal | money. By doing this, it is possible to reduce the in-process interest rate of silver.
For adsorption of silver on activated carbon, activated carbon may be brought into contact with a silver leaching final solution leached with silver. At the time of silver leaching, sodium thiosulfate solution, activated carbon, and copper leaching residue are simultaneously added to the leaching tank. May be stirred. When the stirring is stopped, the activated carbon gathers near the liquid surface of the leaching tank due to the difference in specific gravity, and the silver leaching residue sinks to the bottom of the leaching tank, so that the activated carbon can be easily separated and recovered.
As described above, the type and shape of the activated carbon that can be used in the present invention are not particularly limited, but a powdery form is preferable because leaching and adsorption can be performed simultaneously. The amount of activated carbon used is 5 to 20 g / L per liter of silver leachate.
Below this range, the contact between the silver iron alumite and the activated carbon becomes insufficient, and a sufficient leaching effect cannot be obtained. On the other hand, when it exceeds the above range, the amount of activated carbon becomes excessive, which is economically undesirable.

以下に、実施例を挙げて、本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。なお、実施例で用いた原料、処理条件、物性測定等は、以下の通りである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded. In addition, the raw material used in the Example, processing conditions, physical property measurement, etc. are as follows.

<原料、処理条件等>
含銅硫化物:黄銅鉱と黄鉄鋼とが主鉱物となっている銅精鉱で、Cuが20.6質量%、Feが25.7質量%、及びSが24.6質量%のものである。
銅浸出用反応容器:内容積3Lのステンレス製オートクレーブを使用した。
銅浸出用ビーカー:内容積2.5Lのステンレス製円筒状容器を使用した。
酸素ガス:岩谷瓦斯株式会社製の酸素ボンベを使用した。なお、純度は99.5%である。
<測定法等>
気相圧の測定:オートクレーブに設けられている圧力計を用いた。
酸化還元電位の測定:東亜ディーケーケー株式会社製の銀/塩化銀電極を用いて測定した。
金属成分の分析:ICPを用いておこなった。
<Raw materials, processing conditions, etc.>
Copper-containing sulfide: Copper concentrate with chalcopyrite and pyrite steel as main minerals, with Cu at 20.6% by mass, Fe at 25.7% by mass, and S at 24.6% by mass is there.
Copper leaching reaction vessel: A stainless steel autoclave having an internal volume of 3 L was used.
Copper leaching beaker: A stainless steel cylindrical container having an internal volume of 2.5 L was used.
Oxygen gas: An oxygen cylinder manufactured by Iwatani Gas Co., Ltd. was used. The purity is 99.5%.
<Measurement methods, etc.>
Measurement of gas phase pressure: A pressure gauge provided in the autoclave was used.
Measurement of oxidation-reduction potential: Measurement was performed using a silver / silver chloride electrode manufactured by Toa DKK Corporation.
Analysis of metal components: performed using ICP.

