JP2011058018A - Method for recovering gold concentrate from leach residue of copper sulfide minerals - Google Patents

Method for recovering gold concentrate from leach residue of copper sulfide minerals Download PDF

Info

Publication number
JP2011058018A
JP2011058018A JP2009205537A JP2009205537A JP2011058018A JP 2011058018 A JP2011058018 A JP 2011058018A JP 2009205537 A JP2009205537 A JP 2009205537A JP 2009205537 A JP2009205537 A JP 2009205537A JP 2011058018 A JP2011058018 A JP 2011058018A
Authority
JP
Japan
Prior art keywords
gold
copper
leaching
residue
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009205537A
Other languages
Japanese (ja)
Inventor
Noriyuki Nagase
範幸 長瀬
Satoshi Asano
聡 浅野
Masatoshi Takano
雅俊 高野
Shinichi Hiragori
伸一 平郡
Atsushi Idegami
敦 井手上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009205537A priority Critical patent/JP2011058018A/en
Priority to US12/659,832 priority patent/US8052774B2/en
Publication of JP2011058018A publication Critical patent/JP2011058018A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for concentrating gold contained in a leach residue obtained by leaching copper from a gold-containing copper sulfide mineral so as to be efficiently recovered in a copper refining process where copper is recovered from a copper sulfide mineral by a wet process. <P>SOLUTION: The method is provided with: a leaching stage where a gold-containing copper sulfide mineral is leached; a floatation stage where the obtained leach residue is subjected to floatation so as to be separated into a float fraction and a sink fraction; and a desulfurizing stage where sulfur is removed from the separated float fraction, and the desulfurized product obtained in the desulfurizing stage is repeatedly subjected to each stage of the leaching, floatation and desulfurizing in order so as to be recovered as concentrated gold-containing residue. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、銅精鉱などの硫化銅鉱物から湿式法で銅を回収する銅製錬工程において、金を含有する硫化銅鉱物から銅を浸出した浸出残渣中の金を濃縮して回収する方法に関する。   The present invention relates to a method for concentrating and recovering gold in a leaching residue obtained by leaching copper from a copper sulfide mineral containing gold in a copper smelting process in which copper is recovered from a copper sulfide mineral such as copper concentrate by a wet method. .

銅製錬の原料である硫化銅鉱物は、黄銅鉱、班銅鉱、輝銅鉱等の含銅成分、黄鉄鉱などの含鉄成分、珪素やカルシウム等からなる脈石成分、及び金などの貴金属成分から構成されている。   Copper sulfide minerals, the raw material for copper smelting, are composed of copper-containing components such as chalcopyrite, chalcopyrite and chalcocite, iron-containing components such as pyrite, gangue components composed of silicon and calcium, and precious metal components such as gold. ing.

通常の乾式銅製錬においては、上記硫化銅鉱物は選鉱されて銅鉱物の品位を高めた銅精鉱となり、銅精鉱は乾式製錬工程で炉に装入されて熔解され、鉄や硫黄がスラグやガスとして分離除去されることにより粗銅とされる。粗銅は電解工程でアノードとして電解精製され、金やその他の不純物と銅を分離し、銅はカソード上に電析して電気銅として回収される。   In normal dry copper smelting, the above copper sulfide minerals are processed into copper concentrates that have been refined to improve the quality of copper minerals. Copper concentrates are charged into a furnace in a dry smelting process and melted, and iron and sulfur are removed. Crude copper is obtained by separation and removal as slag or gas. Crude copper is electrolytically purified as an anode in an electrolysis process to separate copper from gold and other impurities, and copper is electrodeposited on the cathode and recovered as electrolytic copper.

このような乾式の銅製錬工程は生産性が高いが、多額の設備投資を必要とし、発生したガスやスラグの処理に多くの手間とコストを要するうえ、操業調整が難しいなどの課題があった。そこで近年では、上記乾式製錬に比較してコンパクトな設備で操業でき、操業調整も容易な湿式製錬を用いた銅の製錬方法が開発されてきた。   Such a dry copper smelting process is highly productive, but it requires a large amount of capital investment, a lot of labor and cost for the treatment of the generated gas and slag, and problems such as difficult adjustment of operation. . Therefore, in recent years, a copper smelting method using a hydrometallurgical smelting method has been developed which can be operated with a compact facility as compared with the above-described dry smelting and can easily adjust the operation.

例えば、特表2004−504492号公報(特許文献1)には、銅含有物質を約170℃〜約235℃で加圧浸出して残渣と銅含有溶液を得る工程と、該銅含有溶液を希釈溶液で希釈して希釈銅含有溶液を形成する工程と、該希釈銅含有溶液から銅を溶媒抽出する工程とを備えた湿式の銅製錬方法が記載されている。しかし、銅含有物質に含まれる金は浸出残渣全体に分散するので、この方法で金を回収するには浸出残渣の全量を再度処理する必要があり、多大なコストを要してしまうという問題があった。   For example, in Japanese Translation of PCT International Publication No. 2004-504492 (Patent Document 1), a step of pressure leaching a copper-containing substance at about 170 ° C. to about 235 ° C. to obtain a residue and a copper-containing solution, and diluting the copper-containing solution A wet copper smelting method comprising a step of diluting with a solution to form a diluted copper-containing solution and a step of solvent extraction of copper from the diluted copper-containing solution is described. However, since the gold contained in the copper-containing material is dispersed throughout the leaching residue, it is necessary to process the entire amount of the leaching residue again in order to recover the gold by this method, which requires a large cost. there were.