(実施例1)
含銅硫化物を、浅田鉄工(株)製商品名NANO MILL NM−G2M型湿式ビーズミルを用いてスラリー濃度を1000g/l、流量を8L/minとし、パス回数を5回として粉砕し、10μm以下の粒子が80質量%以上を占める粒度分布になるようにした。次に、粉砕した含銅硫化物を乾燥重量に換算して200g分取し、組成がCu:0.88g/L、Fe:43.0g/L、及び遊離硫酸濃度が30g/Lの硫酸水溶液1Lと混合し、スラリーを作製した。このスラリーに解膠剤として、リグニンスルホン酸ナトリウム(東京化成工業株式会社製 製品名:リグニンスルホン酸ナトリウム)0.5g/Lを添加し混合した。
続いて、スラリー全量を銅浸出用ビーカーに入れ、該ビーカーを銅浸出用反応容器に装入し、密栓して攪拌しながら昇温し、165℃に維持した。165℃における平衡気相圧力は、約0.7MPaであった。その後、温度を165℃一定に維持しながら、酸素ボンベから圧力容器内の気相部に酸素を吹き込み、気相部の圧力を1.7MPa(上乗せ分 1.0 MPa)になるようにし、気相部の圧力が略1.7MPaを維持するように酸素流量を自動流量制御装置で調整して7時間反応させた。なお、酸素吹き込み中も温度はほぼ一定であり、酸素の流量も0.5L/minとほぼ一定であった。
その後、加熱を止めて室温まで冷却し、次いで加圧容器を開けてスラリーを取り出し、スラリーを濾過して濾液と浸出残渣とに分離し、得た濾液の酸化還元電位とpHとを測定し、濾液の金属イオン濃度と、洗浄し乾燥して得た浸出残渣の金属成分を分析した。
銅硫化物中に含有された銅の物量の内、浸出により濾液中に分配した物量の割合を求め銅浸出率とした。得られた結果と、浸出条件とを合わせて表1に示した。
次に、乾燥した銅浸出残渣50gと、チオ硫酸ナトリウム濃度が、無水和物として10g/lの銀浸出液1Lと、活性炭10gとを、2Lのビーカーに入れ、3時間攪拌した。
攪拌機を停止し、しばらく静置して活性炭をビーカー内の銀浸出終液上部に浮かせ、網ですくって回収した。その後、濾過して銀浸出終液と銀浸出残渣とを得た。
銅浸出残渣、銀浸出残渣、活性炭、及び銀浸出終液中の銀量を求め、表2に示した。
Example 1
The copper-containing sulfide was pulverized using a NANO MILL NM-G2M type wet bead mill manufactured by Asada Tekko Co., Ltd., with a slurry concentration of 1000 g / l, a flow rate of 8 L / min, and a number of passes of 5 times, and pulverized to 10 μm or less. The particle size distribution occupies 80% by mass or more. Next, 200 g of the pulverized copper-containing sulfide was collected in terms of dry weight, and a sulfuric acid aqueous solution having a composition of Cu: 0.88 g / L, Fe: 43.0 g / L, and a free sulfuric acid concentration of 30 g / L. A slurry was prepared by mixing with 1 L. To this slurry, 0.5 g / L of sodium lignin sulfonate (product name: sodium lignin sulfonate manufactured by Tokyo Chemical Industry Co., Ltd.) was added and mixed as a peptizer.
Subsequently, the entire amount of the slurry was placed in a copper leaching beaker, and the beaker was placed in a copper leaching reaction vessel, which was sealed and heated with stirring and maintained at 165 ° C. The equilibrium gas phase pressure at 165 ° C. was about 0.7 MPa. Thereafter, while maintaining the temperature constant at 165 ° C., oxygen was blown into the gas phase portion in the pressure vessel from the oxygen cylinder so that the pressure in the gas phase portion became 1.7 MPa (additional portion 1.0 MPa). The oxygen flow rate was adjusted with an automatic flow control device so that the pressure in the phase portion was maintained at about 1.7 MPa, and the reaction was carried out for 7 hours. Note that the temperature was substantially constant during oxygen blowing, and the flow rate of oxygen was substantially constant at 0.5 L / min.
Thereafter, the heating is stopped and the system is cooled to room temperature, then the pressure vessel is opened and the slurry is taken out. The slurry is filtered and separated into a filtrate and a leaching residue, and the oxidation-reduction potential and pH of the obtained filtrate are measured. The metal ion concentration of the filtrate and the metal component of the leach residue obtained by washing and drying were analyzed.
Of the amount of copper contained in the copper sulfide, the proportion of the amount distributed into the filtrate by leaching was determined and used as the copper leaching rate. The obtained results and the leaching conditions are shown together in Table 1.
Next, 50 g of the dried copper leaching residue, 1 L of silver leaching solution having a sodium thiosulfate concentration of 10 g / l as an anhydrous product, and 10 g of activated carbon were placed in a 2 L beaker and stirred for 3 hours.
The stirrer was stopped and allowed to stand for a while to float the activated carbon on the upper part of the silver leaching final solution in the beaker, and it was collected with a net. Thereafter, filtration was performed to obtain a silver leaching final solution and a silver leaching residue.
The amounts of silver in the copper leaching residue, silver leaching residue, activated carbon, and silver leaching final solution were determined and shown in Table 2.

(実施例2)
圧力容器内の気相部に掛ける上乗せ分を2.0MPaとした以外は、実施例1と同様にして含銅硫化物からの銅等の浸出を行い、得られた銅浸出残渣を用いて実施例1と同様にして銀の浸出・回収を行った。得られた結果と、浸出条件とを表1、及び表2に示した。なお、酸素吹き込み中の温度はほぼ一定であり、酸素の流量もほぼ一定であった。
(Example 2)
Except that the additional portion applied to the gas phase portion in the pressure vessel was set to 2.0 MPa, leaching of copper or the like from the copper-containing sulfide was performed in the same manner as in Example 1, and the obtained copper leaching residue was used. Silver was leached and collected in the same manner as in Example 1. The obtained results and the leaching conditions are shown in Tables 1 and 2. Note that the temperature during oxygen blowing was substantially constant, and the flow rate of oxygen was also substantially constant.

(実施例3)
反応温度を180℃とした以外は、実施例1と同様にして含銅硫化物から銅等を浸出し、得られた銅浸出残渣を用いて実施例1と同様にして銀を浸出・回収した。得られた結果と、浸出条件とを表1、及び表2に示した。なお、酸素吹き込み中も温度はほぼ一定であり、酸素の流量もほぼ一定であった。
(Example 3)
Except for the reaction temperature of 180 ° C., copper and the like were leached from the copper-containing sulfide in the same manner as in Example 1, and silver was leached and recovered in the same manner as in Example 1 using the obtained copper leaching residue. . The obtained results and the leaching conditions are shown in Tables 1 and 2. Note that the temperature was substantially constant during oxygen blowing, and the flow rate of oxygen was substantially constant.

(実施例4、5)
用いる硫酸溶液中の鉄濃度を30.0(実施例4)、50.0g/L(実施例5)とした以外は、実施例1と同様にして含銅硫化物から銅等を浸出し、得られた銅浸出残渣を用いて実施例1と同様にして銀を浸出・回収した。得られた結果と、浸出条件とを表1、及び表2に示した。なお、銅浸出中、吹き込み中も温度はほぼ一定であり、酸素の流量もほぼ一定であった。
(Examples 4 and 5)
Except for the iron concentration in the sulfuric acid solution used being 30.0 (Example 4) and 50.0 g / L (Example 5), copper and the like were leached from the copper-containing sulfide in the same manner as in Example 1, Using the obtained copper leaching residue, silver was leached and recovered in the same manner as in Example 1. The obtained results and the leaching conditions are shown in Tables 1 and 2. The temperature was substantially constant during copper leaching and blowing, and the oxygen flow rate was also substantially constant.

(実施例6、7)
実施例1で得られた乾燥銅浸出残渣50gと、チオ硫酸ナトリウム五水和物を無水和物に換算して5g/L(実施例6)、20g/L(実施例7)になるように溶解した銀浸出液1Lと、活性炭10gとを、2Lのビーカーに入れ、3時間攪拌した。
攪拌機を停止し、しばらく静置して活性炭をビーカーの上部に浮かせ、網ですくって回収した。その後、濾過して浸出液と銀浸出残渣とを得た。
銅浸出残渣、銀浸出残渣、活性炭、及び銀浸出液中の銀量を求め、表2に示した。
(Examples 6 and 7)
50 g of the dried copper leaching residue obtained in Example 1 and sodium thiosulfate pentahydrate converted to an anhydrous product so as to be 5 g / L (Example 6) and 20 g / L (Example 7). 1 L of the dissolved silver leachate and 10 g of activated carbon were placed in a 2 L beaker and stirred for 3 hours.
The stirrer was stopped, allowed to stand for a while, and the activated carbon was floated on the top of the beaker, and was collected with a net. Thereafter, filtration was performed to obtain a leachate and a silver leaching residue.
The amounts of silver in the copper leaching residue, silver leaching residue, activated carbon, and silver leaching solution were determined and shown in Table 2.

(実施例8)
実施例1で得られた乾燥銅浸出残渣100gと、チオ硫酸ナトリウム五水和物を無水和物に換算して10g/lになるようにした銀浸出液1Lと、活性炭10gとを、2Lのビーカーに入れ、3時間攪拌した。
攪拌機を停止し、しばらく静置して活性炭をビーカーの上部に浮かせ、網ですくって回収した。その後、濾過して銀浸出終液と銀浸出残渣とを得た。
銅浸出残渣、銀浸出残渣、活性炭、及び銀浸出終液中の銀量を求め、表2に示した。
(Example 8)
100 g of dry copper leaching residue obtained in Example 1, 1 liter of silver leaching solution in which sodium thiosulfate pentahydrate was converted to an anhydrous product to 10 g / l, and 10 g of activated carbon were added to a 2 liter beaker. And stirred for 3 hours.
The stirrer was stopped, allowed to stand for a while, and the activated carbon was floated on the top of the beaker, and was collected with a net. Thereafter, filtration was performed to obtain a silver leaching final solution and a silver leaching residue.
The amounts of silver in the copper leaching residue, silver leaching residue, activated carbon, and silver leaching final solution were determined and shown in Table 2.