また、特表2001−515145号公報(特許文献2)には、硫化物鉱石からの銅の湿式抽出方法として、酸素とハロゲン化物及び硫酸イオンを含む酸性溶液との存在下に鉱石又は精鉱を加圧酸化し、得られるスラリーを濾液と塩基性硫酸金属塩を含む固体残留物とに固液分離して、固体残留物を酸性硫酸塩溶液で浸出することが記載されている。浸出溶液は固体残留物から分離され、金属の濃縮溶液と金属の枯渇したラフィネートとを生成するように溶媒抽出される。しかし、この方法で得られる浸出残渣は酸化鉄と硫黄との微細な粒子が混合した状態であるため、これを分離して金を回収することは困難であった。   Moreover, in Japanese translations of PCT publication No. 2001-515145 (patent document 2), as a wet extraction method of copper from sulfide ore, ore or concentrate is present in the presence of oxygen and an acidic solution containing halide and sulfate ions. It is described that pressure oxidation is performed, and the resulting slurry is solid-liquid separated into a filtrate and a solid residue containing a basic metal sulfate, and the solid residue is leached with an acidic sulfate solution. The leaching solution is separated from the solid residue and solvent extracted to produce a concentrated solution of metal and a metal-depleted raffinate. However, since the leaching residue obtained by this method is a state in which fine particles of iron oxide and sulfur are mixed, it is difficult to separate this and recover gold.

上記のような銅の浸出残渣に含有される酸化鉄と硫黄を分離する方法として、特開2002−053310号公報(特許文献3)に示す方法が知られている。この方法は、硫黄含有物、例えば、亜鉛精鉱浸出工程からの亜鉛精鉱浸出残査を浮選して得た硫黄が濃縮された浮鉱を、硫黄の融点以上沸点未満の温度に加熱し、生じた硫黄蒸気を含有する気体を硫黄の融点未満の温度で冷却することにより硫黄を凝縮させて回収する方法である。この方法を用いれば、亜鉛精鉱浸出残査から硫黄を効率よく回収することが可能となる。   As a method of separating iron oxide and sulfur contained in the copper leaching residue as described above, a method disclosed in JP-A-2002-053310 (Patent Document 3) is known. This method heats sulfur-containing materials such as, for example, sulfur concentrate obtained by flotation of zinc concentrate leaching residue from the zinc concentrate leaching process to a temperature not lower than the melting point of sulfur and lower than the boiling point. This is a method of condensing and recovering sulfur by cooling a gas containing the generated sulfur vapor at a temperature lower than the melting point of sulfur. If this method is used, sulfur can be efficiently recovered from the zinc concentrate leaching residue.

また、特開2005−042155号公報(特許文献4)には、銅鉱石又は銅鉱物から銅を浸出した残渣から貴金属を濃縮する方法が示されている。この方法では、上記浸出残渣を非酸化性雰囲気下に550℃以上の温度で加熱処理し、得られた焼鉱を酸性水溶液による再浸出処理に付し、硫黄と貴金属などを含む再浸出残渣と鉄浸出生成液とを形成する。しかしながら、銅鉱物や銅精鉱に含有される脈石成分が貴金属と同一の分布となる場合が多いため、脈石成分が多い銅鉱物や銅精鉱を処理する場合、この方法では貴金属と脈石成分の分離に多くの手間が必要になるという問題があった。   Japanese Patent Laying-Open No. 2005-042155 (Patent Document 4) discloses a method of concentrating a noble metal from a copper ore or a residue obtained by leaching copper from a copper mineral. In this method, the leaching residue is heat-treated in a non-oxidizing atmosphere at a temperature of 550 ° C. or higher, and the obtained calcined ore is subjected to a re-leaching treatment with an acidic aqueous solution. An iron leaching product is formed. However, since the gangue components contained in copper minerals and copper concentrates often have the same distribution as precious metals, when processing copper minerals and copper concentrates with high gangue components, this method uses precious metals and veins. There was a problem that much labor was required to separate the stone components.

特表2004−504492号公報JP-T-2004-504492 特表2001−515145号公報Special table 2001-515145 gazette 特開2002−053310号公報JP 2002-053310 A 特開2005−042155号公報JP 2005-042155 A

上述したように、硫化銅鉱物から湿式法で銅を回収する製錬工程において、硫化銅鉱物から銅を浸出した残渣には金が含まれているが、この浸出残渣中の金を濃縮することが極めて難しいため、浸出残渣から金を効率的に回収することはできなかった。   As described above, in the smelting process for recovering copper from copper sulfide minerals by a wet method, the residue from which copper was leached from copper sulfide mineral contains gold, but the gold in the leaching residue should be concentrated. However, it was extremely difficult to recover gold efficiently from the leach residue.