(比較例1、2)
圧力容器内の気相部に掛ける上乗せ分を0.4(比較例1)、2.2MPa(比較例2)とした以外は、実施例1と同様にして含銅硫化物からの銅等の浸出を行った。得られた結果と、浸出条件とを合わせて表1に示した。なお、酸素吹き込み中も温度はほぼ一定であり、酸素の流量もほぼ一定であった。
(Comparative Examples 1 and 2)
Except for the amount of addition applied to the gas phase portion in the pressure vessel being 0.4 (Comparative Example 1) and 2.2 MPa (Comparative Example 2), the copper content from the copper-containing sulfide was the same as in Example 1. Leaching was performed. The obtained results and the leaching conditions are shown together in Table 1. Note that the temperature was substantially constant during oxygen blowing, and the flow rate of oxygen was substantially constant.

(比較例3、4)
反応温度を110(比較例3)、200℃(比較例4)とした以外は、実施例1と同様にして含銅硫化物から銅等を浸出した。得られた結果と、浸出条件とを合わせて表1に示した。なお、酸素吹き込み中も温度はほぼ一定であり、酸素の流量もほぼ一定であった。
(Comparative Examples 3 and 4)
Copper and the like were leached from the copper-containing sulfide in the same manner as in Example 1 except that the reaction temperature was 110 (Comparative Example 3) and 200 ° C. (Comparative Example 4). The obtained results and the leaching conditions are shown together in Table 1. Note that the temperature was substantially constant during oxygen blowing, and the flow rate of oxygen was substantially constant.

(比較例5、6)
用いる硫酸溶液中の鉄濃度を15(比較例5)、60.0g/L(比較例6)とした以外は、実施例1と同様にして含銅硫化物から銅等を浸出した。得られた結果と、浸出条件とを合わせて表1に示した。なお、酸素吹き込み中も温度はほぼ一定であり、酸素の流量もほぼ一定であった。
(Comparative Examples 5 and 6)
Copper and the like were leached from the copper-containing sulfide in the same manner as in Example 1 except that the iron concentration in the sulfuric acid solution used was 15 (Comparative Example 5) and 60.0 g / L (Comparative Example 6). The obtained results and the leaching conditions are shown together in Table 1. Note that the temperature was substantially constant during oxygen blowing, and the flow rate of oxygen was substantially constant.

(比較例7)
酸素ガスの吹き込み流量を一定流量とせず温度の変動を見ながら、上乗せするガス圧を手動で、任意の時間間隔で0.5〜2MPaに変動させた以外は、実施例1と同様にして含銅硫化物から銅等を浸出した。得られた結果と、浸出条件とを合わせて表1に示した。
(Comparative Example 7)
Included in the same manner as in Example 1 except that the gas pressure to be added was manually changed to 0.5 to 2 MPa at an arbitrary time interval while observing the change in temperature without changing the flow rate of oxygen gas to a constant flow rate. Copper and the like were leached from the copper sulfide. The obtained results and the leaching conditions are shown together in Table 1.

(比較例8〜10)
銀浸出液としてpHを11(比較例8)、12(比較例9)、13(比較例10)とした水酸化ナトリウム溶液を用いた以外は、実施例6と同様にして銅浸出残渣より銀を浸出した。得られた結果を表2に示した。
(Comparative Examples 8 to 10)
Silver was extracted from the copper leaching residue in the same manner as in Example 6 except that a sodium hydroxide solution having a pH of 11 (Comparative Example 8), 12 (Comparative Example 9), and 13 (Comparative Example 10) was used as the silver leaching solution. Leached. The obtained results are shown in Table 2.

(比較例11)
銀浸出液として濃度10g/Lに調節した亜硫酸ナトリウム溶液を用いた以外は、実施例6と同様にして銅浸出残渣より銀を浸出した。得られた結果を表2に示した。
(Comparative Example 11)
Silver was leached from the copper leaching residue in the same manner as in Example 6 except that a sodium sulfite solution adjusted to a concentration of 10 g / L was used as the silver leaching solution. The obtained results are shown in Table 2.

Figure 2011105969
Figure 2011105969

Figure 2011105969
Figure 2011105969

表1の結果より、本発明の条件に従う実施例では、浸出率も85%以上と良好な結果が得られている。一方、イオウ酸化率は、120〜180℃の温度、加圧条件下の中で浸出したにもかかわらず、いずれも65%以下と低く収まっていることがわかる。これに対して、本発明の範囲を外れた比較例では、銅の浸出率が85%未満と低かったり、イオウの酸化率が65%を超えていたりして十分な浸出結果が得られているとはいえないことが分かる。
また、表1より、加圧容器中の気相部に、スラリー温度と平衡となる気相圧より0.5〜2MPa高くなるように酸素及び/又は空気を供給する本発明の方法で、反応スラリーの酸化還元電位を十分制御できることが明らかであり、かつ酸素供給速度もできるだけ一定にすることが好ましいということが分かる。
From the results shown in Table 1, in the examples according to the conditions of the present invention, the leaching rate was 85% or more, and good results were obtained. On the other hand, the sulfur oxidation rate is found to be as low as 65% or less in spite of leaching under a temperature of 120 to 180 ° C. and under pressurized conditions. On the other hand, in the comparative example out of the scope of the present invention, the leaching rate of copper is as low as less than 85%, or the oxidation rate of sulfur exceeds 65%, and sufficient leaching results are obtained. It turns out that it cannot be said.
Further, from Table 1, in the method of the present invention in which oxygen and / or air is supplied to the gas phase part in the pressurized container so as to be 0.5 to 2 MPa higher than the gas phase pressure that is in equilibrium with the slurry temperature, It is clear that the oxidation-reduction potential of the slurry can be sufficiently controlled, and that the oxygen supply rate is preferably as constant as possible.

また、表2の結果より、本発明の条件に従う実施例では、銅浸出残渣中の含銀鉄明礬は十分に浸出され、その結果、銀浸出残渣中の品位が97〜99ppmに減少していることがわかる。また活性炭中には銀が3〜5ppm含まれ、最終的に分離して得た銀浸出終了後の銀浸出液中の銀濃度は1ppm以下となっていることから、銅浸出残渣中の銀鉄明礬は浸出され、浸出液中に移行した銀は、全て活性炭に吸着されていることが分かる。なお、銀浸出残渣中の銀は、銀浸出残渣中のガング成分と未反応の硫化銅鉱物中に存在しているものと思われる。
これに対し、チオ硫酸ナトリウムの代わりに水酸化ナトリウムと亜硫酸ナトリウムとを用いた比較例8〜11では、銀鉄明礬石中の銀品位は変化しなかった。また、これを裏付けるように、活性炭中にも、最終的に分離して得た銀浸出液中にも銀は検出されていない。
なお、本実施例では、銀の浸出と活性炭への銀の吸着とを同時に行うために、銀浸出時に活性炭を銅浸出残渣スラリーに共存させたが、活性炭を共存させることなく銀の浸出を行い、得られた銀浸出終液と活性炭とを接触させて、銀浸出終液中の銀を活性炭に吸着させても支障はない。
Moreover, from the results of Table 2, in the examples according to the conditions of the present invention, the silver-containing iron alum in the copper leaching residue was sufficiently leached, and as a result, the grade in the silver leaching residue was reduced to 97 to 99 ppm. I understand that. In addition, since the activated carbon contains 3 to 5 ppm of silver, and the silver concentration in the silver leaching solution after the silver leaching finally obtained by separation is 1 ppm or less, the silver iron alum in the copper leaching residue It can be seen that all of the silver leached and transferred into the leachate is adsorbed on the activated carbon. In addition, it seems that the silver in a silver leaching residue exists in the copper sulfide mineral unreacted with the gang component in a silver leaching residue.
On the other hand, in Comparative Examples 8 to 11 using sodium hydroxide and sodium sulfite instead of sodium thiosulfate, the silver quality in the silver iron alunite did not change. In addition, as evidenced by this, no silver was detected in the activated carbon or in the silver leachate finally obtained by separation.
In this example, in order to simultaneously perform leaching of silver and adsorption of silver on activated carbon, activated carbon was allowed to coexist in the copper leaching residue slurry during silver leaching, but silver was leached without coexisting activated carbon. The obtained silver leaching final solution and activated carbon are brought into contact with each other so that the silver in the silver leaching final solution is adsorbed on the activated carbon without any problem.