本発明は、このような従来の事情に鑑み、硫化銅鉱物から湿式法で銅を回収する銅製錬工程において、金を含有する硫化銅鉱物から銅を浸出した浸出残渣に含まれている金を濃縮して効率的に回収する方法を提供することを目的とする。   In view of such conventional circumstances, the present invention, in a copper smelting process for recovering copper from a copper sulfide mineral by a wet method, the gold contained in the leaching residue leached copper from the copper sulfide mineral containing gold An object is to provide a method for concentrating and recovering efficiently.

上記課題を解決するため、本発明者らは、銅精鉱などの硫化銅鉱物を硫酸で浸出して得た残渣を観察した結果、鉱物中に含有されていた金は浸出残渣中で疎水度の類似した硫黄の内部に含有されたり、あるいは未反応で残留した硫化物に付随したりして存在し、それ以外の酸化鉄や脈石成分等の中には存在しないことを見出した。金が硫黄の内部に含有されるのは、硫黄の融点は100〜115℃と低いので、浸出により鉱物から分離した硫黄が溶融状態となり、その後冷却して凝集し、その際に金あるいは浸出されずに残留した硫化物を核として包含するためと考えられる。
そこで更に検討を重ねた結果、浸出残渣から粒状となった硫黄及び浸出されずに残留した硫化物の粒子をその他の酸化鉄や脈石成分との疎水性の違いを利用して浮上させる一方、酸化鉄や脈石成分などを沈降させることにより、浸出残渣中に含まれる金を濃縮できることを見出した。また、濃縮された金を含む成分は、硫黄を除去してから、硫化銅鉱物の浸出工程に繰り返すことで更に濃縮することが可能であり、所望の金品位に金が濃縮された残渣を回収し得ることが分った。
In order to solve the above problems, the present inventors have observed a residue obtained by leaching a copper sulfide mineral such as copper concentrate with sulfuric acid. As a result, the gold contained in the mineral has a hydrophobicity in the leaching residue. It has been found that it is contained in the sulfur of similar to the above, or is accompanied by unreacted residual sulfide, and is not present in other iron oxides or gangue components. Gold is contained in the sulfur because the melting point of sulfur is as low as 100 to 115 ° C., so that the sulfur separated from the mineral by leaching becomes a molten state, and then cools and aggregates, in which case gold or leached This is probably because the remaining sulfides are included as nuclei.
Therefore, as a result of further investigations, the sulfur particles granulated from the leaching residue and the sulfide particles remaining without leaching are levitated using the difference in hydrophobicity from other iron oxides and gangue components, It was found that gold contained in the leaching residue can be concentrated by precipitating iron oxide and gangue components. Concentrated gold-containing components can be further concentrated by removing sulfur and then repeating the copper sulfide mineral leaching process, and recovering the gold-enriched residue to the desired gold quality I found out that I could do it.

即ち、本発明は、湿式法による銅製錬工程において、金を含有する硫化銅鉱物の浸出残渣から濃縮された金を含有する金含有残渣を得る方法であって、金を含有する硫化銅鉱物を浸出する浸出工程と、得られた浸出残渣を浮遊選鉱して浮鉱と沈鉱とに分離する浮遊選鉱工程と、分離した浮鉱から硫黄を除去する脱硫黄工程とを備え、該脱硫黄工程で得られた脱硫黄物を上記浸出、浮遊選鉱及び脱硫黄の各工程に順に繰り返して、濃縮された金を含有する金含有残渣とすることを特徴とする、硫化銅鉱物浸出残渣からの金の濃縮方法を提供するものである。   That is, the present invention is a method for obtaining a gold-containing residue containing concentrated gold from a leaching residue of a copper sulfide mineral containing gold in a copper smelting process by a wet method, wherein a copper sulfide mineral containing gold is obtained. A leaching process for leaching, a flotation process for separating the obtained leaching residue into floatation and sedimentation, and a desulfurization process for removing sulfur from the separated floatation, the desulfurization process The gold from the copper sulfide mineral leaching residue is characterized in that the desulfurized material obtained in step 1 is repeatedly subjected to the above leaching, flotation and desulfurization steps to obtain a gold-containing residue containing concentrated gold. The concentration method is provided.

本発明によれば、湿式の銅製錬工程において、金を含む硫化銅鉱物の浸出残渣から金を濃縮して効率よく分離回収することができる。また、金を濃縮して回収できるので、後工程で取り扱う物量が減少し、ハンドリングの手間を削減でき、生産設備の規模も小さくて済むため経済的である。更に、金を濃縮した金含有残渣は、金を含有した中間原料などとして外販するか、あるいは既存の製錬工程の原料とすることにより金を回収することも可能である。   According to the present invention, in a wet copper smelting process, gold can be concentrated and efficiently separated and recovered from the leaching residue of copper sulfide mineral containing gold. Further, since gold can be concentrated and recovered, the amount of material handled in the subsequent process is reduced, handling labor can be reduced, and the scale of the production facility can be reduced, which is economical. Further, the gold-containing residue obtained by concentrating gold can be sold as an intermediate raw material containing gold, or can be recovered as a raw material for an existing smelting process.