本発明では、含銅硫化物より銀を浸出するに際して、浸出された銀を浸出液中の三価の鉄と反応させて銀鉄明礬を形成させる。また、浸出されて浸出液中で過剰分となった鉄を鉄明礬とする。そして、銀鉄明礬と鉄明礬を、浸出に伴って生成し、解膠剤により液滴状となったイオウ粒子表面に付着・堆積させて、イオウ粒子表面を覆うことによりイオウ粒子が未反応や反応途中の含銅硫化物粒子の表面を覆うことを防止する。これにより、含銅硫化物より銀を高浸出率で浸出できる。そして、銀鉄明礬より銀を浸出するに際してシアン化ナトリウムを用いることのなく、チオ硫酸ナトリウム溶液を用いる。したがって、本発明の方法は、低コストで、安全環境面で特別な配慮を必要としない方法であり、その産業的価値は高い。   In the present invention, when leaching silver from a copper-containing sulfide, the leached silver reacts with trivalent iron in the leaching solution to form silver iron alum. In addition, iron that has been leached and becomes excessive in the leachate is called iron alum. Then, silver iron agate and iron agate are produced upon leaching and adhered to and deposited on the surface of the sulfur particles formed into droplets by the peptizer, and the sulfur particles are unreacted by covering the surface of the sulfur particles. Covering the surface of the copper-containing sulfide particles during the reaction is prevented. Thereby, silver can be leached at a high leaching rate from the copper-containing sulfide. And when leaching silver from silver iron alum, a sodium thiosulfate solution is used without using sodium cyanide. Therefore, the method of the present invention is a low-cost method that does not require special consideration in terms of a safe environment, and its industrial value is high.

Claims (7)

黄銅鉱を主成分とする含銅硫化物から銀を回収する方法において、下記(1)〜(5)の処理を順次行うことを特徴とする含銅硫化物からの銀の回収方法。
(1)鉄を30〜50g/L、リグニンスルホン酸及び/またはその塩からなる解膠剤を0.2〜1.0g/Lの割合で含む硫酸溶液と、前記含銅硫化物とを混合し、スラリーを得る
(2)前記スラリーを加圧容器内に装入した後、スラリーの温度を120〜180℃に維持しながら、加圧容器内の気相部の圧力が平衡状態よりも0.5〜2.0MPaだけ高くなるのに十分な量の酸素及び/又は空気を気相部に供給して、スラリーの酸化還元電位を調整する
(3)固液分離して銅を含む浸出液と、銅浸出残渣とに得る
(4)前記銅浸出残渣と、チオ硫酸ナトリウムを無水物換算で5〜20g/Lの割合で含むチオ硫酸ナトリウム溶液(銀浸出液)とを混合して、銅浸出残渣スラリーを得た後、固液分離して銀浸出終液と、銀浸出残渣とを得る
(5)銀浸出液と活性炭とを接触させて銀を活性炭に吸着させ、回収する
A method for recovering silver from a copper-containing sulfide, wherein the following treatments (1) to (5) are sequentially performed in a method for recovering silver from a copper-containing sulfide containing chalcopyrite as a main component.
(1) Mixing a sulfuric acid solution containing 30 to 50 g / L of iron, a peptizer composed of lignin sulfonic acid and / or a salt thereof at a rate of 0.2 to 1.0 g / L, and the copper-containing sulfide. (2) After the slurry is charged into the pressurized container, the pressure of the gas phase in the pressurized container is less than the equilibrium state while maintaining the temperature of the slurry at 120 to 180 ° C. A sufficient amount of oxygen and / or air to increase by 5 to 2.0 MPa is supplied to the gas phase part to adjust the oxidation-reduction potential of the slurry. (3) A leaching solution containing copper by solid-liquid separation (4) The copper leaching residue is mixed with a sodium thiosulfate solution (silver leaching solution) containing sodium thiosulfate at a rate of 5 to 20 g / L in terms of anhydride. After obtaining the slurry, solid-liquid separation is performed to obtain a silver leaching final solution and a silver leaching residue. (5) contacting the silver leachate and charcoal silver is adsorbed on the activated carbon, and recovering
前記(1)における前記スラリーは、150〜300g/Lのスラリー濃度を有することを特徴とする請求項1に記載の含銅硫化物からの銀の回収方法。   The method for recovering silver from a copper-containing sulfide according to claim 1, wherein the slurry in (1) has a slurry concentration of 150 to 300 g / L. 前記(1)における前記硫酸溶液は、10g/L以下の銅を含むことを特徴とする請求項1に記載の含銅硫化物からの銀の回収方法。   The said sulfuric acid solution in said (1) contains 10 g / L or less of copper, The recovery method of the silver from the copper containing sulfide of Claim 1 characterized by the above-mentioned. 前記(1)における前記硫酸溶液は、15〜45g/Lの遊離硫酸を含むことを特徴とする請求項1に記載の含銅硫化物からの銀の回収方法。   The method for recovering silver from a copper-containing sulfide according to claim 1, wherein the sulfuric acid solution in (1) contains 15 to 45 g / L of free sulfuric acid. 前記(2)における前記酸化還元電位は、銀/塩化銀電極基準で、530〜620mVであること特徴とする請求項1に記載の含銅硫化物からの銀の回収方法。   The method for recovering silver from a copper-containing sulfide according to claim 1, wherein the oxidation-reduction potential in (2) is 530 to 620 mV on a silver / silver chloride electrode basis. 前記(4)における前記銅浸出残渣スラリーは、50〜100g/Lのスラリー濃度であることを特徴とする請求項1に記載の含銅硫化物からの銀の回収方法。   The method for recovering silver from a copper-containing sulfide according to claim 1, wherein the copper leaching residue slurry in (4) has a slurry concentration of 50 to 100 g / L. 前記(4)における前記チオ硫酸ナトリウム溶液は、活性炭を5〜20g/Lの割合で添加されたチオ硫酸ナトリウム溶液であることを特徴とする請求項1に記載の含銅硫化物からの銀の浸出方法。   The sodium thiosulfate solution in (4) is a sodium thiosulfate solution to which activated carbon is added at a rate of 5 to 20 g / L. Leaching method.
JP2009259941A 2009-11-13 2009-11-13 Method for recovering silver from sulfide containing copper Pending JP2011105969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009259941A JP2011105969A (en) 2009-11-13 2009-11-13 Method for recovering silver from sulfide containing copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009259941A JP2011105969A (en) 2009-11-13 2009-11-13 Method for recovering silver from sulfide containing copper

Publications (1)

Publication Number Publication Date
JP2011105969A true JP2011105969A (en) 2011-06-02

Family

ID=44229780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259941A Pending JP2011105969A (en) 2009-11-13 2009-11-13 Method for recovering silver from sulfide containing copper

Country Status (1)