本発明による硫化銅鉱物浸出残渣からの金の濃縮方法では、金を含有する硫化銅鉱物を浸出工程で浸出した浸出残渣を、浮遊選鉱して浮鉱と沈鉱とに分離(浮遊選鉱工程)し、分離した浮鉱から硫黄を除去(脱硫黄工程)した後、得られた脱硫黄物を上記浸出工程、浮遊選鉱工程及び脱硫黄工程に順に繰り返して、所望の品位まで濃縮された金を含有する金含有残渣とする。   In the method for concentrating gold from a copper sulfide mineral leaching residue according to the present invention, the leaching residue obtained by leaching a copper sulfide mineral containing gold in the leaching process is separated into a floatation and a sedimentation by floating flotation (floating flotation process) Then, after removing sulfur from the separated float (desulfurization process), the obtained desulfurized product is repeated in the above leaching process, flotation process and desulfurization process in order, and gold concentrated to the desired grade is obtained. Let it be a gold-containing residue.

上記硫化銅鉱物の浸出残渣は、銅精鉱などの硫化銅鉱物を従来公知の湿式法により製錬する際に、その硫化銅鉱物から銅を浸出した残渣である。硫化銅鉱物の浸出方法としては、従来から使用される公知の方法を用いることができ、例えば、硫酸などの鉱酸を用いて浸出する方法や前記特許文献1及び2に記載の方法、あるいは塩化物や塩素ガスで浸出する方法などがあるが、浸出残渣中の金の存在形態は同じであるから、いずれの方法による進出残渣にも本発明を適用することができる。   The leaching residue of the copper sulfide mineral is a residue obtained by leaching copper from the copper sulfide mineral when the copper sulfide mineral such as copper concentrate is smelted by a conventionally known wet method. As a leaching method of the copper sulfide mineral, a conventionally known method can be used. For example, a leaching method using a mineral acid such as sulfuric acid, a method described in Patent Documents 1 and 2, or a chlorination method There is a method of leaching with an object or chlorine gas, but since the presence form of gold in the leaching residue is the same, the present invention can be applied to advancing residue by any method.

ただし、例えば塩化物や塩素ガスで浸出する場合の黄鉄鉱のように、硫化銅鉱物中に浸出できない鉱物が含有されている場合には、本発明の方法を適用することが困難となる。例えば、浸出できず浸出残渣中に含有されうる硫化物を含有する場合が挙げられる。その他、モリブデン鉱なども湿式法で浸出されにくい鉱物であるから、本発明の方法を適用することは難しい。   However, when minerals that cannot be leached are contained in the copper sulfide mineral, such as pyrite in the case of leaching with chloride or chlorine gas, it is difficult to apply the method of the present invention. For example, the case where the sulfide which cannot be leached and can be contained in the leaching residue is included. In addition, since molybdenum ore is also a mineral that is not easily leached by a wet method, it is difficult to apply the method of the present invention.

硫化銅鉱物の浸出残渣は、まず、浮遊選鉱工程に供給する。この浮遊選鉱工程において、浸出残渣を公知の浮遊選鉱法に従って浮鉱と沈鉱とに分離する。浮遊選鉱工程では、例えば、浸出残渣を水溶液に投入し、起泡剤や捕集剤などの浮遊選鉱試薬を加え、機械的又は化学的に空気などの気泡を発生させる。この浮遊選鉱により、金が付随しやすい硫黄や硫化物の粒子は気泡に吸着して浮鉱として浮上するが、その他の酸化鉄や脈石成分は沈鉱となる。   The leaching residue of copper sulfide mineral is first supplied to the flotation process. In this flotation process, the leach residue is separated into flotation and sedimentation according to a known flotation method. In the flotation process, for example, the leach residue is put into an aqueous solution, and a flotation reagent such as a foaming agent or a scavenger is added to generate bubbles such as air mechanically or chemically. By this flotation, sulfur and sulfide particles, which are likely to accompany gold, are adsorbed in bubbles and floated as floatation, while the other iron oxides and gangue components are settled.

次の脱硫黄工程では、上記浮遊選鉱工程で得た浮鉱に含有されている硫黄を除去する。具体的な方法としては、浮鉱を窒素ガスやアルゴンガスなどの不活性ガス若しくは水蒸気を満たした炉内に入れ、不活性ガス中で加熱して硫黄を揮発させるか、若しくは水蒸気と化学反応させることにより硫黄を除去して、揮発も反応もしない金及び硫化物と分離する。尚、後者の水蒸気との反応により硫黄を除去する方法はフラッシュ法と称され、例えば硫黄鉱山で硫黄を回収するプロセスとして用いられている。   In the next desulfurization step, sulfur contained in the float obtained in the above flotation step is removed. As a specific method, float ore is put in a furnace filled with an inert gas such as nitrogen gas or argon gas or water vapor and heated in an inert gas to volatilize sulfur or chemically react with water vapor. This removes sulfur and separates it from gold and sulfide, which do not volatilize or react. The latter method of removing sulfur by reaction with water vapor is called a flash method, and is used as a process for recovering sulfur at a sulfur mine, for example.