Country Link
JP (1) JP2011105969A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925716A (en) * 2012-11-26 2013-02-13 云南黄金矿业集团股份有限公司 Pressurization, water immersion and oxidation preprocessing cyaniding gold extraction method for difficult-processing gold concentrates
JP2013091842A (en) * 2011-10-27 2013-05-16 Sumitomo Metal Mining Co Ltd Method for recovering silver from halide aqueous solution
WO2013145849A1 (en) * 2012-03-30 2013-10-03 Jx日鉱日石金属株式会社 Method for eluting silver and metal adsorbed by activated carbon, and method for recovering metal and silver employing same
WO2013150664A1 (en) * 2012-04-03 2013-10-10 アサヒプリテック株式会社 Method for recovering precious metal
CN110004302A (en) * 2019-04-04 2019-07-12 昆明理工大学 A method of silver is extracted from vulcanization silver-bearing copper
US10400306B2 (en) 2014-05-12 2019-09-03 Summit Mining International Inc. Brine leaching process for recovering valuable metals from oxide materials
CN115232978A (en) * 2022-07-29 2022-10-25 鹤庆北衙矿业有限公司 Method for efficiently extracting gold, silver and copper from high-silver-copper-calcium complex gold-loaded carbon
CN117051252A (en) * 2023-10-10 2023-11-14 矿冶科技集团有限公司 Method for separating and recovering nickel, copper, cobalt, gold, silver, platinum and palladium noble metals from platinum and palladium concentrate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091842A (en) * 2011-10-27 2013-05-16 Sumitomo Metal Mining Co Ltd Method for recovering silver from halide aqueous solution
JPWO2013145849A1 (en) * 2012-03-30 2015-12-10 Jx日鉱日石金属株式会社 Method for eluting gold and silver adsorbed on activated carbon and method for recovering gold and silver using the same
WO2013145849A1 (en) * 2012-03-30 2013-10-03 Jx日鉱日石金属株式会社 Method for eluting silver and metal adsorbed by activated carbon, and method for recovering metal and silver employing same
WO2013150664A1 (en) * 2012-04-03 2013-10-10 アサヒプリテック株式会社 Method for recovering precious metal
JP2013213267A (en) * 2012-04-03 2013-10-17 Asahi Pretec Corp Method for recovering precious metal
CN104169473A (en) * 2012-04-03 2014-11-26 朝日浦力环境科技有限公司 Method for recovering precious metal
CN102925716A (en) * 2012-11-26 2013-02-13 云南黄金矿业集团股份有限公司 Pressurization, water immersion and oxidation preprocessing cyaniding gold extraction method for difficult-processing gold concentrates
US10400306B2 (en) 2014-05-12 2019-09-03 Summit Mining International Inc. Brine leaching process for recovering valuable metals from oxide materials
CN110004302A (en) * 2019-04-04 2019-07-12 昆明理工大学 A method of silver is extracted from vulcanization silver-bearing copper
CN115232978A (en) * 2022-07-29 2022-10-25 鹤庆北衙矿业有限公司 Method for efficiently extracting gold, silver and copper from high-silver-copper-calcium complex gold-loaded carbon
CN115232978B (en) * 2022-07-29 2023-07-18 鹤庆北衙矿业有限公司 Method for efficiently extracting gold, silver and copper by high-silver copper-calcium complex gold-loaded carbon
CN117051252A (en) * 2023-10-10 2023-11-14 矿冶科技集团有限公司 Method for separating and recovering nickel, copper, cobalt, gold, silver, platinum and palladium noble metals from platinum and palladium concentrate
CN117051252B (en) * 2023-10-10 2023-12-29 矿冶科技集团有限公司 Method for separating and recovering nickel, copper, cobalt, gold, silver, platinum and palladium noble metals from platinum and palladium concentrate

Similar Documents

Publication Publication Date Title
Wang Copper leaching from chalcopyrite concentrates
JP2011105969A (en) Method for recovering silver from sulfide containing copper
CA2454821C (en) Process for direct electrowinning of copper
JP4993501B2 (en) Process for recovering copper from copper-containing materials using pressure leaching, direct electrowinning and solvent / solution extraction
US8012318B2 (en) Process for multiple stage direct electrowinning of copper
JP5439997B2 (en) Method for recovering copper from copper-containing iron
Moradkhani et al. Selective zinc alkaline leaching optimization and cadmium sponge recovery by electrowinning from cold filter cake (CFC) residue
JP2009235519A (en) Method for recovering metal from ore
AU2002329630A1 (en) Process for direct electrowinning of copper
JP2009256764A (en) Method for collecting copper from ore
AU2014328409A1 (en) Process for preparing a ferric nitrate reagent from copper raffinate solution
CN109890988B (en) Integrated hydrometallurgical and pyrometallurgical process for treating ores
EA031994B1 (en) Leaching of minerals
PL117268B1 (en) Method of recovery of copper and accompanying metals from sulphide ores,post-flotation deposits and waste products in metallurgical processing of copper oresiz sernistykh rud,flotacionnykh osadkov i iz proizvodstvennykh otchodov metallurgicheskojj pererabotki mednykh rud
JP3948342B2 (en) Method for recovering copper from copper ore
EP3575420A1 (en) Bismuth purification method
US7494528B2 (en) Method for smelting copper concentrates
Liu et al. Selective separation of base metals and high-efficiency enrichment of precious metals from scrap copper anode slime
JP5353623B2 (en) Method for leaching copper from copper-containing sulfides
Lopez et al. Copper and cyanide recovery from barren leach solution at the gold processing plant
EA009503B1 (en) Method for processing concentrates from coppersulfide-based ores
JP2007113084A (en) Method for reducing cupric chloride ion
Free et al. Processing Principles
CN104726720A (en) Method for reclaiming silver from silver converter slag table tailings