窒素ガスやアルゴンガスなどの不活性雰囲気下で浮鉱中の硫黄を揮発除去する場合、浮鉱を250〜800℃の温度で加熱することが好ましい。250℃よりも低い温度では、硫黄の揮発が不充分となるため、硫黄が溶融状態で残留したり、揮発した硫黄が炉内で凝集して閉塞を生じたりする。加熱温度が800℃を超えると、硫化物の分解が進み、浸出残渣が焼結されたように固結し始めるなど取り扱い上の問題が発生する。   When the sulfur in the float is volatilized and removed under an inert atmosphere such as nitrogen gas or argon gas, the float is preferably heated at a temperature of 250 to 800 ° C. At a temperature lower than 250 ° C., the volatilization of sulfur becomes insufficient, so that the sulfur remains in a molten state, or the volatilized sulfur aggregates in the furnace to cause clogging. When the heating temperature exceeds 800 ° C., decomposition of the sulfide proceeds, and handling problems occur such as the leaching residue starts to consolidate as if sintered.

また、上記した不活性雰囲気下で浮鉱中の硫黄を揮発除去する場合の加熱温度は、300℃から400℃の範囲が更に好ましい。加熱温度が300℃以上になると硫黄の揮発が促進され、短時間に処理が進むため特に好ましい。しかし、加熱温度を400℃を超えて高くしても、硫黄の揮発速度はほとんど増加せず、必要なエネルギーが著しく増加するだけである。尚、揮発した硫黄は、250℃よりも低い温度領域で析出するので、容易に回収することができる。   Further, the heating temperature in the case where the sulfur in the float is volatilized and removed under the above inert atmosphere is more preferably in the range of 300 ° C to 400 ° C. A heating temperature of 300 ° C. or higher is particularly preferable because sulfur volatilization is promoted and the treatment proceeds in a short time. However, increasing the heating temperature beyond 400 ° C. hardly increases the volatilization rate of sulfur and only significantly increases the required energy. Since the volatilized sulfur is deposited in a temperature range lower than 250 ° C., it can be easily recovered.

また、上記脱硫黄工程において、浮鉱中の硫黄を水蒸気と化学反応させるフラッシュ法の場合には、165℃前後に加熱することが好ましい。具体的には、165℃程度の過熱水蒸気を浮鉱に吹き込み、硫黄と水蒸気を反応させることにより、硫黄を硫化水素ガスと二酸化硫黄ガスに分解して除去する。生成した硫化水素と二酸化硫黄の混合ガスを冷却すると固体の硫黄が析出するので、硫黄を容易に回収することができる。   Moreover, in the said desulfurization process, in the case of the flash method in which sulfur in the float ore is chemically reacted with water vapor, it is preferable to heat to around 165 ° C. Specifically, superheated steam at about 165 ° C. is blown into the float, and sulfur and steam are reacted to decompose and remove sulfur into hydrogen sulfide gas and sulfur dioxide gas. When the generated mixed gas of hydrogen sulfide and sulfur dioxide is cooled, solid sulfur is precipitated, and therefore, sulfur can be easily recovered.

上記脱硫黄工程で得られた脱硫黄物は、主に金と硫化物からなる。この脱硫黄物は上記した硫化銅鉱物の浸出工程に繰り返され、更に浮遊選鉱工程、硫黄除去工程の各工程に順に繰り返す。この各工程の繰り返しを1回又は複数回行うことによって、脱硫黄物中に残留している硫化物を分解させて除去し、金品位を濃縮させた金含有残渣とすることができる。   The desulfurized product obtained in the desulfurization step is mainly composed of gold and sulfide. This desulfurized product is repeated in the above-described copper sulfide mineral leaching process, and further repeatedly in each step of the flotation process and the sulfur removal process. By repeating these steps once or a plurality of times, it is possible to decompose and remove sulfides remaining in the desulfurized product, thereby obtaining a gold-containing residue in which the gold quality is concentrated.

即ち、上記脱硫黄物を新規に処理される銅精鉱などの硫化銅鉱物と共に浸出工程に供給すると、硫化物が浸出されることで銅の実収率及び金品位の向上が見込まれる。脱硫黄物に含有されていた金は硫黄に包含された形となり、新規に硫化銅鉱物より入ってきた金と共に浸出残渣に濃縮される。この浸出工程で得られた浸出残渣は、引き続き浮遊選鉱工程と脱硫黄工程を経て処理されることで、金が更に濃縮された脱硫黄物となる。各工程の繰り返しにより得られた脱硫黄物は、必要に応じて2回目以降の各工程への繰り返しを行い、所望の金品位まで上昇した時点で金含有残渣として回収する。   That is, when the desulfurized product is supplied to a leaching process together with copper sulfide minerals such as copper concentrate to be newly treated, the sulfide is leached, so that the actual yield of copper and the gold quality can be improved. The gold contained in the desulfurized product becomes a form included in sulfur, and is concentrated in the leach residue together with the gold newly entered from the copper sulfide mineral. The leaching residue obtained in this leaching process is subsequently processed through a flotation process and a desulfurization process, thereby obtaining a desulfurized product in which gold is further concentrated. The desulfurized product obtained by repeating each step is repeated as necessary for each step after the second time, and is recovered as a gold-containing residue when it is raised to a desired gold quality.

上記浸出工程への繰り返しは、酸化物及び脈石成分が分離され且つ硫黄が除去した脱硫黄物が最適である。浸出残渣を繰り返した場合には、酸化鉄や脈石成分も繰り返すこととなるため、浸出工程でのスラリー濃度の上昇による撹拌動力の増大や、大型の濾過設備の設置が必要になる。また、浮遊選鉱の浮鉱を繰り返した場合は、金や硫化物は硫黄に包含された状態であり、硫化物と浸出液の接触確率が低く浸出されにくいため、浸出残渣量が増加するうえ、金の濃縮が進まないなどの不都合が生じる。   For the repetition to the leaching step, a desulfurized product from which oxide and gangue components are separated and sulfur is removed is optimal. When the leaching residue is repeated, iron oxide and gangue components are also repeated. Therefore, it is necessary to increase the stirring power due to the increase in slurry concentration in the leaching process and to install a large filtration facility. In addition, when flotation flotation is repeated, gold and sulfide are contained in sulfur, and the contact probability between the sulfide and the leachate is low and it is difficult to leach out. Inconveniences such as inability to proceed with the concentration of sucrose.

得られる金含有残渣中の金以外の成分は大部分が銅硫化物である。従って、この金含有残渣を、従来から知られている乾式製錬の原料として使用することで、既存の金回収工程を用いて金を精製することができる。   Most components other than gold in the resulting gold-containing residue are copper sulfides. Therefore, by using this gold-containing residue as a conventionally known raw material for dry smelting, gold can be purified using an existing gold recovery process.

金品位が2g/tである銅精鉱200gを硫酸鉄溶液と混合し、スラリー濃度が200g/lとなるように調整した。このスラリーの初期硫酸鉄濃度は、鉄濃度が43g/l、硫酸濃度が30g/lであった。   200 g of copper concentrate having a gold grade of 2 g / t was mixed with an iron sulfate solution to adjust the slurry concentration to 200 g / l. The initial iron sulfate concentration of this slurry was 43 g / l for iron concentration and 30 g / l for sulfuric acid concentration.

このスラリー1リットルを石英容器に入れ、内容量3リットルの撹拌機付オートクレーブに装入した。オートクレーブ内を毎分200回転で撹拌しながら、温度120℃まで昇温し且つ酸素を充填して圧力を2.0MPaまで昇圧させた後、酸素を供給しながら圧力を維持しつつ1時間保持した。その後室温まで冷却すると共に降圧し、取り出したスラリーを濾過することによって浸出残渣1と浸出液に分離した。   1 liter of this slurry was placed in a quartz container and charged into an autoclave with a stirrer having an internal volume of 3 liters. While stirring in the autoclave at 200 revolutions per minute, the temperature was raised to 120 ° C. and filled with oxygen to increase the pressure to 2.0 MPa, and then maintained for 1 hour while maintaining the pressure while supplying oxygen. . Thereafter, the mixture was cooled to room temperature and the pressure was lowered, and the taken-out slurry was filtered to separate into leaching residue 1 and leachate.

得られた浸出残渣1を純水で洗浄し、回収した浸出残渣110gに水500mlを加え、3分間撹拌してスラリー化した。このスラリーをセル容量0.5リットルのアジテア型浮遊選鉱試験機に装入し、起泡剤としてメチルイソブチルカルビノール(MIBC)を浸出残渣1kgあたり200mgの割合で添加した。次に、捕収剤として米国Cytec Industries社製のPAX(商品名:カリウムアミルザンセート)を、浸出残渣1kgあたり100mgの割合で添加した。   The obtained leaching residue 1 was washed with pure water, 500 ml of water was added to 110 g of the collected leaching residue, and the mixture was stirred for 3 minutes to form a slurry. This slurry was charged into an agitaire type flotation tester having a cell capacity of 0.5 liter, and methyl isobutyl carbinol (MIBC) was added as a foaming agent at a rate of 200 mg per 1 kg of leaching residue. Next, PAX (trade name: potassium amyl xanthate) manufactured by Cytec Industries, Inc., USA was added as a collection agent at a rate of 100 mg per 1 kg of leaching residue.

その後、10分間撹拌した後、撹拌を継続しながら空気を2リットル/分の流量で吹き込みながら8分間浮遊選鉱し、60gの浮鉱1と50gの沈鉱1とに分離した。尚、本実施例では、1回の浮遊選鉱で浮鉱と沈鉱とに分離できたが、浸出残渣の性状によっては浮遊選鉱を繰り返し行ってもよく、その場合の浮遊選鉱の回数は適宜予備試験を実施して決定することができる。   Thereafter, after stirring for 10 minutes, the mixture was subjected to flotation for 8 minutes while blowing air at a flow rate of 2 liters / minute while continuing stirring, and separated into 60 g of float 1 and 50 g of sediment 1. In this example, it was possible to separate the flotation and the subsidence by one flotation, but depending on the properties of the leaching residue, the flotation may be repeated. It can be determined by conducting a test.

上記の浮遊選鉱により得られた浮鉱1を化学分析、顕微鏡観察並びにX線回折を用いて同定すると、主に未反応の硫化鉱物の成分と単体硫黄とからなり、金品位は5g/tであった。また、沈鉱1を同様に同定すると、大部分が酸化鉄や脈石成分であり、金は1g/t未満とほとんど含有されていなかった。   When the float 1 obtained by the above flotation is identified by chemical analysis, microscopic observation and X-ray diffraction, it mainly consists of unreacted sulfide mineral components and elemental sulfur, and the gold quality is 5 g / t. there were. Moreover, when the deposit 1 was identified similarly, most were iron oxide and a gangue component, and gold was hardly contained with less than 1 g / t.

次に、得られた60gの浮鉱1を、透明石英管を用いた管状炉内に装入した。炉内に窒素ガスを1リットル/分の流量で流しながら400℃まで昇温し、炉外から目視で観察しながら4時間かけて硫黄を揮発させて除去することにより、29gの脱硫黄物1を得た。得られた脱硫黄物1をX線回折で同定し、単体硫黄が全て揮発除去していることを確認した。また、脱硫黄物1の金品位は10g/tにまで濃縮されていた。   Next, 60 g of the obtained float 1 was charged into a tubular furnace using a transparent quartz tube. While flowing nitrogen gas into the furnace at a flow rate of 1 liter / min, the temperature was raised to 400 ° C., and the sulfur was volatilized and removed over 4 hours while visually observing from outside the furnace. Got. The obtained desulfurized product 1 was identified by X-ray diffraction, and it was confirmed that all the elemental sulfur was volatilized and removed. Moreover, the gold quality of the desulfurized product 1 was concentrated to 10 g / t.

この脱硫黄物1を上記浸出工程に繰り返し、新たな銅精鉱と共に上記と同一条件で浸出した後、引き続き浮遊選鉱工程及び脱硫黄工程を行って、32gの脱硫黄物2を得た。この脱硫黄物2の金品位は16g/tであった。更に、この脱硫黄物2を再び上記と同様に浸出工程に繰り返し、上記と同一条件で浸出・浮遊選鉱・脱硫黄を行って、26gの脱硫黄物3を得た。この脱硫黄物3の金品位は24g/tであった。   This desulfurized product 1 was repeated in the above leaching process, and after leaching with new copper concentrate under the same conditions as described above, the flotation process and the desulfurization process were subsequently performed to obtain 32 g of the desulfurized product 2. The gold quality of the desulfurized product 2 was 16 g / t. Further, this desulfurized product 2 was again subjected to the leaching process in the same manner as described above, and leaching, flotation and desulfurization were performed under the same conditions as described above to obtain 26 g of desulfurized product 3. The gold quality of the desulfurized product 3 was 24 g / t.

この実施例において、上記した銅精鉱、浸出残渣1〜3、浮鉱1〜3、沈鉱1〜3及び脱硫黄物(金含有残渣)1〜3について、それぞれを王水で溶解し、ICPで分析して、銅(Cu)、鉄(Fe)、硫黄(S)、金(Au)の含有量を求め、その重量と共に下記表1に示した。尚、表中のCu、Fe、Sの単位は重量%であり、Auの単位はg/tである。   In this example, for the copper concentrate, leaching residues 1 to 3, floatation 1 to 3, sedimentation 1 to 3 and desulfurized product (gold-containing residue) 1 to 3, each was dissolved in aqua regia, Analyzed by ICP, the contents of copper (Cu), iron (Fe), sulfur (S), and gold (Au) were determined and shown in Table 1 below together with their weights. In the table, the units of Cu, Fe and S are% by weight, and the unit of Au is g / t.

Figure 2011058018
Figure 2011058018

上記の結果から分るように、浸出・浮遊選鉱・脱硫黄の各工程の繰り返し回数が増加するに伴って、得られる脱硫黄物(金含有残渣)の金品位は、10g/t、16g/t、24g/tと上昇することが確認された。   As can be seen from the above results, as the number of repetitions of each step of leaching, flotation and desulfurization increases, the gold quality of the obtained desulfurized product (gold-containing residue) is 10 g / t, 16 g / t. It was confirmed that t increased to 24 g / t.

Claims (1)

湿式法による銅製錬工程において、金を含有する硫化銅鉱物の浸出残渣から濃縮された金を含有する金含有残渣を得る方法であって、金を含有する硫化銅鉱物を浸出する浸出工程と、得られた浸出残渣を浮遊選鉱して浮鉱と沈鉱とに分離する浮遊選鉱工程と、分離した浮鉱から硫黄を除去する脱硫黄工程とを備え、該脱硫黄工程で得られた脱硫黄物を上記浸出、浮遊選鉱及び脱硫黄の各工程に順に繰り返して、濃縮された金を含有する金含有残渣とすることを特徴とする、硫化銅鉱物浸出残渣からの金の濃縮方法。   In a copper smelting process by a wet method, a method for obtaining a gold-containing residue containing concentrated gold from a leaching residue of a copper sulfide mineral containing gold, a leaching step of leaching a copper sulfide mineral containing gold, A desulfurization obtained by the desulfurization step, comprising a flotation step of flotation of the obtained leach residue and separating it into a floatation and a subsidence, and a desulfurization step of removing sulfur from the separated floatation A method for concentrating gold from a copper sulfide mineral leaching residue, wherein the product is repeated in the above steps of leaching, flotation and desulfurization to obtain a gold-containing residue containing concentrated gold.
JP2009205537A 2009-03-31 2009-09-07 Method for recovering gold concentrate from leach residue of copper sulfide minerals Pending JP2011058018A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009205537A JP2011058018A (en) 2009-09-07 2009-09-07 Method for recovering gold concentrate from leach residue of copper sulfide minerals
US12/659,832 US8052774B2 (en) 2009-03-31 2010-03-23 Method for concentration of gold in copper sulfide minerals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205537A JP2011058018A (en) 2009-09-07 2009-09-07 Method for recovering gold concentrate from leach residue of copper sulfide minerals

Publications (1)

Publication Number Publication Date
JP2011058018A true JP2011058018A (en) 2011-03-24

Family

ID=43945975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205537A Pending JP2011058018A (en) 2009-03-31 2009-09-07 Method for recovering gold concentrate from leach residue of copper sulfide minerals

Country Status (1)

Country Link
JP (1) JP2011058018A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089963A (en) * 2013-11-07 2015-05-11 Jx日鉱日石金属株式会社 Method for concentrating rhodium and ruthenium
WO2019064709A1 (en) * 2017-09-26 2019-04-04 Jx金属株式会社 Gold leaching method and gold recovery method
US11319613B2 (en) 2020-08-18 2022-05-03 Enviro Metals, LLC Metal refinement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057133A (en) * 2004-08-19 2006-03-02 Sumitomo Metal Mining Co Ltd Method for recovering gold concentrate from residue of leached copper concentrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057133A (en) * 2004-08-19 2006-03-02 Sumitomo Metal Mining Co Ltd Method for recovering gold concentrate from residue of leached copper concentrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089963A (en) * 2013-11-07 2015-05-11 Jx日鉱日石金属株式会社 Method for concentrating rhodium and ruthenium
WO2019064709A1 (en) * 2017-09-26 2019-04-04 Jx金属株式会社 Gold leaching method and gold recovery method
JP2019059984A (en) * 2017-09-26 2019-04-18 Jx金属株式会社 Leaching method of gold and recovery method of gold
AU2018340945B2 (en) * 2017-09-26 2021-05-27 Jx Nippon Mining & Metals Corporation Gold leaching method and gold recovery method
US11319613B2 (en) 2020-08-18 2022-05-03 Enviro Metals, LLC Metal refinement
US11578386B2 (en) 2020-08-18 2023-02-14 Enviro Metals, LLC Metal refinement

Similar Documents

Publication Publication Date Title
US8052774B2 (en) Method for concentration of gold in copper sulfide minerals
AU2006298625B2 (en) Processing of nickel sulphide ore or concentrates with sodium chloride
JP4188824B2 (en) Improved metal recovery method using high temperature pressure leaching
JP5663129B2 (en) Copper-containing raw material processing method
JP4993501B2 (en) Process for recovering copper from copper-containing materials using pressure leaching, direct electrowinning and solvent / solution extraction
Chen et al. Recovery of silver and gold from copper anode slimes
MXPA03000744A (en) Method for recovering metal values from metal-containing materials using high temperature pressure leaching.
JP2010180450A (en) Method for concentrating gold from copper-sulfide ore
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP2005042155A (en) Method for concentrating noble metal contained in leaching residue from hydrometallurgical copper refining process
JP2008266774A (en) Zinc recovery method
JP2010235999A (en) Method for concentrating gold from copper sulfide mineral
JP2013209732A (en) Method for recovering nickel
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP2011058018A (en) Method for recovering gold concentrate from leach residue of copper sulfide minerals
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
JP4112401B2 (en) Recovery method of sulfur from leaching residue by atmospheric pressure method
JP4274079B2 (en) Method for recovering gold concentrate from copper concentrate leach residue
US10323296B2 (en) Process for extraction of copper from arsenical copper sulfide concentrate
JP2011074406A (en) Method for recovering valuables from noble metal-containing metal sulfide
JP7057900B2 (en) Pretreatment method for nickel oxide ore slurry
JP5423046B2 (en) Method for leaching copper raw materials containing copper sulfide minerals
JPH11124636A (en) Treatment of zinc leaching residue
JP2020147812A (en) Processing method of copper iron cobalt alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029